Относительная диэлектрическая проницаемость. Диэлектрическая постоянная нефти


Относительная диэлектрическая проницаемость | Мир сварки

Таблица — Относительная диэлектрическая проницаемость материалов Материал Условия измерения Диэлектрическая проницаемость
 Пластмассы
Винипласт 50 Гц, 20 °С 3,6–4,0
106 Гц, 20 °С 4,1
Гетинакс 50 Гц, 20 °С 6–8
106 Гц, 20 °С 6–7
Капролон 106 Гц, 20 °С 3,4–4,1
Капрон 106 Гц, 20 °С 3,6–4,0
Карболит 50 Гц, 20 °С 6
Лавсан (пленочный) 50 Гц, 20 °С 3,0–3,6
Нейлон 3,2
Полиамид-6.10 106 Гц, 20 °С 3,4–4,0
Поливинилацеталь 106 Гц, 20 °С 2,7
Поливинилбутераль 106 Гц, 20 °С 3,0–3,9
Поливинилиденхлорид 106 Гц, 20 °С 3,0–5,0
Поливинилхлорид жесткий 106 Гц, 20 °С 2,8–3,4
Поливинилхлорид пластифицированный 106 Гц, 20 °С 3,3–4,5
Полигексаметиленадипинамид 106 Гц, 20 °С 3,6–4,0
Полигексаметиленсебацинамид 106 Гц, 20 °С 3,4–4,0
Поликапролактам (капролон) 106 Гц, 20 °С 3,4–4,1
Поликапролактам (капрон) 106 Гц, 20 °С 3,6–4,0
Поликарбонаты 106 Гц, 20 °С 3,0
Полиметилметакрилат 106 Гц, 20 °С 2,9–3,2
Полипропилен 106 Гц, 20 °С 2,0
Полистирол 20 °С 2,2–2,8
Полистирол блочный 106 Гц, 20 °С 2,6
Полистирол ударопрочный 106 Гц, 20 °С 2,7
Полиуретан 50 Гц, 20 °С 4,0–5,0
Полифенилформаль 106 Гц, 20 °С 4,8
Полихлорвинил 20 °С 3,1–3,5
Полиэтилен 106 Гц, 20 °С 2,25
Полиэтилен высокого давления 50 Гц, 20 °С 2,1–2,3
Полиэтилен низкого давления 50 Гц, 20 °С 2,2–2,4
Текстолит 50 Гц, 20 °С 5–7
106 Гц, 20 °С 6–8
Тефлон (Фторопласт-4) 2,1
Фторопласт-3 20 °С 2,5–2,7
Фторопласт-4 50 Гц 1,9–2,2
Эбонит 50 Гц, 20 °С 3,2
Эскапон 20 °С 2,7–3
 Резины
Гуттаперча 20 °С 4
Каучук 2,4
Резина мягкая 20 °С 2,6–3
Эбонит 20 °С 4–4,5
 Жидкости
Аммиак 20 °С 17
0 °С 20
-40 °С 22
-80 °С 26
Анилин 18 °С 7,3
Ацетон 0 °С 23,3
10 °С 22,5
20 °С 21,4
25 °С 20,9
30 °С 20,5
40 °С 19,5
50 °С 18,7
Бензол 0 °С
10 °С 2,30
20 °С 2,29
25 °С 2,27
30 °С 2,26
40 °С 2,25
50 °С 2,22
Бром 5 °С 3,1
Вода 0 °С 87,83
10 °С 83,86
20 °С 80,08
25 °С 78,25
30 °С 76,47
40 °С 73,02
50 °С 69,73
Глицерин 0 °С 41,2
20 °С 47
Керосин 20 °С 2,0
21 °С 2,1
Кислота плавиковая 0 °С 83,6
Кислота серная 20–25 °С 84–100
Кислота синильная 0–21 °С 158
Компаунд эпоксидный заливочный 50 Гц 4,5
106 Гц 3,9
Компаунд эпоксидный пропиточный 50 Гц 4,2
106 Гц 3,9
Ксилол 18 °С 2,4
Масло касторовое 10,9 °С 4,6
Масло оливковое 21 °С 3,2
Масло парафиновое 20 °С 4,7
Масло трансформаторное 18 °С 2,2–2,5
Метанол 30
Нефть 21 °С 2,1
Нитробензол 18 °С 36,4
Перекись водорода -30 °С – +25 °С 128
Сероуглерод 20 °С 2,6
Скипидар 20 °С 2,2
Совол 50 Гц, 20 °С 5,1
Спирт метиловый 13,4 °С 35,4
Спирт этиловый 0 °С 27,88
10 °С 26,41
14,7 °С 26,8
20 °С 25,00
25 °С 24,25
30 °С 23,52
40 °С 22,16
50 °С 20,87
Толуол 14,4 °С 2,4
Углерод четыреххлористый 20 °С 2,24
25 °С 2,23
40 °С 2,20
50 °С 2,18
Формамид 20 °С 84
Фурфурол 42
Хлороформ 22 °С 5,2
Этиленгликоль 37
Эфир этиловый 18 °С 4,3
 Газы
Азот 0 °С 1,000606
20 °С 1,000581
Вакуум 1
Водород 0 °С 1,000264
20 °С 1,000273
Воздух 0 °С 1,000590
19 °С 1,000576
Гелий 0 °С 1,000068
Кислород 0 °С 1,000524
18 °С 1,000550
Метан 0 °С 1,000953
Пары воды 18 °С 1,007800
Углекислый газ 18 °С 1,000970
 Минералы
Алмаз 18 °С 16,5
Апатит 18 °С 8,5
Графит 10–15
Кварц кристаллический 18 °С 4,5
Кварц плавленный 18 °С 3,5–4,1
Слюда 18 °С 5,7–7,0
Соль каменная 20 °С 5,6
 Дерево
Береза сухая 20 °С 3–4
 Различные материалы
Асфальт 18 °С 2,7
Бакелит 20 °С 4–4,6
Бакелит 50 Гц, 20 °С 7
Бальзам канадский 18 °С 2,7
Бетон 4,5
Битум 20 °С 2,6–3,3
Битум 50 Гц, 20 °С 3
Бумага 18 °С 2,0–2,5
Воск пчелиный 20 °С 2,8–2,9
Канифоль 20 °С 3,5
Керамика 20 °С 10–20
Кость слоновая 18 °С 6,9
Лакоткань стеклянная 50 Гц 4,0–6,0
Лакоткань хлопчатобумажная 50 Гц 4,0–6,0
Лакоткань шелковая 50 Гц 4,0–6,0
Лед -18 °С 3,2
Мрамор 18 °С 8,3
Парафин 20 °С 2,2–2,3
Плексиглас 20 °С 3,0–3,6
Прессшпан 20 °С 3–4
Радиофарфор (Керамика) 20 °С 6,0
Сера 18 °С 3,6–4,3
Слюда мусковит 20 °С 4,5–8
Слюда флогопит 20 °С 4–5,5
Стекло 50 Гц, 20 °С 5,3–7,5
Стекло зеркальное 18 °С 6–7
Тиконд (Керамика) 20 °С 25–80
Ультрафарфор (Керамика) 20 °С 6,3–7,5
Фарфор 18 °С 5,0–6,8
Фарфор электротехнический 20 °С 6,5
Фибра сухая 20 °С 2,5–8
Целлулоид 20 °С 3–4
Шелк натуральный 20 °С 4–5
Шеллак 20 °С 3,5
Шифер 20 °С 6–7
Электрокартон 50 Гц, 20 °С 3,0
Янтарь 20 °С 2,7–2,9

weldworld.ru

Диэлектрическая постоянная проницаемость - Справочник химика 21

    Основные характеристики электрических свойств молекул, т. е. их поляризуемость и дипольный момент, определяются на основе измерения диэлектрической проницаемости, которую называют также диэлектрической постоянной Измерение показателя преломления вещества позволяет определять мольную рефракцию исследуемою вещества и делать на основе этой величины выводы о возможном строении молекул. [c.50]     Диэлектрическая постоянная или диэлектрическая проницаемость — величина, показывающая изменение силы взаимодействия двух электрических зарядов в данной среде (в данном веществе) по сравнению с силой их взаимодействия в вакууме. В основе такого определения понятия диэлектрическая проницаемость лежит уравнение (1) (закон Кулона) [c.398]

    Е — диэлектрическая проницаемость Ео — абсолютная диэлектрическая проницаемость, или диэлектрическая постоянная [c.12]

    Такая модель говорит о том, что при наличии сил притяжения между ионом и диполем (0 > 90°) увеличение диэлектрической проницаемости будет замедлять реакцию, а уменьшение диэлектрической постоянной — ускорять ее. Реальная трудность, возникающая при применении этой модели к реак- [c.458]

    Данные Сааля и сотрудников 1421 показали, что диэлектрическая проницаемость битумов с увеличением температуры возрастает. Эти данные были получены при эффективной напряженности поля 20 ОСО В/см и частоте 50 Гц при температурах от 5 до 100 °С. В указанных пределах диэлектрическая постоянная принимает значения от 2,5 до 3,3. Это величины того же порядка, как и полученные Вальтером [48] для четырех битумов при температурах от 10 до 150°С. Диэлектрическая проницаемость каменноугольного пека больше, чем у битумов, и в пределах О—120 °С возрастает с 3 4 до [c.44]

