Состав средневязких дистиллятов сернистых. Дистиллят нефти сернистый


Перегонка нефти сернистой - Справочник химика 21

    Распределение серы по отдельным фракциям зависит от природы нефти и типа сернистых соединений. Обычно содержание серы увеличивается от низкокипящих к высококипящим и достигает максимума в остатке от вакуумной перегонки нефти. Ниже приведены [c.27]

    Нефтяные фракции, полученные при прямой перегонке нефти, содержат различные количества нежелательных примесей и поэтому зачастую требуют дополнительной очистки при помощи химических методов. Некоторые классы соединений могут рассматриваться в качестве примесей или нежелательных компонентов только для определенных фракций. Так, ароматические углеводороды желательны в бензине, но нежелательны в керосине. Другие классы соединений следует считать примесями пли нежелательными компонентами для всех нефтепродуктов. Сюда в первую очередь относятся легко окисляемые и вообще химически нестабильные соединения, а также смолистые или асфальтеновые вещества. Вредными, как правило, являются сернистые соединения, и их предельно допустимое содержание обычно строго ограничивается техническими нормами на нефтепродукты. В тех случаях, когда очистка нефтепродукта от примесей или нежелательных компонентов недостижима обычными физическими методами, прибегают к химическим методам очистки при помощи различных реагентов, которые селективно реагируют с веществами, подлежащими удалению. [c.222]

    Следующим шагом технологического усовершенствования было создание комбинированной установки ЭЛОУ — АВТ по схеме однократного испарения производительностью 3 млн. т/год нестабильной сернистой нефти. На этой установке в качестве сырья принята нефть Ромашкинского месторождения с содержанием газа около 2 вес. % на нефть. Установка работает по топливной схеме (рис. 46). В установку включены следующие технологические узлы электрообессоливание, атмосферная перегонка нефти, вакуумная перегонка мазута, абсорбция жирных газов, стабилизация и выщелачивание компонентов светлых нефтепродуктов. [c.109]

    В связи с углублением переработки нефти возникает задача определения фракционного состава нефти и остатков однократного испарения по крайней мере до 550—580 °С. Для этого предлагается следующая методика [6]. Вначале перегонка нефти ведется как обычно на аппарате АРН-2 до 350°С при атмосферном давлении и далее до 460—480 °С для малосернистых нефтей или до 430—450 °С для сернистых нефтей в вакууме при остаточном давлении 6,6 гПа. Затем остаток перегоняется в колбе Богданова при остаточном давлении 26—66 Па с использованием. специальных пробоотборников и манометров (рис. 1-5). [c.21]

    Как правило, продукты прямой перегонки нефти несколько богаче. меркаптанами и дисульфидами, тогда как в бензинах вторичного происхождения значительная часть сернистых соединений относится к соединениям остаточной серы (см. табл. 6). [c.24]

    До недавнего времени на нефтеперерабатывающих заводах старались не извлекать и утилизировать сернистые соединения нефтей, а разрушать и возможно полнее удалять их из товарных продуктов в основном с целью предотвращения коррозии аппаратуры и оборудования в процессах переработки нефти и применения нефтепродуктов. Сернистые соединения моторных топлив снижают их химическую стабильность и полноту сгорания, придают неприятный запах и вызывают коррозию двигателей. В бензинах, кроме того, они понижают антидетонационные свойства и приемистость к тетраэтилсвинцу, который добавляется для повышения качества. В настоящее время лучшим способом обессериваниЯ нефтяных фракций и остатков от перегонки нефтей является очистка в присутствии катализаторов и под давлением водорода. При этом сернистые соединения превращаются в сероводород, который затем улавливают и утилизируют с получением серной кислоты и элементарной серы. [c.29]

    Газ прямой перегонки нефтей сернистых. .... 1,5 0,3 6,5 31,3 11.7 31,4 6.0 7,1 5.7 [c.255]

    При вакуумной перегонке нефти сернистые соединения разлагаются более интенсивно, внося существенный вклад в суммарные выбросы вредных веществ в атмосферу. [c.9]

    При атмосферной перегонке нефти сернистые соединения переходят в дистилляты, причем количество их, как правило, возрастает с повышением предела выкипания фракций наибольшая их часть концентрируется в мазутах [76, 80]. При этом происходит не только перегонка сернистых соединений соответственно температурам их выкипания, но и разложение наименее устойчивых веществ с образованием более легких и устойчивых (табл. 7). [c.28]

    Давление кислорода 2 МПа, реактор шахтного типа, конечное давление Нг 5 МПа. Сырье — сухой газ НПЗ, сернистый мазут прямой перегонки нефти, сернистый кокс процессов замедленного коксования. Расход энергетических средств при использовании мазута возрастает в 1.3 раза, а прн использовании кокса в 1,5 раза. [c.574]

    Топливо Т-7 представляет собой продукт прямой перегонки сернистых нефтей, подвергнутый гидроочистке. Температурные пределы выкипания 150—250° С. Топливо Т-7 может применяться, как в чистом виде, так и с противоизносными присадками. Топливо Т-6 представляет собой продукт прямой перегонки нефти. Температурные пределы выкипания 195—315 X. [c.85]

    В бензинах прямой перегонки нефти содержится много парафиновых углеводородов слабо разветвленного строения с низкой детонационной стойкостью октановые числа таких бензинов невелики. Например, бензины прямой перегонки сернистых нефтей с к. к. 180—200 °С содержат 60—80% парафиновых углеводородов и имеют октановые числа в пределах 40—50. Лишь из отдельных отборных нефтей можно получить бензины прямой перегонки с октановым числом л 70. Однако ресурсы таких нефтей весьма ограниченны, а их раздельная переработка на заводах сопряжена со значительными трудностями. Бензины прямой пере- [c.161]

    Характеристика остатков атмосферной перегонки типичных сернистых и высокосернистых нефтей СССР [c.6]

    При вакуумной перегонке мазутов сернистых нефтей выход дистиллятного сырья для крекинга составляет обычно 40 - 5%, а выход гудрона 60—55%. [c.62]

    Ф-5 Ф-12 (ГОСТ 10585—63) — мазут флотский марки Ф-12 является смесью мазута прямой перегонки нефти, солярового масла и тяжелых крекинг-остатков. Мазут марки Ф-5 получают прямой перегонкой сернистых нефтей с добавлением солярового масла. Маркировку мазутов производят по их вязкости при температуре 50° С. Применяют для отопления корабельных, судовых и стационарных котельных установок  [c.11]

    При перегонке нефти в результате разложения сернистых соединений образуется сероводород, который (особенно в сочетании с хлористым водородом) является причиной наиболее сильной коррозии аппаратуры. Сероводород в присутствии воды или при повышенных температурах реагирует с металлом аппаратов, образуя сернистое железо  [c.177]

    Замена водяного пара инертным газом могла бы привести к боль-яшй экономии тепла, затрачиваемого на производство водяного пара, и к снижению расхода воды, идущей на его конденсацию. Весьма рационально применять инертный газ при перегонке сернистого сырья, так как, сернистые соединения в присутствии влаги вызывают интенсивную коррозию аппаратов. Однако инертный газ не получил применения при перегонке нефти из-за громоздкости подогревателей газа и конденсаторов наро-газовой смеси (низкого коэффициента теплоотдачи) и трудности полного извлечения отгоняемого нефтепродукта из газового потока. [c.204]

    В настоящее время промышленность органического синтеза использует следующие основные виды сырья природные и попутные газы газообразные и жидкие углеводороды, получаемые при перегонке нефти, крекинге и пиролизе нефтепродуктов твердые парафиновые углеводороды и тяжелые нефтяные остатки коксовый и сланцевый газы смолу коксования, а также сланцевую и древесную смолу и торфяной деготь. Наша страна располагает громадными запасами нефти, природного и попутного нефтяного газа, представляющих собой наиболее экономичные виды сырья для химического синтеза. Использование нефтяного сырья для получения разнообразных продуктов представлено на рис. 63. Кроме того, для органического синтеза в больших количествах используются и неорганические соединения кислоты, щелочи, сода, хлор и т. п., без которых невозможно осуществление многих процессов. Как правило, любое сырье необходимо предварительно очистить от влаги, механических примесей, сернистых соединений и других п])имесей и разделить, выделив индивидуальные углеводороды. Таким образом получают очищенное сырье, из которого дальнейшей переработкой можно получить те или иные полупродукты и целевые продукты. [c.161]

    Сернистые соединения встречаются почти во всех нефтях. В большинстве нефтей их менее 1%, в других, особенно в нефтях Поволжья и Башкирии, содержание серы более 3—4%. Самыми нежелательными сернистыми соединениями при первичной перегонке нефти являются сероводород и меркаптаны, обладающие наиболее сильными коррозионными свойствами. [c.5]

    Топливо Т-8 представляет собой керосиновую фракцию прямой перегонки из сернистых нефтей, подвергнутую гидроочистке (разработано специально для сверхзвукового самолёта ТУ-144). Т-8 отличается от топлива типа РТ более высокой температурой начала перегонки, обладает высокой термической стабильностью. [c.100]

