Перекачка высоковязкой и застывающей нефти, страница 6. Чем разбавить нефть


Россия начала разбавлять нефть для Европы

Владельцы европейских нефтеперерабатывающих заводов крайне недовольны качеством сырья, поступающего из России: похоже, что с падением мировых цен, его начали буквально разбавлять менее качественными сортами. Об этом на пресс-конференции в Москве заявил глава нефтяной компании "Лукойл" Вагит Алекперов, передает российское экономическое издание Finanz.ru.

Россия начала разбавлять нефть для Европы. © Фото с сайта yaplakal.com

Бизнесмен пояснил журналистам, что такое на самом деле нефть марки Urals, которую СССР, а затем и Россия поставляли на европейский рынок уже несколько десятков лет. На самом деле это - смесь нефти нескольких сортов, "легких" и "тяжелых". Последние отличаются высоким содержанием серы и низким качеством, что сказывается как на стоимости переработки, так и на характеристиках готовой продукции - бензина и дизельного топлива.

На территории России добываются и легкие сорта, и тяжелые. Проблема в том, что легкая нефть с малым содержанием серы есть лишь на так называемых зрелых месторождениях, которые уже значительно истощены добычей. Зато тяжелой нефти с высоким процентом серы в России избыток. В условиях, когда мировые цены на нефть практически сравнялись с высокой себестоимостью ее добычи в условиях Сибири и Крайнего Севера, россияне пошли по самому простому пути: существенно увеличили процент тяжелых сортов при смешивании до марки Urals. От этого, разумеется, серьезно пострадали западноевропейские нефтеперерабатывающие заводы.

- К нам уже обращались венгерские и финские потребители, которые попросили обратить внимание на качество нашей нефти, - констатировал Вагит Алекперов. - Я завтра буду обращаться в правительство с целью привлечь внимание к этой проблеме!

Пока же, отметил российский олигарх, западноевропейские нефтеперерабатывающие предприятия, производственное оборудование которых настроено именно на российскую Urals, вынуждены самостоятельно закупать нефть легких сортов у арабских стран, чтобы, добавив ее в некачественную российскую смесь, довести сырье до необходимой кондиции. Это - дорогостоящий и трудоемкий процесс, а нефтепереработчикам гораздо выгоднее просто сменить поставщика. Так уже поступила, в частности, Польша: местные нефтеперерабатывающие заводы перенастроили оборудование и теперь закупают нефть не у России, а у Саудовской Аравии. Ее первую пробную партию уже доставили на танкере в порт Гданьск, и, если все пойдет по плану, между Варшавой и Эр-Риядом будет подписан долгосрочный контракт. Таким образом, пытаясь обманывать покупателей, Россия рискует потерять европейский рынок для своей нефти окончательно.

by24.org

Растворители и разбавители – какие из чего и для чего применяются? | Своими руками

Реклама

Важность растворителей и их роли в работе не только по дереву вынуждает любого домашнего мастера лучше знать их типы, виды и свойства, а также то из чего они сделаны.

Хотя термины «растворитель» и «разбавитель» часто используются как синонимы, эти жидкости имеют совершенно разные свойства. (Тем не менее, для упрощения будем преимущественно использовать слово «растворитель».) Растворитель – это жидкость, растворяющая твердые вещества, например высохший лак. Разбавитель – жидкость, которой разбавляют морилку, краску или лак для снижения вязкости.

Иногда жидкость только разбавляет отделочный состав; в других случаях она способна не только разбавить лак, но и растворить высохшую пленку покрытия. Например, уайт-спиритом можно разбавить густой алкидно-масляный или полиуретановый лак, но после высыхания эти лаки в нем уже не растворяются. Напротив, спиртом-денатуратом можно и растворить, и разбавить шеллак (см. таблицу в конце статьи).

Научитесь разбираться в этих веществах, без которых невозможно большинство способов отделки. Сначала объединим все жидкости в основные группы и узнаем, чем одна группа отличается от другой. Затем рассмотрим входящие в каждую группу жидкости и выясним различия между ними. Познакомившись с основными свойствами, можно понять, как работают комплексные разбавители, состоящие из разных веществ.

Основные группы растворителей

Не будем сейчас рассматривать специальные растворители, входящие в состав смывок для лаков и красок, а также воду, которая используется для разбавления отделочных средств на водной основе и растворяет водные красители. Кроме них существуют пять основных групп растворителей, применяемых в отделочных процессах: нефтедистилляты (продукты перегонки нефти), спирты, кетоны, эфиры и гликолевые эфиры.

Скипидар можно было бы причислить к шестой группе, но он по рабочим свойствам очень близок к нефтедистиллятам, и его лучше включить в их группу. Каждая из пяти групп имеет свои особенности. Самыми распространенными являются нефтедистилляты, называемые также углеводородами, так как молекулы этих веществ состоят из атомов углерода и водорода. Входящие в данную группу жидкости получают способом разделения нефти на фракции при различных температурах. Скипидар также является продуктом перегонки, но вместо нефти сырьем для его получения служит смола хвойных деревьев.

Нефтяные дистилляты применяются для растворения и разбавления воска, масел и лаков на масляной основе (в том числе и полиуретановых). Многие из них (например, уайт-спирит, керосин, вазелиновое масло и парафин) обладают свойствами, которые делают их похожими на воск или масло, и часто используются как компоненты смазочных вещество и составов для ухода за мебелью. Менее маслянистые дистилляты, такие как толуол или ксилол, легко удаляют масляные и смазочные вещества и применяются для обезжиривания.

Читайте также: Как покрыть пол маслом или воском

Все нефтедистилляты и скипидар можно смешивать в любых пропорциях. По сравнению с уайт-спиритом скипидар более маслянист и медленнее испаряется. Толуол и ксилол входят в состав сложных (комплексных) растворителей и разбавителей для лака, смывок для акриловых красок и разбавителей для некоторых двухкомпонентных лаков. С их помощью можно удалить даже высохший клей ИВА. Нефтедистилляты используются и для разбавления промышленно выпускаемых морилок на масляной основе.

Спирты применяются как разбавители и растворители шеллака и спиртовых красителей, а также в качестве компонентов разбавителей для лаков. В качестве растворителей и разбавителей для нитроиеллюлозных лаков и красок используются кетоны и эфиры.

Гликолевые эфиры (например, целлозольв – торговое название этилен-гликоля) также разбавляют и растворяют нитролак и часто используются как связывающая добавка в морилках и отделочных составах на водной основе. Благодаря этим растворителям латексные частицы состава соединяются и образуют на поверхности древесины защитную пленку после того, как из покрытия испарится вода.

Различия внутри каждой группы

Сущность различий между жидкостями каждой группы одинакова: чем меньше молекулы вещества, тем быстрее они улетучиваются (испаряются), и наоборот, жидкость, состоящая из больших молекул, высыхает медленно. Кроме того, крупные молекулы после высыхания часто оставляют на поверхности жирный или восковой налет, а молекулы меньшего размера улетучиваются, как правило, без следа. Наглядно представить различия веществ одной группы, с которыми чаще всего приходится иметь дело, поможет схема «Нефтяные дистилляты». Самые маленькие молекулы в этой группе имеет метан, который испаряется так быстро, что при обычной температуре находится в газообразном состоянии.

Следом за метаном по степени увеличения размеров молекул идут этан, пропан, бутан и т.д., вплоть до октана – быстро испаряющейся жидкости, служащей главным компонентом автомобильного топлива. Затем следуют сольвент и уайт-спирит (нефтяной сольвент менее маслянист и быстрее испаряется, чем уайт-спирит). Толуол и ксилол – летучие жидкости с резким запахом – получают из сольвента и уайт-спирита. Производители выделяют толуол и ксилол, а остаток продают как уайт-спирит без запаха, который слабее обычного уайт-спирита, но в нем растворяется воск и он пригоден для разбавления масел и масляных лаков. Толуол и ксилол испаряются очень быстро, не оставляя следов. Следующая жидкость с еще более крупными молекулами – керосин. Он очень маслянист и почти не испаряется при комнатной температуре. После керосина идет минеральное масло, обладающее всеми свойствами настоящих масел, которые практически не испаряются. И, наконец, нефтяной воск, или парафин, – один из главных продуктов перегонки нефти. При комнатной температуре он представляет собой не жидкость, а твердое вещество, плавящееся при нагревании.

Итак, мы перечислили практически все основные вещества, входящие в группу нефтяных дистиллятов. Спирты, кетоны, эфиры и гликолевые эфиры различаются между собой точно так же – чем меньше молекулы, тем быстрее они улетучиваются, а жидкости, состоящие из крупных молекул, испаряются медленно. Из этих четырех групп только спирты и кетоны доступны и широко применяются в отделке. В группе спиртов метанол (древесный спирт) испаряется наиболее быстро, намного быстрее, чем этанол – спирт, содержащийся в алкогольных напитках и называемый также винным спиртом. Этанол как пищевой алкоголь облагается высокими акцизными пошлинами, и, чтобы избежать налогообложения, в него добавляют ядовитые вещества (обычно метанол), делая его непригодным для питья. Такую смесь называют спиртом-денатуратом или растворителем для шеллака. Метанол сам по себе сильно ядовит, и работать с ним следует только на улице или в специальной окрасочной камере с мощной вентиляцией.

В группе кетонов ацетон испаряется быстрее, чем метил-этилкетон (МЕК). Остальные кетоны улетучиваются медленно. Распознать растворитель можно с помощью суффикса в его названии. Спирты имеют суффикс «-ол» (метанол, этанол), кетоны – суффикс «-он» (ацетон, метилэтилкетон), эфиры -суффикс «-ат» (метилацетат, этила-цетат и т. п.). В названиях жидкостей из группы гликолевых эфиров, как правило, присутствует слово «эфир». Но не дайте всем этим названиям ввести вас в заблуждение или обмануть. В большинстве случаев вам требуется только вспомнить о пяти основных группах, каждая из которых применяется для растворения или разбавления определенных веществ. Внутри каждой группы различия между входящими в нее жидкостями не столь существенны и заключаются, в основном, только в скорости их испарения.

Растворитель для нитролака

Ознакомившись с главными свойствами различных групп, вы сумеете понять, как действует комбинированный растворитель для нитронеллюлозных лаков. Являясь смесью нескольких веществ, он может иметь различную скорость испарения, и его свойства зависят от состава и пропорции входящих в него компонентов.

Основное вещество лака – минные молекулы нитроцеллюлозы, при сильном увеличении под микроскопом похожие на спагетти. Чтобы они не слипались друг с другом и удобнее было наносить лак методом распыления, требуется большое количество жидкости. Если молекулы сталкиваются, находясь слишком близко друг к другу, лак становится вязким, и при его нанесении распылением на поверхности пленки образуется так называемая шагрень, напоминающая кожицу апельсина.

Для нанесения распылителем лак не должен быть вязким; достаточно небольшого количества растворителя, чтобы отделить нитроцеллюлозные молекулы друг от друга. В составе растворителя для нитролаков обычно содержится около 40-50% активного вещества, являющегося растворителем молекул лака: ацетона, эфира или гликолевого эфира. Остальное может быть любой жидкостью, служащей своего рода «разбавителем для растворителя». Обычно используются нефтедистилляты, которые не растворяют лак, а только разбавляют его еще больше. Эти жидкости, как правило, относительно дешевы и позволяют снизить цену комбинированного растворителя для нитролаков. Примерно 50-60% такого комбинированного растворителя составляет разбавитель. Чаше всего применяются толуол, ксилол или их смесь, а иногда в состав растворителя входит нефтяной сольвент. Стоимость комбинированного растворителя удается снизить еще больше, заменив часть активного растворителя спиртом, чаше метиловым. Хотя спирты сами по себе не растворяют нитролак, они резко снижают его вязкость, будучи смешаны с ацетоном или другим активным растворителем. Поэтому в комбинированных растворителях кроме активного растворителя и разбавителя часто содержится немного спирта, служащего так называемым латентным (скрытым) разбавителем.