    Состояние теории в настоящее время таково, что возможно чисто качественное рассмотрение влияния среды, в которой реакция протекает, на ее скорость. Применительно к кислотному катализу жидкими кислотами в процессах, используемых в переработке нефти, можно указать на следующее. В принципе кислотный катализ может осуществляться как в кислотной фазе при растворении в ней углеводородов, так и в углеводородной при растворении в ней кислоты. Так как диэлектрическая постоянная углеводородов мала ( 2), то ионы в углеводородной фазе могут существовать только в виде ионных пар. В кислотной фазе, имеющей высокую диэлектрическую проницаемость, идет диссоциация на независимые друг от друга ионы, реагирующие со скоростью, на несколько порядков большей, чем ионы в ионных парах. Поэтому реакция всегда идет в кислотной фазе. [c.164]

    Б. Особенности электропроводности неводных растворов. В водных растворах, а также в неводных растворителях с высокой диэлектрической постоянной эквивалентная электропроводность обычно возрастает с ростом разведения (см. рис. 16) в результате увеличения подвижности ионов, а для слабых электролитов также и степени диссоциации. Эта закономерность нарушается в неводных растворителях с низкой диэлектрической проницаемостью, что было впервые обнаружено в 1890 г. И. А. Каблуковым при исследовании растворов хлористого водорода в амиловом спирте. Электропроводность этих растворов возрастала с ростом концентрации (т. е. с уменьшением разведения) в определенном интервале. Такое явление называется аномальной электропроводностью. В растворителях с диэлектрической проницаемостью езависимости эквивалентной электропроводности от разведения можно наблюдать максимум и минимум (рис. 23). П. Вальден установил, что разведение, отвечающее минимуму электропроводности, и диэлектрическая проницаемость растворителя связаны соотношением e /v и 30. [c.77]

    Изменение диэлектрической проницаемости характеризуется функ-цией е = /(С) или, где е—диэлектрическая постоянная, С —концен- [c.59]

    С увеличением диэлектрической проницаемости взаимодействие между ионами ослабевает и они разделяются— диссоциируют. Если среда, в которой идет реакция, имеет высокую диэлектрическую постоянную, то ионы почти полностью разделены молекулами растворителя. Если растворитель имеет низкую диэлектрическую проницаемость, то в растворе присутствуют в основном контактные и частично сольватно разделенные ионные пары. С увеличением температуры диэлектрическая проницаемость уменьшается и доля ионов, не зависящих от противоиона, снижается, а доля ионов, находящихся в ионных парах, соответственно растет. Так как ионы в парах значительно менее активны, чем одиночные, повышение температуры может понизить скорость реакции в результате снижения концентрации одиночных ионов. [c.163]

    ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ (ДИЭЛЕКТРИЧЕСКАЯ ПОСТОЯННАЯ) НЕКОТОРЫХ ВЕЩЕСТВ [c.945]

    Влияние диэлектрической проницаемости среды. 1. Ионы — точечные заряды 2а и гв, сближающиеся на расстоянии гдб, среда — бесструктурный диэлектрик с диэлектрической постоянной е, влияние ионной атмосферы не учитывается, т. е. х = О, к — константа скорости бимолекулярной реакции между А и В Каъ как сомножитель входит в к). За принимают е=1 или е = оо п к=Лп к - -/ I [c.95]

    Влияние температуры на диэлектрическую поляризацию полярных жидкостей часто имеет более сложный характер. Обычно повышение температуры и здесь ведет к уменьшению диэлектрической постоянной. Однако у некоторых полярных жидкостей рост температуры вызывает увеличение диэлектрической проницаемости в результате уменьшения вязкости и обусловленного этим облегчения ориентации дипольных молекул. Дальнейшее повышение температуры, увеличивая тепловую энергию дипольных молекул, ослабляет их ориентацию. Поэтому иногда диэлектрическая постоянная сперва возрастает с повышением температуры, а затем, пройдя чере.з максимум, начинает уменьшаться. Додд и Робертс [73] показали, что при переходе в область переохлажденной жидкости скорость уменьшения диэлектрической проницаемости с ростом температуры понижается. [c.402]

    Полярность любого растворителя может быть охарактеризована значением его диэлектрической постоянной (ее еще называют диэлектрической проницаемостью). Она показывает, во сколько раз притяжение или отталкивание между двумя электрическими [c.83]

    Между сильными и слабыми электролитами существуют переходы, поскольку степень диссоциации в значительной мере зависит от концентрации. Переходную группу образуют соли тяжелых металлов, а также некоторые сильные органические кислоты лимонная, щавелевая, муравьиная. Особо слабыми электролитами являются вода, сероводородная, синильная, борная кислоты. Характер электролита зависит от его взаимодействия с растворителем. Чем больше диэлектрическая проницаемость, тем сильнее диссоциирует данная соль. Она может быть в воде сильным электролитом, а в ацетоне и в особенности в бензоле слабым. Напомним, что диэлектрические постоянные воды, ацетона и бензола соответственно равны 80, 21 и 2,3. Эта закономерность, установленная Нернстом и Томсоном в 1893 г., объясняется тем, что со-364 [c.364]

    Следовательно, характеристическая длина зависит от диэлектрической проницаемости среды, заряда иона и концентрации раствора. Очевидно, с ростом концентрации ионная атмосфера сжимается, тогда как увеличение диэлектрической постоянной приводит к ее расширению. [c.395]

    Диэлектрической проницаемостью или диэлектрической постоянной) вещества называется число, показывающее, во сколько раз взаимодействие между зарядами в среде данного вещества слабее, чем в вакууме. Найденные таким образом значения дипольных моментов содержат важную информацию о геометрической структуре молекул. [c.139]

    Теперь вопрос, что лучше — формула (56) или (57) Как будто бы проще формула Перрена. Однако мне кажется, что это не так. Можно видеть, что представление о диэлектрической постоянной здесь вообще не нужно до тех пор, пока мы не пожелаем отличить заряд в проводнике от заряда в диэлектрике. Если интересоваться детальным строением двойного слоя, то диэлектрическая проницаемость здесь ни при чем и ее лучше не вводить, и я не вижу, чем лучше уравнение (57) по сравнению с (56). Если мы рассмотрим все электрокинетические формулы, то увидим, что они содержат фактор ) /4я, что есть не что иное, как т = т1 б. Я уверен, что многие другие, кроме меня, получат более ясную и простую картину электрокинетических явлений, если отбросят привычку превращать момент двойного слоя т в и затем переводить его в вольты умножением на 300 . [c.92]

    Качественное объяснение десорбции органического вещества при больших двойной электрический слой — втягивается диэлектрик, обладающий более высокой диэлектрической проницаемостью, т.е. вода. Как видно из рис. 22, десорбция бутилового спирта (т. е. слияние а, -кривых) наблюдается при потенциалах, не одинаково удаленных от п. н. з. в катодную и анодную стороны. Это объясняется взаимодействием диполя органического вещества с электрическим полем двойного слоя. Действительно, при смещении потенциала в положительную сторону диполь н-С НвОН отталкивается от поверхности, к которой он обращен своим положительным концом. Поэтому десорбция наблюдается уже при относительно небольшом удалении от п. н. з. При сдвиге потенциала в отрицательную сторону, наоборот, притяжение между положительным концом диполя и отрицательно заряженной поверхностью затрудняет выталкивание молекул бутилового спирта из двойного слоя. Можно показать, что эффект вытеснения диэлектрика с меньшей диэлектрической постоянной пропорционален ф , а электростатическое взаимодействие диполя с поверхностью от потенциала зависит линейно. Поэтому в конце концов превалирует первый эффект. [c.45]

    Не вдаваясь в подробности, укажем, что поляризуемость молекулы определяет диэлектрические свойства вещества, характеризуемые его диэлектрической проницаемостью О (или диэлектрической постоянной). Последняя, т. е. О, и является величиной, непосредственно измеряемой на опыте. Вернее, как известно, измеряются емкости конденсатора С с данным веществом в качестве диэлектрика и Со с диэлектриком — вакуумом [c.257]

    По величине диэлектрической постоянной различают растворители низкой (8 40) диэлектрической проницаемости. [c.219]

    Концентрация, при которой возможно образование ионных пар, зависит прежде всего от диэлектрической проницаемости растворителя. Чем ниже диэлектрическая проницаемость, тем больше вероятность образования ионных пар. Поэтому в растворителях с низкой диэлектрической постоянной вещество практически полностью находится в виде ионных ассоциатов. Для образования ионных двойников в растворителях с высокой диэлектрической проницаемостью требуется высокая концентрация раствора. Так, например, в воде ассоциация КС1 возможна при концентрации 27 кг-экв/м . [c.221]

    Влияние диэлектрической проницаемости растворителя здесь сводится к затруднению реакции ассоциации, а сольватация служит источником энергии не для процесса диссоциации молекул, а для процесса разрушения решетки. В воде все ионофоры являются сильными электролитами и присутствуют в виде независимых гидратированных ионов. В растворителях с меньшей диэлектрической постоянной равновесие ассоциации смещается вправо, так что возрастает число двойников, уменьшается электропроводность и появляется аномальная проводимость. [c.308]

    При растворении веществ, обладающих сильно полярными молекулами (например, h3SO4), происходит ослабление и поляризация связи между противоположно заряженными частями молекулы, приводящее к образованию ионов. Объяснить это можно тем, что в среде с высокой диэлектрической проницаемостью (диэлектрической постоянной) е ослабляется сила электростатического притяжения между ионами, равная, согласно закону Кулона  [c.383]

