Проект установки первичной переработки Тенгинской нефти. Диплом переработка нефти


Варианты переработки нефти - Дипломная работа

Содержание

 

Введение

Характеристика исходного сырья

Характеристика готовой продукции

.1 Характеристика автомобильных бензинов

.2 Характеристика дизельных топлив

.3 Требования, предъявляемые к нефтяным пекам

.4 Характеристика бензола

Обоснование варианта переработки нефти

Поточная схема нефтеперерабатывающего завода

Расчет материальных балансов технологических установок НПЗ

.1 Расчет материального баланса установки ЭЛОУ - АВТ

.2 Расчет материального баланса установки Феба-комби-крекинг

.3 Расчет материального баланса установки гидроочистки вакуумного газойля

.4 Расчет материального баланса установки каталитического крекинга RCC

.5 Материальный баланс установки термополиконденсационного процесса Юрека

.6 Расчет материального баланса установки гидродепарафинизации дизельного топлива

5.7 Расчет материального баланса установки гидроочистки легких газойлей

29

.8 Расчет материального баланса установки каталитического риформинга с целью получения базового компонента бензина Премиум Евро-95

5.9 Расчет материального баланса установки каталитического риформинга с экстракцией бензола

.10 Расчет материального баланса газофракционирования предельных углеводородов

5.11 Расчет материального баланса установки изомеризации

5.12 Расчет материального баланса газофракционирования непредельных углеводородов

5.13 Расчет материального баланса установки алкилирования

5.14 Расчет материального баланса установки компаундирования бензина

5.15 Расчет материального баланса установки производства серы

Сводный товарный баланс нефтеперерабатывающего завода

Заключение

Приложение А (Библиография)

 

РЕФЕРАТ

 

Расчетно - пояснительная записка курсовой работы содержит 41 стра-ниц, 2 рисунка,27 таблиц,

НЕФТЬ, ПОТОЧНАЯ СХЕМА, НЕФТЕПРОДУКТЫ, НЕФТЕПЕРЕРАБАТЫВАЮЩИЙ ЗАВОД, МАТЕРИАЛЬНЫЙ БАЛАНС

Объект курсовой работы: нефтеперерабатывающий завод

Цель курсовой работы: дать обоснование варианта переработки нефти, разработать поточную схему и рассчитать товарный баланс нефтеперерабатывающего завода.

В курсовой работе подробно изучены характеристики нефти, определены потенциальные содержания нефтепродуктов. На основе этих данных выбран и обоснован вариант переработки нефти. Определен набор технологических процессов, который обеспечит получение нефтепродуктов заданного ассортимента, рассчитаны материальные балансы технологических установок и товарный баланс нефтеперерабатывающего завода.

Введение

переработка нефть технология завод

Выбор направления переработки нефти и ассортимента получаемых нефтепродуктов определяется физико-химическими свойствами нефти, уровнем технологии нефтеперерабатывающего завода и настоящей потребности хозяйств в товарных нефтепродуктах. Различают четыре основных варианта переработки нефти:

) топливный с глубокой переработкой нефти;

) топливный с неглубокой переработкой нефти;

) топливно-масляный;

) топливно-нефтехимический.

По топливному варианту нефть перерабатывается в основном на моторные и котельные топлива. Топливный вариант переработки отличается наименьшим числом участвующих технологических установок и низкими капиталовложениями. Различают глубокую и неглубокую топливную переработку. При неглубокой переработке нефти отбор светлых нефтепродуктов составляет не более 40 - 45%, а выработка котельного топлива достигает 50 - 55% на исходную нефть. При глубокой переработке нефти стремятся получить максимально возможный выход высококачественных и автомобильных бензинов, зимних и летних дизельных топлив и топлив для реактивных двигателей. Выход котельного топлива в этом варианте сводится кминимуму.

Таким образом, предусматривается такой набор процессов вторичной переработки, при котором из тяжелых нефтяных фракций и остатка- гудрона получают высококачественные легкие моторные топлива. Сюда относятся каталитические процессы - каталитический крекинг, каталитический риформинг, гидрокрекинг и гидроочистка, а также термические процессы, например коксование. Переработка заводских газов в этом случае направлена на увеличение выхода высококачественных бензинов. Более перспективным является вариант глубокой переработки нефти, при котором выход светлых нефтепродуктов составляет 65% на нефть, а котельное топливо (мазут) вырабатывается только для обеспечения собственных нужд НПЗ.

По топливно-масляному варианту переработки нефти наряду с топливами получают смазочные масла. Для производства смазочных масел обычно подбирают нефти с высоким потенциальным содержанием масляных фракций. Попутно с получением масел производят парафины и церезин, а из асфальтов и экстрактов, являющихся также продуктами установок очистки масел, получают битумную продукцию и нефтяной кокс.

Топливно-нефтехимический вариант переработки нефти предусматривает не только получение широкого ассортимента топлив, но и развитие нефтехимического производства. Нефтехимические производства используют в качестве сырья: прямогонный бензин, ароматические углеводороды, жидкие и твердые парафины. При переработке этого сырья получается целая гамма нефтехимической продукции: этилен и полиэтилен, дивинил и изопрен, бутиловые спирты и ксилолы, фенол и ацетон, стирол и полимерные смолы.

1 Характеристика сырья

 

Сырьем прое

www.studsell.com

Дипломная работа - Нефть и переработка нефти

Содержание .

1.Глава 1.Нефть и переработка нефти…………………………………………………….2-4

2Глава 2. Твердые горючие ископаемые…………………………………………………4-7

3.Глава 3.Целлюлоза……………………………………………………………………… 7-8.

4.Глава 3. Озокерит………………………………………………………………………… 8-9

5.Глава 4 Природные газы и их использование…………………………………………10

6.Список использованной литературы…………………………………………………… 11

Глава 1. НЕФТЬ И ПЕРЕРАБОТКА НЕФТИ.

Сырая нефть представляет собой сложную смесь углеводородов и других соединений. В таком виде она мало используется. Сначала ее перерабатывают в другие продукты, которые имеют практическое применение. Переработка нефти включает: фракционную перегонку, крекинг, риформинг и очистку от серы.

Фракционная перегонка: Сырую нефть разделяют на множество составных частей, подвергая ее простой, фракционной и вакуумной перегонке. Состав получаемых фракций нефти зависят от состава сырой нефти. Из сырой нефти прежде всего удаляют растворенные в ней примеси газов. Затем подвергают первичной перегонке, в результате чего разделяют на газовую, легкую и среднюю фракции и мазут.

1)Газовая фракция — газы, получаемые при переработке нефти, представляют собой простейшие неразветвленные алканы: этан, пропан и бутаны. Эта фракция имеет промышленное название нефтезаводской газ.

2)Бензиновая фракция — эта фракция представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов.

3) Мазут — Эта фракция остается после удаления из нефти всех остальных фракций. Большая его часть используется в качестве жидкого топлива для нагревания котлов.

Крекинг: В этом процессе крупные молекулы высококипящих фракций сырой нефти расщепляется на меньшие молекулы, из которых состоят низкокипящие фракции. Крекинг необходим потому, что потребности в низкокипящих фракциях нефти особенно в бензине часто опережают возможности их получения путем фракционной перегонки сырой нефти.

Существует несколько видов крекинга: термический, каталитический, риформинг.

1)Термический крекинг:

Крупные молекулы углеводородов, содержащихся в тяжелых фракциях нефти, могут быть расщеплены на меньшие молекулы путем нагревания этих фракций до температур, превышающих их температуру кипения. Как и при каталитическом крекинге, в этом случае получают смесь насыщенных и ненасыщенных продуктов:

C16 h44 > C8 h28 + C8 h26 гексадекан октан октилен

Получившиеся жидкие вещества частично могут разлагаться далее, например:

C8 h28 – C4 h20 + C4 H8 октан бутан бутилен

C4 h20 – C2 H8 + C2 h5 бутан этан этилен

Выделившийся в процессе крекинга этилен широко используется в химической промышленности.

Расщепление молекул углеводородов протекает по радикальному механизму:

Ch4 – (Ch3 )6 – Ch3 :Ch3 – (Ch3 )6 – Ch4 > Ch4 – (Ch3 )6 – Ch3 + Ch3 –(Ch3 )6 – Ch4

Свободные радикалы химически очень активны и могут участвовать в

различных реакциях. В процессе крекинга один из радикалов отщепляет атом

водорода (а), а другой – присоединяет (б):

а) CН3 – (СН2 )6 – СН2 > СН3 – (СН2 )5 – СН=СН2 + Н

1-октен

б) Ch4 – ( Ch3 )6 – Ch3 + H > Ch4 – ( Ch3 )6 – Ch4

октан

При температурах 700-1000°С проводят термическое разложение нефтепродуктов, в результате которого получают главным образом легкие алкены – этилен, пропилен и ароматические углеводороды. При пиролизе возможно протекание следующих реакций:

Ch4 – Ch4 > Ch3 = Ch3 + h3

Ch4 – Ch3 – CH(Ch4 ) – Ch4 > Ch3 – CH(Ch4 ) – Ch4 + Ch5

2)Каталитический крекинг:

Этот метод приводит к образованию смесинасыщенных и ненасыщенных продуктов. Каталитический крекинг проводится при сравнительно невысоких температурах, а в качестве катализатора используется смесь кремнезема и глинозема. Таким путем получают высококачественный бензин и ненасыщенные углеводороды из тяжелых фракций нефти.