Зная эти свойства, можно выяснить, что продается под названием смывки для нитролака и шеллака, которую часто используют любители для обновления отделочных покрытий мебели. Как правило, это обычный комбинированный растворитель. Вы сможете убедиться в этом, прочитав названия компонентов на этикетке. Для использования в качестве разбавителя нитролака комбинированный растворитель должен иметь тщательно подобранный состав. Необходимо достаточное количество активного растворителя и латентного разбавителя, чтобы полностью растворить молекулы нитроцеллюлозы. В противном случае молекулы слипаются в крошечные комочки, и на лаковой пленке часто образуется белесый налет, хорошо известный многим столярам, использующим для отделки нитролак. Если вы столкнулись с этим явлением и нанесенный лак побелел, исправить ситуацию поможет легкая шлифовка высохшей лаковой пленки и распыление поверх нее растворителя, который вернет ей блеск и прозрачность. (Поступающие в розничную продажу комбинированные растворители, как правило, содержат недостаточный процент активного растворителя. Для успешного исправления побелевшей пленки нитролака рекомендуем добавить в покупной растворитель немного чистого ацетона, чтобы полностью растворить частицы лака.)

Производители часто заявляют, что для работы с их нитролаком подходит только выпускаемый ими комбинированный растворитель. Однако если у вас не возникает проблем с поведением лаковой пленки, то нет причин переходить на рекомендованный производителем растворитель. Если вы наносите нитролак с помощью распылителя, то наверняка успели заметить его уникальное свойство хорошо удерживаться на вертикальных поверхностях. Он не стекает вниз, как масляный лак, шеллак или водные составы, и при аккуратной работе потеки не образуются. Причина этого свойства кроется в длинных молекулах нитроцеллюлозы и быстром испарении разбавителя. Как только струя разбавленного лака вылетает из сопла окрасочного пистолета и превращается в мельчайшие капельки тумана, разбавитель испаряется, и молекулы снова начинают слипаться друг с другом. Достигнув поверхности изделия, лак приобретает большую вязкость и не стекает. Оставшегося растворителя хватает лишь на выравнивание лаковой пленки, затем и эти остатки испаряются.

Процентное содержание активного растворителя в продукции разных производителей может быть различным; по этой причине свойства комбинированных растворителей могут сильно отличаться, так как на них влияет, главным образом, скорость испарения активного растворителя. Продающиеся комбинированные растворители можно условно разделить на три категории: стандартные растворители для нитролака и нитроэмали, испаряющиеся с «нормальной» скоростью; так называемые выравнивающие, которые испаряются медленнее стандартных; и быстрые (продающиеся обычно в магазинах автокосметики), улетучивающиеся быстрее всех остальных. К сожалению, у производителей не существует обязательных стандартов, поэтому приходится экспериментировать, подбирая комбинированный растворитель с оптимальной скоростью испарения среди всех трех категорий. Однако, смешивая растворители из разных категорий, можно добиться желаемого результата. В нормальных условиях (при температуре 24°С и влажности воздуха 40%) скорость испарения стандартного комбинированного растворителя оптимальна, но в холодную погоду (5°-15°С) разбавленный этим растворителем нитролак высыхает очень медленно. При длительной сушке на поверхность лаковой пленки успевает осесть больше пылинок, и они внедряются в лак. Процесс отделки существенно замедляется. Ускорить высыхание можно с помощью быстрого растворителя или его частичного добавления к стандартному. В жаркую погоду капельки нитролака просто не успевают растечься по поверхности, чтобы образовать ровную пленку. Порой они могут даже высыхать в воздухе прежде, чем лягут на поверхность.

Покрытие получается шершавым и тусклым. Если окружающий воздух не только жаркий, но и влажный, капельки лака захватывают влагу, и пленка покрытия становится белесой. Можно избавиться сразу от трех проблем (плохого распыления, преждевременного подсыхания и белёсости), используя медленный растворитель или добавив его в стандартный. Если вы живете в очень влажном климате и используемый вами медленный растворитель не помогает избавиться от повеления лака, испытайте продукцию других производителей, чтобы найти более подходящий. Медленные растворители можно использовать для борьбы с шагренью, для нанесения лака кистью, а также для отделки сложных изделий, например стульев или внутренних стенок шкафов и ящиков, когда часть лака оседает на уже высохших поверхностях. Добиться оптимального результата с комбинированными растворителями часто удается только с помощью экспериментов, так как производители не информируют о скорости испарения их растворителей, и время сушки нитролакового покрытия приходится определять метолом проб и ошибок. Но, имея некоторый опыт и используя одни и те же марки растворителей, вы сумеете полностью контролировать процесс отделки.

Читайте еще: Как отремонтировать своими руками старый паркет – подготовка и нанесение лака

Безопасность при работе с химическими растворителями и разбавителями

В последние годы появляется все больше отделочных составов на водной основе и безопасных смывок, и это заставляет многих внимательнее присмотреться к органическим растворителям и их влиянию на окружающую среду. Несомненно, будущее столярной отделки – за водными составами, но для полного перехода требуется время. Тем не менее правильное использование и хранение растворителей остается острой проблемой для небольших мастерских.

В самом деле, многие ли из нас осознают, что пары растворителей являются более серьезной угрозой, чем жидкости? Узнав некоторые сведения, вы будете внимательнее относиться к потенциально опасным веществам и сможете уменьшить риск до минимума.

Уайт-спирит – жидкий продукт перегонки нефти, использующийся как разбавитель и средство для удаления воска и масел, а также промывки кистей. Он снижает вязкость, обеспечивая более глубокое проникновение в древесину и ускоряя высыхание составов на масляной основе. По скорости испарения занимает промежуточное положение между медленно испаряющимся скипидаром и быстро улетучивающимся сольвентом. Почти не имеет запаха, что затрудняет определение избыточного количества его паров в воздухе. К счастью, уайт-спирит считается одним из самых безопасных растворителей.

Скипидар – жидкость, получаемая при перегонке смолы хвойных деревьев. Используется как разбавитель и чистящее средство для удаления масляных загрязнений. Из-за медленного высыхания может быть предпочтительнее уайт-спирита в некоторых случаях. Обладает сильным неприятным запахом. При попадании на кожу относительно безопасен, за исключением людей с повышенной чувствительностью. Однако он пожароопасен и иногда может воспламеняться самопроизвольно. Никогда не храните в мастерской тряпки, пропитанные скипидаром, даже смоченные водой.

Нефтяной сольвент – быстро испаряется, что в некоторых случаях может быть полезным, но при этом он также легко воспламеняется. Помните главное правило: если растворитель быстро испаряется, он имеет низкую температуру вспышки, поэтому пожароопасен. Не пользуйтесь в помещении легковоспламеняющимися жидкостями, такими как сольвент или комбинированный растворитель, пары которых могут вспыхнуть от малейшей искры в электрической розетке или выключателе. Сольвент обычно используется для удаления следов воска и масла, а также для размягчения и полировки мастики на основе шеллака.

Растворители для нитролака – смесь нескольких жидкостей, свойства которой различаются в зависимости от марки. Для лучшей совместимости обычно рекомендуется использовать вместе растворитель и лак одного производителя. Растворители имеют резкий запах, и это делает работу с ними неприятной. Будучи добавленными в нитролак, они улучшают растекаемость и выравнивание пленки покрытия, делая блеск более равномерным. Они также обеспечивают лучшую адгезию из-за более глубокого проникновения в древесину и ускоряют высыхание. Как и сольвент, не рекомендуются к применению в помещениях из-за высокой пожароопасности.

Метанол – очень эффективный растворитель и разбавитель шеллака и других составов на спиртовой основе, но он вызывает коррозию многих металлов и порчу уже готовых покрытий. Несмотря на отличные рабочие свойства, это один из самых опасных растворителей. Для безопасности его лучше заменять этиловым или изопропиловым спиртом. Метанол, как и метиленхлорид, требует очень осторожного обращения. Обычные угольные фильтры респираторов не задерживают пары этих растворителей. При покупке респиратора выясните, предназначен ли он для работы с этими веществами. Помните – не все респираторы одинаковы.

При работе с любыми органическими растворителями и разбавителями соблюдайте правила пожарной безопасности и личной гигиены, чтобы не подвергать риску свои здоровье и жизнь. Сделайте мастерскую местом, где можно работать, не опасаясь неприятностей.

Каким растворителем что разводить, разбавлять – таблица

ВЕЩЕСТВО

РАСТВОРЯЕТ

РАЗБАВЛЯЕТ

Уайт-спирит

Сольвент

Скипидар

Воск

Воск

Масло

Масляный лак

Полиуретан

Толуол

Ксилол

Воск

Покрытия на водной основе

Воск

Масло

Масляный лак

Полиуретан

Модифицированный лак

Спирт

Шеллак

Шеллак

Нитролак

Комбинированный растворитель

Шеллак

Нитролак

Покрытия на водной основе

Нитролак

Нитролак с катализатором

Гликолевый эфир

Шеллак

Нитролак

Покрытия на водной основе

Нитролак

Составы на водной основе

Вода

-

Составы на водной основе

Реклама

Ниже другие записи по теме "Как сделать своими руками - домохозяину!"

  • Как при помощи подручных средств можно отмерить необходимое количество удобрения Памятка для садовода – масса...
  • Растворы для обработки и опрыскивания рассады своими руками Как приготовить растворы для рассады...
  • Укладка лаг для пола – таблица расчета Как рассчитать толщину досок и...
  • Современные источники света вместо лампочек Чем осветить дом вместо лампочек...
  • Лесная земля – заготовка и смеси своими руками Как приготовить листовую землю +...
  • Обработка сада весной – таблица работ Весна: календарь защиты сада Мечтаете, чтобы...
  • Как сколько и когда поливать овощи: таблица-памятка Полив овощей – когда и...

    Подпишитесь на обновления в наших группах.

    vk ok Cвоими руками в Facebook

    Будем друзьями!

  • kak-svoimi-rukami.com

    Каким растворителем что разбавлять разводить и растворять?

    Важность растворителей и их роли в работе не только по дереву вынуждает любого домашнего мастера лучше знать их типы, виды и свойства, а также то из чего они сделаны.

    Хотя термины «растворитель» и «разбавитель» часто используются как синонимы, эти жидкости имеют совершенно разные свойства. (Тем не менее, для упрощения будем преимущественно использовать слово «растворитель».) Растворитель – это жидкость, растворяющая твердые вещества, например высохший лак. Разбавитель – жидкость, которой разбавляют морилку, краску или лак для снижения вязкости.

    Иногда жидкость только разбавляет отделочный состав; в других случаях она способна не только разбавить лак, но и растворить высохшую пленку покрытия. Например, уайт-спиритом можно разбавить густой алкидно-масляный или полиуретановый лак, но после высыхания эти лаки в нем уже не растворяются. Напротив, спиртом-денатуратом можно и растворить, и разбавить шеллак (см. таблицу в конце статьи).

    Научитесь разбираться в этих веществах, без которых невозможно большинство способов отделки. Сначала объединим все жидкости в основные группы и узнаем, чем одна группа отличается от другой. Затем рассмотрим входящие в каждую группу жидкости и выясним различия между ними. Познакомившись с основными свойствами, можно понять, как работают комплексные разбавители, состоящие из разных веществ.

    Основные группы растворителей

    Не будем сейчас рассматривать специальные растворители, входящие в состав смывок для лаков и красок, а также воду, которая используется для разбавления отделочных средств на водной основе и растворяет водные красители. Кроме них существуют пять основных групп растворителей, применяемых в отделочных процессах: нефтедистилляты (продукты перегонки нефти), спирты, кетоны, эфиры и гликолевые эфиры.

    Скипидар можно было бы причислить к шестой группе, но он по рабочим свойствам очень близок к нефтедистиллятам, и его лучше включить в их группу. Каждая из пяти групп имеет свои особенности. Самыми распространенными являются нефтедистилляты, называемые также углеводородами, так как молекулы этих веществ состоят из атомов углерода и водорода. Входящие в данную группу жидкости получают способом разделения нефти на фракции при различных температурах. Скипидар также является продуктом перегонки, но вместо нефти сырьем для его получения служит смола хвойных деревьев.

    Нефтяные дистилляты применяются для растворения и разбавления воска, масел и лаков на масляной основе (в том числе и полиуретановых). Многие из них (например, уайт-спирит, керосин, вазелиновое масло и парафин) обладают свойствами, которые делают их похожими на воск или масло, и часто используются как компоненты смазочных вещество и составов для ухода за мебелью. Менее маслянистые дистилляты, такие как толуол или ксилол, легко удаляют масляные и смазочные вещества и применяются для обезжиривания.