    Из сернистых соединений наиболее агрессивными являются сероводород, элементная сера и меркаптаны, содержащуюся в них серу называют активной серой . Присутствие в некоторых нефтях свободной серы можно объяснить разложением более сложных сернистых соединений, а также окислением сероводорода [2]. Свободная сера - активный корродирующий агент, и ее присутствие в нефтепродуктах крайне нежелательно вследствие сложности очистки [6,7,12]. Сероводород может присутствовать в попутном газе, а также в самих нефтях в растворенном состоянии. Он присутствует в продуктах первичной перегонки нефти (газах, бензиновых дистиллятах) или образуется как продукт вторичных термических процессов [1,3]. Наличие сероводорода в товарной нефти в значительной степени зависит от степени предварительной сепарации нефти [8,13]. [c.8]

    Общее давление и парциальное давление водорода. При гидроочистке бензиновых фракций, находящихся при температурах процесса в газовой фазе, термодинамические ограничения гидрирования сернистых и азотистых соединений и олефинов определяют глубину гидроочистки при парциальных давлениях водорода ниже 2,5—3 МПа (25—30 кгс/см ). При более высоких парциальных давлениях водорода термодинамические ограничения отсутствуют. Дальнейшее повышение общего давления при заданном соотношении водород сырье мало влияет на глубину очистки, так как поверхность катализатора насыщена водородом повышение давления в этом случае увеличивает время реакции. При постоянн01М общем давлении и повышении парциального давления водорода в результате увеличения отношения водород сырье глубина очистки понижается вследствие уменьшения парциального давления сырья. При общем давлении 4—5 МПа (40—50 кгс/см ) и парциальном давлении водорода 3,5—4 МПа (35—40 кгс/см ) достигается очень глубокая очистка бензинов прямой перегонки нефти. [c.270]

    В качестве возможных компонентов судовых высоковязких топлив были выбраны остатки прямой перегонки нефти мазуты (М3), гудроны из смеси сернистых западносибирских (ГЗ) и высокосернистой арланской (ГА) нефтей и асфальтиты (А) процесса деасфальтизации гудронов, а также остатки вторичных процессов крекинг-ос-татки процесса висбрекинга гудронов тех же западносибирских (КЗ) и арланской (КА) нефтей, утяжеленный вакуумной перегонкой крекинг-остаток из остаточного сырья - вакуумированный крекинг-остаток (ВКО) и крекинг-остаток из дистиллятного сырья - дистиллят-ный крекинг-остаток (ДКО). [c.48]

    Учитывая направление на дальнейшее расширение ресурса моторных топлив за счет углубления переработки нефти, была изучена возможность рационального использования продуктов ее переработки на Уфанефтехим . Большой научный и практический интерес представляли исследования остаточных и дистиллятных продуктов промышленных процессов глубокой переработки нефти. В качестве базовых компонентов перспективных видов высоковязких судовых топлив были использованы тяжелые нефтяные остатки атмос-ферно-вакуумной перегонки нефти, висбрекинга и пропановой деасфальтизации гудрона сернистых и высокосернистых нефтей гудрон, крекинг-остаток и асфальт. Разбавителем и модификатором структуры нефтяных остатков служили средние и тяжелые дистилляты термодеструктивных процессов (каталитического и термического крекингов). Их качественная характеристика приведена в табл.3.6 и 3.7. [c.124]

    Сырье и продукция. В качестве основного сырья гидрокрекинга используется дистиллятный продукт вакуумной перегонки мазута — остатка атмосферной перегонки нефти. Ниже приведены основные характеристики типичного вакуумного дистиллята сернистой западно-сибирской нефти  [c.149]

    Процесс деасфальтизации связан с переработкой остаточного продукта АВТ - гудрона. Как известно, после перегонки нефти на установках АВТ все сернистые соединения концентрируются в основной в гудроне. [c.58]

    При перегонке сернистой нефти сернистые соединения концентрируются в тяжелых дистиллятах и остатке. Многие сернистые соединения термически неустойчивы и в условиях перегонки и особенно крекинга разлагаются с образованием сероводорода. [c.14]

    Топлива Т-1 и ТС-1 получаются прямой перегонкой нефтей я представляют собой лигроино-керосиновые фракции. Топливо ТС-1 получается из сернистых нефтей и отличается от Т-1 меньшей плотностью, более легким фракционным составом, меньшей вязкостью и более высоким содержанием серы. Оба сорта взаимозаменяемы. [c.42]

    Типичная схема комбинированной установки прямой перегонки нефти и крекинга при переработке сернистых восточных нефтей изображена на рис. 112. [c.251]

    Выход кокса прямо пропорционален коксуемости по ГОСТ 5987-51 перерабатываемого сырья и больше ее величины примерно в 1,5 раза. При коксовании крекинг-остатков выход кокса выше и кокс получается более плотным, чем при коксовании остатков от прямой перегонки нефти. Переработка сернистого сырья дает кокс с повышенным содержанием серы (до 4%). Отсутствие прокалки в реакционных камерах приводит к повышенному содержанию летучих веш еств в коксе (от 5 до 20%), что делает последний не пригодным для производства электродов. Однако при хорошей пропарке кокса в камере острым водяным паром можно почти полностью удалить летучие фракции в этом случае кокс, полученный из малозольного и малосернистого сырья, может быть использован для изготовления электродов. [c.333]

    Коричневый или черный вязкий остаток вакуумной перегонки нефти. Существует также природный битум в виде асфальтовых озер или битуминозных песков. Он состоит из высокомолекулярных углеводородов и небольших количеств сернистых и азотистых соединений. [c.2]

    Перегонка. Основным методом получения дистиллят-ного сырья из нефтей является атмосферная и вакуумная перегонка. При перегонке нефти сернистые, азотистые и металлоорганические соединения изменяются незначительно. Они перегоняются вместе с углеводородами, входящими в состав сырья для каталитического крекинга. Поскольку наибольшее влияние на показатели каталитического крекинга оказывают металлы, просЛе- [c.55]

    В Амуэй сооружают комплекс установок для получения мазута, содержащего не более 1 % серы. В комплекс входят две вакуумные трубчатые установки, предназначенные для отбо ра из остатка атмосферной перегонки нефти сернистого газойля в количестве 29400 м [сутки. Газойль будут подвергать обессериванию в трех установках гидроочистки, дающих вместе 25400 м сутки продукта с содержанием серы 0,2—0,3%, который затем будут смешивать с мазутом для получения кондиционного котельного топлива. Попутно будут получать 300 т/сутки серы. Одновременно на заводе строят установку для получения 1,9 млн. м сутки водорода путем конверсии метана. Сооружение подобного комплекса установок предлагается и на других нефтеперерабатывающих заводах [801- [c.171]

    Двухколонную схему перегонки нефти используют при разделении нефтей с большим содержанием легких бензиновых фракций и растворенных в нефти газов, для переработки сильнообвод-ненных и сернистых нефтей. Недостатками схемы двукратного испарения является более высокая температура нагрева отбензи-ненной нефти, необходимость поддержания температуры низа первой колонны горячей струей, на что расходуется большое количе- [c.157]

    Распределение серы по фракциям зависит от природы нефти и типа сернистых соединений. Как правило, их содержание увеличивается от низкокипящих к высококипящим и достигает максимума в остатке от вакуумной перегонки нефти — гудроне, В нефтях идентифицированы следующие типы серосодержа1цих соединений  [c.68]

    Для получения малосернистых бензиновых фракций, низкоза-стывающих керосиновых и газойлевых фракций и для снижения содержания в вакуумном газойле азота и тяжелых металлов особое внимание следует уделять четкости погоноразделения при перегонке нефти. При коксовании гудрона образуется большое количество многосернистого, богатого тяжелыми металлами кокса, непригодного для металлургической промышленности. В дистиллятах крекинга и коксования содержится много серы и азота, поэтому эти дистилляты надо подвергать глубокому гидрированию. При получении из сернистых нефтей ароматических углеводородов — сырья для нефтехимической промышленности — нужны специальные методы. Перед каталитическим крекингом дистиллятов вакуумной перегонки высокосернистых нефтей, содержащих азот, серу и тяжелые металлы, необходима специальная их обработка, чтобы избежать отравления катализаторов и предотвратить ухудшение качества продуктов крекинга. [c.119]

    Установки каталитического риформинга (гидроформинга, платформинга) и гидроочистки. Автомобильные бензины, получаемые при прямой перегонке нефтей, особенно сернистых и па-рафинистых, отличаются низкими антидетонационными свойст- [c.84]

    Газы с наибольшей теплотой сгорания образуются при нагреве нефтяного сырья и в результате различных деструктивных технологических процессов. В зависимости от процесса пере- аботки углеводородного сырья состав этих газов изменяется. Так, газ установок прямой перегонки нефти содержит 7—10% )Онана и 13—30% бутана, газ установок термокрекинга богат метаном, этаном н этиленом, газ установок каталитического крекинга — бутаном, изобутиленом и пропиленом. Многие из перечисленных газов служат ценным сырьем для химической н )омышленностн. Для нефтезаводских газов, полученных из сернистого сырья, характерно значительное содержание сернистых соединений и, в частности, сероводорода. Присутствие его в нефтяном газе крайне нежелательно, так как он вызывает интенсивную коррозию и очень токсичен. Поэтому на многих заводах газы подвергают мокрой очистке растворами этанолами-нов, фенолятов, соды и др. [c.110]