    Ряд сведений по диэлектрической пр01[ицаем0сти веществ можно найти в книге Кларка [64]. Численные значения диэлектрических постоянных индивидуальных веществ н жидком состоянии приводятся в таблицах Мариотта и Смита [165]. Методы измерения диэлектрической проницаемости рассматриваются в главе XXI книги Зайсбергера [1]. Некоторые общие сведения о диэлектрических свойствах органических веществ, в том числе и углеводородов, приведены в обзорной статье Моргана и Иегера [171]. [c.396]

    В соответствии с теорией диэлектрическая постоянная газов растет с повышением давления. В этой области для углеводородов имеются данные Верещагина п Дугиной [3] по этену. Л. Ф. Верещагин и Н. С. Дугина измеряли диэлектрическую проницаемость этена под давлением от нескольких десятков до двух тысяч атмосфер и при двух температурах 34 и 75°. Точность измерений оценивается авторами не ниже 0,5%. Диэлектрическая проницаемость измерялась по методу биений при частоте в 2 мггц. Полученные данные приведены в табл. 2. [c.403]

    Диэлектрическая проницаемость имеет важное значение во всех случаях, когда заряды различного знака разобщены средой со свойствами диэлектрика. Таким образом, если какое-либо вещество используется в качестве изолятора, то его изолирующие свойства в известной мере характеризуются величиной диэлектрической постоянной. Свойства растворов электролитов также в значительной степени зависят от величины диэлектрической проницаемости растворителя. Во все уравнения теории растворов сильных электролитов обязательно входит величина диэлектрической проницаемости. Нахгонец, знание величины диэлектрической проиидаемости пег.бходнмо для вычисления дипольного момента (см. стр. 411). [c.404]

    Определенную роль играет также диэлектрическая проницаемость растворителя е. При низкой проницаемости ионы, образующиеся согласно (4.16) и (4.18), могут ассоциироваться. Тогда в растворе в значительных количествах присутствуют совокупности противоэаряжснных иопов. Такие совокупности называют ионными ассоциатами ионными парами). Они возникают только вследствие электростатического притяжения и этим отличаются от молекул. За счет образования ионных ассоциатов, например, можно в основном объяснить уменьшение силы уксусной кислоты в этаноле (е = 24,2 рКа=Ю,3) по сравнению с силой этого протолита в воде (ё = 78,5 рКд =4,8). В случае воды диэлектрическая постоянная настолько велика, что с образованием ионных ассоциатов в водных растворах можно не считаться. [c.49]

chem21.info

Диэлектрическая проницаемость — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Диэлектри́ческая проница́емость среды абсолютная — коэффициент, входящий в математическую запись закона Кулона и уравнение связи векторов электрической индукции и напряженности электрического поля [1]. Абсолютную диэлектрическую проницаемость εa представляют[2] в виде произведения εa = εr ε0 относительной диэлектрической проницаемости среды εr (от англ. relative — относительный; εr для краткости часто называют просто диэлектрической проницаемостью и обозначают ε) и электрической постоянной ε0.

Диэлектри́ческая проница́емость среды относительная — физическая величина, характеризующая свойства изолирующей (диэлектрической) среды и показывающая, во сколько раз сила взаимодействия двух электрических зарядов в этой среде меньше, чем в вакууме. Относительная диэлектрическая проницаемость εr является безразмерной величиной, обусловлена эффектом поляризации диэлектриков под действием электрического поля и определяется характеризующей этот эффект величиной диэлектрической восприимчивости среды. Значение εr вакуума равно единице, для реальных сред εr > 1. Для воздуха и большинства других газов в нормальных условиях значение εr близко к единице в силу их низкой плотности. В статическом электрическом поле для большинства твёрдых или жидких диэлектриков значение εr лежит в интервале от 2 до 8, для воды значение εr достаточно высокое, около 80. Значение εr велико для веществ с молекулами, обладающими большим электрическим дипольным моментом. Значение εrсегнетоэлектриков составляет десятки и сотни тысяч.

Электрическая постоянная ε0 ≈ 8.85·10−12 Ф/м. Размерность ε0, как и размерность абсолютной диэлектрической проницаемости εa среды, в Международной системе величин составляет L−3M−1T4I². В СИ, основанной на Международной системе величин, единицей абсолютной диэлектрической постоянной является фарад, деленный на метр: [<math>{\varepsilon}_{0}</math>]=Ф/м. Для вакуума значения εa и ε0 равны. В зарубежной литературе для электрической постоянной принято обозначение ε. Электрическая постоянная используется только в Международной системе единиц (СИ), в которой размерности электрической индукции и напряжённости электрического поля различны. В системе СГС необходимость во введении абсолютной диэлектрической проницаемости отсутствует.

Относительная диэлектрическая проницаемость εr среды наряду с относительной магнитной проницаемостью μr и удельной электропроводностью σ среды влияют на распределение напряженности компонент электромагнитного поля в пространстве и описывают среду в материальных уравнениях системы уравнений электродинамики (системы уравнений Максвелла), их называют электромагнитными параметрами среды. Среду со значениями μr = 1 и σ = 0 называют идеальным диэлектриком (диэлектриком без поглощения, диэлектриком без потерь), для неё εr определяет такие вторичные параметры, как коэффициент преломления среды, скорость распространения, фазовую скорость и коэффициент укорочения длины электромагнитной волны в среде, волновое сопротивление среды. Относительная диэлектрическая проницаемость реальных диэлектриков (диэлектриков с потерями, диэлектриков с поглощением, для которых σ > 0) также влияет на значение тангенса угла диэлектрических потерь и погонное затухание электромагнитной волны в среде. Относительная диэлектрическая проницаемость среды влияет на электрическую ёмкость расположенных в ней проводников: увеличение εr приводит к увеличению ёмкости. При изменении εr в пространстве (то есть если εr зависит от координат) говорят о неоднородной среде, зависимость εr от частоты электромагнитных колебаний — одна из возможных причин дисперсии электромагнитных волн, зависимость εr от напряженности электрического поля — одна из возможных причин нелинейности среды. Если в материальном уравнении εr является не скаляром, а тензором, то говорят об анизотропной среде. При использовании метода комплексных амплитуд в решении системы уравнений Максвелла и наличии потерь в среде (σ > 0) оперируют с комплексной диэлектрической проницаемостью.

Некоторые свойства

Строго говоря, диэлектрическая проницаемость связывает электрическую индукцию и напряжённость электрического поля. В общем случае диэлектрическая проницаемость является тензором, определяемым из следующих соотношений (в записи использовано соглашение Эйнштейна):

<math>D_{i} = \varepsilon_{0}\varepsilon_{ij}E_{j}</math>

или

<math>\mathbf{D} = \boldsymbol{\varepsilon}_{a}\mathbf{E}</math>

здесь:

<math>\mathbf{E} = E_{1}\mathbf{e}_1+E_{2}\mathbf{e}_2+E_{3}\mathbf{e}_3</math> — вектор напряжённости электрического поля, <math>\mathbf{D} = D_{1}\mathbf{e}_1+D_{2}\mathbf{e}_2+D_{3}\mathbf{e}_3</math> — вектор электрической индукции, <math>\boldsymbol{\varepsilon}_{a} = \varepsilon_{0}((\varepsilon_{a})_{ij})</math> — тензор абсолютной диэлектрической проницаемости.

Для среды с конечной проводимостью (поглощающая среда, среда с потерями) в тензор диэлектрической проницаемости часто включают мнимую компоненту, пропорциональную проводимости. Пусть напряженность электрического поля изменяется во времени по гармоническому закону (далее <math>i</math> — мнимая единица):

<math>\mathbf{E} = \mathbf{E}_{0}e^{i\omega t} \ \Rightarrow\ \frac{\partial \mathbf{E}}{\partial t} = i\omega \mathbf{E}</math>

Тогда одно из уравнений Максвелла для непроводящей среды с постоянным во времени тензором <math>\boldsymbol{\varepsilon}_{a}</math>:

<math>\boldsymbol{\nabla}\times\mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} = \boldsymbol{\varepsilon}_{a} \frac{\partial \mathbf{E}}{\partial t}</math>

С другой стороны, для проводящей среды с тензором проводимости <math>\boldsymbol{\sigma}</math>:

<math>\boldsymbol{\nabla}\times\mathbf{H} = \mathbf{j} + \frac{\partial \mathbf{D}}{\partial t} = \boldsymbol{\sigma}\mathbf{E} + \boldsymbol{\varepsilon}_{a} \frac{\partial \mathbf{E}}{\partial t} = \boldsymbol{\sigma}\frac{1}{i\omega}\frac{\partial \mathbf{E}}{\partial t} + \boldsymbol{\varepsilon}_{a} \frac{\partial \mathbf{E}}{\partial t} = \left ( \frac{\boldsymbol{\sigma}}{i\omega} + \boldsymbol{\varepsilon}_{a} \right ) \frac{\partial \mathbf{E}}{\partial t}</math>

Чтобы привести это уравнение к виду, формально совпадающему с видом уравнения для непроводящей среды, можно ввести тензор комплексной диэлектрической проницаемости <math>\boldsymbol{\hat \varepsilon}_{a}</math>:

<math>\boldsymbol{\nabla}\times\mathbf{H} = \boldsymbol{\hat \varepsilon}_{a} \frac{\partial \mathbf{E}}{\partial t}\ \Rightarrow\ \boldsymbol{\hat \varepsilon}_{a} = \boldsymbol{\varepsilon}_{a} + \frac{\boldsymbol{\sigma}}{i\omega} = \boldsymbol{\varepsilon}_{a} - i\frac{\boldsymbol{\sigma}}{\omega}</math>

Таким образом, становится возможным использование для проводящих сред формул, полученных для идеальных диэлектриков. Кроме того, даже в случаях, когда в постоянном электрическом поле среда обладает очень малой проводимостью, на высоких частотах могут проявиться существенные потери, которые при таком подходе также можно приписать некоторой «эффективной» диэлектрической проницаемости. В таком случае говорят о тангенсе угла δ диэлектрических потерь

<math>\operatorname{tg}(\delta) = - \frac{\mathrm{Im(\hat \varepsilon_{a})}}{\mathrm{Re(\hat \varepsilon_{a})}} = \frac{\sigma}{\varepsilon_{a}\omega}</math>

Иногда при описании колебаний электрического поля в методом комплексных амплитуд используют "отрицательную временную зависимость": <math>\mathbf{E} = \mathbf{E}_{0}e^{-i\omega t}</math>. В таких случаях следует везде перед <math>\boldsymbol{\omega}</math> заменить знак на противоположный.