    Все нефтедистилляты и скипидар можно смешивать в любых пропорциях. По сравнению с уайт-спиритом скипидар более маслянист и медленнее испаряется. Толуол и ксилол входят в состав сложных (комплексных) растворителей и разбавителей для лака, смывок для акриловых красок и разбавителей для некоторых двухкомпонентных лаков. С их помощью можно удалить даже высохший клей ИВА. Нефтедистилляты используются и для разбавления промышленно выпускаемых морилок на масляной основе.

    Спирты применяются как разбавители и растворители шеллака и спиртовых красителей, а также в качестве компонентов разбавителей для лаков. В качестве растворителей и разбавителей для нитроиеллюлозных лаков и красок используются кетоны и эфиры.

    Гликолевые эфиры (например, целлозольв – торговое название этилен-гликоля) также разбавляют и растворяют нитролак и часто используются как связывающая добавка в морилках и отделочных составах на водной основе. Благодаря этим растворителям латексные частицы состава соединяются и образуют на поверхности древесины защитную пленку после того, как из покрытия испарится вода.

    Различия внутри каждой группы

    Сущность различий между жидкостями каждой группы одинакова: чем меньше молекулы вещества, тем быстрее они улетучиваются (испаряются), и наоборот, жидкость, состоящая из больших молекул, высыхает медленно. Кроме того, крупные молекулы после высыхания часто оставляют на поверхности жирный или восковой налет, а молекулы меньшего размера улетучиваются, как правило, без следа. Наглядно представить различия веществ одной группы, с которыми чаще всего приходится иметь дело, поможет схема «Нефтяные дистилляты». Самые маленькие молекулы в этой группе имеет метан, который испаряется так быстро, что при обычной температуре находится в газообразном состоянии.

    Следом за метаном по степени увеличения размеров молекул идут этан, пропан, бутан и т.д., вплоть до октана – быстро испаряющейся жидкости, служащей главным компонентом автомобильного топлива. Затем следуют сольвент и уайт-спирит (нефтяной сольвент менее маслянист и быстрее испаряется, чем уайт-спирит). Толуол и ксилол – летучие жидкости с резким запахом – получают из сольвента и уайт-спирита. Производители выделяют толуол и ксилол, а остаток продают как уайт-спирит без запаха, который слабее обычного уайт-спирита, но в нем растворяется воск и он пригоден для разбавления масел и масляных лаков. Толуол и ксилол испаряются очень быстро, не оставляя следов. Следующая жидкость с еще более крупными молекулами – керосин. Он очень маслянист и почти не испаряется при комнатной температуре. После керосина идет минеральное масло, обладающее всеми свойствами настоящих масел, которые практически не испаряются. И, наконец, нефтяной воск, или парафин, – один из главных продуктов перегонки нефти. При комнатной температуре он представляет собой не жидкость, а твердое вещество, плавящееся при нагревании.

    Итак, мы перечислили практически все основные вещества, входящие в группу нефтяных дистиллятов. Спирты, кетоны, эфиры и гликолевые эфиры различаются между собой точно так же – чем меньше молекулы, тем быстрее они улетучиваются, а жидкости, состоящие из крупных молекул, испаряются медленно. Из этих четырех групп только спирты и кетоны доступны и широко применяются в отделке. В группе спиртов метанол (древесный спирт) испаряется наиболее быстро, намного быстрее, чем этанол – спирт, содержащийся в алкогольных напитках и называемый также винным спиртом. Этанол как пищевой алкоголь облагается высокими акцизными пошлинами, и, чтобы избежать налогообложения, в него добавляют ядовитые вещества (обычно метанол), делая его непригодным для питья. Такую смесь называют спиртом-денатуратом или растворителем для шеллака. Метанол сам по себе сильно ядовит, и работать с ним следует только на улице или в специальной окрасочной камере с мощной вентиляцией.

    В группе кетонов ацетон испаряется быстрее, чем метил-этилкетон (МЕК). Остальные кетоны улетучиваются медленно. Распознать растворитель можно с помощью суффикса в его названии. Спирты имеют суффикс «-ол» (метанол, этанол), кетоны – суффикс «-он» (ацетон, метилэтилкетон), эфиры -суффикс «-ат» (метилацетат, этила-цетат и т. п.). В названиях жидкостей из группы гликолевых эфиров, как правило, присутствует слово «эфир». Но не дайте всем этим названиям ввести вас в заблуждение или обмануть. В большинстве случаев вам требуется только вспомнить о пяти основных группах, каждая из которых применяется для растворения или разбавления определенных веществ. Внутри каждой группы различия между входящими в нее жидкостями не столь существенны и заключаются, в основном, только в скорости их испарения.

    Растворитель для нитролака

    Ознакомившись с главными свойствами различных групп, вы сумеете понять, как действует комбинированный растворитель для нитронеллюлозных лаков. Являясь смесью нескольких веществ, он может иметь различную скорость испарения, и его свойства зависят от состава и пропорции входящих в него компонентов.

    Основное вещество лака – минные молекулы нитроцеллюлозы, при сильном увеличении под микроскопом похожие на спагетти. Чтобы они не слипались друг с другом и удобнее было наносить лак методом распыления, требуется большое количество жидкости. Если молекулы сталкиваются, находясь слишком близко друг к другу, лак становится вязким, и при его нанесении распылением на поверхности пленки образуется так называемая шагрень, напоминающая кожицу апельсина.

    Для нанесения распылителем лак не должен быть вязким; достаточно небольшого количества растворителя, чтобы отделить нитроцеллюлозные молекулы друг от друга. В составе растворителя для нитролаков обычно содержится около 40-50% активного вещества, являющегося растворителем молекул лака: ацетона, эфира или гликолевого эфира. Остальное может быть любой жидкостью, служащей своего рода «разбавителем для растворителя». Обычно используются нефтедистилляты, которые не растворяют лак, а только разбавляют его еще больше. Эти жидкости, как правило, относительно дешевы и позволяют снизить цену комбинированного растворителя для нитролаков. Примерно 50-60% такого комбинированного растворителя составляет разбавитель. Чаше всего применяются толуол, ксилол или их смесь, а иногда в состав растворителя входит нефтяной сольвент. Стоимость комбинированного растворителя удается снизить еще больше, заменив часть активного растворителя спиртом, чаше метиловым. Хотя спирты сами по себе не растворяют нитролак, они резко снижают его вязкость, будучи смешаны с ацетоном или другим активным растворителем. Поэтому в комбинированных растворителях кроме активного растворителя и разбавителя часто содержится немного спирта, служащего так называемым латентным (скрытым) разбавителем.

    Зная эти свойства, можно выяснить, что продается под названием смывки для нитролака и шеллака, которую часто используют любители для обновления отделочных покрытий мебели. Как правило, это обычный комбинированный растворитель. Вы сможете убедиться в этом, прочитав названия компонентов на этикетке. Для использования в качестве разбавителя нитролака комбинированный растворитель должен иметь тщательно подобранный состав. Необходимо достаточное количество активного растворителя и латентного разбавителя, чтобы полностью растворить молекулы нитроцеллюлозы. В противном случае молекулы слипаются в крошечные комочки, и на лаковой пленке часто образуется белесый налет, хорошо известный многим столярам, использующим для отделки нитролак. Если вы столкнулись с этим явлением и нанесенный лак побелел, исправить ситуацию поможет легкая шлифовка высохшей лаковой пленки и распыление поверх нее растворителя, который вернет ей блеск и прозрачность. (Поступающие в розничную продажу комбинированные растворители, как правило, содержат недостаточный процент активного растворителя. Для успешного исправления побелевшей пленки нитролака рекомендуем добавить в покупной растворитель немного чистого ацетона, чтобы полностью растворить частицы лака.)

    Производители часто заявляют, что для работы с их нитролаком подходит только выпускаемый ими комбинированный растворитель. Однако если у вас не возникает проблем с поведением лаковой пленки, то нет причин переходить на рекомендованный производителем растворитель. Если вы наносите нитролак с помощью распылителя, то наверняка успели заметить его уникальное свойство хорошо удерживаться на вертикальных поверхностях. Он не стекает вниз, как масляный лак, шеллак или водные составы, и при аккуратной работе потеки не образуются. Причина этого свойства кроется в длинных молекулах нитроцеллюлозы и быстром испарении разбавителя. Как только струя разбавленного лака вылетает из сопла окрасочного пистолета и превращается в мельчайшие капельки тумана, разбавитель испаряется, и молекулы снова начинают слипаться друг с другом. Достигнув поверхности изделия, лак приобретает большую вязкость и не стекает. Оставшегося растворителя хватает лишь на выравнивание лаковой пленки, затем и эти остатки испаряются.

    Процентное содержание активного растворителя в продукции разных производителей может быть различным; по этой причине свойства комбинированных растворителей могут сильно отличаться, так как на них влияет, главным образом, скорость испарения активного растворителя. Продающиеся комбинированные растворители можно условно разделить на три категории: стандартные растворители для нитролака и нитроэмали, испаряющиеся с «нормальной» скоростью; так называемые выравнивающие, которые испаряются медленнее стандартных; и быстрые (продающиеся обычно в магазинах автокосметики), улетучивающиеся быстрее всех остальных. К сожалению, у производителей не существует обязательных стандартов, поэтому приходится экспериментировать, подбирая комбинированный растворитель с оптимальной скоростью испарения среди всех трех категорий. Однако, смешивая растворители из разных категорий, можно добиться желаемого результата. В нормальных условиях (при температуре 24°С и влажности воздуха 40%) скорость испарения стандартного комбинированного растворителя оптимальна, но в холодную погоду (5°-15°С) разбавленный этим растворителем нитролак высыхает очень медленно. При длительной сушке на поверхность лаковой пленки успевает осесть больше пылинок, и они внедряются в лак. Процесс отделки существенно замедляется. Ускорить высыхание можно с помощью быстрого растворителя или его частичного добавления к стандартному. В жаркую погоду капельки нитролака просто не успевают растечься по поверхности, чтобы образовать ровную пленку. Порой они могут даже высыхать в воздухе прежде, чем лягут на поверхность.

    Покрытие получается шершавым и тусклым. Если окружающий воздух не только жаркий, но и влажный, капельки лака захватывают влагу, и пленка покрытия становится белесой. Можно избавиться сразу от трех проблем (плохого распыления, преждевременного подсыхания и белёсости), используя медленный растворитель или добавив его в стандартный. Если вы живете в очень влажном климате и используемый вами медленный растворитель не помогает избавиться от повеления лака, испытайте продукцию других производителей, чтобы найти более подходящий. Медленные растворители можно использовать для борьбы с шагренью, для нанесения лака кистью, а также для отделки сложных изделий, например стульев или внутренних стенок шкафов и ящиков, когда часть лака оседает на уже высохших поверхностях. Добиться оптимального результата с комбинированными растворителями часто удается только с помощью экспериментов, так как производители не информируют о скорости испарения их растворителей, и время сушки нитролакового покрытия приходится определять метолом проб и ошибок. Но, имея некоторый опыт и используя одни и те же марки растворителей, вы сумеете полностью контролировать процесс отделки.

    Безопасность при работе с химическими растворителями и разбавителями

    В последние годы появляется все больше отделочных составов на водной основе и безопасных смывок, и это заставляет многих внимательнее присмотреться к органическим растворителям и их влиянию на окружающую среду. Несомненно, будущее столярной отделки – за водными составами, но для полного перехода требуется время. Тем не менее правильное использование и хранение растворителей остается острой проблемой для небольших мастерских.

    В самом деле, многие ли из нас осознают, что пары растворителей являются более серьезной угрозой, чем жидкости? Узнав некоторые сведения, вы будете внимательнее относиться к потенциально опасным веществам и сможете уменьшить риск до минимума.

    Уайт-спирит – жидкий продукт перегонки нефти, использующийся как разбавитель и средство для удаления воска и масел, а также промывки кистей. Он снижает вязкость, обеспечивая более глубокое проникновение в древесину и ускоряя высыхание составов на масляной основе. По скорости испарения занимает промежуточное положение между медленно испаряющимся скипидаром и быстро улетучивающимся сольвентом. Почти не имеет запаха, что затрудняет определение избыточного количества его паров в воздухе. К счастью, уайт-спирит считается одним из самых безопасных растворителей.