    Некоторые сернистые соедпненпя, содержащиеся в нефти, легко разлагаются уже при сравнительно умеренном нагревании, например при перегонке. Другие сернистые соединения разлагаются только в условиях, соответствующих термическому крекированию. Есть и такие высокоустойчивые сернистые соединения, которые не разлагаются даже в очень жестких условиях, нанример при полной деструкции и крекинге до кокса. В легких прямогонных дистиллятах сернистые соединения представлены главным образом меркаптанами, сульфидами и дисульфидами. В дистиллятах термического крекинга, помимо названных соединений, встречаются тиофены, обладающие гораздо большей устойчивостью. В дистиллятах каталитического крекинга были также обнаружены тиофенолы. [c.249]

    При переработке коррозионного сернистого нефтяного сырья корпус ректификационных колонн установок первичной перегонки нефти изготовляют из биметалла с защитным слоем из стали 08X13 внутренние устройства также выполняют из этой же стали. Если сырье не обладает коррозионной активностью, то колонны целиком изготовляют из углеродистых сталей. [c.131]

    Окись меди, подобно серной кислоте, имеет также тенденцию к превращенгш меркаптанов В дисульфиды. При перегонке "нефти в присутствии окиси меди эти последние впрочем могут быть превращены в сернистые алкилы и сернистую медь.  [c.169]

    Кроме того, разрабатывалась комплексная схема тсотактно-каталитиче-ского преобразования сернистых нефтей Татарии, предус.матривающая сочетание атмосферной перегонки нефти с каталитическим крекингом мазута, комбинированного каталитического превращения мазутов и одноступенчатого каталитического крекипга нефти в кипящем слое мелкодисперсного алюмосиликатного катализатора, обеспечивающего высокий выход це.иевых продуктов за счет максимального использования внутреннего и подаваемого со стороны водорода. [c.12]

    Таким образом, - в высококипящих фракциях нефти, идущих на производство масел, скапливается основное количество серо-органических соединений — обычно 60—707о от содержащихся в исходной нефти. В тех случаях, когда перегонка нефти сопровождается разложением, часть этих соединений, термически менее устойчивых, может теряться в виде сероводорода или переходить из высококипящих фракций в низкокипящие. Однако основная часть сероорганических соединений остается в тяжелых дистиллятах и остатках. При разделении нвфтя1ных погонов с помощью хроматографии- на силикагеле или активной окиси алюминия эти соединения выделяются вместе с ароматическими углеводородами и смолами. Ниже приведены результаты хроматографического разделения на силикагеле средневязких дистиллятов сернистых и малосернистых нефтей (во всех случаях сера сопут- ствует ароматическим углеводородам и смолам) [1]  [c.22]

    Примерное содержание групп углеводородов в кероси-но-газойлевых фракциях каталитического крекинга, прямой перегонки нефти, а также в ДТ, получаемых из сернистых нефтей с применением гидроочистки, представлено в табл. 1.5 [8]. Газойлевые фракции богаты моно- и полицик-лическими углеводородами — ароматическими, нафтеновыми [c.20]

    На установке АВТ-4 ОАО Салаватнефтеоргсинтез типа А-12/1 проектной мощностью по сырью 2 млн. т в год, построенной в пятидесятые годы, применяется устаревшая ресурсо-и энергозатратная технология атмосферной перегонки нефти и основные аппараты старой конструкщ1И. Все э го практически не претерпело существенных изменений за время длительного срока эксплуатации и при реконструкции установки с увеличением производительности до 3-х млн. т в год. Первоначальный проект установки разработан для переработки сернистой нефти типа ромашкинской [ 1 ]. Начиная с 1963 г на установке перерабатываются высокосернистые нефти типа арланской [2,3]. [c.34]

    Топливо Т-2 готовится прямой перегонкой из малосернистых И сернистых нефтей и по содержанию серы равноценно топливу ТС-1. Топливо Т-2 характеризуется облегченным фракционным составом оно отличается от топлива Т-1 и ТС-1 тем, что в состав его, кроме лигроино-керосиновых фракций, входят также бензиновые фракции. Вследствие более высокого давления насыщенных паров топливо Т-2 в высотных условиях более склонно образовывать паровые пробки в топливонодводящей системе двпгателя, а потому имеет более узкую область применения, чем топлива Т-1 и ТС-1. Топлива Т-1, ТС-1 и Т-2, являясь продуктами прямой перегонки нефти, стабильны при хранении и при нормальных условиях могут храниться в течение нескольких лет без изменения. [c.42]

chem21.info

Состав средневязких дистиллятов сернистых — КиберПедия

И малосернистых нефтей

Дистиллят или фракция нефти Содержание серы в нефти, %
балаханской масляной балаханской тяжелой туймазинской девонской
Дистиллят средней вязкости 0,092 0,300 1,150
Нафтено-парафиновая фракция 0,000 0,000 0,000
Ароматическая фракция      
№ 1 0,060 0,112 0,680
№ 2 0,050 0,190 1,150
№ 3 0,130 0,280 1,580
№ 4 0,250 0,530 1,900
Смолы 0,270 0,900

 

Возможно присутствие производных тиофена или тиофана, в которых тиофеновое или тиофановое кольцо связано с ароматическим или нафтеновым кольцом посредством алифатического мостика:

 

В процессе производства масел при очистке дистиллятов значительная часть сероорганических соединений извлекается вместе с полициклическими ароматическими углеводородами, смолами и другими нежелательными компонентами, однако некоторое их количество присутствует даже в маслах, полученных из малосернистых и несернистых нефтей. В маслах, полученных из сернистого сырья, содержится от 0,5 до 1,5 % серы, что при учете молекулярной массы масляных фракций нефтей соответствует 10 – 15, а иногда и более процентам сероорганических соединений. Таким образом, в маслах, получаемых из сернистых нефтей, производные серы наряду с нафтенопарафиновыми и нафтеноароматическими углеводородами являются существенными по объему компонентами.

Смолисто-асфальтеновые вещества. Смолисто-асфальтеновые вещества, содержащиеся в нефтях, относятся в основном к классу гетероциклических соединений, в которых кроме углерода и водорода содержатся кислород, сера и во многих случаях – азот. Содержание смолисто–асфальтеновых веществ в легких нефтях обычно не превышает 4-5 %, а в тяжелых - 20 %. Однако в тяжелых высокосмолистых нефтях смолисто-асфальтеновых веществ может содержаться 60 % и более (ильская и хаудагская нефти). По принятой классификации смолисто-асфальтеновые вещества делятся на следующие компоненты:

смолы (нейтральные), представляющие собой соединения, полностью растворимые в петролейном эфире и нефтяных фракциях, обладающие жидкой или полужидкой консистенцией и имеющие плотность около единицы;

асфальтены – твердые, неплавкие, хрупкие вещества, в отличие от нейтральных смол нерастворимые в петролейном эфире, легко растворимые в бензоле и его гомологах, а также в хлороформе, четыреххлористом углероде и т.п. Плотность асфальтенов - больше единицы;

карбены – вещества, по внешнему виду и плотности аналогичные асфальтенам, но нерастворимые в бензоле и других растворителях, характерных для асфальтенов, и лишь частично растворимые в пиридине и сероуглероде;

карбоиды – продукты еще большей конденсации, полностью нерастворимые в каких-либо органических или минеральных растворителях;

асфальтогеновые кислоты и их ангидриды, по внешнему виду близкие к смолам, но отличающиеся от них кислым характером. Они нерастворимы в петролейном эфире и растворимы в спирте.

Смолистые вещества нефти представляют собой сложную смесь соединений, в молекулах которых содержатся углеводородные ароматические радикалы с длинными алкильными цепями; конденсированные ароматические и нафтено-ароматические радикалы с короткими цепями; фенольные группы и азотистые основания в виде производных пиридинфеноксидов; сера и кислород – в виде гетероатомов, главным образом в циклах. Смолистые вещества представляют собой самостоятельный ряд соединений, характерных для каждой нефти и соответствующих ее углеводородной части.

Ниже приведены приблизительные структурные формулы молекул нефтяных смол:

 

 

 

Асфальтены являются насыщенными полициклическими соединениями, содержащими в циклах кроме углерода и водорода также кислород, серу и азот. По внешнему виду асфальтены представляют собой темно-коричневые или черные неплавкие порошки, разлагающиеся при температурах выше 300оС с образованием кокса и газов. Содержание асфальтенов в нефтях невелико: даже в наиболее смолистых нефтях 1 – 2 % и редко 3-4 %. Молекулярная масса асфальтенов равна от 2000 до 2500.

Асфальтены богаче смол углеродом, серой, кислородом и азотом и содержат меньше водорода. Отношение углерода к водороду в смолах составляет примерно 8:1, а в асфальтенах - 11:1 и более.

Нефтяные кислоты. В нефтях содержится некоторое количество (от следов до 1 % и более) кислых продуктов. В основном, на 90-95 %, это нафтеновые кислоты. Остальные 5-10 % приходится на карбоновые кислоты с алкильными или арильными радикалами и на фенолы. Больше всего нефтяных кислот содержится в нефтях нафтенового основания. Содержание кислот увеличивается при переходе от легких дистиллятов к более тяжелым.