Необходимо отметить, что:

  • Приведенные выше формулы пригодны только для линейных (в электрическом отношении) сред. При небольших значениях напряжённости полей отклонения от линейности в подавляющем большинстве случаев пренебрежимо малы.
  • В электрически изотропных средах (изотропность среды в отличие от её однородности означает, что любая компонента вектора напряженности электрического поля влияет только на ту же самую компоненту вектора электрической индукции и не порождает других его компонент) <math>\boldsymbol{\varepsilon}_{ij} = ~\boldsymbol{\delta}_{ij}\varepsilon</math>, где δij — символ Кронекера, поэтому уравнения Максвелла чаще всего записываются с использованием скалярной диэлектрической проницаемости (то есть εr — просто коэффициент в уравнении). В частности, для вакуума <math>{\varepsilon}_{a}</math> считается равной <math>{\varepsilon}_{0}</math>.
  • Сами по себе <math>\boldsymbol{\varepsilon}_{a}</math> и <math>\boldsymbol{\sigma}</math> обычно зависят от частоты колебаний напряженности электрического поля.
  • На микроскопическом уровне средой всегда является вакуум, а условие <math>\varepsilon_{a}\ne\varepsilon_{0}</math> является следствием электрической поляризации материалов.

Зависимость от частоты

Следует отметить, что диэлектрическая проницаемость в значительной степени зависит от частоты электромагнитного поля. Это следует всегда учитывать, поскольку таблицы справочников обычно содержат данные для статического поля или малых частот вплоть до нескольких единиц кГц без указания данного факта. В то же время существуют и оптические методы получения относительной диэлектрической проницаемости по коэффициенту преломления при помощи эллипсометров и рефрактометров. Полученное оптическим методом (частота 1014 Гц) значение будет значительно отличаться от данных в таблицах.

Рассмотрим, например, случай воды. В случае статического поля относительная диэлектрическая проницаемость воды приблизительно равна 80. Это имеет место вплоть до инфракрасных частот. Начиная примерно с 2 ГГц εr начинает падать. В оптическом диапазоне εr составляет приблизительно 1,77, соответственно показатель преломления воды равен 1,33. О поведении относительной диэлектрической проницаемости воды в диапазоне частот от 0 до 1012 (инфракрасная область) можно прочитать на [www1.lsbu.ac.uk/water/microwave.html] (англ.)

Измерение

Относительная диэлектрическая проницаемость вещества εr может быть определена путём сравнения ёмкости тестового конденсатора с данным диэлектриком (Cx) и ёмкости того же конденсатора в вакууме (Co):

<math>\varepsilon_{r} = \frac{C_{x}} {C_{0}}.</math>

Практическое применение

Диэлектрическая проницаемость изоляционных материалов является одним из основных параметров при разработке электрических конденсаторов. Применение материала с высокой диэлектрической проницаемостью позволяют существенно сократить габаритные размеры конденсатора. Например, ёмкость плоского конденсатора

<math>C = \varepsilon_r \varepsilon_0 \frac S d,</math>

где εr — относительная диэлектрическая проницаемость материала между обкладками, εо — электрическая постоянная, S — площадь обкладок конденсатора, d — расстояние между обкладками. Таким образом, требуемая площадь S обкладок обратно пропорциональна εr.

Значение диэлектрической проницаемости материала основания учитывается при разработке печатных плат, поскольку оно влияет на значение статической ёмкости проводящего рисунка слоев питания и волновое сопротивление проводников (линий передачи сигналов) на плате.

Значения диэлектрической проницаемости для некоторых веществ

Вещество Химическая формула Условия измерения Характерное значение εr
Вакуум - - 1
Воздух - Нормальные условия, 0,9 МГц 1,00058986 ± 0,00000050
Углекислый газ CO2 Нормальные условия 1,0009
Тефлон (политетрафторэтилен, фторопласт) [-СF2-СF2-]n - 2,1
Нейлон - - 3,2
Полиэтилен [-СН2-СН2-]n - 2,25
Полистирол [-СН2-С(С6Н5)Н-]n - 2,4-2,7
Каучук - - 2,4
Битум - - 2,5-3,0
Сероуглерод CS2 - 2,6
Парафин С18Н38 − С35Н72 - 2,0-3,0
Бумага - - 2,0-3,5
Электроактивные полимеры 2-12
Эбонит (C6H9S)2 2,5-3,0
Плексиглас (оргстекло) - - 3,5
Кварц SiO2 - 3,5-4,5
Диоксид кремния SiO2 3,9
Бакелит - - 4,5
Бетон 4,5
Фарфор 4,5-4,7
Стекло 4,7 (3,7-10)
[electronix.ru/forum/index.php?showtopic=58791 Стеклотекстолит FR-4] - - 4,5-5,2
Гетинакс - - 5-6
Слюда - - 7,5
Резина 7
Поликор 98 % Al2O3 - 9,7
Алмаз 5,5-10
Поваренная соль NaCl 3-15
Графит C 10-15
Керамика 10-20
Кремний Si 11.68
Бор B 2.01
Аммиак Nh4 20 °C 17
0 °C 20
−40 °C 22
−80 °C 26
Спирт этиловый C2H5OH или Ch4-Ch3-OH 27
Метанол Ch4OH 30
Этиленгликоль HO—Ch3—Ch3—OH 37
Фурфурол C5h5O2 42
Глицерин HOCh3CH(OH)-Ch3OH или C3H5(OH)3 0 °C 41,2
20 °C 47
25 °C 42,5
Вода h3O 200 °C 34,5
100 °C 55,3
20 °C 81
0 °C 88
Плавиковая кислота HF 0 °C 83,6
Формамид HCONh3 20 °C 84
Серная кислота h3SO4 20-25 °C 84-100
Пероксид водорода h3O2 −30 °C — +25 °C 128
Синильная кислота HCN (0-21 °C) 158
Двуокись титана TiO2 - 86-173
Титанат кальция CaTiO3 - 170
Титанат стронция SrTiO3 - 310
Титанат бария-стронция (Ba1−xSrx)TiO3, 0<x<1 - 500
Титанат бария BaTiO3 (20-120 °C) 1250-10000
Цирконат-титанат свинца (Pb[ZrxTi1-x]O3, 0<x<1) 500-6000
Сополимеры - - до 100000
Сульфид кадмия CdS 9,3

Напишите отзыв о статье "Диэлектрическая проницаемость"

Примечания

  1. ↑ Гольдштейн Л. Д., Зернов Н. В. Электромагнитные поля и волны. М.: Сов. радио, 1971. С. 11.
  2. ↑ В. В. Никольский, Т. И. Никольская. Электродинамика и распространение радиоволн. М.: Наука, 1989. С. 35.