    Скипидар – жидкость, получаемая при перегонке смолы хвойных деревьев. Используется как разбавитель и чистящее средство для удаления масляных загрязнений. Из-за медленного высыхания может быть предпочтительнее уайт-спирита в некоторых случаях. Обладает сильным неприятным запахом. При попадании на кожу относительно безопасен, за исключением людей с повышенной чувствительностью. Однако он пожароопасен и иногда может воспламеняться самопроизвольно. Никогда не храните в мастерской тряпки, пропитанные скипидаром, даже смоченные водой.

    Нефтяной сольвент – быстро испаряется, что в некоторых случаях может быть полезным, но при этом он также легко воспламеняется. Помните главное правило: если растворитель быстро испаряется, он имеет низкую температуру вспышки, поэтому пожароопасен. Не пользуйтесь в помещении легковоспламеняющимися жидкостями, такими как сольвент или комбинированный растворитель, пары которых могут вспыхнуть от малейшей искры в электрической розетке или выключателе. Сольвент обычно используется для удаления следов воска и масла, а также для размягчения и полировки мастики на основе шеллака.

    Растворители для нитролака – смесь нескольких жидкостей, свойства которой различаются в зависимости от марки. Для лучшей совместимости обычно рекомендуется использовать вместе растворитель и лак одного производителя. Растворители имеют резкий запах, и это делает работу с ними неприятной. Будучи добавленными в нитролак, они улучшают растекаемость и выравнивание пленки покрытия, делая блеск более равномерным. Они также обеспечивают лучшую адгезию из-за более глубокого проникновения в древесину и ускоряют высыхание. Как и сольвент, не рекомендуются к применению в помещениях из-за высокой пожароопасности.

    Метанол – очень эффективный растворитель и разбавитель шеллака и других составов на спиртовой основе, но он вызывает коррозию многих металлов и порчу уже готовых покрытий. Несмотря на отличные рабочие свойства, это один из самых опасных растворителей. Для безопасности его лучше заменять этиловым или изопропиловым спиртом. Метанол, как и метиленхлорид, требует очень осторожного обращения. Обычные угольные фильтры респираторов не задерживают пары этих растворителей. При покупке респиратора выясните, предназначен ли он для работы с этими веществами. Помните – не все респираторы одинаковы.

    При работе с любыми органическими растворителями и разбавителями соблюдайте правила пожарной безопасности и личной гигиены, чтобы не подвергать риску свои здоровье и жизнь. Сделайте мастерскую местом, где можно работать, не опасаясь неприятностей.

    Каким растворителем что разводить, разбавлять

    ВЕЩЕСТВО

    РАСТВОРЯЕТ

    РАЗБАВЛЯЕТ

    Уайт-спирит

    Сольвент

    Скипидар

    Воск

    Воск

    Масло

    Масляный лак

    Полиуретан

    Толуол

    Ксилол

    Воск

    Покрытия на водной основе

    Воск

    Масло

    Масляный лак

    Полиуретан

    Модифицированный лак

    Спирт

    Шеллак

    Шеллак

    Нитролак

    Комбинированный растворитель

    Шеллак

    Нитролак

    Покрытия на водной основе

    Нитролак

    Нитролак с катализатором

    Гликолевый эфир

    Шеллак

    Нитролак

    Покрытия на водной основе

    Нитролак

    Составы на водной основе

    Вода

    -

    Составы на водной основе

    tsvo.ru

    О разбавлении масел топливом - Справочник химика 21

        Температура вспышки масла почти всегда указывается в списке типовых характеристик. Она связана с фракционным составом масла и структурой молекул базовых компонентов и является важной по нескольким причинам. Во-первых, это показатель пожароопасности масла, поэтому предпочтительнее более высокое значение температуры вспышки. Во-вторых, она показывает присутствие летучих фракций в масле, которые быстрее испаряются в работающем двигателе (расход масла на угар). В-третьих, при анализе работающего масла, по понижению температуры вспышки легко определяется разбавление масла топливом. В сочетании со снижением вязкости масла, понижение температуры вспышки служит сигналом для поиска неисправностей системы зажигания или системы подачи топлива. [c.37]     Влияние разбавления масла топливом на температуру запуска [27] [c.53]

        Наряду со срабатыванием присадок в процессе работы масла наблюдается изменение его вязкости. Это объясняется разными причинами и по-разному отражается па величине вязкости. Окисление масла, например, приводит к повышению его вязкости вследствие образования высокомолекулярных продуктов. Повышению вязкости масла способствует испарение из него легких фракций. С другой стороны, разбавление масла топливом (в двигателе внутреннего сгорания) и деструкция загущающих присадок, содержащихся в масле, наоборот приводит к уменьшению вязкости последнего. [c.271]

        Одним из основных интегральных показателей для трансмиссионного масла может служить повышение вязкости до 50% по сравнению с вязкостью исходного (свежего) масла. В ряде случаев трансмиссионные масла можно использовать без смены на весь ресурс работы объекта. В зависимости от специфики эксплуатации и назначения масла число интегральных или браковочных показателей может меняться. В частности, такими показателями могут служить степень разбавления масла топливом, содержание в масле механических примесей (эксплуатация в запыленной атмосфере), продуктов износа и т. д. [c.273]

        Масло М-бз/ЮВ по низкотемпературным свойствам несколько уступает описанным выше маслам, поэтому эффективно применять его в северных условиях можно лишь на технике, оборудованной подогревателями, или при разбавлении масла топливом с учетом всех недостатков этого приема. [c.76]

        При разбавлении масла топливом следует тщательно контролировать вязкость масла в картере, чтобы исключить чрезмерное снижение его вязкости менее 4—5мм /с при 100 °С (4—5 сСт). В зависимости от вида топлива, конструкции двигателя и режима его работы скорость удаления топлива из масла различна. Так, бензин удаляется практически полностью уже за 20—30 мин работы двигателя, с меньшей скоростью испаряется керосин (авиационное топливо ТС-1) и еще труднее удаляется дизельное топливо. Кроме того, определить вязкость масла в эксплуатационных условиях без применения вискозиметров затруднительно. [c.84]

        Седьмой особенностью смазки ТРД является то, что в условиях запуска для обеспечения нормального протекания рабочего процесса скорость вращения вала турбокомпрессора должна достичь 1200—1500 об мин. В поршневом двигателе для пуска достаточно развить скорость вращения коленчатого вала 40—60 об/мин. В связи со сказанным очень важно, чтобы применяемые масла обладали необходимой текучестью при температурах запуска. Отметим, что масляная система ТРД (в противоположность масляной системе поршневых двигателей) не позволяет применять разбавление масла топливом как средство уменьшения вязкости масла при низких температурах. Это объясняется тем, что разжиженное масло в ТРД не достигает той температуры, при которой наступает испарение топлива из масла. [c.308]

        Температура, при которой выкипает 90% топлива и более, указывает на количественное содержание в нем тяжелых трудно испаряющихся фракций. Чем ниже эта температура, тем полнее испаряется топливо и тем меньше возможность разбавления масла в картере двигателя высококипящими фракциями горючего. [c.12]

        В отличие от дизельного топлива сернистое трансформаторное масло экстрагировало из солянокислых растворов только золото [15, 17] Рнеблагородные металлами им не экстрагируются. При однократной обработке раствора, содержащего 1,87 г/л Ап, двумя объемами трансформаторного масла золото извлекалось из водной фазы практически количественно, причем изменение концентрации НС1 с 5 до 80 г/л не влияет на экстракцию золота. Емкость экстрагента по золоту прп концентрации в водной фазе 1 г/л, втрое ниже, чем у дизельного топлива. При разбавлении масла тетрадеканом коэффициент распределения золота пропорционален концентрации масла в первой степени. [c.190]

        Величины удельных нагрузок и скоростей взаимного движения деталей в узлах трения двигателя внутреннего сгорания таковы, что полноценную смазку можно было бы обеспечить при помощи масла значительно меньшей вязкости, чем у применяемых в настоящее время. Неизбежность разбавления масла горючим и связанное с этим снижение вязкости работающего масла вызывают необходимость использовать масла с достаточным запасом вязкости. Обычно в отработанных авиационных маслах содержание бензина составляет 2—3%, в автомобильных маслах — 3—7%. Следовательно, чем тяжелее применяемое топливо, т. е. чем выше температура его выкипания, тем медленнее оно испаряется, легче конденсируется и тем интенсивнее происходит разжижение масла. Действительно, если температура конца кипения авиационного бензина 180° С, то степень разжижения отработанного авиационного масла не превышает 3% при температуре конца кипения автомобильных бензинов 195° С (А = 72) и 205° С (А = 66) степень разжижения масла при работе на этих топливах соответственно увеличивается до 7%, а в некоторых случаях —до 10%. Содержание в масле более 10% бензина считается недопустимым, так как при этом сильно увеличивается износ двигателя. [c.15]

        Однако для обеспечения смазки, особенно при высоких температурах (стенки цилиндра, поршневой палец), пользуются обычно маслом с некоторым запасом вязкости, так как при эксплуатации неизбежно разбавление масла горючим и связанное с этим снижение вязкости масла. Наблюдения показывают, что больше всего попадает топлива в масло при запуске двигателя применение для ускорения запуска чрезмерно богатой смеси при холодном двигателе ведет к тому, что неиспарившееся жидкое топливо стекает по стенкам цилиндров в картер и разжижает находящееся там масло. [c.373]

        Отработанная разбавленная серная кислота (70%-ная) вытекает из нижней части колонны и поступает без охлаждения непосредственно на упаривание. Расход серной кислоты составляет 3—4 т на 1 т азотной кислоты. Для возврата отработанной серной кислоты в процесс ее следует концентрировать до купоросного масла. Это связано с большим расходом топлива, безвозвратными потерями некоторого количества серной кислоты и с сильной коррозией аппаратуры. В настоящее время поэтому в промышленности широко применяется метод прямого синтеза концентрированной азотной кислоты и осваивается метод концентрирования разбавленной азотной кислоты перегонкой в присутствии Mg(NOз)2, используемой в качестве водоотнимающей соли. [c.111]

        Повышение содержания кетона в растворителе. С целью повышения отбора парафина на установках проводились работы по увеличению содержания ацетона в растворителе, применяемом в процессах. обезмасливания. На некоторых установках (Грозненский НПЗ им. А. Шерипова, Ново-Уфимский НПЗ) содержание ацетона в растворителе достигает 50—55 объемн.%. Для легких дистиллятных фракций содержание ацетона в растворителе может быть еще выше. Например, при получении парафинов из дизельного топлива содержание ацетона может достигать 60 объемн. 7о. Применение растворителя с увеличенным содержанием ацетона способствует более полному выделению парафинов и позволяет вести процесс при более высоких температурах. В случае использования растворителя с повышенным содержанием компонента, осаждающего парафин, состав растворителя должен обеспечивать (при заданной кратности разбавления) полную растворимость нежелательных компонентов при температуре охлаждения суспензии. В противном случае нерастворенная масляная фаза вследствие высокой вязкости не отфильтровывается, а остается в слое осадка и плохо вымывается при холодной промывке. Содержание масла в парафине при этом резко возрастает, [c.153]

        Настоящий способ применяется для определения содержания серы в светлых продуктах бензинах, лигроинах, реактивных топливах, керосинах, а также для определения серы в дизельных топливах и легких соляровых маслах. Для определения содержания серы в более тяжелых продуктах данный способ можно применять при условии разбавления испытуемого продукта растворителем. [c.392]

        Уменьшение вязкости трансмиссионного автотракторного масла за счет введения в него маловязкого дистиллята влияет на противоизносные свойства двояко. С одной стороны, снижение вязкости вызывает некоторое ухудшение противоизносных свойств смеси (рис. 7. 7). С другой стороны, улучшение отвода тепла с поверхности контактирующих зубьев и уменьшение нагрева масла в объеме (см. рис. 7. 3) затрудняет достижение критической температуры, при которой происходит десорбция масляной пленки и начинается интенсивный износ. По-видимому, последнее в условиях работы шестеренчатых передач имеет превалирующее значение и при разбавлении трансмиссионного автотракторного масла дизельным топливом приводит к общему снижению износа зубьев шестерен (рис. 7. 8). Однако уменьшение износа наблюдается лишь с 25—35% дизельного топлива. При дальнейшем увеличении количества дизельного топлива износ снова возрастает (рис. 7. 9). [c.417]