Высокомолекулярные кислоты, выделенные из масляных фракций, представляют собой густые, а иногда полутвердые пекообразные вещества. Нефтяные кислоты практически нерастворимы в воде, хорошо растворимы в углеводородах.

Высшие нефтяные кислоты являются карбоновыми, карбоксильная группа которых соединена с углеводородными радикалами, аналогичными (по составу и строению) радикалам в углеводородах тех нефтей, из которых кислоты выделены.

Азотсодержащие соединения. Являются одной из наименее изученных групп соединений. Концентрация этих соединений невелика и колеблется от 0,1 до 0,5 % на азот. Азотистые соединения нефти относятся к двум группам: азотистые основания и азотистые соединения нейтрального характера. Азотистые основания в основном являются производными гетероциклических соединений: пиридина, хинолина, изохинолина и их гидрированных форм (пиперидина и др.). Однако основная масса азотистых соединений нефти (80 % и более) являются нейтральными соединениями.

Азотистые соединения распределены по нефтяным фракциям аналогично сернистым соединениям, т.е. основная их часть концентрируется в тяжелых фракциях. В остатке от перегонки, выкипающем выше 400оС, содержится более 80 % общего и более 90 % основного азота в расчете на их содержание в исходной нефти. В масляных фракциях содержится 0,06 – 0,16 % азота, в гудроне – 0,44 %, а в асфальте деасфальтизации – 0,61 %. В процессах очистки масляных дистиллятов азотистые соединения в основном удаляются, и в готовых товарных маслах могут оставаться только их следы. Азотистые соединения могут способствовать смолообразованию при хранении нефтепродуктов. Влияние естественных азотистых оснований на на эксплуатационные свойства масел практически не изучено.

Металлорганические соединения. В нефтях и нефтяных фракциях установлено наличие V, Ni, Fe, Cu, As и многих других металлов. Наибольшее количество металлпроизводных содержится в высокосернистых высокосмолистых нефтях - в 200 – 500 раз больше, чем в малосернистых. В нефтях, содержащих 3-4 % серы, обнаружено 0,01 – 0,02 % ванадия, до 0,01 % никеля, до 0,006 % железа. Основное количество металлов связано со смолисто-асфальтеновыми веществами. Поэтому основная часть металлпроизводных сосредоточена в тяжелых фракциях или гудроне. В процессе деасфальтизации почти вся металлорганика переходит в битум деасфальтизации.

Некоторые металлорганические соединения, обладая летучестью, попадают в дистиллятные фракции. Металлпроизводные, даже находясь в масле в незначительных количествах, крайне нежелательны, так как могут катализировать окисление масел в процессе работы.

cyberpedia.su

Основные промышленные способы очистки нефтяных дистиллятов от сернистых соединений

из "Интенсификация действующих и внедрение новых процессов получения моторных топлив на Куйбышевском НПЗ. КД"

Свойства нефтей зависят в значительной степени от характера содержащихся в них сернистых соединений, от их термостойкости и физикохимических свойств. Сернистые соединения нефтей представляют собой сложные смеси, состоящие из меркаптанов ( тиолов ), сульфидов (тиоэфиров) и дисульфидов с открытой цепью, элементной серы, сероводорода, циклических и гетероциклических соединений [1-7]. В работе [4] приводятся данные по идентификации в сырых нефтях 111 сернистых соединений, в их числе 24 сульфида и 27 тиолов. Из циклических соединений доказано присутствие 24 циклических и 5 бициклических сульфидов, 8 тиофенов и 3 тионафтенов. [c.8] Распределение серы по отдельным фракциям зависит от природы нефти и типа сернистых соединений. Обычно, содержание общей серы увеличивается от низкокипящих к высококипящим фракциям и достигает максимума в остатке [3,8-10,29. [c.8] Из сернистых соединений наиболее агрессивными являются сероводород, элементная сера и меркаптаны, содержащуюся в них серу называют активной серой . Присутствие в некоторых нефтях свободной серы можно объяснить разложением более сложных сернистых соединений, а также окислением сероводорода [2]. Свободная сера - активный корродирующий агент, и ее присутствие в нефтепродуктах крайне нежелательно вследствие сложности очистки [6,7,12]. Сероводород может присутствовать в попутном газе, а также в самих нефтях в растворенном состоянии. Он присутствует в продуктах первичной перегонки нефти (газах, бензиновых дистиллятах) или образуется как продукт вторичных термических процессов [1,3]. Наличие сероводорода в товарной нефти в значительной степени зависит от степени предварительной сепарации нефти [8,13]. [c.8] Меркаптаны (тиолы) в процессах переработки нефти, как и сероводород, вызывают коррозию оборудования [2,12], отравляют катализаторы и обладают исключительно сильным специфическим, неприятным запахом. Так, этил меркаптан обнаруживается по запаху в воздухе уже при концентрации 2-10 %г/л [14]. [c.9] Известно, что надежность и хорошая работа топливной аппаратуры современных двигателей сильно зависит от содержания в топливе меркаптанов. По нормам ГОСТов концентрация меркаптановой серы в топливе ТС-1 не должна превышать 0,005%, в топливе РТ- 0,001%, в дизельном топливе для быстроходных двигателей - 0,01%. Повышенное содержание меркаптанов в топливах приводит к ухудшению их термической стабильности, способствует увеличению отложений на поверхности деталей, с которыми соприкасаются топлива в системе двигателя, усиливает коррозионную агрессивность топлив [12]. [c.9] В щелочной среде кислород воздуха вызывает постепенное превращение меркаптанов в соответствующие дисульфиды [6,7,13,15]. С солями тяжелых металлов меркаптаны количественно реагируют с образованием меркаптидов. На этом основана методика анализа меркаптанов в жидких углеводородах методом потенциометрического титрования аммиакатом серебра [7. [c.9] Сульфиды являются аналогами простых эфиров. В нефтях и их дистиллятах встречаются алифатические, ароматические, жирноароматические и циклические сульфиды, а также сульфиды смешанного строения, содержащие различные углеводородные радикалы. [c.9] В нефтяных дистиллятах встречаются тиофен, алкилтиофены и арилтиофены. Тиофены малореакционноспособны, как и ароматические углеводороды. Атом серы в кольце тиофена инертен. Среди сернистых соединений нефти тиофены обладают самой высокой термостабильностью [18-21]. [c.10] Практика нефтепереработки показывает, что многие сераорганические соединения обладают значительно меньшей термостабильностью, чем углеводороды. Поэтому при нагревании в процессе переработки они претерпевают самые различные превращения. В результате часто оказывается, что сернистые соединения, содержащиеся в продуктах прямой перегонки, в зависимости от условий ректификации, имеют различный по качеству и количеству состав, неадекватный составу сераорганических соединений в исходной нефти. Работами ряда авторов [3,10,28-30] было показано, что порог термостабильности нефтей, определяемый по температуре начала выделения сероводорода или меркаптана, связан не с содержанием общей серы в нефтях, а с составом содержащихся в них сераорганических соединений. [c.10] Существуют различные способы очистки нефтяных дистиллятов от сернистых соединений. Среди них широкое применение нашла каталитическая гидроочистка и экстракция сернистых соединений из нефтепродуктов различными экстрагентами. В случае необходимости очистки топлив только от меркаптанов в основном используют способы окислительной демеркаптанизации. [c.10]

Вернуться к основной статье

chem21.info

Серная кислота перегонки нефти - Справочник химика 21

    Во всех нефтях в небольших количествах (менее 1 %) содержится азот в виде соединений, обладающих основными или не — 1гг ральными свойствами. Большая их часть концентрируется в вы — сококипящих фракциях и остатках перегонки нефти. Азотистые основания могут быть выделены из нефти обработкой слабой серной кислотой. Их количество составляет в среднем 30 — 40 % от суммы всех азотистых соединений. [c.72]     Сырые нефти обычно содержат большой процент асфальтенов (нефти асфальтового основания), от которых невозможно избавиться простой перегонкой, и нафтеновых кислот, которые удаляются при перегонке в присутствии каустической соды. Масляные фракции выделяются перегонкой, но зачастую они настолько широки, что возникает потребность во вторичной ректификации. Очистка с применением селективных растворителей заменила очистку с применением серной кислоты и каустической соды. [c.495]

    Неочищенные дестиллаты окисляются гораздо легче, чем очищенные, поэтому для того, чтобы нефтепродукты были устойчивы против окисления, их специально очищают серной кислотой и едким натром. Дело в том, что как бы осторожно ни шла разгонка нефти, при перегонке всегда имеет место некоторое разложение нефтепродуктов с образованием ненасыщенных углеводородов. Их-то и удаляют из нефтепродукта (дестиллата) обработкой крепкой серной кислотой, а остающиеся после этого в де-стиллате кислые вещества нейтрализуются щелочью и уводятся в виде так называемых натровых остатков. [c.90]

    Азотистые соединения легко выделяются из нефти с помощью серной кислоты. При перегонке некоторых азотистых нефтей уже при сравнительно низких температурах (200—250° С) замечается сильный запах аммиака. Предполагается, что он выделяется из аммиачных солей нафтеновых кислот. [c.104]