Недостатки процесса:

1) постоянное загрязнение катализатора

смолистыми отложениями.

2) образование алкенов, понижающих химическую стабильность продуктов.

Каталитический крекинг проходит по катионному цепному механизму на

поверхности катализатора. При отрыве на катализаторе от молекулы парафинового углеводорода гидрид иона образуется соответствующий карбкатион:

AlX3 + Cn h3n+2 → [HAlX3]– + Cn Н+2n+1

3)Реформинг:

Процессы риформинга приводят к изменению структуры молекул или к их объединению в более крупные молекулы. Риформинге используется в переработке сырой нефти для превращения низкокачественных бензиновых фракций в высококачественные фракции. Процессы риформинга могут быть подразделены на три типа: изомеризация, алкилирование, а также циклизация и ароматизация.

1)Изомеризация – в этом процессе молекулы одного изомера подвергаются с образованием другого изомера. Процесс изомеризации имеет важное значение для повышения качества бензиновой фракции, получаемой после первичной перегонки сырой нефти. Бутан можно изомеризовать, превращая его в 2-метил-пропан, с помощью катализатора из хлорида алюминия при температуре 100°С или выше:

2)Алкилирование – в этом процессе алканы и алкены, которые образовались в результате крекинга, воссоединяются с образованием высокосортных бензинов. Процесс проводится при низкой температуре с использованием сильнокислотного катализа, например серной кислоты:

3)Циклизация и ароматизация — риформинг этого типа представляет один из процессов крекинга. Его называют каталитическим риформингоим. В некоторых случаях в реакционную систему вводят водород, чтобы предотвратить полное разложение алкана до углерода и поддержать активность катализатора. В этом случае процесс называется гидроформингом:

Приблизительно 90% всей добываемой нефти используют в качестве топлива. Из продуктов перегонки нефти получают много тысяч органических соединений. Они в свою очередь используются для получения тысяч продуктов, которые удовлетворяют не только насущные потребности современного общества.

Глава 2. ТВЕРДЫЕ ГОРЮЧИЕ ИСКОПАЕМЫЕ.

Твердые горючие ископаемые: Органические происхождения, представляющие собой продукты преобразования остатков растит, или животных организмов под воздействием физико-химических, биологических факторов. Каустобиолиты угольного ряда разделяются:

— ископаемые угли.

— сланцы.

— торф.

Активные угли — пористые углеродные тела, зерненные и порошкообразные, развивающие при контакте с газообразной или жидкой фазами значительную площадь поверхности для сорбционных явлений. По своим структурным характеристикам активные угли относятся к группе микрокристаллических разновидностей углерода — это графитовые кристаллиты, состоящие из плоскостей протяженностью 2-3 нм, которые в свою очередь образованы гексагональными кольцами.

Кроме графитовых кристаллитов активные угли содержат от одной до двух третей аморфного углерода; наряду с этим присутствуют гетероатомы.

Наличие химически связанного кислорода в структуре активных углей, образующего поверхностные химические соединения основного или кислого характера, значительно влияет на их адсорбционные свойства. Пористая структура активных углей характеризуется наличием развитой системы пор, которые классифицируют на:

1)Микропоры — наиболее мелкая разновидность пор, соизмеримая с размерами адсорбируемых молекул.

2)Мезопор ы — поры, для которых характерно послойное заполнение поверхности адсорбируемыми молекулами, завершающееся их объемным заполнением по механизму капиллярной конденсации.

3)Макропоры — в процессе адсорбции не заполняются, но выполняют роль транспортных каналов для доставки адсорбата к поверхности адсорбирующих пор.

Производство активных углей:

Для практической реализации любого способа изготовления активных углей пользуются такими общими технологическими приемами, как предварительная подготовка сырья (дробление, рассев, формование), карбонизация (пиролиз) и активация.

1)Предварительная подготовка сырья — приведение исходного угольного сырья в состояние, удобное для осуществления дальнейшей термической обработки.

2)Карбонизация (пиролиз) — термическая обработка материала без доступа воздуха для удаления летучих веществ. На стадии карбонизации формируется каркас будущего активного угля — первичная пористость, прочность и т.д.

3)Активация водяным паром представляет собой окисление карбонизованных продуктов до газообразных в соответствии с реакцией:

С + Н2О->СО + Н2

или при избытке водяного пара:

С + 2Н2О->-СО2 + 2Н2

В процессе активации развивается необходимая пористость и удельная поверхность, происходит значительное уменьшение массы твердого вещества, именуемое обгаром.

Запасы каменного угля в природе значительно превышают запасы нефти. Поэтому каменный уголь – важнейший вид сырья для химической отрасли промышленности. В настоящее время в промышленности используется несколько путей переработки каменного угля: сухая перегонка (коксование, полукоксование), гидрирование, неполное сгорание, получение карбида кальция.

Сухая перегонка угля используется для получения кокса в металлургии или бытового газа. При коксовании угля получают кокс, каменноугольную смолу, надсмольную воду и газы коксования.

Каменноугольная смола содержит самые разнообразные ароматические и другие органические соединения. Разгонкой при обычном давлении ее разделяют на несколько фракций. Из каменноугольной смолы получают ароматические углеводороды, фенолы и др.Газы коксования содержат преимущественно метан, этилен, водород и оксид углерода(II). Частично их сжигают, частично перерабатывают. Гидрирование угля осуществляют при 400–600 °С под давлением водорода до 250 атм в присутствии катализатора – оксидов железа. При этом получается жидкая смесь углеводородов, которые обычно подвергают гидрированию на никеле или других катализаторах. Гидрировать можно низкосортные бурые угли.

Использование коксового газа и угля

Карбид кальция СаС2 получают из угля (кокса, антрацита) и извести. В дальнейшем его превращают в ацетилен, который используется в химической отрасли промышленности всех стран во все возрастающих масштабах.

Сланец – полезное ископаемое из группы твёрдых каустобиолитов, дающее при сухой перегонке значительное количество смолы (близкой по составу к нефти).

Горючий сланец состоит из преобладающих минеральных (кальциты, доломит, гидрослюды, монтмориллонит, каолинит, полевые шпаты, кварц, пирит и др.) и органических частей (кероген), последняя составляет 10—30 % от массы породы и только в сланцах самого высокого качества достигает 50—70 %. Органическая часть является био- и геохимически преобразованным веществом простейших водорослей, сохранившим клеточное строение или потерявшим его в виде примеси в органической части присутствуют измененные остатки высших растений. Горючие сланцы являются самым низкосортным твердым топливом. Обладая высокой теплотворной способностью горючей массы (Q* до 9000 ккал/кг), сланцы из-за высокой зольности (Лр до 70%) представляют малоценное рабочее топливо.

Применение: Используют как местное топливо, сырье для получения жидких топлив, для получения битумов, масел, фенолов, бензола, толуола, ксилолов, нафтолов, ихтиола и др.

Органическая масса горючих сланцев имеет наибольшую аналогию с нефтью, однако низкое содержание органики, а также трудности использования огромных количеств минерального остатка тормозят развитие переработки сланцев.

Торф- горючее полезное ископаемое; образовано скоплением остатков растений, подвергшихся неполному разложению в условиях болот. Для болота характерно отложение на поверхности почвы неполно разложившегося органического вещества, превращающегося в дальнейшем в торф. Слой торфа в болотах не менее 30 см, (если меньше, то это заболоченные земли).

Торф подразделяется на виды по группировке растений и условиям образования, а также на типы:

1)Верхово́й торф — образован олиготрофной растительностью (сосна, пушица, сфагнум, вереск) при переувлажнении, вызванном преимущественно атмосферными осадками. Плохое удобрение, поскольку беден. Содержит зольные элементы 1—5 %, органических веществ — 99—95 %, pH=2.8—3.6. Химический состав: азотистых веществ — 0.9—1.2 %, P2 O5 — 0.03—0.2, K2 O — 0.05—0.1, CaO — 0.1—0.7, Fe2 O3 — 0.03—0.5 %. Окраска изменяется с повышением степени разложения от светло-желтой до темно-коричневой. Используется как топливо или теплоизоляция.