Ссылки

К:Википедия:Статьи без источников (тип: не указан)

См. также

Отрывок, характеризующий Диэлектрическая проницаемость

Войдя в дом, князь Андрей увидал Несвицкого и еще другого адъютанта, закусывавших что то. Они поспешно обратились к Болконскому с вопросом, не знает ли он чего нового. На их столь знакомых ему лицах князь Андрей прочел выражение тревоги и беспокойства. Выражение это особенно заметно было на всегда смеющемся лице Несвицкого. – Где главнокомандующий? – спросил Болконский. – Здесь, в том доме, – отвечал адъютант. – Ну, что ж, правда, что мир и капитуляция? – спрашивал Несвицкий. – Я у вас спрашиваю. Я ничего не знаю, кроме того, что я насилу добрался до вас. – А у нас, брат, что! Ужас! Винюсь, брат, над Маком смеялись, а самим еще хуже приходится, – сказал Несвицкий. – Да садись же, поешь чего нибудь. – Теперь, князь, ни повозок, ничего не найдете, и ваш Петр Бог его знает где, – сказал другой адъютант. – Где ж главная квартира? – В Цнайме ночуем. – А я так перевьючил себе всё, что мне нужно, на двух лошадей, – сказал Несвицкий, – и вьюки отличные мне сделали. Хоть через Богемские горы удирать. Плохо, брат. Да что ты, верно нездоров, что так вздрагиваешь? – спросил Несвицкий, заметив, как князя Андрея дернуло, будто от прикосновения к лейденской банке. – Ничего, – отвечал князь Андрей. Он вспомнил в эту минуту о недавнем столкновении с лекарскою женой и фурштатским офицером. – Что главнокомандующий здесь делает? – спросил он. – Ничего не понимаю, – сказал Несвицкий. – Я одно понимаю, что всё мерзко, мерзко и мерзко, – сказал князь Андрей и пошел в дом, где стоял главнокомандующий. Пройдя мимо экипажа Кутузова, верховых замученных лошадей свиты и казаков, громко говоривших между собою, князь Андрей вошел в сени. Сам Кутузов, как сказали князю Андрею, находился в избе с князем Багратионом и Вейротером. Вейротер был австрийский генерал, заменивший убитого Шмита. В сенях маленький Козловский сидел на корточках перед писарем. Писарь на перевернутой кадушке, заворотив обшлага мундира, поспешно писал. Лицо Козловского было измученное – он, видно, тоже не спал ночь. Он взглянул на князя Андрея и даже не кивнул ему головой. – Вторая линия… Написал? – продолжал он, диктуя писарю, – Киевский гренадерский, Подольский… – Не поспеешь, ваше высокоблагородие, – отвечал писарь непочтительно и сердито, оглядываясь на Козловского. Из за двери слышен был в это время оживленно недовольный голос Кутузова, перебиваемый другим, незнакомым голосом. По звуку этих голосов, по невниманию, с которым взглянул на него Козловский, по непочтительности измученного писаря, по тому, что писарь и Козловский сидели так близко от главнокомандующего на полу около кадушки,и по тому, что казаки, державшие лошадей, смеялись громко под окном дома, – по всему этому князь Андрей чувствовал, что должно было случиться что нибудь важное и несчастливое. Князь Андрей настоятельно обратился к Козловскому с вопросами. – Сейчас, князь, – сказал Козловский. – Диспозиция Багратиону. – А капитуляция? – Никакой нет; сделаны распоряжения к сражению. Князь Андрей направился к двери, из за которой слышны были голоса. Но в то время, как он хотел отворить дверь, голоса в комнате замолкли, дверь сама отворилась, и Кутузов, с своим орлиным носом на пухлом лице, показался на пороге. Князь Андрей стоял прямо против Кутузова; но по выражению единственного зрячего глаза главнокомандующего видно было, что мысль и забота так сильно занимали его, что как будто застилали ему зрение. Он прямо смотрел на лицо своего адъютанта и не узнавал его. – Ну, что, кончил? – обратился он к Козловскому. – Сию секунду, ваше высокопревосходительство. Багратион, невысокий, с восточным типом твердого и неподвижного лица, сухой, еще не старый человек, вышел за главнокомандующим. – Честь имею явиться, – повторил довольно громко князь Андрей, подавая конверт. – А, из Вены? Хорошо. После, после! Кутузов вышел с Багратионом на крыльцо. – Ну, князь, прощай, – сказал он Багратиону. – Христос с тобой. Благословляю тебя на великий подвиг. Лицо Кутузова неожиданно смягчилось, и слезы показались в его глазах. Он притянул к себе левою рукой Багратиона, а правой, на которой было кольцо, видимо привычным жестом перекрестил его и подставил ему пухлую щеку, вместо которой Багратион поцеловал его в шею. – Христос с тобой! – повторил Кутузов и подошел к коляске. – Садись со мной, – сказал он Болконскому. – Ваше высокопревосходительство, я желал бы быть полезен здесь. Позвольте мне остаться в отряде князя Багратиона. – Садись, – сказал Кутузов и, заметив, что Болконский медлит, – мне хорошие офицеры самому нужны, самому нужны. Они сели в коляску и молча проехали несколько минут. – Еще впереди много, много всего будет, – сказал он со старческим выражением проницательности, как будто поняв всё, что делалось в душе Болконского. – Ежели из отряда его придет завтра одна десятая часть, я буду Бога благодарить, – прибавил Кутузов, как бы говоря сам с собой. Князь Андрей взглянул на Кутузова, и ему невольно бросились в глаза, в полуаршине от него, чисто промытые сборки шрама на виске Кутузова, где измаильская пуля пронизала ему голову, и его вытекший глаз. «Да, он имеет право так спокойно говорить о погибели этих людей!» подумал Болконский. – От этого я и прошу отправить меня в этот отряд, – сказал он. Кутузов не ответил. Он, казалось, уж забыл о том, что было сказано им, и сидел задумавшись. Через пять минут, плавно раскачиваясь на мягких рессорах коляски, Кутузов обратился к князю Андрею. На лице его не было и следа волнения. Он с тонкою насмешливостью расспрашивал князя Андрея о подробностях его свидания с императором, об отзывах, слышанных при дворе о кремском деле, и о некоторых общих знакомых женщинах.

Кутузов чрез своего лазутчика получил 1 го ноября известие, ставившее командуемую им армию почти в безвыходное положение. Лазутчик доносил, что французы в огромных силах, перейдя венский мост, направились на путь сообщения Кутузова с войсками, шедшими из России. Ежели бы Кутузов решился оставаться в Кремсе, то полуторастатысячная армия Наполеона отрезала бы его от всех сообщений, окружила бы его сорокатысячную изнуренную армию, и он находился бы в положении Мака под Ульмом. Ежели бы Кутузов решился оставить дорогу, ведшую на сообщения с войсками из России, то он должен был вступить без дороги в неизвестные края Богемских гор, защищаясь от превосходного силами неприятеля, и оставить всякую надежду на сообщение с Буксгевденом. Ежели бы Кутузов решился отступать по дороге из Кремса в Ольмюц на соединение с войсками из России, то он рисковал быть предупрежденным на этой дороге французами, перешедшими мост в Вене, и таким образом быть принужденным принять сражение на походе, со всеми тяжестями и обозами, и имея дело с неприятелем, втрое превосходившим его и окружавшим его с двух сторон. Кутузов избрал этот последний выход. Французы, как доносил лазутчик, перейдя мост в Вене, усиленным маршем шли на Цнайм, лежавший на пути отступления Кутузова, впереди его более чем на сто верст. Достигнуть Цнайма прежде французов – значило получить большую надежду на спасение армии; дать французам предупредить себя в Цнайме – значило наверное подвергнуть всю армию позору, подобному ульмскому, или общей гибели. Но предупредить французов со всею армией было невозможно. Дорога французов от Вены до Цнайма была короче и лучше, чем дорога русских от Кремса до Цнайма. В ночь получения известия Кутузов послал четырехтысячный авангард Багратиона направо горами с кремско цнаймской дороги на венско цнаймскую. Багратион должен был пройти без отдыха этот переход, остановиться лицом к Вене и задом к Цнайму, и ежели бы ему удалось предупредить французов, то он должен был задерживать их, сколько мог. Сам же Кутузов со всеми тяжестями тронулся к Цнайму. Пройдя с голодными, разутыми солдатами, без дороги, по горам, в бурную ночь сорок пять верст, растеряв третью часть отсталыми, Багратион вышел в Голлабрун на венско цнаймскую дорогу несколькими часами прежде французов, подходивших к Голлабруну из Вены. Кутузову надо было итти еще целые сутки с своими обозами, чтобы достигнуть Цнайма, и потому, чтобы спасти армию, Багратион должен был с четырьмя тысячами голодных, измученных солдат удерживать в продолжение суток всю неприятельскую армию, встретившуюся с ним в Голлабруне, что было, очевидно, невозможно. Но странная судьба сделала невозможное возможным. Успех того обмана, который без боя отдал венский мост в руки французов, побудил Мюрата пытаться обмануть так же и Кутузова. Мюрат, встретив слабый отряд Багратиона на цнаймской дороге, подумал, что это была вся армия Кутузова. Чтобы несомненно раздавить эту армию, он поджидал отставшие по дороге из Вены войска и с этою целью предложил перемирие на три дня, с условием, чтобы те и другие войска не изменяли своих положений и не трогались с места. Мюрат уверял, что уже идут переговоры о мире и что потому, избегая бесполезного пролития крови, он предлагает перемирие. Австрийский генерал граф Ностиц, стоявший на аванпостах, поверил словам парламентера Мюрата и отступил, открыв отряд Багратиона. Другой парламентер поехал в русскую цепь объявить то же известие о мирных переговорах и предложить перемирие русским войскам на три дня. Багратион отвечал, что он не может принимать или не принимать перемирия, и с донесением о сделанном ему предложении послал к Кутузову своего адъютанта. Перемирие для Кутузова было единственным средством выиграть время, дать отдохнуть измученному отряду Багратиона и пропустить обозы и тяжести (движение которых было скрыто от французов), хотя один лишний переход до Цнайма. Предложение перемирия давало единственную и неожиданную возможность спасти армию. Получив это известие, Кутузов немедленно послал состоявшего при нем генерал адъютанта Винценгероде в неприятельский лагерь. Винценгероде должен был не только принять перемирие, но и предложить условия капитуляции, а между тем Кутузов послал своих адъютантов назад торопить сколь возможно движение обозов всей армии по кремско цнаймской дороге. Измученный, голодный отряд Багратиона один должен был, прикрывая собой это движение обозов и всей армии, неподвижно оставаться перед неприятелем в восемь раз сильнейшим. Ожидания Кутузова сбылись как относительно того, что предложения капитуляции, ни к чему не обязывающие, могли дать время пройти некоторой части обозов, так и относительно того, что ошибка Мюрата должна была открыться очень скоро. Как только Бонапарте, находившийся в Шенбрунне, в 25 верстах от Голлабруна, получил донесение Мюрата и проект перемирия и капитуляции, он увидел обман и написал следующее письмо к Мюрату: Au prince Murat. Schoenbrunn, 25 brumaire en 1805 a huit heures du matin. «II m'est impossible de trouver des termes pour vous exprimer mon mecontentement. Vous ne commandez que mon avant garde et vous n'avez pas le droit de faire d'armistice sans mon ordre. Vous me faites perdre le fruit d'une campagne. Rompez l'armistice sur le champ et Mariechez a l'ennemi. Vous lui ferez declarer,que le general qui a signe cette capitulation, n'avait pas le droit de le faire, qu'il n'y a que l'Empereur de Russie qui ait ce droit. «Toutes les fois cependant que l'Empereur de Russie ratifierait la dite convention, je la ratifierai; mais ce n'est qu'une ruse.Mariechez, detruisez l'armee russe… vous etes en position de prendre son bagage et son artiller. «L'aide de camp de l'Empereur de Russie est un… Les officiers ne sont rien quand ils n'ont pas de pouvoirs: celui ci n'en avait point… Les Autrichiens se sont laisse jouer pour le passage du pont de Vienne, vous vous laissez jouer par un aide de camp de l'Empereur. Napoleon». [Принцу Мюрату. Шенбрюнн, 25 брюмера 1805 г. 8 часов утра. Я не могу найти слов чтоб выразить вам мое неудовольствие. Вы командуете только моим авангардом и не имеете права делать перемирие без моего приказания. Вы заставляете меня потерять плоды целой кампании. Немедленно разорвите перемирие и идите против неприятеля. Вы объявите ему, что генерал, подписавший эту капитуляцию, не имел на это права, и никто не имеет, исключая лишь российского императора. Впрочем, если российский император согласится на упомянутое условие, я тоже соглашусь; но это не что иное, как хитрость. Идите, уничтожьте русскую армию… Вы можете взять ее обозы и ее артиллерию. Генерал адъютант российского императора обманщик… Офицеры ничего не значат, когда не имеют власти полномочия; он также не имеет его… Австрийцы дали себя обмануть при переходе венского моста, а вы даете себя обмануть адъютантам императора. Наполеон.] Адъютант Бонапарте во всю прыть лошади скакал с этим грозным письмом к Мюрату. Сам Бонапарте, не доверяя своим генералам, со всею гвардией двигался к полю сражения, боясь упустить готовую жертву, а 4.000 ный отряд Багратиона, весело раскладывая костры, сушился, обогревался, варил в первый раз после трех дней кашу, и никто из людей отряда не знал и не думал о том, что предстояло ему.