    Ценнейший вклад в науку о нефти и методах ее переработки внес выдающийся химик-нефтяник Л. Г. Гурвич. В своей книге Научные основы переработки нефти , выдержавшей четыре издания, переведенной на многие иностранные языки, Л. Г. Гурвич критически сопоставил и обобщил литературные и экспериментальные данные по химии и переработке нефти. Оригинальными являются воззрения Л. Г. Гурвича о действии водяного пара и роли вакуума при перегонке мазута, о роли серной кислоты и щелочи при очистке нефтепродуктов. Он исследовал обесцвечивающую способность отбеливающих глин по отношению к нефтепродуктам, обнаружил при этом помимо адсорбционных свойств каталитическое (полимери-зующее) действие естественных алюмосиликатов и разработал теоретические основы адсорбционной очистки масел. Л. Г. Гурвич установил закономерности, лежащие в основе современной хроматографии и каталитического крекинга на алюмосиликатных катализаторах. [c.12]

    До недавнего времени на нефтеперерабатывающих заводах старались не извлекать и утилизировать сернистые соединения нефтей, а разрушать и возможно полнее удалять их из товарных продуктов в основном с целью предотвращения коррозии аппаратуры и оборудования в процессах переработки нефти и применения нефтепродуктов. Сернистые соединения моторных топлив снижают их химическую стабильность и полноту сгорания, придают неприятный запах и вызывают коррозию двигателей. В бензинах, кроме того, они понижают антидетонационные свойства и приемистость к тетраэтилсвинцу, который добавляется для повышения качества. В настоящее время лучшим способом обессериваниЯ нефтяных фракций и остатков от перегонки нефтей является очистка в присутствии катализаторов и под давлением водорода. При этом сернистые соединения превращаются в сероводород, который затем улавливают и утилизируют с получением серной кислоты и элементарной серы. [c.29]

    Во время первой мировой войны, в нефтяной промышленности были введены новые методы рафинирования смазочных масел, заключающиеся в промывке масляных фракций (выделенных из нефти путем перегонки) селективными растворителями. В результате такой обработки свойства масел улучшились. Эти физические методы рафинирования масел почти совсем вытеснили применявшиеся прежде химические методы рафинирования серной кислотой и стали основой рациональной технологии рафинирования нефтяных масел. Методы описаны в многочисленных статьях и монографиях [1. 18, 201. [c.379]

    Перегонка нефти при атмосферном давлении удаляет из нее бензин и дистиллятные компоненты топлива, оставляя мазут, который содержит смазочные масла и гудрон. Дальнейшая перегонка под вакуумом дает так называемые "вакуумные дистилляты" в верхней части колонны и гудрон в виде остатка. Простая обработка серной кислотой, известью и отбеливающей глиной превращает дистилляты в приемлемые по качеству продукты с низким индексом вязкости. Для производства продуктов с высоким и средним индексом вязкости необходимо использовать определенные виды экстракции растворителями, отделяющими окрашенные, нестабильные и имеющие низкий индекс вязкости компоненты. На конечном этапе из масла удаляют парафины путем его растворения в метилэтилкетоне (МЭК), охлаждения и фильтрации для получения масел с температурой застывания от минус 10°С до минус 20°С. Изготовитель масла может подвергнуть его финишной гидродоочистке для удаления сфы, азота и окрашивающих составляющих. Этот процесс показан в виде диаграммы на следующей странице. [c.29]

    Для определения группового углеводородного состава керосиновых фракций при перегонке нефти отбирают фракции 200—250 и 250—300 . В этих фракциях определяют плотность, коэффициент рефракции, максимальную анилиновую точку. Затем 50л л каждой фракции загружают в соответствующие по величине делительные воронки. Содержимое воронки обрабатывают три раза серной кислотой (98,5%), задавая каждый раз по 50 мл. Перемешивать керосин серной кислотой следует каждый раз не менее 30 мин. с последующим отстоем 3 часа. После третьей обработки сульфированную фракцию промывают 1—2 раза водным спиртом (1 1) для удаления сульфокислот и обрабатывают водным раствором щелочи до щелочной реакции на метиловый оранжевый или фенолфталеин промывают дистиллированной водой, сушат СаСЬ и подвергают тому же анализу, что и исходные фракции. Содержание ароматических углеводородов вычисляют по уравнениям [c.514]

    А. Великовский и С. Павлова [250] при сравнении двух способов деароматизации продуктов прямой перегонки нефти — адсорбционного и сернокислотного — установили, что получаются вполне идентичные результаты по углеводородному составу, а некоторые колебания в содержании ароматических углеводородов, определенных при деароматизации нефтепродукта серной кислотой и адсорбентом, лежат в пределах точности анилиновых точек. К аналогичному выводу пришли и М. Вольф, Б. Козак и Г. Морозова [251]. [c.517]

    В 1957 г. появилось весьма обстоятельное исследование высокомолекулярных нефтяных кислот, выделенных из фракции дистиллятного смазочного масла венесуэльской нефти [47 I. Автор применил большой комплекс современных методов разделения и идентификации высокомолекулярных соединений нефти, поэтому полученные им данные и сделанные на их основе выводы доказательны. Кислоты для исследования были получены в результате перегонки широкой фракции смазочного масла из венесуэльской нефти над едким натром. Остаток от перегонки состоял из приблизительно равных количеств натриевых солей карбоновых кислот и углеводородов. При обработке щелочного остатка разбавленной серной кислотой были выделены свободные карбоновые кислоты. Смесь этих кислот и углеводородов растворяли в бензоле и раствор фильтровали [c.320]

    Бензины и керосины, практически не содержащие ароматических и непредельных углеводородов (дистилляты прямой перегонки нефти). Навеску (взятую на технических весах с точностью 0,1 г) помещают в делительную воронку и туда же вливают 20 мл 98%-ной серной кислоты. Воронку закрывают стеклянной пробкой и энергично встряхивают в течение 3—4 мин. После 10 мин отстоя кислотный слой спускают в реакционную колбу, предварительно взвешенную на технических весах с точностью до 0,1 г, а в делительную воронку вводят вторую порцию свежей кислоты (20 мл) и снова проводят экстракцию. После 10 мин отстоя второй кислый слой присоединяют к первому, находящемуся в реакционной колбе. [c.279]

    В работе /84/ приведены результаты лабораторных исследований 13 образцов нефтяных парафиновых отложений из различных коллекторных станций нефтепроводов Югославии с целью выявления возможности получения из них микрокристаллических восков (церезинов). Очистка заключалась в обработке серной кислотой, нейтрализации известью и отбеливании активной глиной. Очистка проводилась в двух вариантах непосредственно сырого парафина и после вакуумной перегонки. Существенное различие в результатах между первым и вторым вариантами очистки оказалось в том, что церезины, пол) ченные после вакуумной перегонки, не имели запаха, в то время как церезины, полученные без перегонки, имели запах, характерный для низких фракций нефти. В работе разработаны методы очистки и подобраны условия получения восков с характеристиками, отвечающими требованиям их промышленного применения для каширования фольги, пропитки бумаги, консервации металлических поверхностей, в качестве крема идя обуви, мастики для паркета и т.д. [c.160]

    В некоторых, но не во всех сырых нефтях присутствуют заметные следы азота. При этом наибольшее количество азота не превышает 1%. Азотистые продукты, обнаруженные в нефтепродуктах, были выделены из дистиллятов и поэтому могли образоваться в процессе перегонки. Эти соединения экстрагируют из дистиллятов с помощью жидкой двуокиси серы или разбавленной серной кислотой. [c.398]

    Давно замечено, что из сырой нефти парафин выделяется в тонкокристаллическом состоянии, что заставило некоторых авторов говорить об аморфном парафине, в противоположность кристаллическому, который выделяется из нефтяных дистиллятов. В связи с этим была выдвинута гипотеза о том, что и в нефти, и в дистиллятах парафин имеет одну и ту же природу, но из дистиллятов он выделяется в виде более крупных кристаллов потому, что в дистиллятах отсутствуют смолистые вещества, препятствующие кристаллизации. Если из нефти предварительно удалить смолистые веп ества действием серной кислоты или адсорбентов, парафин кристаллизуется гораздо легче. Предполагается, что перегонка нефти разрушает смолистые вещества или переводит их в другое состояние, вследствие чего исчезает причина затрудненной кристаллизации парафина. Другой причиной образования мелких кристаллов, препятствующих их выделению фильтрованием, является примесь к парафину церезинов, способных удер кивать масла, что, при склонности церезина образовывать только очень мелкие кристаллы, неизбежно затрудняет кристаллизацию. [c.53]

    Исходным продуктом является нафталин, который в сравнительно большом количестве содержится в каменноугольной смоле (10—11%) особенно в среднем и тяжелом маслах, а также в некоторых сортах нефти, откуда извлекается посредством дробной перегонки. Выделенный нафталин подвергается очистке щелочью и серной кислотой с последующей отгонкой с паром или возгонкой. [c.162]