2) Низи́нный торф — образован эутрофной растительностью (ольха, осока, мох) при переувлажнении грунтовыми водами. Зольность 6-18 процентов. Преобладают серые оттенки, переходящие в землисто-серый цвет.

Торф и продукты переработки торфа в зависимости от способа добычи и назначения подразделяются на следующие квалификационные группировки:

-по способу добычи — торф фрезерный

-торф кусковой

-по видам использования — торф топливный

-торф для сельского хозяйства

-брикеты и полубрикеты топливные

Они действительно лучше восстанавливали радионуклиды. Более того, чтобы сделать реакцию «зеленой» при производстве в промышленном масштабе для проведения которой не нужен токсичный формальдегид. В результате получается целый набор обогащенных гуминовых производных с различными электрохимическими свойствами.

Электродный пековый и нефтяной кокс имеют по сравнению с каменноугольным очень низкую зольность, как правило, не выше 0,3% (до 0,8% у нефтяного кокса) Электродный пековый кокс получают коксованием в камерных динасовых печах высокоплавкого каменноугольного пека. Нефтяной кокс образуется также при крекинге и пиролизе продуктов перегонки нефти.

Глава 3. ЦЕЛЛЮЛОЗА.

Один из наиб. распространенных биополимеров, входящий в состав клеточных стенок растений и микроорганизмов

Химическая формула целлюлозы, выведенная на основании определения ее элементарного состава и молекулярного веса, имеет вид (С6Н10О5)n, причем n (степень полимеризации) зависит от условий приготовления препарата. Различают средний молекулярный вес целлюлозы, выделенной из растительных материалов в особенно мягких условиях, достигает 10—20 миллионов. Молекулярный вес технической целлюлозы равен 50 000—150 000.

Физические свойства и нахождение в природе:

Целлюлоза (C6h20O5)n представляет собой высокомолекулярный полисахарид, являющийся главной составной частью клеточных стенок растений. Целлюлоза придает растительной ткани механическую прочность, эластичность и выполняет строительную функцию.В природе целлюлоза никогда не встречается в чистом виде. Волокна хлопка содержат 92—95% целлюлозы, в различных видах древесины содержание целлюлозы колеблется в пределах 40—60%.

По внешнему виду целлюлоза — аморфное вещество. Однако при рентгенографическом исследовании она дает характерные рентгенограммы, указывающие на значительную упорядоченность ее структуры.

Химические свойства:

Целлюлоза почти не обладает восстановительными свойствами и не дает других реакций карбонильной группы, характерных для моносахаридов.

А) Реакции образования алкоголятов и эфиров целлюлозы. В отличие от низших спиртов целлюлоза при обработке концентрированными растворами едких щелочей образует прочное соединение — щелочную целлюлозу:

Б) Алкоголяты целлюлозы получаются также при действии на целлюлозу растворов щелочных металлов в жидком аммиаке:

2. Получения простых эфиров целлюлозы является действие на щелочную целлюлозу диалкилсульфатов в присутствии избытка щелочи:

или

3. Получение нитрата целлюлозы, часто неправильно получаемые этерификацией целлюлозы смесью азотной и серной кислот где серная кислота служит водоотнимающим средством:

4. Получение уксуснокислых эфиров (ацетаты целлюлозы), часто неправильно называемые ацетилцеллюлозой, в присутствии уксусной кислоты и небольших количеств серной кислоты как катализатора:

5. Ксантогенаты целлюлозы получаются при взаимодействии щелочной целлюлозы с сероуглеродом, При этом CS2 как бы внедряется в положение 2 в среднем в каждый второй глюкозный остаток щелочной целлюлозы:

Ксантогенат целлюлозы представляет собой натриевую соль кислого эфира целлюлозы и дитиоугольной кислоты. Ксантогенаты целлюлозы растворяются в воде или разбавленной щелочи, образуя так называемые вискозные растворы:

Как и другие органические вещества, содержащие в составе молекул нитрогруппу, все виды нитроцеллюлозы огнеопасны. Особенно опасна в этом отношении тринитроцеллюлоза — сильнейшее взрывчатое вещество. Ацетилцеллюлоза используется для получения лаков и красок, она служит так же сырьем для изготовления искусственного шелка.

Глава 4.ОЗОКЕРИТ

Озокерит (от др.-греч. ὄ ζω — пахну и κηρός — воск) (горный воск) — природный углеводород из группы нефти, по другим данным — из группы нефтяных битумов, иногда условно относимый к минералам. Является смесью высокомолекулярных твёрдых насыщенных углеводородов (обычно состоит из 85-87% углерода и 13-14% водорода), по виду напоминает пчелиный воск, имеет запах керосина.

Удельный вес — от 0.85 до 0.95, температура плавления — от 58 до 100°C. Озокерит растворяется в эфире, нефти, бензоле, скипидаре, хлороформе, сероуглероде и в некоторых других веществах. Озокерит, добываемый в Галиции, варьируется по цвету от светло-жёлтого до тёмно-коричневого, также часто встречается зелёный озокерит (такая окраска получается благодаря дихроизму) и плавится при температуре 62°С.

1)Китайский воск вырабатывается червецом. Содержит сложный эфир гексакозановой к-ты СН3 (СН2 )24 СООН и гексадеканового спирта СН3 (СН2 )15 ОН (95-97%), смолу (до 1%), углеводороды (до 1%) и спирты (до 1%).

2)Шеллачный воск содержится в природной. смоле — шеллаке (ок. 5%). В него входят 60-62% сложных эфиров, 33-35% спиртов, 2-6% углеводородов. Выделяют при охлаждении спиртового р-ра шеллака.

3)Воск бактерий покрывает пов-сть кислотоупорных бактерий, напр. туберкулезных и лепры, обеспечивая их устойчивость к внеш. воздействиям. Содержит сложные эфиры миколевой к-ты С88 Н17 2О4 иэйкозанола СН3 (СН2 )17 СНОНСН3, а также октадеканола СН3 (СН2 )15 СНОНСН3.

4)Воск сахарного тростника покрывает тонкой пленкой стебли растений. В него входят сложные эфиры (78-82%), насыщенные С14 —С34 и ненасыщенные С15—С37 углеводороды (3-5%), насыщенные жирные к-ты С12 —С36 (14%) и спирты С24 —С34 (6-7%). При отжиме тростника ок. 60% воска переходит в сок. При очистке последнего воск выпадает в осадок.

Озокерит является ценным сырьем для медицинских целей. Так, его использование лежит в основе одного из видов физиотерапии – озокеритотерапии. Он используется для изготовления свечей и изоляторов, так как имеет большую температуру плавления, чем парафин, а также для приготовления различных смазок и мазей для технических и медицинских нужд; в строительной промышленности.

Глава 5. ПРИРОДНЫЕ ГАЗЫ И ИХ ИСПОЛЬЗОВАНИЕ .

Природные газы, нефть и каменный уголь — основные источники углеводородов. По запасам природного газа первое место в мире принадлежит нашей стране, где известно более 200 месторождений.

В природном газе содержатся углеводороды с небольшой относительной молекулярной массой. Он имеет следующий примерный состав (по объему):

80...90% метана, 2...3% его ближайших гомологов — этана, пропана, бутана и небольшое содержание примесей — сероводорода, азота, благородных газов, оксида углерода (IV) и паров воды. Так, например, газ Ставропольского месторождения содержит 97,7% метана и 2,3% прочих газов, газ Саратовского месторождения—93,4% метана, 3,6% этана, пропана, бутана и 3% негорючих газов.

К природным газам относятся и так называемые попутные газы, которые обычно растворены в нефти и выделяются при ее добыче. В попутных газах содержится меньше метана, но больше этана, пропана, бутана и высших углеводородов. Кроме того, в них присутствуют в основном те же примеси, что и в других природных газах, не связанных с залежами нефти, а именно: сероводород, азот, благородные газы, пары воды, углекислый газ. Разработано много способов переработки природных газов.

Главная задача этой переработки — превращение предельных углеводородов в более активные — непредельные, которые затем переводят в синтетические полимеры (каучук, пластмассы). Кроме того, окислением углеводородов получают органические кислоты, спирты и другие продукты.

Границы взрываемости.

Газовоздушная смесь, имеющая в составе количество газа:

до 5 % — не горит;

от 5 до 15 % — взрывается;

больше 15 % — горит при подаче воздуха.

По сравнению с твердым и жидким топливом природный газ выигрывает по многим параметрам:

— относительная дешевизна, которая объясняется более легким способом добычи и транспорта;

— отсутствие золы и выноса твердых частичек в атмосферу;

— высокая теплота сгорания;

— не требуется подготовки топлива к сжиганию;

— облегчается труд обслуживающих работников и улучшение санитарно-гигиенических условий его работы;

— облегчаются условия автоматизации рабочих процессов.