        Модель пластового флюида по составу и физико-химическим свойствам должна приближаться к реальной. В качестве модели пластового флюида в случае нефтяного пласта, как правило, используются продукты нефтепереработки (дизельное топливо, керосин, трансформаторное масло) и реже дегазированная нефть этого же месторождения, разбавленная петролейным эфиром. [c.253]

        В результате работы, особенно когда узел цилиндр/поршень начинает изнашиваться, уровень масла в маслосборнике будет повышаться из-за разбавления топливом. Когда уровень значительно поднимается, маслосборник следует промыть и добавить свежую порцию масла. [c.614]

        Основные константы обеих марок, кроме температуры застывания, одинаковы. Фракционный состав не менее 50% выкипает до 300° и не менее 80% — до 350° вязкость его при 20° 1,4—2,3° по Энглеру температура вспышки — не ниже 65° (М.—П). Летнее топливо должно застывать при температуре не выше—10° и применяется в летнее время, а также при весенних и осенних полевых работах, если температура воздуха достаточно высока. В летнее время в качестве дизельного топлива может применяться также соляровое масло, вязкость которого при 50° 1,2—1,75° по Энглеру температура застывания не выше —20°. Дизельное топливо марки зимнее применяется нри низких температурах и характеризуется относительно низкой температурой застывания, не выше —35°. Для эксплуатации тракторных дизелей цри более низкой температуре иногда применяется дизельное топливо, разбавленное соответствующим количеством тракторного керосина. [c.695]

        Отработанная разбавленная серная кислота (ТО и-ная) вытекает из нижней части колонны и поступает без охлаждения непосредственно на упаривание. Расход серной кислоты составляет 3—4 т на 1 гп азотной кислоты. Для возврата отработанной серной кислоты в процесс ее следует концентрировать до купоросного масла. Это связано с большим расходом топлива, безвозвратны.%ш потерями некоторого количества серной кислоты н с сильной коррозией аппа- [c.356]

        Очепь сходно с зависимостью износов от вязкости масла разжижение масла топливом в зависимости от режима работы двигателя (при малых нагрузках) в легких условиях с чрезмерным обогащениел рабочей смеси и низкой температурой охлаждения двигателя. В зависимости от того, какое количество бензина или дизельного топлива смешивается с масляной пленкой на стенках цилиндра или в объеме масла, в картере существенно снижается рабочая вязкость, что может резко увеличить износы. Так, например, добавка 3—5% бензина понижает вязкость масла SAE 30 до уровня SAE 20, а 8—10% до SAE 10. Разбавление масла топливом дает тот же отрхщательный эффект, как и применение масла с чрезмерно низкой исходной вязкостью. [c.392]

        Смазочные масла должны сохранять в авиационных двигателях текучесть в широком диапазоне изменения температуры, с тем чтобы обеспечить как запуск двигателя на холоду, так и его работу при высоких температурах эксплуатации. Хотя диапазон рабочих температур в реактивных двигателях шире, чем в поршневых, однако основная трудность применения обычных нефтяных смазочных масел в реактивных двигателях заключается в том, что система смазки этих двигателей замкнутая. В поршневых двигателях высокой мощности для обеспечения легкого запуска при низких температурах можно разбавлять высоковязкое масло топливом. Топливо быстро испаряется из масла и удаляется из двигателя вместе с картерными парами после его разогрева. В реактивных двигателях разбавление масла топливом невозможно, так как масло циркулирует в замкт [c.146]

        Из перечисленных факторов наибольшие погрешности в результаты анализа нефтепродуктов вносит их переменная вязкость. При анализе водных растворов. проблема вязкости практически не существует, так как она изменяется незначительно. Это чисто нефтяная проблема . Так, воздушно-ацетиленовое пламя, настроенное на стсхиометрический состав при всасывании топлива ТС-1 (давление воздуха 56 кПа, ацетилена — 28 кПа, расход топлива ТС-1—4,0 мл/мин), едва горит при переходе на маловязкое масло МС-8. Сигнал при этом примерно в 300 раз меньше, чем при анализе топлива ТС-1 с таким же содержанием никеля (рис. 19 и табл. 28). Неразбавленное масло АС-9,5 вообще не всасывается. При двукратном разбавлении образцов топливом ТС-1 пламя горит стабильно, но сигнал от топлива ТС-1 в 25 раз больше, чем от его смеси с маслом АС-9,5. В результате пятикратного разбавления проб это расхождение снижается до 45°/о. Лишь при 50-кратном разбавлении различие в сигналах снижается до приемлемого значения. Но при этом в 50 раз снижается концентрация металлов в пробе. В данном случае в образцах никеля было по 10 мкг/мл.. Следует подчеркнуть, что при выполнении этой работы использовали линию N1 341,5 нм, которая менее чувствительна к изменению состава пламени (см. рис. 17 и 18) с линией N1 232,0 нм расхождение значительно больше. Таким образом, многократ- [c.136]

        В условиях сельского хозяйства нередко прибегают к разбавлению летнего дизельного топлива автомобильным бензином. Такое разбавление крайне нежелательно во.зрастают жесткость работы и интенсивность изнашивания деталей двигателей, в том числе топливной аппаратуры, наблюдается нередко значительное разжижение масла топливом и т, д. Применять смесь летнего дизельного топлива с низкооктановым бензином в современных тракторных зиз т-гл М05КН0 только кратковременно в случае крайней необходимости. [c.73]

        В народном хозяйстве СССР используются главным образом тяжелые крекинг-остатки (крекинг-мазуты). Маловязкие мазуты, особенно прямой перегонки, используются только на кораблях морского флота и для специальных целе11. Получаемые в настоящее время сверхвязкие крекинг-остатки могут применяться непосредственно в качестве топлива на тепловых электростанциях и в промышленных котельных, расположенных в зоне нефтеперерабатывающих заводов. После разбавления маловязкими компонентами (соляровое масло и др.) до получения вязкости, предусмотренной стандартами на нефтяное топливо [3], они могут транспортироваться другим потребителям. [c.212]

        Выбор растворителя определяется в известной мере характером исходного сырья. Так, для разбавления керосинов, содержащих большое количество к-парафинов, что приводит к образованию значительных количеств комплекса, Л. ]М, Розенберг с сотр. [25] рекомендует применять изооктан. На установке карбамидной депарафинизации дизельного топлива Грозненского нефтеперерабатывающего завода в качестве растворителя сырья (а также в качестве агента для разрушения комплекса) применяют фракцию прямой перегонки 80—110° С. Для получения низкозастывающих автола и трансформаторного масла рекомендованы в качестве растворителей петролейный эфир и фракции 80—146° С [70]. С. Р. Сергиенко и В. Т. Скляр [71] показали, что применение дихлорэтана в качестве растворителя позволяет успешно вести карбамидную депарафинизацию вы-сокоароматизированных фракций нефти. Для депарафинизации остаточного масла предложено применять в качестве растворителя крезол [72]. Сравнительная оценка ряда растворителей [c.40]

        Мазут. Для малооборотных дизелей топливом является разбавленный керо-синово-газойлевыми фракциями мазут. Мазут — это остаток после отгона из нефти топливных фракций лигроина, бензина, керосина и дизельного топлива. Мазут в своем составе содержит различные смолы, асфальтены (см. табл. 36.1), кокс и другие соединения. Мазут применяется также в качестве топлива для паровых котлов, промышленных печей, газовых турбин. Значительная часть мазута перерабатывается в более легкое моторное топливо, а также в масла и битум. [c.656]

        Ц— сырье 1 — водяной пар разбавления III закалоч-иая вода IV, VIII — закалочное масло V — котловая вода VI — водяной пар 12 МПа VII — водяной пар 0,25 МПа IX — котельное топливо X — вода на рециркуляцию XI — пнрогаз XII вода на закалку. [c.43]

        Тиоколовые герметики представляют собой двухкомпонентные материалы, твердеющие ири смешении герметизирующей пасты на основе полисульфидного каучука и вулканизирующей пасты, содержащей вулканизирующий агент (двуокись марганца, двуокись свинца или натрий двухромовокислый) и ускоритель. После вулканизации тиоколовые гуммировочные покрытия топливо-, масло-, бензоводостойки и стойки к тепловому старению. В разбавленных минеральных кислотах и щелочах наиболее стойкими являются герметики У-ЗОМ и У-30, МЭС-5. [c.105]

        Отработанная разбавленная серная кислота (70%-ная) вытекает снизу колонны и поступает без охлаждения непосредственно на упаривание. Расход крепкой серной кислоты составляет 3—4 т на 1 г крепкой азотной кислоты. Для возврата отработанной серной кислоты обратно в процесс необходимо ее концентрировать до купоросного масла. Это связано с большим расходом топлива, безвозвратными потерями некоторогб количества серной кислоты (сд1. гл. IX) и с сильной коррозией аппаратуры. Поэтол у в настоящее время большое внимание уделяется произ- [c.269]

        П р имером оки сления в жидкой фазе при высоких температурах и давлениях служит процесс Penniman a Сырая нефть или ее погоны смешиваются с измельченным в порошок углем- или торфо м и затем окисляются пропусканием через нагретую смесь воздуха. В случае газойля например масла подогреваются сначала до 260° под давление М в 20 ат. При 1в ведении воздуха температура повышается до 385—400°. Дестиллат, полученный при окислении, разделяется при стоянии на верхний, нерастворимый, в воде слой, промежуточный слой и нижний слой— водный раствор органических кислот. Кислоты, фенолы и альдегиды могут быть последовательно извлечены из верхнего слоя раствором соды, едкого натра и бисульфита натрия. Остаток от верхнего слоя промывается ВОдой, обрабатывается серной кислотой и затем перегоняется для получения моторного топлива. Остаток возвращается в куб для окисления. Из кислородной вытяж-ки спирты могут быть вьгделены разбавлением во дой и перегонкой. [c.909]

        Дпя предотвращения коррозии аппаратуры при разгонке в кубы подается аммиак. Полученные дистиппятные компоненты перерабатьюаются следующим образом. Бензин и дизельное топливо защелачиваются, промьшаются водой и могут исполь -зоваться как компоненты топлив. Веретенный дистиллят употребляется в качестве тяжелого дизельного топлива или компонента котельного топлива. Легкий дистиллят мащинного маспа после подкисления используется для производства машинных масеп, а после селективной очистки - в качестве легкого компонента моторных масел. Легкие и тяжелые дистилляты моторных масел очищаются фурфуролом, в результате чего попу -чают рафинат 1 вязкостью 41-68 сСт при 50 С (75-80%), рафи-нат П вязкостью 61-100 сСт при 50 С (4-6%) и экстракт с условной вязкостью 2-3 Е при 100 С (16-19%), Рафинат 1 после контактной очистки отбеливающей глиной при температуре 180 С и фильтрации используется как компонент моторных масел. Рафинат Д является компонентом осевых масел, а экст -ракт используется в качестве пластификатора для резины. Остаток от вакуумной перегонки содержит тяжелые компоненты масел, а также сконцентрированные загрязнения, продукты старения и продукты разложения присадок. Для удаления этих загрязнений и асфальто-смолистых веществ остаток подверга -ется деасфальтизации пропаном (около 400%) при температуре 40-50 С. После деасфальтизации получается 75-80% деасфаль -тизированного масла с зольностью менее 0,01% и 20-25% битума с высоким содержанием загрязнений. Полученный оста -точный компонент (деасфальтизат) может применяться в качестве компонента цилиндровых масел, а после кислотной очистки при разбавлении легким керосином, выщелачивания, контактной очистки и отгонки растворителя - в качестве тяжелого компонента моторных масел вязкостью около 30 Е при 50 С, Остаток от деасфальтизации используется дпя приготовления мягкого битума. Получаемые при переработке компоненты масеп по физико-химическим показателям не уступают свежим и используются для приготовления товарных моторных и других сортов масел. [c.37]

        Смазочные масла, свободные от золообразующих присадок, и нефтяные углеводороды с более высокой вязкостью, чем легкое топливо, можно сжигать после разбавления смесью петролейный эфир/толуол. Жидкости, по испаряемости сравнимые с изопентаном, могут явиться причиной взрывов. Такие пробы следует смешивать перед сжиганием с высоко-кипящим растворителем, например, изоокганом. [c.339]