    Исследуемая фракция с температурой кипения 200— 250°С выделялась вакуумной перегонкой сацхс1шсской нефти (скважина № 4, глубина 1400 м). Полученная фракция промывалась 75%-ным раствором серной кислоты, 10%-ным раствором соды и дистиллированной водой до нейтральной реакции. После высушивания над хлористым кальцием, фракция перегонялась над металлическим натрием и были определены ее а) удельный всс /Г = 0,8662, б) максимальная анилиновая точка — оказавшаяся равной 47, в) показатель лучепреломления я = 1,4845. [c.42]

    Дробной перегонкой супсинской нефти была выделена фракция для исследования. С помощью серной кислоты из фракции были удалены ароматические углеводороды, после 66 [c.66]

    Исследуемые фракции 60—95° и 95—122° были выделены из скважины Л 19 норийской нефти путем дробной перегонки. Указанные фракции сперва промывались 75%-ной серной кислотой, затем водой, 10%-ным раствором соды, опять водой и после сушки над хлористым кальцием были перегнаны в присутствии металлического натрня в тех же те.мператур-ных интервалах. С целью удаления ароматических углеводородов, фракции были обработаны серной кислотой (уд. вес — 1,865), взятой в количестве 10% к объему бензина. Полнота деароматизации проверялась чувствительным реактивом на ароматические углеводороды (серная кислота-г формалин). Дсароматизированные фракции после соответствующей промывки п сушки над хлористым кальцием были перегнаны в присутствии металлического натрия. [c.71]

    Исследуемая фракция 122—150° была выделена из норийской нефти скважины № 23 путем фракционированной перегонки. Эта фракция сперва промывалась 75%-ной серной кислотой, затем Ю о-ным раствором соды и дистиллированной водой, после сушки над хлористым кальцием перегонялась в нрисутствиц металлического натрия в том же температурном интервале. [c.76]

    Объектом исследования была взята фракция 150—200° среднего образца. мирзаанской нефти. Опа была выделена из нефти дробной перегонкой. С целью удаления неуглеводородных комиоиентов, входящих во фракцию 150—200° мирзаанской нефти, указанная фракция была обработана 75%-ной серной кислотой. После обработки серной кислотой указанной концентрации, фракция была промыта дистиллированной водой, 10%-ным раствором соды, снова дистиллированной водой до нейтральной реакции, сушилась над хлористым кальцием и перегонялась в присутствш металлического натрия. [c.92]

    Для исследования была взята средняя проба 1 участка мир.заанекой нефти, из которой фракционной перегонкой была выделена фракция с температурой кипения 150—200°. Фраг уня подвергалась промывке 75%-ной серной кислотой, 5%-иым раствором соды и дистиллированной водой, затем сушилась над хлористым кальцием и перегонялась в присутствии металлического натрия в тех же температурных пределах. Для исследуемой фракции определялись физические свойства максимальная анилиновая точка, удельный вес и показатель лучепреломления, значення которых приведены в табл. 1. Применяемый в опытах анилин нмел температуру замерзания —6,3°. [c.109]

    Дробной перегонкой супсинской нефти из скважины № 5, с удельным весом 0,905, отобрали фракции 60—95°, 95—122°, 122—150° и 150—200°, которые после многократной перегонки не давали характерную реакцию на непредельные углеводороды. Отобранные фракции встряхивались с 75%-ной серной кислотой в течение 10 минут, затем промывались водой, 10%-ным раствором соды, снова водой, сушили над хлористым кальцием и перегоняли в присутствии металлического натрия. Для вышеуказанных фракций были определены удельный вес, показатель лучепреломления и анилиновая точка. В каждом опыте применяли свежеперегнанный анилин, чистоту которого определяли по анилиновой точке индивидуального углеводорода. Затем проводили сульфирование фракции дымящей серной кислотой, содержащей 1,54% свободного серного ангидрида. Смесь бензина и серной кислоты помещалась в склянку и встряхивалась на трясучке в течение [c.137]

    Нефть мирзаанского месторождения из 9, И, 12 и 15 горизонтов подвергалась дробной перегонке. Полученные фрак-нии 60—95°, 95—122°, 122—150°, 150—200 взбалтывались с 75 7о-ной серной кислотой в течение 15 мин., затем промывались водой, 10 %-ным раствором соды, снова водой, сущились над хлористым кальцием и перегонялись в присутствии металлического натрия. Для полученных фракции были определены удельный вес, показатель лучепреломления и анилиновая точка. Для опытов применялся свсжевысушениый и свежеперегнанный анилин, чистота которого проверялась анилиновой точкой индивидуального углеводорода. Ароматические углеводороды выделялись серной кислотой, которая содержала 1,5% свободного серного ангидрида. Смесь бензниа н серной кислоты помещалась в склянку на трясучке и взбалтывалась при комнатной температуре. Полное удаление ароматических углеводородов контролировалось качественной реакцией (серная кислота + формалин). Деароматизированные фракции промывались, сушились и перегонялись в при- [c.141]

    Материал для исследования получался нами фракционированием нефтей Грузии из различных скважин. Фракции 60—95°, 95-122°, 122—150° и 150—200° не давали качест-векпу1я реакщпо иа непредельные углеводороды, т. е. не реагировали И1Г с бромной водой, ни со слабым щелочны.м раствором перманганата калня. Исследуемые фракции промывались 73%-НОЙ серной кислотой, 10%-ным раствором щелочи, затем водой, сушились над хлористым кальцием и перегонялись в присутствии металлического натрия. Предварительная обработка бензино-лигроиновых фракций 73%-ной серной кислотой, щелочью и затем перегонка над металлическим натрием преследовали цель освободиться от нежелательных сернистых, кислородных и азотистых соединений, которые в качестве примесей могли присутствовать в исследуемых фракциях. Если бензино-лигроииовьте фракции не подвергаются предварительно такой обработке, то указанные выше неуглеводородные компоненты будут удаляться во время деароматизации фракции и последующей за ней промывкой щелочью и перегонкой над металлическим натрием. [c.151]

    Материал для опытов был получен путем фракционированной перегонки сырой супсинской нефти собранные фракции бензольная, толуольная и ксилольная, взбалтывались по 10—15 мин. с 25 объемным процентом серной кислоты удельного веса 1,76, после чего промывались сперва водой, затем Ю-процентным раствором соды, снова водой, сушились над хлористым кальцием и перегонялись над металлическим (в виде проволоки) натрием. [c.187]

    Мирзаанская нефть нз скиажины № 140 с удельным весом — 0,8699 несколько раз подвергалась дробной перегонке. Полученная фракция 60—150 взбалтывалась с 75%-ной серной кислотой в теченне 15 мин, после чего промывалась водой, 10%-ным раствором соды, снова водой, сушилась хлористым кальцием и перегонялась в присутствии металлического натрия. Для указанной фракции определялись удельный вес, показатель лучепреломления н максимальная анилиновая точка. Для опытов нрнменялн сухой и свежеперегнанный анилин, чистота которого проверялась посредством анилиновой точки чистого индивидуального углеводорода. Ароматические углеводороды, находящиеся в мирзаанской нефти (фр. 60—150°), удалялись действием серной кислоты удельного веса 1,84. Смесь бензина и серной кпслоты помещалась о склянке с притертой пробкой и взбалтывалась при комнатной температуре. Полное удаление ароматических углеводородов проверялось качественной реакцией (серная кислота + формалин). Деароматизированная фракция промывалась, сушилась н перегонялась в присутствии металлического натрия, после чего определялись те же константы, что и до обработки серной кислотой. По изменению максимальных анилиновых точек и с применением коэффициентов, приведенных в трудах ГрозНИИ [18] определялся групповой состав вышеуказанной фракции. [c.226]

    Ранее керосин приготовляли из нефтей парафинистого типа, таких, как пенсильванская или мид-континентская. Керосиновые фракции этих нефтей подвергали легкой сернокислотной обработке (расход серной кислоты составлял 0,02 кг л или 1% по объему). Затем продукт подвергали щелочной промывке и вторичной перегонке или адсорбционной обработке. [c.466]

    Окись меди, подобно серной кислоте, имеет также тенденцию к превращенгш меркаптанов В дисульфиды. При перегонке "нефти в присутствии окиси меди эти последние впрочем могут быть превращены в сернистые алкилы и сернистую медь.  [c.169]

    НИИ получения синтетической нефти из органических материалов. Особо значительными в этом отношении являются опыты К. Энглера и его учеников (1888 г.). Исходным материалом для своих опытов К. Энглер взял животные и растительные жиры. Для первого опыта был взят рыбий (сельдевый) жир. В перегонном аппарате К. Крэга при давлении в 10 аттг и при температуре 400°С было перегнано 492 кг рыбьего жира, в результате чего получились масло, горючие газы и вода, а также жир и разные кислоты. Масла было получено 299 кг (61%) уд. веса 0,8105, состоящего на 9/10 из углеводородов коричневого цвета с сильной зеленой флуоресценцией. После очистки серной кислотой и последующей нейтрализации масло было подвергнуто дробной разгонке. В его низших фракциях оказались главным образом предельные. углеводороды — от пентана до нонана включительно. Из фракций, кипящих выше 300° С, был выделен парафин с температурой плавления в 49—51° С. Кроме того, были получены смазочные масла, в состав которых входили олефины, нафтены и ароматические углеводороды, но в весьма небольших количествах. Продукт перегонки жиров под давлением по своему составу отличался от природных нефтей. К. Энглер дал ему название про- топеТролеум . Образование углистого остатка при этом не происходило, чему К. Энглер придавал особое значение, поскольку при перегонке растительных остатков (углей, торфа, древесины) в перегонном аппарате всегда образуется углистая масса. А так как в нефтяных месторождениях не наблюдается более или менее значительных скоплений угля, К. Энглер сделал вывод, что только животные жиры, без остатка превращающиеся в прото-петролиум, могли быть материнским веществом для нефти. Несколько позднее К. Энглер получил углеводороды из масел репейного, оливкового и коровьего и пчелиного воска [ ]. Штадлер получил аналогичные продукты при перегонке льняного семени. [c.311]