Проникновение в помещение более 20 % газа может привести к удушью, а при наличии его в закрытом объеме от 5 до 15 % может вызвать взрыв газовоздушной смеси.

Список используемой литературы

1.Тюремнов. С. Н., Торфяные месторождения / Тюремнов. С. Н,- М., «Недра», 1976

2.. Судо М. М Нефть и горючие газы в современном мире / Судо М. М – М.: «Недра», 1984

3. Рудзитис Г. Е ., Фельдман Ф. Г. Органическая химия: учебник / Рудзитис Г. Е – М.: «Просвещение», 1991.

4Фримантл. М. Химия в действии. В 2-х ч. Ч.1.: Пер. с англ. / Фримантл М. — М.: Мир, 1991. — 528с.

5. Фримантл М. Химия в действии. В 2-х ч. Ч.2.: Пер. с англ. / Фримантл М. -М.: Мир, 1991. — 622с.

6.. Ивановский Л.Е Энциклопедия восков, пер. с нем., т. 1, Л., 1956; Торфяной воск и сопутствующие продукты, Минск, 1977; — 115-120с.

7. Белькевич П. И ., Голованов Н. Г., Воск и его технические аналоги, // Белькевич П. И., Голованов Н. Г., Минск, 1980.-176с

8. Роговин З. А ., Химия целлюлозы, / Роговин З. А -М., 1972;84-86с.

9. Непенин Н. Н ., Непенин Ю. Н., Технология целлюлозы, 2 изд., т. 1-2, // Непенин Ю. Н -М., 1976-90.

www.ronl.ru

Дипломная работа - Процессы первичной переработки нефти 3

Введение

Нефть – это вязкая маслянистая жидкость, темно-коричневого или почти черного цвета с характерным запахом, обладающая слабой флюоресценцией, более легкая (плотность 0,73-0,97г/см3 ), чем вода, почти нерастворимая в ней. Нефть сильно варьирует по плотности (от легкой 0,65-0,70 г/см3, до тяжелой 0,98-1,05 г/см3 ).

Нефть – это горная порода. Она относится к группе осадочных пород вместе с песками, глинами, известняками, каменной солью и др. Мы привыкли считать, что порода – это твердое вещество, из которого состоит земная кора и более глубокие недра Земли. Оказывается, есть и жидкие породы, и даже газообразные. Одно из важных свойств нефти – способность гореть.

Нефть представляет собой сложную смесь парафиновых, нафтеновых и ароматических углеводов, различных по молекулярному весу и температуре кипения. Кроме того, в нефти содержатся сернистые, кислородные и азотистые органические соединения. Для производства многочисленных продуктов различного назначения и со специфическими свойствами применяют методы разделения нефти на фракции и группы углеводородов, а также изменения ее химического состава. Различают первичные и вторичные методы переработки нефти:

· к первичным относят процессы разделения нефти на фракции, когда используются ее потенциальные возможности по ассортименту, количеству и качеству получаемых продуктов и полупродуктов – перегонка нефти;

· ко вторичным относят процессы деструктивной переработки нефти и очистки нефтепродуктов, предназначенные для изменения ее химического состава путем термического и каталитического воздействия. При помощи этих методов удается получить нефтепродукты заданного качества и в больших количествах, чем при прямой перегонке нефти.

1. Назначение и характеристика процесса переработки нефти

Добытая из промысловых скважин нефть содержит попутный газ, песок, ил, кристаллы солей, а также воду, в которой растворены соли, преимущественно хлориды.

Попутные и растворенные газы отделяются от нефти в системе тра­пов-газосепараторов за счет последовательного снижения давления -от давления в скважине до атмосферного. После этого в нефти еще ос­таются растворенные газы (до 4 % мас.).

В трапах одновременно с отделением газа происходит и отстой сы­рой нефти от механических примесей и основной массы промысловой воды. Поэтому эти аппараты на промыслах называют отстойниками. Отсюда нефть поступает на промысловые электрообессоливающие ус­тановки.

В основе процесса обезвоживания лежит разрушение нефтяных эмульсий, которые образуются при добыче нефти за счет закачки воды в пласт. Обезвоженную и обессоленную нефть смешивают с пресной водой, создавая искусственную эмульсию (но с низкой соленостью), которую так же подвергают расслаиванию. Вода очищается на установке и снова закачивается в пласт для поддержания пластового давления и вытеснения нефти.

Наиболее простой способ удаления воды из нефти на промыслах — термохимическое обезвоживание при атмосферном давлении. К подогретой до 30-50°С нефти добав­ляется деэмульгатор, а затем нефть поступает в резервуар для отстаивания. При такой обработке нефти возможны большие по­тери легких нефтепродуктов во время отстаивания в негерметичных резервуарах. Эти недостатки устраняются при термохимическом отстаивании под давлением.

При глубоком обезвоживании некоторых нефтей, в пластовой воде которых содержится мало солей, про­исходит почти полное их удаление. Однако большинство нефтей нуждается в дополнительном обессоливании.

В некоторых случаях для обессоливания используется термо­химический метод, но чаще применяется способ, сочетающий термо­химическое отстаивание с обработкой эмульсии в электрическом поле. Установки последнего типа носят название электрообессоливающих (ЭЛОУ).

Обессоленная нефть с ЭЛОУ поступает на установку атмосферно-вакуумной перегонки нефти, которая на российских НПЗ обозначается аббревиатурой АВТ — атмосферно-вакуумная трубчатка. Такое название обусловлено тем, что нагрев сырья перед разделением его на фракции, осуществляется в змеевиках трубчатых печей (рис.6) за счет тепла сжигания топлива и тепла дымовых газов.

АВТ разделена на два блока — атмосферной и вакуумной перегонки. Атмосферная перегонка предназначена для отбора светлых нефтяных фракций — бензиновой, керосиновой и дизельных, выкипающих до 360°С, потенциальный выход которых составляет 45-60% на нефть. Остаток атмосферной перегонки — мазут.

Процесс заключается в разделении нагретой в печи нефти на отдельные фракции в ректификационной колонне — цилиндрическом вертикальном аппарате, внутри которого расположены контактные устройства (тарелки), через которые пары движутся вверх, а жидкость — вниз. Ректификационные колонны различных размеров и конфигураций применяются практически на всех установках нефтеперерабатывающего производства, количество тарелок в них варьируется от 20 до 60. Предусматривается подвод тепла в нижнюю часть колонны и отвод тепла с верхней части колонны, в связи с чем температура в аппарате постепенно снижается от низа к верху. В результате сверху колонны отводится бензиновая фракция в виде паров, а пары керосиновой и дизельных фракций конденсируются в соответствующих частях колонны и выводятся, мазут остаётся жидким и откачивается с низа колонны.

Вакуумная перегонка предназначена для отбора от мазута масляных дистиллятов на НПЗ топливно-масляного профиля, или широкой масляной фракции (вакуумного газойля) на НПЗ топливного профиля. Остатком вакуумной перегонки является гудрон.

Необходимость отбора масляных фракций под вакуумом обусловлена тем, что при температуре свыше 380°С начинается термическое разложение углеводородов (крекинг), а конец кипения вакуумного газойля — 520°С и более. Поэтому перегонку ведут при остаточном давлении 40-60 мм рт. ст., что позволяет снизить максимальную температуру в аппарате до 360-380°С.

Разряжение в колонне создается при помощи соответствующего оборудования, ключевыми аппаратами являются паровые или жидкостные эжекторы .

2. Состав и характеристика сырья и продукция.

Сырьё процесса — нефть, содержащая соли (до 900 мг/л) и воду (до 1,0%).

Продукция:

· углеводородный газ – выводится в виде газа и головки стабилизации, используется как бытовое топливо и сырьё для газофракционирования;

· бензиновая фракция – выкипает в пределах 30-180°C, используется как компонент товарного автобензина, как сырьё установок каталитического риформинга, вторичной перегонки, пиролизных установок;

· керосиновая фракция – выкипает в пределах 120-315о С, используется как топливо для реактивных и тракторных двигателей, для освещения, как сырьё установок гидроочистки;

· дизельная фракция (атмосферный газойль) – выкипает в пределах 180 –350 О С, используется как топливо для дизельных двигателей и сырьё установок гидроочистки;

· мазут (остаток атмосферной перегонки) выкипает выше 350О С, используется как котельное топливо или сырьё термического крекинга;

· вакуумный дистиллят (вакуумный газойль) – выкипает в пределах выше 350-500 О С, используется как сырьё каталитического крекинга и гидрокрекинга; на НПЗ с масляной схемой переработки получают несколько (2-3) вакуумных дистиллятов;

· гудрон (остаток атмосферно — вакуумной перегонки) – выкипает при температуре выше 500О С, используется как сырье установок термического крекинга, коксования, производства битума и масел.

3. Технологическая схема

Рис.1. Схема установки первичной переработки нефти (ЭЛОУ-АВТ).