        На основаиии изучения износа методом радиоактивных хюршневых колец авторы пришли к выводу, что при типичных условиях эксплуатации дизеля коррозионный износ двигателя полностью определяется коррозттей сернот кислотой, образовавшейся в результате сгорания топлива. Это положение в корне отличается от существующего для бензиновых двигателей, износ которых, повидимому, определяется присутствием разбавленных органических и неорганических кислот. Однако дизели, работающие в условиях, при которых в зоне поршневых колец конденсируется вода, обнаруживают особенно быстрый износ при отсутствии значительных количеств щелочных присадок в дизельных маслах. [c.341]

        Волокно фенилон отличается высокой химической стойкостью. Оно устойчиво к действию большинства органических растворителей (спирты, кетоны, эфиры) и нефтепродуктов (углеводороды нефти, бензин, керосин, дизельное топливо, веретенное масло). Волокно ограниченно растворимо лишь в некоторых полярных растворителях амидного типа (диметилформамид, диметилацетамид) оно обладает удовлетворительной стойкостью к действию разбавленных кислот и щелочей и растворяется только в концентрированной серной кислоте. Свойства волокна фенилон во многом аналогичны свойствам волокон номекс (США) и конекс (Япония). [c.223]

        Клеевые соединения в конструкциях могут работать в различных жидких агрессивных средах — топливах, маслах, органических растворителях, антифризах, растворах солей, окислителях, щелочах, кислотах и др. Свойства соединений на эпоксидных клеях, отверждающихся при комнатной температуре, сравнительно мало изменяются под действием минеральных масел, бензина, керосина, антифризов, растворов солей. К действию разбавленных кислот клеевые соединения несколько более устойчивы, чем к действию щелочей. В среде органических растворителей (ацетон, метанол) клеи разрушаются. По химической стойкости они значительно уступают клеям горячего отверждения. [c.68]

    chem21.info

    Чем разбавляют бензин и дизель

    Чем в Украине разбавляют бензин и дизель

    Эксперты проанализировали данные государственной экспертизы для выявления самых распространенных способов подделки топлива.

    Более половины всех проверок Госпотребинспекцией топлива на украинских АЗС были проведены двумя лабораториями – Десятым Химмотологическим центром Министерства обороны и Испытательным центром горюче-смазочных материалов сети ОККО. Forbes.ua при помощи этих лабораторий составил список наиболее распространенных способов подделки топлива и также последствий использования «бодяжного» бензина и дизтоплива.

    Повысить октан

    Для повышения октанового числа топлива придумано неимоверное количество способов. В ход идут как известные в быту нафталин и ацетон, так и добавки с более экстравагантными названиями – тетраэтилсвинец, марганцевые и железные присадки.

    Старания таких умельцев-«нефтехимиков» дорого обходятся водителям. К примеру, из-за тетраэтилсвинца образуются наслоения на поршнях, клапанах и стенках цилиндра. Это вещество за несколько часов может уничтожить катализатор очистки отработанных газов, говорит Алла Сидорович, начальник Испытательного центра горюче-смазочных материалов сети ОККО, который проверяет топливо по заказу Госпотребинспекции. «Такой же побочный эффект – от марганцевых и железных присадок. Об их наличии в топливной системе автомобиля свидетельствуют рыжие свечи и желтые отложения на поршнях, цилиндрах и кольцах», – отмечает эксперт.

    Давно перестал быть средством от моли нафталин. Теперь его используют, чтобы 92-й бензин превратить в «пятый». Естественно, не без последствий: постоянное использование бензинов с нафталином приводит к образованию нагара в камере сгорания, он кристаллизуется и забивает шланги, бензонасос и форсунки инжектора. Основной побочный эффект от добавления в бензин ацетона – коррозия металла, разъеденные сальники и прокладки.

    Бензин по-домашнему

    Одна из примет того, что в бак попал кустарный бензин – черные свечи. «Чтобы получить бензин «в домашних» условиях, нужно смешать компонент моторного топлива ароматический (КМТА) с нефтяными полуфабрикатами – газовым конденсатом, прямогонными базовыми компонентами бензина или стабильными бензинами. Все это найти на рынке несложно», – рассказывает старший научный сотрудник Десятого химмотологического центра Минобороны Петр Звягин.

    КМТА в значительных количествах получают коксохимические заводы при переработке каменного угля в кокс. Для «бодяжников» он стал универсальной присадкой, с помощью которой увеличивается октановое число и плотность топлива. Например, газовый конденсат в чистом виде ведет себя как неохлажденное шампанское. Стоит к нему добавить 3% КМТА, его плотность увеличивается и он уже перестает вырываться из емкости. Основные производители конденсата – частные добывающие компании.

    Прямогонный и стабильный бензины продают как мини-НПЗ, так и солидные нефтеперерабатывающие заводы. Крупными НПЗ используется стабильный бензин при производстве А-76/80, но в высокооктановые А-92 и А-95 его добавлять нельзя. А так как производство А-76/80 постоянно сокращается из-за низкого спроса, то на рынок выливаются значительные объемы стабильного бензина, из которого делают 92-й и 95-й.

    При этом КМТА содержит 70% бензола, который опасен для людей из-за высокой токсичности. Для автомобиля он не менее вредный – на свечах появляется сажа и их приходится чистить в четыре раза чаще, примерно через каждые 5000 км пробега.

    Выпить и закусить

    Наиболее популярная тенденция последнего времени – продавать бензин, разбавленный существенной долей спирта. Очень часто технически неподготовленный спирт смешивается с бензинами кустарно – на нефтебазах или мини-НПЗ. Себестоимость такой смеси ниже обычного топлива, но при этом падает мощность двигателя и повышается расход топлива.

    Более того, проблемы могут возникнуть даже при правильном добавлении бензинов – биотопливо подходит далеко не всем авто, приводит к образованию паровых пробок и т.д.

    Определить содержание спирта в топливе можно в домашних условиях. Бензин нужно налить в колбу (10 частей) и добавить дистиллированную воду (1 часть). Когда смесь отстоится, весь спирт опустится вниз. По шкале на колбе можно определить его долю.

    «Пальцы стучат»

    Детонация, которую часто принимают за стук поршневых пальцев, появляется из-за низкого цетанового числа дизеля. Она разрушает двигатель и приближает его к капремонту.

    Считается, что дизельное топливо народные умельцы-«бодяжники» не производят, но проверки показали, что это не так. «При добыче газа из скважин выходит попутный нефтяной газ, который разделяют на составляющие. Одна из них – дизельная фракция, которая служит исходным сырьем для «бодяжников». Чтобы приблизить ее к требованиям стандартов, нужно повысить вязкость и цетановое число», – говорит Петр Звягин.

    Поэтому сначала в нее добавляют около 20% минеральных масел, которые используются на промышленных станках. Далее в ход идет многофункциональная присадка к дизельным топливам из газовых конденсатов (МПК), которая повышает цетановое число.

    Из лета в зиму

    Как известно, дизельное топливо бывает летним и зимним. Заправки их отличают не только по погоде, но и по цене – зимний дизель на оптовом рынке всегда стоит дороже.

    Недобросовестные продавцы придумали, как сократить затраты, используя керосин. «Если его добавить в летний дизель, то он не застынет при холодной погоде. Однако если перестараться с его количеством, то такая смесь смывает масляную пленку с блока цилиндров, что открывает прямой путь к капитальному ремонту двигателя», – отмечает Сидорович.

    По материалам:  http://avtovod.org.ua

     

    tis-tir.com

    Перекачка высоковязкой и застывающей нефти, страница 6

    Первые в нашей стране опыты по перекачке нефтей с разбавителями были проведены А.Н. Сахановым и А.А. Кащеевым в 1926 г. В этих опытах высокозастывающую нефть смешивали с керосиновым дистиллятом и перекачивали по трубопроводу. Полученные результаты были настолько хороши, что использовались при проектировании нефтепровода Грозный-Черное море. В дальнейшем исследованием вопросов перекачки высоковязких нефтей с разбавителями занимались Л.С. Абрамзон, Э.М. Блейхер, В.Е. Губин, Р.Г. Исхаков, В.А. Куликов, Л.С. Маслов, Ю.А. Сковородников, Ю.В. Скрипников, В.Н. Степанюгин, П.И. Тугунов, В.А. Юфин и др.

    Оценим  влияние добавления маловязкого разбавителя на работу нефтепровода. Для определения вязкости смеси нефти с разбавителями весьма удобна формула М.М. Кусакова

                                         ,                               (2.6)

    где    а - коэффициент, определяемый в результате лабораторных

             исследований свойств смесей нефти с разбавителем;

             к - его концентрация.

    Потери напора Hн при перекачке вязкой нефти равны

                                         ,

    где Qн - расход вязкой нефти.

    Для разбавленной нефти

                                       .

    Если наложить условие, что Нсм = Нн, то в трубопроводе устанавливается расход

                                         ,                            (2.7)

    то есть в раз больше.

    Расход смеси Qсм складывается из нового расхода высоковязкой нефти  и расхода разбавителя Qp, т.е.                                                       .

    Поделив обе половины данного уравнения на Qсм и принимая во внимание, что по определению Qp / Qсм = К, получим

                                         .                                  (2.8)

    Решая совместно (2.7) и (2.8), находим новый расход нефти в трубопроводе после её разбавления

                                         ,                  (2.9)

    т.е. расход нефти изменяется в  раз.

    Чтобы разбавлением добиться увеличения производительности трубопровода по нефти должно выполняться условие

                                            .                (2.10)

    При ламинарном режиме перекачки увеличение производительности составит , а  при турбулентном (m = 0,25) - (1 - K) × e0,143×a×k. То есть при ламинарном режиме перекачки эффект увеличения производительности (если он есть) выше в число раз

                                         .

    Если необходимости в увеличении производительности трубопровода по нефти нет , то с помощью разбавления можно уменьшить потери напора на трение.

    Подставляя в формулу Лейбензона параметры смеси, будем иметь

    .       (2.11)

    Таким образом, при разбавлении высоковязкой нефти потери напора на трение уменьшаются в eamk/(1 - K)2-m раз. Максимальный эффект будет иметь место при ламинарном режиме перекачки. Чем более развит турбулентный режим, тем снижение потерь напора меньше.

    Теоретически возможен случай, когда m = 0 и положительный эффект от разбавления отсутствует. Однако высоковязкие нефти в зоне квадратичного трения турбулентного режима не перекачиваются.

    Перекачка высоковязких нефтей в смеси с разбавителями распространена достаточно широко. Так, в нашей стране на самарской базе смешения часть высокопарафинистой мангышлакской нефти смешивается с маловязкими нефтями Поволжья и закачивается в нефтепровод “Дружба”.

    Разбавление высоковязких нефтей и нефтепродуктов бензинами и керосинами для облегчения перекачки практически не осуществляется, т.к. их доставка на месторождения требует больших капитальных и эксплуатационных затрат. Для мазутов и гудронов такие разбавители также нецелесообразны поскольку на конечных пунктах нужны установки по разгонке смеси.