    Газойли из нефтей различного происхождения (табл. 3) подвергались парофазному каталитическому крекингу над природлшм алюмосиликатом, активированным серной кислотой по методу АзНИИ [70, 71], при 480 и 400 °С и атмосферном давлении. При этом для температур). 480 С объемная скорость подачи сырья составляла 0,6, а для 400 °С — 0,2 ч . Время работы катализатора в обоих случаях составляло 40 мин. Из жидких продуктов крекипга фракционнроваггной перегонкой выделялась бе)13)1новая фраю ия с концом кипепия 200 °С и выкипаемостью до 100 °С 35—45 %. Химический состав неочищенных бензиновых фракций от каждого опыта определяли по анилиновой точке. [c.54]

    Д.чя выделения отдельных углеводородов из бензипо-кероси-новых погонов нефти В. В. Марковников применял фракционированную перегонку в комбинации с химической обработкой выделенных дистиллятов. Перегонка велась с многошариковым дефлегматором с отбором узкокипящих фракций — сначала в пределах десяти, затем пяти градусов. Выделенные фракции обрабатывали дымяг],ей серной кислотой или же концентрированной серной кислотой и нитрующей смесью. При такой обработке в реакцию [c.75]

    Твердые алканы делят на две группы веществ — собственно парафин и церезин, различающиеся по кристаллической структуре, химическим и физическим свойствам. При одинаковой температуре плавления церезин отличается от парафина большей молекулярной массой, плотностью и вязкостью. Церезин энергично реагирует с дымящей серной кислотой, с соляной кислотой, в то время как парафин реагирует с ними слабо. При перегонке нефти церезин концентрируется в остатке, а парафин перегоняется с дистиллятом. Ранее делали вывод о том, что церезин представляет собой изоалканы. Однако более высокая температура кипения у церезина, чем у изоалканов соответствующей молекулярной массы, не согласуется с таким выводом. Применение хроматографии и комплексообразования с карбамидом позволило провести систематическое исследование твердых углеводородов и получить [c.196]

    В остатках от перегонки нефти (гудронах, концентратах, полугуд-ронах) наряду с высокомолекулярными углеводородами содер-Ж1ИТСЯ большое количество смолисто-асфальтеновых веществ. Многие из упомянутых углеводородов ценны как компоненты масел, 1и отделение их от смолисто-асфальтеновых веществ — задача технологии очистки нефтяных фракций. Эффективность очистки остатков нефти от смолистых веществ индивидуальными избирательными растворителями невысока даже при их высокой кратности к сырью. Объясняется это тем, что не все составные части смол хорошо растворяются а избирательных растворителях. В ооновном растворенные или дисперпированные в сырье смолисто-асфальте- овые вещества можно удалять обработкой остатков как серной кислотой, так и сжиженными низкомолекулярными алканами. Метод деасфальтизации серной кислотой, особенно в сочетании с последующей контактной очисткой отбеливающими глинами, пригоден для производства остаточных масел из концентратов ма- [c.78]

    Вещества основного характера могут быть отделены от нефти обработкой слабой серной кислотой. Количество азотистых оснований составляет в среднем 30% от суммы всех соединений азота. При перегонке они попадают в дистиллятные продукты. Азотистые основания нефти представляют собой гетероциклические соединения с атомом азота в одном из колец, с общим числом колец от одного до трех. В основном они являются гомологами пиридина (VIII), хинолина (IX), изохинолина (X), а также в меньшей степени акридина (XI)  [c.39]

    Пластификаторы. Один из методов получения изоляционного материала с заданными свойствами - это пластификация, т.е. введение в битум веществ, химически не взаимодействующих с ним, но образующих Гомогенную систему. Пластификаторы предназначены для повышения пластичности изоляционных материалов при нанесении их в условиях температур до -25 С. Пластификаторы считаются эффективными, если при введении их в битум наряду с приданием мастике упругопластичных свойств наблюдается минимальное снижение вязкости и температуры размягчения. Лучшими пластификаторами являются полимерные продукты - полнизобутилен с различной относительной молекулярной массой и полидиен. Менее эффективны а) масло осевое - неочищенные смазочные масла прямой перегонки нефти с кинематической вязкостью при температуре 50 °С 0,12-0,52 см /с содержанием механических примесей не более 0,07 % и воды не более 0,4 %, температурой вспышки не ниже 135 °С и температурой застывания не выше -55 °С б) масло зеленое - продукт пиролиза нефтепродуктов плотностью около 970 кг/м , с содержанием серы не более 1 % и воды не более 0,2 % в) лакойль - смесь полимеризованных углеводородов пиролиза нефти и кислого гудрона, получаемого при очистке легкого масла серной кислотой с вязкостью при 50 С от 0,035 до 0,16 см /с, температурой вспышки не ниже 35 С, содержанием воды не более 2 % г) масла автотракторные (автолы), трансформаторные. [c.81]

    В остальном процессы обработки полуфабри1 атов на обеих установках сходны между собой остаток от вакуумной перегонки нефтей очищают серной кислотой и подвергают контактной нейтрализации. Чтобы полученные авиационные масла превратить в особо высокосортные марки, их дополнительно очищают избирательными растворителями и отбеливающими землями. [c.398]

    При переработке высокосернистой нефти бензин прямой перегонки очищается. Лигроин подвергается крекингу. Получаемый дестиллат содержит меньще серы, чем исходный лигроин, но требует все же кислотной очистки и вторичной перегонки. Керосин отдельно не получается, а входит в состав легкого солярового дестиллата. Как легкий, так и тяжелысоляровый дестиллаты направляются на термический крекинг. Крекинг-бензин очищается серной кислотой, защелачивается. и подвергается вторичной перегонке. Остаток вакуумной перегонки продувается воздухом и дает товарные сорта битумов. [c.425]

    Приборы и реактивы. Приборы для получения метана, этилена, ацетилена. Прибор для фракционной перегонки нефти. Воронка стеклянная делительная. Воронка коническая. Цилиндры мерные на 20 и 50 мл. Капилляры стеклянные. Кристаллизатор стеклянный. Колбы приемные. Пробирка стеклянная широкая. Чашка фарфоровая. Водяная баня. Сеткг асбестированная. Фильтры бумажные. Ацетат натрия Hg OONa (безводный). И весть натронная (смесь NaOH и Са(ОН), безводная). Хлорид кальция (безводный). Карбид кальция. Силикагель. Бензол. Нефть. Речной песок. Бромная вода. Этиловый спирт (96%-ный). Растворы аммиака (25%-ный), азотной кислоты (нл. 1,4 г/см ), серной кислоты (пл. 1,84г/слг , 2 н.), перманганата калия (0,1 н.), нитрата серебра (5%-ный), гидроксида натрия (4 н.). [c.237]

    Эта реакция играет важную роль в процессе превращения продуктов перегонки нефти в спирты. Иногда ее осуществляют растворением алкенов в концентрированной серной кислоте с последующим разбавлением раствора водой в промышленности эту реакцию все чаще проводят путем прямой гидратации алкенов водяный-1 паром в присутствии кислотных катализаторов. Присоединение, инициируемое протоном, протекает в соответствии с рассмотренными выше схемами и приводит к транс-що дуктам первичный спирт получается только в случае этилена (ср. стр. 179). Можно, однако, получать первичные спирты из соответствующих алкенов присоединением диборана ВгИб (образующегося в результате взаимодействия КаВН4 с EtO ВР,Г). В процессе этой реакции, получившей общее название гидро-борирования, сначала получается бортриалкил [c.183]

    Сульфонафтеновые кислоты — составная часть кевосинового контакта, который применяется для обработки поверхностей, зараженных радиоактивными элементами. Керосиновый контакт (контакт Петрова) получается в результате обработки высокотемпературных продуктов перегонки нефти серной кислотой. [c.213]