К-1 – отбензинивающая колонна; К-2 – атмосферная колонна; К-3 – отпарная колонна; К-4 – стабилизатор; К-5 – вакуумная колонна; Э-1 – Э-4 – электродегидраторы; П-1, П-2 –печи; КХ-1 — КХ-4 –конденсаторы-холодильники; Е-1, Е-2 – рефлюксные емкости; А-1 –пароэжекторный вакуум-насос;

I – нефти; II – головка стабилизации; III – стабильный бензин; IV – керосин; V – дизельная фракция; VI – вакуумный дистиллят; VII — гудрон; VIII – выхлопные газы эжектора; IX – деэмульгатор; X – вода в канализацию; XI – водяной пар.

Установка состоит из 2-3 блоков: 1) обессоливания; 2) атмосферной перегонки; 3) вакуумной перегонки мазута. Установка, состоящая только из первых двух блоков носит название атмосферной трубчатки (АТ), из всех трёх блоков – атмосферно-вакуумной трубчатки (АВТ). Иногда первый и третий выделяются в самостоятельные установки. Нефть насосом забирается из сырьевого резервуара и проходит теплообменники, где подогревается за счет теплоты отходящих продуктов, после чего поступает в электродегидраторы. В электродегидраторах под действием электрического поля, повышенной температуры, деэмульгаторов происходит разрушение водонефтяной эмульсии и отделение воды от нефти.

Вода сбрасывается в канализацию (или подаётся на упарку с выделением солей), а нефть проходит вторую группу теплообменников и поступает в отбензинивающую колонну К-1.

В колонне К-1 из нефти выделяется легкая бензиновая фракция, которая конденсируется в холодильнике-конденсаторе ХК-1 и поступает в рефлюксную ёмкость Е-1. Полуотбензиненная нефть с низа колонны К-1 подаётся через трубчатую печь П-1 в атмосферную колонну К-2. Часть потока полуотбензиненной нефти возвращается в К-1, сообщая дополнительное количество теплоты, необходимое для ректификации.

В колонне К-2 нефть разделяется на несколько фракций. Верхний продукт колонны К-2 –тяжелый бензин – конденсируется в холодильнике-конденсаторе ХК-2 и поступает в рефлюксную ёмкость Е-2. Керосиновая и дизельные фракции выводятся из колонны К-2 боковыми погонами и поступают в отпарные колонны К-3.

В К-3 из боковых погонов удаляются (отпариваются) легкие фракции. Затем керосиновая и дизельные фракции через теплообменники подогрева нефти и концевые холодильники выводятся с установки. С низа К-2 выходит мазут, который через печь П-2 подаётся в колонну вакуумной перегонки К-5.

В вакуумной колонне К-5 мазут разделяется на вакуумный дистиллят, который отбирается в виде бокового погона, и на гудрон. С верха К-5 с помощью пароэжекторного насоса А-1 отсасываются водяные пары, газы разложения, воздух и некоторое количество легких нефтепродуктов (дизельная фракция). Вакуумный дистиллят и гудрон через теплообменники подогрева нефти и концевые холодильники уходят с установки.

Для снижения температуры низа колонн К-2 и К-5 и более полного извлечения дистиллятных фракций в них полётся водяной пар. Избыточная теплота в К-2 и К-5 снимается с помощью циркулирующих орошений.

Бензин из рефлюксных емкостей Е-1 и Е-2 после подогрева подается в стабилизационную колонну К-4. С верха К-4 уходит головка стабилизации – сжиженный газ, а с низа – стабильный бензин.

Необходимая для ректификации теплота подводится в К-4 циркуляцией части стабильного бензина через печь.

4. Технический режим

Показатели технологического режима установок первичной переработки приводятся в таблице 1:

Таблица 1

Участок схемы, сырьё Показатели процесса
Температура, о С
Нефти, поступающей на обессоливание 120-140
Подогрева нефти в сырьевых теплообменниках 210-230
Нагрева нефти в атмосферной печи П-1 320-360
Нагрева мазута в вакуумной печи П-2 400-420
Верх К-1 120-140
Низ К-1 240-260
Верх К-2 120-130
Низ К-2 340-355
Верх К-4 80-110
Низ К-4 160-220
Верх К-5 100-110
Низ К-5 360-380
Избыточное давление, МПа
Верх К-1 0,4-0,5
Верх К-2 0,06-0,1
Верх К-4 0,7-1,2
Остаточное давление в К-5, Па 5000-8000
Массовая доля воды в нефти, в %
До обессоливания До 1,0
После обессоливания 0,1-0,15
Содержание солей в нефти, мг/л
До обессоливания До 900
После обессоливания 3-15

5. Мощность и материальный баланс

Мощность установок АТ и АВТ может составлять от 2 до 12 млн.т./год. Выход продукции на установках первичной переработки зависит от свойств исходной нефти, достигнутого отбора от потенциала светлых нефтепродуктов, вакуумного дистиллята и т.д. Материальный баланс первичной переработки типа ромашкинской (I) и самотлорской (II) приводится ниже:

Таблица 2

Сырьё, продукты I II
Поступило, %
Нефть 100,1 100,1
В том числе вода и соли 0,1 0,1
Получено
Сжиженный углеводородный газ 1,0 1.1
Бензиновая фракция (н.к.-140о С) 12,2 18,5
Керосиновая фракция(140-240о С) 16,3 18,9
Дизельная фракция (240-350о С) 17,0 20,3
Вакуумный дистиллят(350-500о С) 23,4 23,1
Гудрон (выше 500о С) 29,2 18,2
Отходы и потери 1,0 1,0

6. Технико-экономические показатели

Приводятся показатели из расчета на 1 тонну ромашкинской нефти:

Таблица 3

Показатели Установка АТ Установка АВТ
Пар водяной, ГДж (Гкал*) 0,08(0,019) 0,143 (0,034)
Вода оборотная, м3 1,8 3,3
Электроэнергия, кВт-ч 5,3 6,5
Топливо, кг. 20,0 26,7
Деэмульгатор неионогенный, кг. 0,03 0,03
Ингибитор коррозии, кг. 0,001 0,001

7. Техника безопасности

Выполнение следующих правил безопасного ведения процесса, связанных с ним работ исключает возможность аварии, взрывы, пожары, травмирование людей, нарушение технологического режима.

Лица, допускаемые к производству, работ должны быть проинструктированы и обучены безопасным приемам работы, сдать экзамены и иметь при себе соответствующее удостоверение. При введении новых технологических процессов и методов труда, видов оборудования и механизмов, а также правил и инструкций, должен проводиться дополнительный инструктаж.

Не допускается загромождение и загрязнение производственных площадок, помещений, оборудования, проездов, дорог в местах где запрещен проезд транспорта должны быть вывешены предупредительные надписи и знаки, дренажные и канализационные колодцы должны быть надежно закрытыми или огражденными.

Систематически должны производиться осмотр и проверка производственного оборудования и своевременный его ремонт согласно графика ППР. Каждое действующее оборудование, аппараты, сосуды должны быть оснащены полным комплектом приспособлений, приборов, предусмотренных проектом или ГОСТом.

Не допускается работа производственного оборудования с нарушением параметров, установленных технологической картой или технологическими условиями и инструкциями.

Изменения в технологическую карту (регламент) разрешается вносить только после письменного указания главного инженера предприятия, причем они должны соответствовать рабочим параметрам, указанным в паспорте оборудования.

Эксплуатация трубопроводов, оборудования, аппаратов, сосудов при не герметичности фланцевых соединений или трещин по целому материалу — запрещается, также не допускается проведение на них любых ремонтных работ при их работе.

Производственные помещения должны быть обеспечены вентиляцией, создающей в зоне пребывания рабочих состояние воздушной среды, соответствующее санитарным нормам. Эффективность вентиляционных установок проверяется систематически, один раз в год. При вынужденной остановке вентиляционных установок должны быть приняты меры по обеспечению санитарного состояния воздушной среды, согласно санитарных норм СНИП.

В инструкциях по эксплуатации вентиляционных установок перечисляются особые указания о мерах, принимаемых персоналом при внезапной загазованности или возникновении пожара.

Во избежание распространения пожара в сети промливневой канализации во время возгорания нефтепродуктов или пожара на производственной площадке, на канализационных сетях промстоков и произодственно-ливневых стоках устанавливаются гидрозатворы.

Приборы контроля и автоматики могут применяться только разрешенные решением Госстандарта СССР и его подведомственных органов. Проверка, регулировка и ремонт приборов осуществляется в соответствии с “Правилами организации и проверки измерительных приборов и контроля за состоянием измерительной техники с соблюдением стандартов и технических условий”. За КИПиА должен быть обеспечен надзор, они должны находиться в условиях, обеспечивающих их безотказную работу.