В четвертом часу вечера князь Андрей, настояв на своей просьбе у Кутузова, приехал в Грунт и явился к Багратиону. Адъютант Бонапарте еще не приехал в отряд Мюрата, и сражение еще не начиналось. В отряде Багратиона ничего не знали об общем ходе дел, говорили о мире, но не верили в его возможность. Говорили о сражении и тоже не верили и в близость сражения. Багратион, зная Болконского за любимого и доверенного адъютанта, принял его с особенным начальническим отличием и снисхождением, объяснил ему, что, вероятно, нынче или завтра будет сражение, и предоставил ему полную свободу находиться при нем во время сражения или в ариергарде наблюдать за порядком отступления, «что тоже было очень важно».

wiki-org.ru

Диэлектрическая проницаемость веществ. Магнитная проницаемость вещества.

 ЗАДАЧНИК ОНЛ@ЙН  БИБЛИОТЕКА 1  БИБЛИОТЕКА 2

Расчет расхода энергии для единичного прибора

Примечание. Дробные значения вводите через точку.

... 2 >> следующая страница

Диэлектрическая проницаемость веществ. Магнитьная проницаемость вещества. Магнитная проницаемость ферромагнетиков. Температура Кюри. Удельное  электрическое сопротивление материалов. Сверхпроводимость проводников.

Диэлектрическая проницаемость веществ

Вещество

ԑ

Вещество

ԑ

Газы и водяной пар

Жидкости

Азот 1,0058 Глицерин 43
Водород 1,00026 Кислород жидкий (при t = -192,4 oC ) 1,5
Воздух 1,00057 Масло трансформаторное 2,2
Вакуум 1,00000 Спирт 26
Водянной пар (при t=100 oC) 1,006 Эфир 4,3
Гелий 1,00007

Твердые тела

Кислород 1,00055 Алмаз 5,7
Углекислый газ 1,00099 Бумага парафинированная 2,2

Жидкости

Дерево сухое 2,2-3,7
Азот жидкий (при t = -198,4 oC) 1,4 Лед (при t = -10 oC) 70
Бензин 1,9-2,0 Парафин 1,9-2,2
Вода 81 Резина 3,0-6,0
Водород (при  t= - 252,9 oC) 1,2 Слюда 5,7-7,2
Гелий жидкий (при  t = - 269 oC) 1,05 Стекло 6,0-10,0
    Титанат бария 1200
    Фарфор 4,4-6,8
    Янтарь 2,8

Примечание. Электрическая постоянная ԑo (диэлектрическая проницаемость вакуума) равная: ԑo = 1\4πс2 * 107 Ф/м ≈ 8,85 * 10-12 Ф/м

Магнитная проницаемость вещества

Парамагнитики

μ

Диамагнетики

μ

Алюминий 1,000023 Висмут 0,999824
Воздух 1,00000038 Вода 0,999991
Вольфрам 1,000176 Водород 0,999999937
Кислород 1,0000019 Медь 0,999990
Кислород жидкий 1,003400 Стекло 0,999987

Примечание. Магнитная постоянная μo (магнитная проницаемость вакуума) равна: μo = 4π * 10-7 Гн/м ≈ 1,257 * 10-6 Гн/м

М агнитная проницаемость ферромагнетиков

В таблице приведены значения магнитной проницаемости для некоторых ферромагнетиков (веществ с μ > 1). Магнитная приницаемость для ферромагнетиков (железо, чугун, сталь, никель и др. ) не постоянная. В таблице указаны максимальные значения.

Железо мягкое 8000 Пермаллой-681 250 000
Кобальт 175 Чугун 600-800
Никель 1100    
       

1Пермаллой-68 - сплав из 68% никеля и 325 железа; этот сплав применяют для изготовления сердечников трансформаторов.

Температура Кюри

Вещество

Температура Кюри, oС

Вещество

Температура Кюри, oС

Железо 770 Сульфид хрома 30
Кобальт 1331 Гадолиний 20
Никель 358 Тербий -50
Сплав никеля (70%) и меди (30%) 67 Диспрозий -186

Удельное электрическое сопротивление материалов

Проводник

мкОм м

Проводник

мкОм м

Алюминий 0,028 Никель 0,073
Вольфрам 0,055 Олово 0,12
Графит 13 Платина 0,10
Дуралюмин 0,033 Ртуть 0,96
Железо 0,10 Свинец 0,21
Золото 0,024 Серебро 0,016
Латунь 0,07-0,08 Сталь 0,10-0,14
Магний 0,045 Цинк 0,061
Медь 0,017 Чугун 0,5-0,8

Сплавы высокого сопротивления

Название сплава

Удельное электрическое сопротивление мкОМ м

Состав сплава, %

Медь

Никель

Марганец

Другие элементы

Константан 0,50 54 45 1 -
Копель 0,47 56,5 43 0,05 -
Манганин 0,43 > 85 2-4 12 -
Нейзильбер 0,3 65 15 - 20 Zn
Никелин 0,4 68,5 30 1,5 -
Нихром 1,1 - > 60 < 4 30 < Cr ост. Fe
Фехраль 1,3 - - - 12-15 Cr 3-4 Al 80 < Fe

Температурные коэффициенты электрического сопротивления проводников

Проводник

10-3 oC-1

Проводник

10-3 oC-1

Алюминий

4,2

Никель

6,5

Вольфрам

5

Нихром

0,1

Железо

6

Олово

4,4

Золото

4

Платина

3,9

Константан

0,05

Ртуть

1,0

Латунь

0,1-0,4

Свинец

3,7

Магний

3,9

Серебро

4,1

Манганин

0,01

Сталь

1-4

Медь

4,3

Фехраль

0,1

Нейзильбер

0,25

Цинк

4,2

Никелин

0,1

Чугун

1,0

Сверхпроводимость проводников

Металл

Температура перехода

Металл

Температура перехода

К

К

Алюминий -272,0 1,2 Свинец -266,0 7,2
Ванадий -267,9 5,3 Таллий -269,8 3,4
Молибден -272,3 0,9 Тантал -268,7 4,5
Ниобий -264,0 9,2 Уран -272,4 0,8
Олово -269,5 3,7 Цинк -272,3 0,9
    Примечания.
  1. Сверхпроводимость обнаружена у более чем 25 металлических элементов и у большого числа сплавов и соединений.
  2. Сверхпроводником с наиболее высокой температурой перехода в сверхпроводящее состояние    -23,2 К (-250,0 oC) - до недавного времени являлся германид ниобия (Nb3Ge). В конце 1986 г. был получен сверхпроводник с температурой перехода ≈ 30 К (≈ -243 oС). Сообщается о синтезе новых высокотемпературных сверхпроводников: керамик (изготовливается путем спекания оксидов бария, меди и лантана) с температурой перехода ≈ 90-120 К.