    Целесообразнее всего в качестве разбавителей использовать маловязкие нефти. Если на месторождении добываются нефти разных свойств - высоковязкие, высокопарафинистые и маловязкие, то разбавляя вязкие нефти маловязкими, можно добиться резкого снижения вязкости и температуры застывания смеси и, таким образом, облегчить их перекачку.

    vunivere.ru

    Нефть и нефтяные фракции растворенный

        В монографии представлены результаты исследований индивидуальных углеводородов, их растворов, нефтей, нефтяных фракций и масел. Описаны новые экспериментальные методы изучения углеводородов с привлечением большого оригинального материала и новые эффективные методы теоретического расчета термодинамических и кинетических свойств углеводородов. [c.2]     Растворимость углеводородов фракций нефти во второй группе органических растворителей зависит от соотношения количества их н нефтепродукта и от температуры. При комнатной температуре в нефтяной фракции растворяются небольшие количества растворителя. Повышение объема растворителя по отношению к нефтяной фракции приводит к образованию двухфазной системы. В одной из фаз содержится нефтепродукт с небольшой примесью растворителя, в другой — растворитель содержит в растворенном виде часть углеводородов исходной фракции. При дальнейшем повышении объема растворителя увеличивается растворимость углеводородов в нем и при очень большой кратности раство- [c.99]

        Для кристаллизации комплексов мочевины с парафиновыми углеводородами из нефтей и нефтяных фракций углеводородное сырье разбавляют метилизобутилкетоном, который вследствие разветвленного строения не образует комплексов с мочевиной, и энергично перемешивают этот раствор с концентрированным, насыщенным при высокой температуре раствором мочевины при этом происходит быстрое взаимодействие. [c.57]

        Дифференциальный метод представления состава непрерывных смесей используют при расчете процессов перегонки п ректификации нефти и нефтяных фракций с получением продуктов широкого фракционного состава, так как в этом случае сложный характер нефтяных смесей не проявляется и можно считать, что непрерывная смесь представляет собой практически идеальный раствор. Последующее уточнение характеристик смеси — учет влияния углеводородного или группового состава и наличия азеотропных смесей, очевидно, потребуется при дальнейшем повышении четкости перегонки и ректификации, повышении глубины отбора продуктов, а также при выделении индивидуальных компонентов или группы компонентов из узких нефтяных фракций, [c.33]

        Минеральное масло. Это вещество, растворимое в стандартном лигроине (бензине-растворителе, к-пентане или изопентане) [12—13] и не удаляемое из раствора такими адсорбентами, как фуллерова земля, активированный уголь или силикагель. Как указано выше, эта нефть, но-видимому, не очень отличается от любой другой циклической нефтяной фракции того же молекулярного веса, содержащей обычные компоненты, включая даже парафины [14—15]. [c.536]

        Азотистые основания используются как дезинфицирующие средства, антисептики, ингибиторы коррозии, как добавки к смазочным маслам и битумам, антиокислители и т. д. Однако наряду с положительным влиянием азотистых соединений они обладают и нежелательными свойствами — снижают активность катализаторов в процессах деструктивной переработки нефти, вызывают осмоление и потемнение нефтепродуктов. Высокая концентрация азотистых соединений в бензинах (1- Ю вес. %) приводит к усиленному коксо-и газообразованию при их каталитическом риформинге. Даже небольшое количество азотистых соединений в бензине способствует усилению лакообразования в поршневой группе двигателя и отложению смол в карбюраторе. Наиболее полно удаляются азотистые соединения из нефтяных фракций 25%-ным раствором серной кислоты. [c.30]

        В масляных фракциях нефти слабо растворяются твердые углеводороды. Они способны выделяться при охлаждении этих фракций в виде кристаллов. Растворимость уменьшается с увеличением молекулярного веса твердых углеводородов, повышением их концентрации и температуры кипения масляных фракций. С повышением температуры растворимость парафинов и церезинов увеличивается и при температуре плавления они смешиваются со всеми нефтяными фракциями во всех соотношениях. [c.90]

        Малая (ректификация нефтяных фракций, углеводородных газов, кроме легких типа метана и этана, фтористых систем — фреонов) Средняя (атмосферная перегонка нефти, абсорбция и десорбция углеводородов, регенерация аминов и гликолей) Большая (вакуумная перегонка мазута, абсорбция аминами и гликолями, растворами глицерина, метилэтилкетонами) 1—0,9 0,9—0,7 0,7—0,6 0,250 0,225 0,118 0,65 0,80 1,30 [c.225]

        Межмолекулярные силы взаимодействия при растворении компонентов масляных фракций в полярных и неполярных растворителях различны. Неполярные растворители, как например, низкомолекулярные жидкие или сжиженные углеводороды, ССЦ или соединения с небольшим дипольным моментом (хлороформ, этиловый спирт и др.) характеризуются тем, что притяжение между молекулами растворителя и углеводородов нефтяных фракций, обусловливающее образование растворов, происходит за счет дисперсионных сил. Неполярные растворители смешиваются с жидкими углеводородами нефти в любых соотношениях. [c.46]

        Кислотная экстракция позволяет извлечь соединения основного характера и потому часто используется для выделения из нефти и других сложных смесей азотистых оснований. Последние практически нацело извлекаются из низкокипящих нефтяных фракций уже разбавленными растворами минеральных (серной, соляной) кислот для экстракции оснований из средних и тяжелых дистиллятов лучше применять растворы кислот повышенной концентрации. Тем не менее и этим способом представительные концентраты оснований получаются лишь из фракций, выкипающих до 350—400 С. С ростом температуры кипения степень извлечения оснований снижается из-за повышения гидро-фобности как исходных веществ, так и образующихся солей в связи с увеличением размеров углеводородной части молекул. Так, из тяжелых вакуумных газойлей водными растворами минеральных кислот удается извлечь лишь около 40% [27], а из нефтяных остатков водно-спиртовыми растворами серной кислоты — лишь около 8,5% [28] оснований. [c.8]

        Кристаллизация твердых углеводородов нефти (технических парафинов). Большая часть твердых углеводородов нефти относится к изоморфным веществам, способным кристаллизоваться вместе, образуя смешанные кристаллы. Очевидно, что одним нз условий появления смешанных кристаллов является наличие длинных алкановых цепей (в основном нормального строения) в н- и изоалканах, нафтеновых и ароматических углеводородах, составляющих твердую фазу, которая выделяется при охлаждении нефтяных фракций. Кристаллы образуются в результате последовательного выделения из раствора и отложения на кристаллической решетке молекул твердых углеводородов с постепенно понижающимися температурами плавления. [c.87]

        Основными физическими характеристиками нефтей, их фракций и нефтепродуктов являются плотность и молекулярный вес. Для определения плотности применяют различные пикнометры. Чтобы установить молекулярный вес, измеряют температуру замерзания какого-либо чистого вещества, которое является растворителем (бензол, циклогексан, фенол и др.). Затем определяют температуру замерзания растворителя при добавлении в него исследуемой нефтяной фракции или нефтепродукта. Раствор замерзает при более низкой температуре, чем чистый растворитель. По этой разнице температур можно вычислить молекулярный вес исследуемого вещества. [c.232]

        Анализ неуглеводородных компонентов нефти. Этот анализ также может проводиться газовой хроматографией. Так, определен состав фенолов, выделенных из нефтяных фракций экстракцией водно-спиртовым раствором щелочи 115],- [c.124]

        Помимо кислот и фенолов в светлых дистиллятах присутствуют серосодержащие соединения, часть которых реагирует со щелочами и может быть извлечена. К этим соединениям в первую очередь относится сероводород. Он присутствует в легких дистиллятах в растворенном состоянии, а также образуется при взаимодействии элементной серы с парафиновыми и нафтеновыми углеводородами и при разложении высококипящих серосодержащих соединений в процессах перегонки нефти или крекинга нефтяных фракций. Сероводород реагирует с раствором едкого натра с образованием при избытке щелочи—сернистого натрия, при недостатке — кислого сернистого натрия  [c.53]

        Очистка топливных дистиллятов раствором щелочи с усилителями. С увеличением доли переработки сернистых и высокосернистых нефтей стало невозможно получать высококачественные топлива без специальной их очистки от активных серосодержащих соединений, в частности от меркаптанов. Несмотря ла то, что глубокого обессеривания легких дистиллятных топлив можно достигнуть только гидроочисткой, за рубежом широко применяют и другие методы демеркаптанизации. Меркаптаны, содержащиеся в нефтяных фракциях, удаляют, переводя их (окислением в присутствии катализатора) в менее активные соединения — дисульфиды. Одним из наиболее распространенных методов демеркаптанизации является процесс мерокс, осуществляемый в присутствии катализатора — хелатного соединения металлов. Это соединение в окисленной форме катализирует окисление меркаптанов при обычной температуре с образованием дисульфидов по следующему уравнению  [c.58]

        На опытно-промышленной установке Ишимбайского нефтеперерабатывающего завода меркаптаны выделяли из фракции 200—300 °С ишимбайской нефти раствором щелочи с добавкой этанола [32]. Полученные нефтяные меркаптаны использовались для замены синтетического т/)е 1-додецилмеркаптана, применяемого в производстве синтетического каучука в качестве регулятора эмульсионной полимеризации. Нефтяную фракцию обрабатывали [c.110]

        Для извлечения из нефтяных фракций сульфидов многие исследователи пользовались водным раствором ацетата ртути, так как образующиеся комплексы сульфидов алифатического и цикланового строения растворимы в воде. Таким методом были получены сульфиды из иранской нефти [51]. Смесь сернистых соединений и ароматических углеводородов, выделенная из разбавленного водой кислого гудрона тракторного керосина иранской нефти, ректифицировали. Узкие фракции обрабатывали водным 0,7—1,0 М раствором ацетата ртути. К водному слою для разложения растворимых комплексов сульфидов добавляли горячий 5 н. раствор соляной кислоты. Сульфиды отделяли от водного слоя и нейтрализовали раствором щелочи. Производные тиофена, присутствовавшие во фракции, не растворялись в водном слое, а оставались в сернисто-углеводородной фазе. [c.119]

        Результаты описанных ниже исследований нефтяных сульфидов, выделенных из фракций высокосернистых нефтей экстракцией водными растворами серной кислоты, приводят к следующим выводам  [c.143]

        При обыкновенной температуре природный газ частично растворяется в жидких нефтяных фракциях. Пропан и, конечно, бутан поглощаются из газовой смеси, например керосином, из которого могут быть выделены обратно в концентрированном состоянии. Под давлением в нефть переходит и этан, частично [c.73]

        Одним из важнейших направлений развития физико-химической механики нефтяных дисперсных систем является изучение течения наполненных нефтяных систем, концентрированных растворов высокомолекулярных соединений нефти. Задача подобных исследований состоит в описании режимов течения нефтяных систем — растворов нефтяных фракций в широком интервале изменения физико-химических характеристик и концентраций их составляющих, типов растворителей и других факторов. Таким образом, на основании выявленных феноменологических закономерностей возможно будет выяснить качественные модели режима течения растворов нефтяных фракций. Прикладным значением таких моделей явится прогнозирование поведения нефтяных систем в процессах их добычи, транспорта и переработки, выявление новых направлений использования нефтяного сырья и создание на этой базе новых видов композиционных материалов. [c.86]

        Исходя из теории образования нефти как результата длительных превращений органических остатков, основную часть нефти составляют углеводороды различного строения. Однако выходящая на поверхность нефть выносит с собой попутный газ, воду и механические частицы песка, горной породы и т. д. Количество этих компонентов для различных месторождений различно. Эти компоненты нерастворимы, олеофобны и образуют дисперсную систему, которая подвергается разделению. Но и после отделения нерастворимых компонентов, согласно химической природе самой нефти, она не является молекулярным раствором, или ньютоновской жидкостью. Наличие в нефти гетероатомных соединений, а также высокомолекулярных соединений, большинство которых содержат серу, азот, кислород и металлы, сообщает нефти, нефтяным фракциям и остаткам специфические свойства, присущие коллоидным и дисперсным системам. В зависимости от размеров частиц дисперсной фазы такие системы могут быть как ультрагетерогенными (размер частиц от 1 до 100 нм), так и грубодисперсными (размер частиц > 10 ООО нм). [c.28]

        Показатель преломления сам по себе, а также вместе с другими свойствами очень важен при характеристике нефтяных фракций. Для узких фракций с одним и тем же молекулярным весом значения показателя преломления сильно увеличиваются от парафинов к нафтепам и к ароматике значения показателя преломления для полициклических нафтенов и для полициклической ароматики соответственно выше, чем для моноциклических соединений. Для ряда углеводородов по существу того же тина показатель преломления увеличивается с молекулярным весом, но не до высокой степени, особенно для парафинового ряда. Так как для сырых нефтей показатель преломления очень сильно меняется, то при характеристике их это свойство не имеет особого,значения. Если смешать жидкие углеводороды, то объемы конечных растворов аддитивны или почти аддитивны показатели преломления в таких случаях следуют простейшему правилу смешения [141]. Значения для нефтепродуктов широко меняются некоторые значения для узких фракций даны в табл. 1П-5 с другими свойствами для ориентации. [c.184]