Производство газоопасных, огневых, ремонтных, земляных работ без наличия оформленного наряд-допуска не допускается.

В местах, где возможно смешивание взрывоопасной смеси газа с воздухом, во избежание искрообразования от ударов, запрещается применение инструментов из стали. Инструмент должен быть из металла не дающего искры. Пользоваться не взрывозащищенными переносными светильниками не разрешается.

Во время работы установки необходимо обеспечить постоянный контроль за давлением, расходом, уровнем — их изменения должны производиться плавно.

Объекты энергоснабжения должны обслуживаться электротехническим персоналом имеющим соответствующую группу допуска. Напряжение на электрооборудование должно подаваться и сниматься дежурным электроперсоналом по указанию ответственного за эксплуатацию этого оборудования или старшего по смене. При возникновении пожара на электрооборудовании напряжение должно быть немедленно снято.

Отогревание оборудования и трубопроводов в зимнее время может производиться только паром или горячей водой.

Предохранительная арматура на аппаратах должна соответствовать предъявленным требованиям “Правил устройства и безопасной эксплуатации аппаратов, работающих под давлением”.

Пуск и работа установки с неисправной системой пожаротушения запрещается.

Все сооружения установок, в зависимости от категории, должны быть надежно заземлены при помощи заземляющих устройств от прямых ударов, вторичных проявлений молнии и статического электричества.

Оборудование, подлежащие вскрытию и ремонту, должно быть выведено из работы, освобождено от продукта, отглушено, пропарено, промыто водой и проветрено. Все подводящие трубопроводы к ремонтируемому оборудованию должны быть отглушены. Промывка водой неостывшего оборудования недопустимо. Производство работ на отключенном оборудовании и трубопроводе, разрешается только по получению анализа газовоздушной смеси. Работы по очистке оборудования аппаратов, сосудов от шлама должны производиться только в шланговых противогазах с дублером бригадой не менее 2-х человекк. Для внутреннего освещения аппарата, сосуда должны применяться светильники во взрывозащищенном исполнении, с напряжением не выше 12В.

Запрещается допуск к газоопасным работам лиц, не обученных безопасным приемам ведения работ, способам оказания первой доврачебной помощи пострадавшим.

Газоопасные работы должны выполняться только при наличии наряд-допуска и в присутствии ответственного за проведение газоопасных работ.

Необходимо вести постоянный контроль за состоянием газовоздушной среды, немедленно прекратить работу при загазованности выше допустимой концентрации.

Перед допуском к работе по обслуживанию блоков реагента-деэмульгатора обслуживающий персонал должен быть проинструктирован и ознакомлен с инструкциями безопасности труда. Работы, связанные с химреагентом, должны производиться строго в спецодежде, защищающей тело, руки, ноги.

8. Контроль и автоматизация процесса

Для аналитического контроля ведения технологического процесса установок периодически отбираются пробы нефти, для определения обводненности, на входе на установку, выходе с отстойников или электродегидраторов, узла учета нефти (УУН) после установок, а также отбор проб пластовой воды, для определения остаточного содержания нефтепродуктов после очистных резервуаров, на выкиде насосов 200Д90. Для определения загазованности территории установок производится отбор проб газо-воздушной среды по производственным площадкам и помещениям.

Параметры аналитического контроля. Таблица 4

п/п

Наименование операции процесса, продукта Место отбора

Контроли-

руемые параметры

Метод контроля

Частота,

периодичность

контроля

1 3 4 5 6 7
1. Отбор проб нефти На входе на установку Содержание воды в нефти

ГОСТ

2477-65

Каждые 2 часа
2. Отбор проб нефти

На выходе с

электродегидратора

Содержание воды в нефти

ГОСТ

2477-65

Каждые 2 часа
3. Замер загазованности

Площадка

электродегид

раторов

Содержание углеводородов в воздухе УГ-2 1 раз в смену
4. Замер загазованности Площадка печей Содержание углеводородов в воздухе УГ-2 1 раз в смену
5. Замер загазованности Блоки нефтяных насосов Содержание углеводородов в воздухе УГ-2 1 раз в смену
6. Замер загазованности Каре резервуаров Содержание углеводородов в воздухе УГ-2 1 раз в смену
7. Замер загазованности Блоки БРХ Содержание углеводородов в воздухе УГ-2 1 раз в смену
8. Замер загазованности Площадка буферных емкостей Содержание углеводородов в воздухе УГ-2 1 раз в смену
9. Замер загазованности Площадка нефтесепараторов С1-С6 Содержание углеводородов в воздухе УГ-2 1 раз в смену

В связи с непрерывностью технологического процесса на установке первичной подготовки нефти предусмотрена система контроля и сигнализации. Система сигнализации и контроля обеспечивает безопасность работы установки, следя за технологическими параметрами процесса и предупреждая об отклонении этих параметров. В таблице 5 приведены технологические параметры, аппараты и узлы, за которыми ведется непрерывный контроль, а система контроля производит срабатывание сигнализации или блокировку процесса при возникновении условий, которые также перечислены в этой таблице.

Граничные параметры системы сигнализации и контроля. Таблица 5

п/п

Технологический параметр

аппарат или узел схемы

Сигнализация Блокировка
Предупредительная Аварийная
Min max min max min max
1 2 3 4 5 6 7 8
1. Сепараторы С1-С3
давление, МПа 0.015
уровень жидкости, м 0.7 1.9 2.1
2. Буферные емкости БЕ1-БЕ4
давление, МПа 0.05 0.2
уровень жидкости, м 0.7 1.7 0.6 2
3. Печи ПТБ-10 П1-П5
температура нефти после печей, °С 60 60
температура дымовых газов, °С 700 700
давление нефти в выходящем нефтепроводе, МПа 0.4 0.8 0.4 0.8
Давление газа после РДБК, Мпа 0.005 0.05 0.005 0.05
Давление воздуха на горелки печи, мм.вод.ст. 200 200
давление воздуха на приборы КИПиА печи, МПа 0.1 0.1
расход нефти через печь, м3 \час 300 300
давление масла в гидроприводе, МПа 1 1
4. Электродегидраторы ЭГ1-4
давление, МПа 0.8 0.8
уровень раздела фаз «в\н», м 1.3
электроток во внешних фазах цепи, А 240 240
давление воздуха на приборы КИПиА, МПа
0.1 0.1
5. Сепараторы С4-С6
давление, МПа 0.005
уровень жидкости, м 0.7 1.7 2
6. Газосепаратор ГС1-ГС2
уровень жидкости, м 1.8
давление, МПа
7. Газосепаратор ГС-3
уровень жидкости, м 0.5 1
давление, МПа
8. Газосепаратор ГС-4
уровень жидкости, м 1
давление, МПа
9.

Технологические резервуары

(нефтяные) РВС-10000 № 2,4

уровень жидкости, м 10.5
10.

Товарные резервуары

(нефтяные) РВС-10000 № 1,3

уровень жидкости, м 10.5
11.

Подземные емкости ЕП 1-15

уровень жидкости, м:

ЕП1-ЕП4 0.5 1.8
ЕП-5 0.5 1.5
ЕП6-ЕП7 1.5
ЕП9-ЕП12 0.5 1.8
ЕП14-ЕП15
12.

Технологические насосы

ЦНС 300х120 № 1-10

давление нагнетания, МПа 0.9 1.3 0.9 1.3
температура подшипников, °С 70 70
уровень жидкости в «стакане», м 0.1 0.1
13. Внутрипарковые насосы ЦНС 180х170 №1-3
давление нагнетания, Мпа 1.4 1.9 1.4 1.9
температура подшипников, °С 70 70
уровень жидкости в «стакане», м 0.1 0.1
14. Воздушная компрессорная ВК1-ВК2
давление в ресивере, МПа 0.22 0.6
температура I ступени, °С 165 165
температура II ступени, °С 165 165
15. Блок реагентного хозяйства БР1-БР4
давление нагнетания насоса НД-25\40, МПа 2 2
давление нагнетания насоса НД-1000\10, МПа 0.9 0.9

Заключение

Нефть — уникальное и исключительно полезное ископаемое. Продукты его переработки применяют практически во всех отраслях промышленности, на всех видах транспорта, в военном и гражданском строительстве, сельском хозяйстве, энергетике, в быту и т. д. Из нефти вырабатывают разнообразные химические материалы, такие как пластмассы, синтетические волокна, каучуки, лаки, краски, дорожные и строительные битумы, моющие средства и многое другое.

Для производства многочисленных продуктов различного назначения и со специфическими свойствами применяют методы разделения нефти на фракции и группы углеводородов, а также изменения ее химического состава. Различают первичные и вторичные методы переработки нефти. К первичным относят процессы разделения нефти на фракции, когда используются ее потенциальные возможности по ассортименту, количеству и качеству получаемых продуктов и полупродуктов – перегонка нефти.