Удельное электрическое сопротивление некоторых полупроводников и диэлектриков

Вещество СтеклоТемпература, oС Удельное сопротивление
Ом м Ом мм2/м

Полупроводники

Антимонид индия 17 5,8 х 10-5 58
Бор 27 1,7 х 104 1,7 х 1010
Германий 27 0,47 4,7 х 105
Кремний 27 2,3 х 103 2,3 х 109
Cеленид свинца (II) (PbSe) 20 9,1 х 10-6 9,1
Сульфид свинца (II) (PbS) 20 1,7 х 10-5 0,17

Диэлектрики

Вода дистиллированная 20 103-104 109-1010
Воздух 0 1015-1018 1021-1024
Воск пчелиный 20 1013 1019
Древесина сухая 20 109-1010 1015-1016
Кварц 230 109 1015
Масло трансформаторное 20 1011-1013 1016-1019
Парафин 20 1014 1020
Резина 20 1011-1012 1017-1018
Слюда 20 1011-1015 1017-1021
Стекло 20 109-1013 1015-1019

Электрическое свойства пластмасс

Название пластмассы Диэлектрическая проницаемость Удельное электрическое сопротивление, Ом м
Гетинакс 4,5-8,0 109-1012
Капрон 3,6-5,0 1010-1011
Лавсан 3,0-3,5 1014-1016
Органическое стекло 3,5-3,9 1011-1013
Пенопласт 1,0-1,3 ≈ 1011
Полистирол 2,4-2,6 1013-1015
Полихлорвинил 3,2-4,0 1010-1012
Полиэтилен 2,2-2,4 ≈ 1015
Стеклотекстолит 4,0-5,5 1011-1012
Текстолит 6,0-8,0 107-1019
Целлулоид 4,1 109
Эбонит 2,7-3,5 1012-1014

Удельное электрическое сопротивление электролитов (при t=18 oС и 10-процентной концентрации раствора)

Раствор Удельное электрическое сопротивление 10-3 Ом м Раствор Удельное электрическое сопротивление 10-3 Ом м
Гидроксид натрия (NaOH) 32 Серная кислота (20-процентная концентрация) 15
Медный купорос (CuSO4 5h3O) 315 Соляная кислота (HCI) 16
Серная кислота (h3SO4) 25 Хлорид натрия (NaCI) 83

Примчание. Удельноое сопротивление электролитов зависит от температуры и концентрации, т.е. от отношения массы растворенной кислоты, щелочи или соли к массе растворяющей воды. При указанной концентрации растворов увеличение температуры на 1 oС уменьшает удельное сопротивление раствора, взятого при 18 oС, на 0,012 гидроксида натрия, на 0,022 - для медного купороса, на 0,021 - для хлорида натрия, на 0,013 -для серной кислоты и на 0,003 - для 100 - процентной серной кислоты.

Удельное электрическое сопртивление жидкостей

Жидкость

Удельное электрическое сопротивление, Ом м

Жидкость

Удельное электрическое сопротивление, Ом м

Ацетон 8,3 х 104 Расплавленные соли:
Вода дистилированна 103- 104 гидроксид калия (КОН; при t = 450 oC ) 3,6 х 10-3
Вода морская 0,3 гидроксид натрия (NaOH; при t = 320 oC) 4,8 х 10-3
Вода речная 10-100 хлорид натрия (NaCI; при t = 900 oC) 2,6 х 10-3
Воздух жидкий (при t = -196 oC) 1016 сода (Na2CO3x10h3O; при t = 900 oC) 4,5 х 10-3
Глицерин 1,6 х 105 Спирт 1,5 х 105
Керосин 1010    
Нафталин расплавленный (при (при t = 82 oC) 2,5 х 107    

www.kilomol.ru

Диэлектрическая проницаемость

 

Диэлектрическая проницаемость (ε) характеризует способность вещества изменять напряженность первичного электрического поля вследствие явления поляризации, т.е. упорядоченной ориентировки связанных электрических зарядов. При этом величина ε показывает, во сколько раз в данной среде сила взаимодействия (напряженность электрического поля - Е) между электрическими зарядами уменьшается по сравнению с вакуумом. Это взаимодействие можно выразить через реакцию на электрическое поле:

D= εaE,

где D – электрическая индукция, εa– абсолютная диэлектрическая проницаемость (Ф/м).

Если диэлектрическую проницаемость вакуума обозначить через εо = = 8,854 ×10-12 Ф/м, то относительная диэлектрическая проницаемость среды определит одну из электрических характеристик горных пород.

Величина диэлектрической проницаемости горной породы определяется объемом воды в порах. Это связано с тем, что для воды ε*» 80 отн. ед. и на порядок превышает относительную диэлектрическую проницаемость для скелета породы и нефти (ε*= 3÷10).

Возрастание минерализации воды от 1 до 300 г/л приводит к увеличению диэлектрической проницаемости породы на 30-40%.

Вообще применение диэлектрического каротажа целесообразно для разрезов, в которых удельное электрическое сопротивление горных пород превышает 5 Ом∙м при заполнении ствола промывочной жидкостью с удельным электрическим сопротивлением выше 1 Ом∙м.

В процессе обводнения коллекторов нагнетательными водами на величину диэлектрической проницаемости коллекторов влияют в основном те же факторы, что и на сопротивление (r)

· соотношение воды и нефти;

· минерализация смеси остаточной воды с нагнетаемой;

· образование граничных водных слоев с аномальными диэлектрическими свойствами;

· температура пород.

Относительная диэлектрическая проницаемость нефтеносных терригенных коллекторов определяется соотношением:

,

где В и С коэффициенты, зависящие от диэлектрических проницаемостей твердой части скелета породы и нефти; А, m, n, p, q – коэффициенты, зависящие от минерализации насыщающнго раствора.

С увеличением минерализации насыщающего раствора величина εНП растет, так же как для дистиллированной воды. Это объясняется следующими факторами:

1. У поверхности твердых минеральных гидрофильных частиц за счет ориентации полярных молекул под влиянием сильного электрического поля формируются граничные слои связанной воды с аномальной диэлектрической проницаемостью значительно меньшей, чем у воды связанной. Так, ε свободной воды при t= 20°С равна 80,3 ед, а интегральное значение пленки связанной воды (εпл. ср) толщиной 0,07 мкм, заключенной между двумя кристаллами слюды, составляет 4,5 отн. ед.

2. Объем связанной воды в порах различен при насыщении пресной и минерализованной водой. Толщина пленки связанной воды, ассоциирующая с двойным электрическим слоем, возрастает с уменьшением минерализации раствора электролита. Замена пресного раствора на минерализованный приводит к уменьшению пленки связанной воды и, следовательно, к уменьшению суммарного объема этой воды с резко заниженным значением ε, что и является причиной роста ε с увеличением минерализации раствора, насыщающего их поровое пространство.

На рис. 8 показана зависимость для Усть-Балыкского месторождения с учетом экспериментальных данных для случаев вытеснения нефти пластовой водой и пресной.

 

Рис. 8. Зависимости от КВТ.

Вытеснение нефти водой: 1- пластовой (СВ=15 г/л), 2- пресной (СВ→0)

 

При выработке нефти из пласта ε может увеличиваться в 2 раза при нагнетании минерализованной водой и в 1,6 раза при нагнетании пресной.

Таким образом, по величине диэлектрической проницаемости можно выделять пласты, обводняющиеся нагнетаемыми пресными и минерализованными водами.

Если определены εп обв, εнп и Кп , то можно определить коэффициент текущей нефтенасыщенности (КНТ).

 

Контрольные вопросы

1. Какие физические характеристики пластов влияют на изменение диэлектрической проницаемости?

2. Можно ли по данным измерения диэлектрической проницаемости выделять обводненные пласты?

 



infopedia.su

Диэлектрическая проницаемость - «Энциклопедия»

ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ, величина ε, характеризующая поляризацию диэлектриков под действием электрического поля напряжённостью Е. Диэлектрическая проницаемость входит в Кулона закон как величина, показывающая, во сколько раз сила взаимодействия двух свободных зарядов в диэлектрике меньше, чем в вакууме. Ослабление взаимодействия происходит вследствие экранирования свободных зарядов связанными, образующимися в результате поляризации среды. Связанные заряды возникают вследствие микроскопического пространственного перераспределения зарядов (электронов, ионов) в электрически нейтральной в целом среде.

Связь между векторами поляризации Р, напряжённости электрического поля Е и электрической индукции D в изотропной среде в системе единиц СИ имеет вид:

где ε0 - электрическая постоянная. Величина  диэлектрической проницаемости  ε зависит от структуры и химического состава вещества, а также от давления, температуры и других внешних условий (табл.).

Реклама

Для газов её величина близка к 1, для жидкостей и твёрдых тел изменяется от нескольких единиц до нескольких десятков, у сегнетоэлектриков может достигать 104. Такой разброс значений ε обусловлен различными механизмами поляризации, имеющими место в разных диэлектриках.