        Чем выше температура плавления твердых углеводородов, тем выше температура растворения их в нефтяных фракциях, из которых они выделены [2, с. 72] (рис. 3). Растворимость твердых углеводородов в углеводородных растворителях зависит от молекулярной массы последних [3], причем эта зависимость экс1 ре-мальна (рис. 4). Растворяющая способность сжиженных углево-дО родных газов уменьшается три переходе от бутана к этану. Была исследована [3] растворимость в сжиженном пропане твердых углеводородов, выделенных из 50-градусных фракций грозненской нефти, выкипающих в пределах 300— О С (рис. 5). Результаты этого нсследования иллюстрируют влияние температуры плавления, а следовательно, молекулярной массы твердых углеводородов на их растворимость в неполярном растворителе. В области низких температур сжиженный пропан практически не растворяет твердые углеводороды, что позволяет [c.46]

        Прочие реакции серной кислоты с компонентами нефтяных фракций. Имеющиеся в составе нефти гзотистые соединения взаимодействуют с серной кислотой, образуя сульфаты, переходящие в кислый гудрон. Нафтеновые кислоты частично растворяются в серной кислоте, а частично сульфируются, причем карбоксильная группа нафтеновых кислот при сульфировании не разрушается. Продукты взаимодействия нафтеновых 1 серной кислот ослабляют эффективность действия серной кислогы на другие соединения, поэтому целесообразно перед сернокислотной очисткой предварительно удалить из очищаемого продукта нафтеновые кислоты. Условия очистки. Технологический режим сернокислотной очистки зависит от ее назначения. Дли очистки, имеющей целью удаление смолистых веществ из мaзo ныx масел, повышение качества осветительных керосинов, удаление сернистых соединений, применяют 93% кислоту. При деароматизации используется 98% кислота или олеум. Легкая очистка бензина, предназначенная для улучшения цвета или удаления азотистых оснований, проводится серной кислотой с концентрацией 85% г ниже. Применение разбавленной кислоты там, где это возможно, предпочтительнее, так как кислый гудрон образуется в меньших количествах, ослабляются процессы полимеризации. [c.317]

        Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

        Чтобы исключить всякие сомнения в принципиальной возмои -ности применения этого метода для анализа и исследования названных нефтепродуктов, была проведена серия опытов по гидрогенолизу индивидуальных сераорганических соединений в растворах нефтяных фракций. В качестве растворителя была взята нефтяная фракция (трансформаторное масло из бакинских нефтей), не содержащая серы. Гидрированию в растворе этой фракции подвергались две смеси сераорганических соединений бинарная смесь, состоящая из дифенилсульфида и дибензтиофена, и тройная смесь, состоящая из дифенилсульфида, бензтиофена и дибензтиофена. Гидрирование проводилось в тех же условиях, но при давлении водорода 50 ат. Результаты, полученные при гидрировании этих смесей (табл. 94 и рис. 62), вполне согласуются с данными, полученными при гидрировании бинарных и многокомиопснтпых смесей сераорганических [c.407]

        Спектры флуоресценции растворов фракций нефти ("даже сравнительно узких) в большинстве случаев состоят из диффузных полос, и лишь сравнительно немногие нефтяные фракции обладают спектром, содержащим узкие полосы. Поэтому, как правило, не удается обнаружить и идентифицировать индивидуальные компоненты нефтей, вызывающие флуоресценцию их фракций, которые представляют собой сложные многокомпонентные смеси. Это затруднение можно до некоторой степени обойти, если исследовать фракции при низких температурах. В данном случае диффузные полосы спектра флуоресценции фракций расщепляются на ряд узких полос, благодаря этому появляется большая возможность идентификации комнонентов исследуемых фракций по спектрам. Так, нри температуре жидкого азота при помощи спектра люминесценции удается идентифицировать в узких керосиновых фракциях конденсированггые бициклические ароматические углеводороды (нафталин и его метилзамещенные гомологи) [111]. [c.484]

        Процессы очистки и разделения нефтяных фракций с применением избирательных растворителей широко распространены. В зависимости от химической природы эти растворители растворяют одни и не растворяют другие компоненты очищаемого или разделяемого сырья. Их применяют при производстве топлив, масел и твердых углеводородов, а также при разделении продуктов переработки нефти с целью получения сырья для нефтехимического синтеза, компонентов топлив и других продуктов (извлечения ароматических углеводородов из бензинов платформинга, газоконденсатов, бензинов прямой перегонки и др.). При очистке избирательными растворителями из очищаемого сырья удаляются следующие компоненты асфальтены, смолы, полициклические ароматические и ыафтено-ароматические углеводороды с короткими боковыми цепями, непредельные углеводороды, серо- и азотсодержащие соединения, твердые парафиновые углеводороды. [c.177]

        Наряду с этим исследования ГрозНИИ показали, что в отличие от асфальтенов нейтральные смолы молекулярно диспергируются в нефтях и нефтяных фракциях. Нарастание молекулярного веса смол с увеличением концентрации их в бензольном растворе явно указывает на образование ими ассоциированных комплексов молекул, однако, очевидно, такая ассоциация не приводит к мйцеллярной структуре. Получающиеся растворы не показывают никаких признаков коллоидной структуры. Это резко отличает нейтральные смолы от асфальтенов. [c.88]

        Асфальтены, таким образом, являются продуктами конденсации и полимеризации смол. Своим отношением к растворителям и весьма высоким молекулярным весом (до нескольких тысяч) асфальтены резко отличаются от смол, они способны растворяться в ароматических углеводородах, хлороформе, сероуглероде, нефтяных смолах, причем при растворении не наблюдается образования насыщенных растворов. Асфальтены не растворимы в легких нефтяных фракциях (петролейном эфире). В нефтях асфальтены находятся в высокодисперсном состоянии, степень дисперсности их зависит от соотношения ароматических углеводородов и смол, в которых асфальтены растворяются, и метановых и нафтеновых углеводородов, в которых они почти нерастеоримы. Поэтому ас- [c.25]

        В остатках от перегонки нефти (гудронах, концентратах, полугуд-ронах) наряду с высокомолекулярными углеводородами содер-Ж1ИТСЯ большое количество смолисто-асфальтеновых веществ. Многие из упомянутых углеводородов ценны как компоненты масел, 1и отделение их от смолисто-асфальтеновых веществ — задача технологии очистки нефтяных фракций. Эффективность очистки остатков нефти от смолистых веществ индивидуальными избирательными растворителями невысока даже при их высокой кратности к сырью. Объясняется это тем, что не все составные части смол хорошо растворяются а избирательных растворителях. В ооновном растворенные или дисперпированные в сырье смолисто-асфальте- овые вещества можно удалять обработкой остатков как серной кислотой, так и сжиженными низкомолекулярными алканами. Метод деасфальтизации серной кислотой, особенно в сочетании с последующей контактной очисткой отбеливающими глинами, пригоден для производства остаточных масел из концентратов ма- [c.78]

        Сульфиды выделяли из узких нефтяных фракций при помощи хлоридов и ацетатов ртути [4—7]. Полученные комплексы сульфидов с хлорной ртутью представляли собой кристаллическую или аморфную вязкую массу. Для удаления следов углеводородов ее обрабатывали петролейным эфиром остаток трижды экстрагировали этанолом. Очищенную таким образом массу обрабатывали при нагревании соляной кислотой при этом выделялся масляный слой, из которого было извлечено несколько циклических сульфидов. Часть массы, растворившейся в этаноле, также обрабатывали соляной кислотой. Из полученного при этом маслянистого продукта было выделено несколько алифатических сульфидов Сд 8. Таким путем были выделены некоторые алифатические и циклические сульфиды из узких фракций керосина ишимбайской нефти [50]. [c.119]

        Группа компонентов, выделяемых из нефтей под названием смолы, неоднородна по химическому строеншо и размеру молекул. Такое положение сказывается на их растворимости. Специальные исследования, направленные на изз ение растворимости нефтяных смол, в литературе отсутствуют, что объясняется, прежде всего, неопределенностью объекта исследования. Результаты исследования растворимости нефтяных фракций позволяют считать, что смолы хорошо растворяются во всех углеводородах, в том числе и низкомолекулярных алканах /17/. [c.23]

        Основными источниками нафтеновых кислот служат сырые нефти из месторождений Калифорнии, Венесуэлы и Румынии. Кислоты, имеющие техническое значение, выделяют главным образом из фракций газойля прямой гонки, кипящих в интервале 200—370° некоторые кислоты извлекают из легких керосиновых фракций. Нафтеновые кислоты выделяют из нефтяных фракций обработкой последних разбавленным раствором едкого натра, который связывает все кислоты среднего молекулярного веса, представляющие интерес для промышленности, и оставляет в углеводородной фазе более слабые кислоты с высоким молекулярным весом, смолистые по своему виду. Водный щелочной раствор нафтеновых кислот можно обработать легкой нафтой, которая извлечет углеводородные примеси, в результате чего содержание последних в товарных нафтеновых кислотах понизится. Из щелочного раствора нафтеновые кислоты выделяют подкислением серной [c.395]

        Высшие ароматические углеводороды из нефтяных фракций представлены различными циклическими системами. Их можно выделить из более или менее узких нефтяных фракций при помощи хроматографических методов. После пропускания раствора масел или самих масел через силикагель все углеводороды, содержащие ароматические ядра, поглощаются и затем могут быть выделены вытеснением растворителями. Если пользоваться в качестве вытесняющей жидкости легким бензином, не содержащим ароматических углеводородов, и собирать последовательные порции ароматических углеводородов, можно, удалив легкий бензин, убедиться в том, что свойства выделенных ароматических углеводородов последовательно изменяются. Сперва идет фракция, называемая легкими ароматическими углеводородами, обладающая удельным весом от 0,87 до 0,89 и показателем преломления от 1,485 до 1,498. Следующая фракция — средних ароматических углеводородов — имеет удельный вес от 0,89 до 0,96 и показатель преломления от 1,500 до 1,540. Наконец, последней извлекается фракция удельного веса 0,97 до 1,03, с показателем преломления от 1,55 до 1,59. Эти пределы колеблются в зависимости от сорта нефти и температуры кипения исследуемой фракции и приведены здесь только в качестве иллюстрации. Очевидно, что ароматические углеводороды имеют совершенно различную структуру и переменное содержание боковых цепей метановой или нолиметиленовой природы. [c.117]

        Рассмотрение нефтяных систем как молекулярных растворов господствовало достаточно долго. При этом в связи с трудностями аналитического выделения отдельных компонентов из средних и высших фракций нефти (масляных и газойлевых фракций) их характеризовали с помощью гипотетической средней молекулы. Модельные представления о строении молекулы смолисто-асфальтеновых веществ (САВ) получили широкое распространение. Характеристика таких гипотетических молекул — средняя молекулярная масса — входит во многие расчетные формулы зависимости свойств нефтяной фракции от Р, V, Т-условий и используется в технологических расчетах. Хотя сегодня достоверно показано, что это не всегда верно, поскольку молекулярная масса нефтяных фракций сильно зависит от условий ее определения (растворителя, температуры) [1]. До сих пор многие явления в нефтяных системах и технологические расчеты трактуются на основе физических законов, установленных для молекулярных растворов (законов Рауля-Дальтона, Генри, Ньютона, Дарси и т. д.). В результате теоретически рассчитанные доли отгона при выделении легкокипя-щих компонентов из нефти не совпадают с экспериментальными данными. Часто обнаруживающаяся в нефтяных системах (особенно с высоким содержанием парафинов и САВ) зависимость эффективной вязкости от скорости деформации свидетельствует о ее надмолекулярной организации. Отклонения от закона Дарси при течении таких систем впервые были подмечены в 1941 г. профессором В. П. Треби-ным. Однако эффекты нелинейного отклика, обусловленные особен- [c.172]

        Нефть и нефтяные фракции могут существовать в двух состояниях истинногс раствора и дисперс1юй системы. В состоянии истинных молекулярных растворов не фтяные системы находятся достаточно редко. Истинными растворами являются прл [c.35]

        Влияние облучения обнаруживается и в удалении металлов (ванадий, никель) из тяжелого нефтяного сырья. Нефтяные фракции подвергали действию гамма-излучения кобальта-60 или в ядерном реакторе. Затем их промывали водой, разбавленной соляной кислотой и водными растворами пиридина (в последовательности перечигсления). Гамма-облучение остаточного сырья (остаток нефти Бачакеро, выкипающий выше 482° С) при дозировке 20—120 Мрад давало пзбольшое, но заметное повышение (около 20%) степени удаления металлов. Однако 10-суточное облучение в ядерном реакторе оказывало более сильное действие на полноту удаления никеля и ванадия (табл. 21). [c.157]

    chem21.info