Нефть подготавливается к переработке в 2 этапа — на нефтепромысле и на нефтеперерабатывающем заводе с целью отделения от нее попутного газа, механических примесей, воды и минеральных солей.

Перегонка (фракционирование) — это процесс физического разделения нефти и газов на фракции (компоненты), отличающиеся друг от друга и от исходной смеси по температурным пределам (или t) кипения.

Перегонка с ректификацией — наиболее распространенный в химической и нефтегазовой технологии массообменный процесс, осуществляемый в аппаратах — ректификационных колоннах — путем многократного противоточного контактирования паров и жидкости.

Список использованной литературы

1. Технология переработки нефти. В 2-х частях. Часть первая. Первичная переработка нефти/ Под ред. О.Ф.Глаголевой и В.М. Капустина. – М.: Химия, КолосС, 2007. стр. 257-275

2. Мановян А.К. Технология переработки природных энергоносителей. – М.: Химия, КолосС, 2004. – стр. 188-199

3. Коршак А.А., Шаммазов А.М. Основы нефтегазового дела. Учебник для ВУЗов. Издание второе, дополненное и исправленное: Уфа.: ООО «ДизайнПолиграфСервис», 2002 – стр. 233-247

www.ronl.ru

Проект установки первичной переработки Тенгинской нефти

 

 

 

 

 

 

 

 

 

Курсовой проект

по дисциплине

Химия и первичная переработка нефти и газа

Тема:

Проект установки первичной переработки Тенгинской нефти

 

 

Введение

 

История переработки нефти насчитывает около двух столетий. Первые сведения о перегонке нефти в кубе и ее осветлении, т. е. получении светлой фракции керосина (как тогда он именовался - "фотогена") относятся к середине XVIII в. В 1745 г. в районе Ухты был построен первый куб для перегонки нефти. По своим масштабам это производство было ничтожным, но большинство историков рассматривают его как начальный момент в истории мировой и отечественной переработки нефти.

Позднее, в 1823 г., в районе г. Моздока на Северном Кавказе братья Дубинины - Василий, Герасим и Макар - соорудили кубовую установку для перегонки нефти, добываемой из колодцев в районе станицы Вознесенской на Терском хребте. Это производство функционировало более 20 лет с ежегодной выработкой нескольких десятков тонн керосина для освещения при вместимости куба по нефти около 500 л. Легкая бензиновая фракция при этом терялась (сжигалась), остаток перегонки (мазут) частично использовали как колесную смазку, а остальное также сжигали.

В последней четверти XIX в. (1876-78 гг.) внимание русских ученых было привлечено к остаточной фракции перегонки нефти - мазуту, из которого на основе идей Д.И. Менделеева было начато производство смазочных масел ("олеонафты"). Они были получены впервые инженером В.И. Рагозиным и после демонстрации на Всемирной Парижской выставке в 1878 г. нашли широкое применение.

Важным этапом в технологии перегонки нефти явился переход в 1885-86 гг. от единичных перегонных кубов периодического действия к кубовым батареям непрерывного действия, позволявшим разделить нефть в непрерывном режиме сразу на 3-5 фракций с различными пределами кипения. Создатели этих батарей - инженеры А.Ф. Инчик, В.Г. Шухов и И.И. Един. В 1890 г. В.Г. Шухов и С.П. Гаврилов получили патент на нефтеперегонную установку принципиально нового типа - трубчатую, у которой непрерывный нагрев нефти осуществлялся в трубном змеевике печи, а разделение испарившейся нефти на фракции - в специальных тарельчатых колоннах.

Суть этого гениального изобретения лежит в основе всех современных установок первичной перегонки нефти.

Как отмечалось выше, на начальных этапах перегонки легкие фракции нефти (до 150-180С) сжигались как ненужный побочный продукт, и даже к началу XX века ситуация в этом отношении не изменилась.

Потребность в бензине стала нарастать с появлением автомобилей и других транспортных средств, снабженных двигателями внутреннего сгорания, что немедленно отразилось на технологии переработки нефти, где наряду с керосином стали получать моторное топливо - бензин.

Задача первичной переработки нефти - разделить отдельные фракции (дистилляты) без изменения их природного химического состава, она включает два этапа технологии - глубокое обезвоживание и обессоливание нефти, и собственно дистилляцию нефти на фракции. При этом получаемые дистилляты составляют три группы продуктов - светлые дистилляты (3-4 фракции, выкипающие в интервале от 25-30С до 350С), средние дистилляты (2-3 фракции, выкипающие от 350С до 500 или 550С) и остаток (гудрон), кипящий выше 500-550С.

Процесс прямой гонки проводится в установках трубчатого типа (название - по названию трубчатых печей), которые включают трубчатые печи различного типа, ректификационные и отпарные колонны, теплообменники и холодильники.

Продуктами прямой гонки на установках AT являются моторные топлива (бензин, авиационный керосин), дизельное топливо и значительное количество остатка - мазута. На установках АВТ на второй ступени подвергается разгонке мазут с образованием смазочных масел и остатки - гудрона, перерабатываемого в битум, пек, нефтяной кокс. Этим на установках АВТ достигается большая глубина переработки нефти.

1. Теоретические основы процесса

 

.1 Индексация нефтей и ее связь с технологией их переработки

 

Нефти различных месторождений даже в пределах одного месторождения значительно отличаются друг от друга по химическому составу, а также по содержанию смол, серы и парафина.

В разное время предлагались различные химические, генетические, промышленные и товарные классификации нефтей. В настоящее время действует технологическая классификация нефтей.

В основу ее положено содержание серы в нефтях и светлых нефтепродуктах, выход фракций, выкипающих до 350С, потенциальное содержание, а также индекс вязкости базовых масел и содержание парафина в нефтях.

Нефти, содержащие не более 0,5 вес. % серы, считаются малосернистыми и относятся к I классу, однако если в одном или во всех дистиллятных топливах из данной нефти содержание серы выше установленных пределов, то эту нефть относят ко II классу, т. е. к сернистым нефтям.

Нефти, содержащие от 0,51 до 2,0 вес. % серы, считаются сернистыми, и их относят ко II классу. Однако и в этом случае учитывается содержание серы в продуктах: если во всех дистиллятных топливах из данной нефти количество серы не превышает норм, предусмотренных для топлив из малосернистой нефти, то эта нефть должна быть отнесена к I классу и считается малосернистой. В случае, когда при таком же количестве серы в нефти (0,51-2,0 вес.%) одно или все топлива содержат серы больше, чем указано в нормах для сернистой нефти, эта нефть должна быть отнес

www.studsell.com

Проект установки первичной переработки Тенгинской нефти

Дипломная работа - Разное

Другие дипломы по предмету Разное

Курсовой проект

по дисциплине

Химия и первичная переработка нефти и газа

Тема:

Проект установки первичной переработки Тенгинской нефти

Введение

История переработки нефти наiитывает около двух столетий. Первые сведения о перегонке нефти в кубе и ее осветлении, т. е. получении светлой фракции керосина (как тогда он именовался - "фотогена") относятся к середине XVIII в. В 1745 г. в районе Ухты был построен первый куб для перегонки нефти. По своим масштабам это производство было ничтожным, но большинство историков рассматривают его как начальный момент в истории мировой и отечественной переработки нефти.

Позднее, в 1823 г., в районе г. Моздока на Северном Кавказе братья Дубинины - Василий, Герасим и Макар - соорудили кубовую установку для перегонки нефти, добываемой из колодцев в районе станицы Вознесенской на Терском хребте. Это производство функционировало более 20 лет с ежегодной выработкой нескольких десятков тонн керосина для освещения при вместимости куба по нефти около 500 л. Легкая бензиновая фракция при этом терялась (сжигалась), остаток перегонки (мазут) частично использовали как колесную смазку, а остальное также сжигали.

В последней четверти XIX в. (1876-78 гг.) внимание русских ученых было привлечено к остаточной фракции перегонки нефти - мазуту, из которого на основе идей Д.И. Менделеева было начато производство смазочных масел ("олеонафты"). Они были получены впервые инженером В.И. Рагозиным и после демонстрации на Всемирной Парижской выставке в 1878 г. нашли широкое применение.

Важным этапом в технологии перегонки нефти явился переход в 1885-86 гг. от единичных перегонных кубов периодического действия к кубовым батареям непрерывного действия, позволявшим разделить нефть в непрерывном режиме сразу на 3-5 фракций с различными пределами кипения. Создатели этих батарей - инженеры А.Ф. Инчик, В.Г. Шухов и И.И. Един. В 1890 г. В.Г. Шухов и С.П. Гаврилов получили патент на нефтеперегонную установку принципиально нового типа - трубчатую, у которой непрерывный нагрев нефти осуществлялся в трубном змеевике печи, а разделение испарившейся нефти на фракции - в специальных тарельчатых колоннах.