Классическая микроскопическая теория приводит к приближённому выражению для диэлектрической проницаемости  неполярных  диэлектриков:

где ni - концентрация i-го сорта атомов, ионов или молекул, αi - их поляризуемость, βi - так называемый фактор внутреннего поля, обусловленный особенностями структуры кристалла или вещества. Для большинства диэлектриков с диэлектрической проницаемостью, лежащей в пределах 2-8, β = 1/3. Обычно диэлектрическая проницаемость  практически не зависит от величины приложенного электрического поля вплоть до электрического пробоя диэлектрика. Высокие значения ε некоторых оксидов металлов и других соединений обусловлены особенностями их структуры, допускающей под действием поля Е коллективное смещение подрешёток положительных и отрицательных ионов в противоположных направлениях и образование значительных связанных зарядов на границе кристалла.

Процесс поляризации диэлектрика при наложении электрического поля развивается не мгновенно, а в течение некоторого времени τ (времени релаксации). Если поле Е изменяется во времени t по гармоническому закону с частотой ω, то поляризация диэлектрика не успевает следовать за ним и между колебаниями Р и Е появляется разность фаз δ. При описании колебаний Р и Е методом комплексных амплитуд диэлектрическую проницаемость  представляют комплексной величиной:

ε = ε’ + iε",

причём ε’ и ε" зависят от ω и τ, а отношение ε"/ε’ = tg δ определяет диэлектрические потери в среде. Сдвиг фаз δ зависит от соотношения τ и периода поля Т = 2π/ω. При τ << Т (ω<< 1/τ, низкие  частоты)  направление  Р изменяется практически одновременно с Е, т. е. δ → 0 (механизм поляризации «включён»). Соответствующее значение ε’ обозначают ε(0). При τ >> Т (высокие частоты) поляризация не успевает за изменением Ε, δ → π и ε’ в этом случае обозначают ε(∞) (механизм поляризации «отключён»). Очевидно, что ε(0) > ε(∞), и в переменных полях диэлектрическая проницаемость оказывается функцией ω. Вблизи ω = l/τ происходит изменение ε’ от ε(0) до ε(∞) (область дисперсии), а зависимость tgδ(ω) проходит через максимум.

Характер зависимостей ε’(ω) и tgδ(ω) в области дисперсии определяется механизмом поляризации. В случае ионной и электронной поляризаций при упругом смещении связанных зарядов изменение Р(t) при ступенчатом включении поля Е имеет характер затухающих колебаний и зависимости ε’(ω) и tgδ(ω) называются резонансными. В случае ориентационной поляризации установление Р(t) носит экспоненциальный характер, а зависимости ε’(ω) и tgδ(ω) называются релаксационными.

Методы измерения диэлектрической поляризации основаны на явлениях взаимодействия электромагнитного поля с электрическими дипольными моментами частиц вещества и различны для разных частот. В основе большинства методов при ω ≤ 108 Гц лежит процесс зарядки и разрядки измерительного конденсатора, заполненного исследуемым диэлектриком. При более высоких частотах используются волноводные, резонансные, мультичастотные и другие методы.

В некоторых диэлектриках, например сегнетоэлектриках, пропорциональная зависимость между Р и Ε [Ρ = ε0(ε ‒ 1 )Е] и, следовательно, между D и Е нарушается уже в обычных, достигаемых на практике электрических полях. Формально это описывается как зависимость ε(Ε) ≠ const. В этом случае важной электрической характеристикой диэлектрика является дифференциальная диэлектрическая проницаемость:

В нелинейных диэлектриках величину εдиф измеряют обычно в слабых переменных полях при одновременном наложении сильного постоянного поля, а переменную составляющую εдиф, называют реверсивной диэлектрической проницаемостью.

Лит. смотри при ст. Диэлектрики.

И. Н. Грознов.

knowledge.su

Относительная диэлектрическая проницаемость - это... Что такое Относительная диэлектрическая проницаемость?

Проверить информацию.

Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье.На странице обсуждения должны быть пояснения.

Относи́тельная диэлектри́ческая проница́емость среды ε — безразмерная физическая величина, характеризующая свойства изолирующей (диэлектрической) среды. Связана с эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды). Величина ε показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Относительная диэлектрическая проницаемость воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постоянная воды в статическом поле достаточно высока — около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим диполем. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.

Измерение

Относительная диэлектрическая проницаемость вещества εr может быть определена путем сравнения ёмкости тестового конденсатора с данным диэлектриком (Cx) и ёмкости того же конденсатора в вакууме (Co):

Практическое применение

Диэлектрическая проницаемость диэлектриков является одним из основных параметров при разработке электрических конденсаторов. Использование материалов с высокой диэлектрической проницаемостью позволяют существенно снизить физические размеры конденсаторов.

Ёмкость конденсаторов определяется:

где εr — диэлектрическая проницаемость вещества между обкладками, εо — электрическая постоянная, S — площадь обкладок конденсатора, d — расстояние между обкладками.

Параметр диэлектрической проницаемости учитывается при разработке печатных плат. Значение диэлектрической проницаемости вещества между слоями в сочетании с его толщиной влияет на величину естественной статической ёмкости слоев питания, а также существенно влияет на волновое сопротивление проводников на плате.

Зависимость от частоты

Следует отметить, что диэлектрическая проницаемость в значительной степени зависит от частоты электромагнитного поля. Это следует всегда учитывать, поскольку таблицы справочников обычно содержат данные для статического поля или малых частот вплоть до нескольких единиц кГц без указания данного факта. В то же время существуют и оптические методы получения относительной диэлектрической проницаемости по коэффициенту преломления при помощи эллипсометров и рефрактометров. Полученное оптическим методом (частота 1014 Гц) значение будет значительно отличаться от данных в таблицах.

Рассмотрим, например, случай воды. В случае статического поля (частота равна нулю), относительная диэлектрическая проницаемость при нормальных условиях приблизительно равна 80. Это имеет место вплоть до инфракрасных частот. Начиная примерно с 2 ГГц εr начинает падать. В оптическом диапазоне εr составляет приблизительно 1,8. Это вполне соответствует факту, что в оптическом диапазоне показатель преломления воды равен 1,33.[1] В узком диапазоне частот, называемом оптическим, диэлектрическое поглощение падает до нуля, что собственно и обеспечивает человеку механизм зрения[источник не указан 665 дней] в земной атмосфере, насыщенной водяным паром. С дальнейшим ростом частоты свойства среды вновь меняются. О поведении относительной диэлектрической проницаемости воды в диапазоне частот от 0 до 1012 (инфракрасная область) можно прочитать на [1] (англ.)

Примечания

  1. ↑ Справочник по элементарной физике. Кошкин Н. И., Ширкевич М. Г. М.: Наука, 1972. — 256с.

См. также

Значения диэлектрической проницаемости для некоторых веществ

Вещество Химическая формула Условия измерения Характерное значение εr
Алюминий Al 1 кГц -1300 + 1,3·1014i
Серебро Ag 1 кГц -85 + 8·1012i
Вакуум - - 1
Воздух - Нормальные условия, 0,9 МГц 1,00058986 ± 0,00000050
Углекислый газ CO2 Нормальные условия 1,0009
Тефлон - - 2,1
Нейлон - - 3,2
Полиэтилен [-СН2-СН2-]n - 2,25
Полистирол [-СН2-С(С6Н5)Н-]n - 2,4-2,7
Каучук - - 2,4
Битум - - 2,5-3,0
Сероуглерод CS2 - 2,6
Парафин С18Н38 − С35Н72 - 2,0-3,0
Бумага - - 2,0-3,5
Электроактивные полимеры 2-12
Эбонит (C6H9S)2 2,5-3,0
Плексиглас (оргстекло) - - 3,5
Кварц SiO2 - 3,5-4,5
Диоксид кремния SiO2 3,9
Бакелит - - 4,5
Бетон 4,5
Фарфор 4,5-4,7
Стекло 4,7 (3,7-10)
Стеклотекстолит FR-4 - - 4,5-5,2
Гетинакс - - 5-6
Слюда - - 7,5
Резина 7
Поликор 98 % Al2O3 - 9,7
Алмаз 5,5-10
Поваренная соль NaCl 3-15
Графит C 10-15
Керамика 10-20
Кремний Si 11.68
Бор B 2.01
Аммиак Nh4 20 °C 17
0 °C 20
−40 °C 22
−80 °C 26
Спирт этиловый C2H5OH или Ch4-Ch3-OH 27
Метанол Ch4OH 30
Этиленгликоль HO—Ch3—Ch3—OH 37
Фурфурол C5h5O2 42
Глицерин HOCh3CH(OH)-Ch3OH или C3H5(OH)3 0 °C 41,2
20 °C 47
25 °C 42,5
Вода h3O 200 °C 34,5
100 °C 55,3
20 °C 81
0 °C 88
Плавиковая кислота HF 0 °C 83,6
Формамид HCONh3 20 °C 84
Серная кислота h3SO4 20-25 °C 84-100
Перекись водорода h3O2 −30 °C — +25 °C 128
Синильная кислота HCN (0-21 °C) 158
Двуокись титана TiO2 - 86-173
Титанат кальция CaTiO3 - 170
Титанат стронция SrTiO3 - 310
Барий-стронций титанат - - 500
Титанат бария BaTiO3 (20-120 °C) 1250-10000
Цирконат-титанат свинца (Pb[ZrxTi1-x]O3, 0<x<1) 500-6000
Сополимеры - - до 100000

Ссылки

dic.academic.ru