Суть этого гениального изобретения лежит в основе всех современных установок первичной перегонки нефти.

Как отмечалось выше, на начальных этапах перегонки легкие фракции нефти (до 150-180С) сжигались как ненужный побочный продукт, и даже к началу XX века ситуация в этом отношении не изменилась.

Потребность в бензине стала нарастать с появлением автомобилей и других транспортных средств, снабженных двигателями внутреннего сгорания, что немедленно отразилось на технологии переработки нефти, где наряду с керосином стали получать моторное топливо - бензин.

Задача первичной переработки нефти - разделить отдельные фракции (дистилляты) без изменения их природного химического состава, она включает два этапа технологии - глубокое обезвоживание и обессоливание нефти, и собственно дистилляцию нефти на фракции. При этом получаемые дистилляты составляют три группы продуктов - светлые дистилляты (3-4 фракции, выкипающие в интервале от 25-30С до 350С), средние дистилляты (2-3 фракции, выкипающие от 350С до 500 или 550С) и остаток (гудрон), кипящий выше 500-550С.

Процесс прямой гонки проводится в установках трубчатого типа (название - по названию трубчатых печей), которые включают трубчатые печи различного типа, ректификационные и отпарные колонны, теплообменники и холодильники.

Продуктами прямой гонки на установках AT являются моторные топлива (бензин, авиационный керосин), дизельное топливо и значительное количество остатка - мазута. На установках АВТ на второй ступени подвергается разгонке мазут с образованием смазочных масел и остатки - гудрона, перерабатываемого в битум, пек, нефтяной кокс. Этим на установках АВТ достигается большая глубина переработки нефти.

1. Теоретические основы процесса

.1 Индексация нефтей и ее связь с технологией их переработки

Нефти различных месторождений даже в пределах одного месторождения значительно отличаются друг от друга по химическому составу, а также по содержанию смол, серы и парафина.

В разное время предлагались различные химические, генетические, промышленные и товарные классификации нефтей. В настоящее время действует технологическая классификация нефтей.

В основу ее положено содержание серы в нефтях и светлых нефтепродуктах, выход фракций, выкипающих до 350С, потенциальное содержание, а также индекс вязкости базовых масел и содержание парафина в нефтях.

Нефти, содержащие не более 0,5 вес. % серы, iитаются малосернистыми и относятся к I классу, однако если в одном или во всех дистиллятных топливах из данной нефти содержание серы выше установленных пределов, то эту нефть относят ко II классу, т. е. к сернистым нефтям.

Нефти, содержащие от 0,51 до 2,0 вес. % серы, iитаются сернистыми, и их относят ко II классу. Однако и в этом случае учитывается содержание серы в продуктах: если во всех дистиллятных топливах из данной нефти количество серы не превышает норм, предусмотренных для топлив из малосернистой нефти, то эта нефть должна быть отнесена к I классу и iитается малосернистой. В случае, когда при таком же количестве серы в нефти (0,51-2,0 вес.%) одно или все топлива содержат серы больше, чем указано в нормах для сернистой нефти, эта нефть должна быть отнес

geum.ru

5.2 Переработка нефти. Способы утилизации попутного нефтяного газа

Похожие главы из других работ:

Биотехнология и переработка отходов производства

5.3.1 Переработка ила

Концентрирование. Различные типы сырых осадков сточных вод первоначально не отличаются высокой концентрацией твёрдых компонентов. Поэтому, согласно современным теориям утилизации ила...

Воздействие газовой промышленности на окружающую среду

4. Переработка газа.

Природные горючие газы перерабатывают на газоперерабатывающих заводах, которые строят вблизи крупных газовых месторождений. Предварительно газы очищают от механических примесей (частиц пыли, песка, окалины и т. д.)...

Вторичная переработка пластмасс как пример безотходной технологии

2.3 Переработка индивидуальных отходов

В том случае, когда удается добиться достаточно высокой степени очистки и выделения индивидуальных отходов из смеси, а также когда отходы предварительно рассортированы по видам пластмасс...

Глобальная сырьевая проблема и пути её решения

2.3 Переработка вторичного сырья

глобальный сырьевой вторичный переработка Одним из наиболее перспективных направлений в борьбе с приближающимся истощением ископаемых запасов сырья может послужить вторичная переработка или рециклинг...

Малоотходные и безотходные технологии

IV. ПЕРЕРАБОТКА И ИСПОЛЬЗОВАНИЕ ОТХОДОВ.

Отходы производства -- это остатки сырья, материалов, по-луфабрикатов, химических соединений, образовавшиеся при производстве продукции или выполнении работ (услуг) и утра-тившие полностью или частично исходные потребительские свой-ства...

Переработка бытовых отходов

Переработка отходов

Большое количество пищевых отходов в составе ТБО препятствует их качественному сжиганию и затрудняет захоронение на полигонах...

Переработка отходов производства в системе экологической безопасности

2.1 Переработка радиоактивных отходов производства

1. Сортировка - проводится на крупных предприятиях, либо при работах по реабилитации радиационно-загрязненных объектов[8]. Обычно РАО разделяются по либо по морфологическому составу (металл, стекло, изоляционные материалы и т.д.)...

Переработка отходов производства в системе экологической безопасности

2.3.4 Огневая переработка

В основу огневого метода положен процесс высокотемпературного разложения и окисления токсичных компонентов отходов с образованием практически нетоксичных или малотоксичных дымовых газов и золы...

Переработка отходов производства в системе экологической безопасности

2.4 Переработка биологических отходов производства

Биологическими отходами являются[17]: · трупы мертвых животных; · признанные непригодными для употребления и переработки продукты питания биологического происхождения: мясо и мясные полуфабрикаты с истекшим сроком реализации или пришедшие в...

Переработка твердых бытовых отходов для выработки тепловой и электрической энергии

2. Переработка ТБО

...

Проблема загрязнения городов: утилизация отходов

2. Переработка мусора, как бизнес

Переработка твердых бытовых отходов в последние годы становится все более перспективным бизнесом. Еще два-три года назад этот бизнес был менее рентабельным, чем вывоз мусора на полигоны или переработкой вторсырья...

Промышленные отходы и их переработка

3.4 Огневая переработка

Огневой метод переработки токсичных промышленных отходов классифицируется в зависимости от типа отходов и способам обезвреживания [1]: 1. Сжигание отходов...

Разработка технических решений по достижению нормативных требований химически загрязненных сточных вод ОАО "Северсталь-метиз"

1.4.2.2 Электрохимическая переработка ОТР

По данным [2], в разных странах разработано и опробовано несколько способов электролитического осаждения железа из отработанного травильного раствора. Так, в Германии осаждение железа проводится на металлическую ленту...

Упаковка и окружающая среда

3.2 Вторичная переработка

Вторичная переработка определяется как некоторая промышленная переработка материала для достижения целей первоначального использования или иных целей. К последним может относиться, например, органическая переработка (получение компоста)...

Характеристика опасности твердых промышленных отходов

1.1.3 ТПО металлургических производств и их переработка

ТПО металлургических производств можно несколько условно подразделить на 2 группы: - ТПО в черной металлургии. - ТПО в цветной металлургии. Отходы в черной металлургии образуются уже на стадии добычи руды. При этом следует отметить...

eco.bobrodobro.ru

Диплом (Химия, Специальность "Переработка нефти и газа" тема диплома)

ID (номер) заказа

681977

Предмет

Химия

Статус

Заказ выполнен

Специальность "Переработка нефти и газа" тема диплома

Специальность "Переработка нефти и газа" тема диплома: "Расчет каталитического реактора для утилизации попутного нефтяного газа" Могу скинуть исходные данные для расчета абсорбера, а можете взять их из интернета из какого-нибудь примера. Мне это не принципиально. А вот данные для расчета реактора: Параметры: катализатор никелиевый нанесенный Давление 10 атм Расход метана 300 м3/час Расход удельный (относительно массы катализатора для масштабирования) - 90л/гр катализатора. Исходный углеводород - природный газ (можно чистый метан) Реакция на катализаторе: Ch52h3+C+Ch5 (не разложившийся метан) Концентрация водорода в течение всего времени работы реактора - 25 об.% Реактор принять как адиабатический горизонтального типа трубчатый Температура процесса 675С Если нужны будут еще данные, обращайтесь ко мне. Надо вычислить в итоге: Конверсию, габаритные размеры реактора, принять или рассчитать толщину обечайки сколько водорода будет образовываться сколько углерода будет образовываться привести массовый балланс рассчитать количесвто тепла, затрачиваемый на прочесс в экономической части главное расчитать сколько будет стоить 1 м3 метано-водородной смеси Сколько будет стоить 1 кг углерода. Рассчитать стоимость реактора

vsesdal.com