    Наиболее масштабным и самым крупным в истории канадской нефтеперерабатывающей промышленности является проект модернизации завода компании Irving Oil Ltd. в г. Сент-Джон, провинция Новый Брансуик. Нынешняя мощность НПЗ — 12 млн. т/год. На модернизацию завода намечено израсходовать 1 млрд. канадских долл., с тем чтобы удовлетворить растущие экологические требования и выпускать в 2002—2004 гг. бензин с содержанием серы 150 ррт, а в 2005 г. — 30 ррт, а также малосернистое дизельное топливо зимних сортов. Кроме этого целью проекта модернизации является увеличение гибкости технологических процессов, реализация возможности переработки более тяжелых и менее качественных нефтей, плюс общий рост эффективности производства. Суть модернизации в строительстве новых установок прямой перегонки, каталитического крекинга и алкилирования, пяти установок, предназначенных для улучшения экологической ситуации на заводе и повышения качества нефтепродуктов (скрубберы для топливных газов, регенерации серной кислоты, очистки хвостовых газов от серы, аминовой экстракции серы и отпарки кислых стоков). Кроме этого, намечено серьезно улучшить энерге- [c.86]

chem21.info

Способ очистки нефтяных дистиллятов от сернистых соединений и каталитических ядов

 

Союз Советских

Социалнсткческих

Респубики

ОПИСАНИЕ

ИЗОБРЕТЕНИЯ

К ПАТЕНТУ

Опубликовано 3011Я0 Бюллетень Мо 44

Дата опубликования описания. 30,11,&0 (51)М. Кл.3

С 10 G 27/06

Государственный комитет

СССР по делам изобретений и открытий. (53) УДК 665.666 °

° 42 (088.8) (72) Автор изобретения

Иностранец

Дэвид Гарольд Джозеф Карлсон (США) Иностранная фирма

"ЮОП HHK " (США) (71) Заявитель (54) СПОСОВ ОЧИСТКИ НЕФТЯНЫХ ДИСТИЛЛЯТОВ

ОТ СЕРНИСТЫХ СОЕДИНЕНИЙ И КАТАЛИТИЧЕСКИХ.

ЯДОВ

Изобретение относится к способам очистки нефтяного сырья от сернистых соединений и каталитических ядов и может быть использовано в нефтехимической промышленности. 5

Известен способ очистки нефтяного сырья от сернистых соединений и каталитических ядов путем окисления исходного сырья в присутствии металлфталоцианитового катализатора в ще- 10 лочной среде (11 .

Наиболее близким к изобретению является способ очистки нефтяных дистиллятов от сернистых соединений и каталитических .ядов путем предва- 15 рительной обработки исходного сырья и последующего окисления обработанного сырья кислородом в присутствии металлфталоцианчнового катализатора в щелочной среде (2 . 20

Окисление проводят при температуре 10-66 С в присутствии кислорода, взятого в количестве не более 0,7 атома кислорода на атом меркаптаиовой серы. 25

Предварительную обработку сырья проводят промывкой водным раствором щелочи.

Однако, при этом наблюдается эмульгирование сырья, поступающего на 30 окисление. Кроме того, в процессе образуется большое количество трудноутилизируемых сточных вод, приводящих к загрязнению окружающей среды.

Целью предлагаемого изобретения является повьхоение эффективности процесса за счет предотвращения эмульгируемости исходного сырья и ликвидации сточных вод.

Поставленная цель достигаеТся способом очистки нефтяных дистиллятов от сернистых соединений и каталитических ядов путем предварительной обработки исходного сырья, контактированием последнего со слабоосновной анионо бменной смолой, представляющей собой пористую матрицу на основе стиролдивинилбензольного полимера с поперечными связями, содержащего в качестве функциональной группы третичный амин и последующего окисления обработанного сырья кислородом в присутствии металлфталоцианинового катализатора в щелочной среде.

Отличительный признак способа заключается в предварительной обработке сырья контактированием его со слабоосновной анионнообменной смолой, содержащей пористую матрицу стиролдивинилбензольного полимера и третич..784792 ный амин в качестве функциональной группы.

Предварительную обработку исходного сырья проводят.при 10-100 С и при давлении 1-100 атм.

При этом адсорбируются соединения серы, меркаптаны и фактически все каталитические кислые яды — в основном фенольные вещества, которые действуют либо как каталитические яды, либо окисляются до превращения в каталитические яды в ходе последующего каталитического окисления. Контактирование проводят в течение вре1 мени, эквивалентного пространствен.— ной скорости перемещения исходногс сырья в час 0,5-5,0. Регенерацию анионообменной смолы возможно проводить известными путями.

Так, регенерацию проводят путем прополаскивания смолы в растворе, который смешивают с дистиллятом, обычно в метаноле, после чего реге.— нерацию обеспечивают путем пропускания над смолой водного раствора ка.устика или раствора аммония. После заключительного прополаскивания в воде перед повторным использованием смолы вновь проводят прополаскивание в метаноле.

Обработанное исходное сырье затем подвергают окислению в присутствии катализатора на основе нанесенного на подложку флотационина кобальта в смеси с окислительным реагентом и щелочным раствором, рН 9-14.

Окисление проводят при 10-250 С о, и давлении 1-100 атм в течение времени, эквивалентного пространственной скорости исходного сырья в час, составляющей 0,5-5,0.

В качестве катализатора, используемого в описываемом способе, во=-можно использовать катализатор, содержащий фталоцианин металла III группы, такого как фталоцианин кобальта, железа, родия, никеля, платины, палладия, рутения, осмия, иридия или смеси этих соединений. Могут быть использованы также и другие фталоцианины металлов, включая фталоцианины магния, титана, гафния, ванадия, тантала, молибдена, марганца, меди, серебра, олова и подобные им соединения. Предпочтительно используют сульфопроизводные фталоцианина металла, например, моносульфат фталоцианина кобальта, дисульфонат фталоцианина кобальта или их смеси.

Возможно также использование карбоксилированных производных. Подлсжка катализатора может содержать любой из различных типов древесных углей, получаемых при деструктивной перегонке древесины, торфа, лигнина, ореховой скорлупы, костей и других углеродсодержащих веществ, причем предпочтительны активированные древесные угли.",,елательно использование активированных углей, полученных из растений, при обработке торфа и древесины; угли, полученные в результате обработки нефтяной сажи.

В качестве подложек для катализатора используют такие глины и силикаты, например двухатомные земли, фуллерова земля, кизельгур, глина аттапульгус, полевой шпат, монтморилнит, галоизит, каолин и другие подобные им вещества, а также существующие в естественном виде или получаемые искусственно огнеупорные неорганические окислы, такие как окись алюминия, окись кремния, окись циркония, окись бора и т.д., или комбинации этих

13 окислов, такие как окись кремния окись алюминия, окись кремния окись циркония, окись алюминия окись циркония и т.д. Выбор материала проводят, исходя из конкретных

;р условий процесса окисления. Например, при обработке продуктов перегонки нефти, содержащих соединения серы, твердый абсорбирующий материал, являющийся подложкой, должен быть нерастворим в этих продуктах, и, кроме того, нейтральным к воздействию водных растворов каустика и продуктов перегонки нефти в условиях их обработки. Катализатор на основе фталоцианина металла, нанесенный на подложку, содержит 0,000110 вес.Ъ фталоцианина металла.

Продукты перегонки нефти, содержащие соединения серы, резко отличаются друг от друга по составу в

35 зависимости от нефти, из которой получают дистилляты, диапазона температур кипения дистиллята и от способа обработки нефти, в результате которого получают этот дистиллят.

Описываемый способ особенио эффективен при обработке дистиллятов нефти, имеющих высокие температуры кипения, включающие, в частности, керосины и реактивное топливо. Эти

45 продукты перегонки нефти, содержащие соединения серы, температуры кипения которых достаточно велики, обычно содержат большее количество трудно окисляемых меркаптанов, т.е. нераст50 воримых в каустике, тиолы с сильно разветвленной цепью и ароматические тиолы, в частности, высокомолекулярные третичные и многофункциональные меркаптаны. В последнем случае труд55 ности возникают в связи с присутствием кислых и не содержащих углерода примесей, обычно соединений фенола, которые находятся в таких дистиллятах в высоких концентрациях.

N Описываемый способ можно использовать для обработки продуктов нефти, имеющих низкую температуру, содержащих соединения серы, таких как газообразные, бензиновые и другие

65 фракции нефти.

784792

0,339

930

0,055

0,026

+14

0,8132

441

930

179

189

196

204

213

227

237

252

12О

21

Кислотное число определяют, титрованием гидратом окиси калия.

Формула изобретения

ВНИИПИ Заказ 8597/68 Тираж 545 Подписное

Филиал ППП "Патент", г. Ужгород, ул. Проектная,4

Hp и м е р 1. Фракцию керосина, состав которой приведен ниже, встряхивают в химическом стакане в смеси с воздухом и водным раствором каустика (рН 14) в контакте с нанесенным на активированный древесный уголь катализатора на основе моносульфонатфталоцианина кобальта, содержащего 150 мг фталоцианина на 100 см древесного угля.

Полная концентрация серы, Ъ

Меркаптаны и сера, PPW

Сернистый водород, рр гп

Медь, мг/л

Кислотное число мг КОН/r образца

Цвет по Сейболту (М

Удельный вес, 15,60С

Перегонка: о

Начало сипения, С

10% выкипает при

30%

50%

70Ъ

90%

96%

Конец кипения, Ñ

П р и м е ч а н и е. Окраску по Сейболту определяют сразу же по получению исходного сырья.

Фракцию керосина встряхивают в смеси с воздухом и раствором каустика в контакте с катализатором в течение

120 мин. Образцы периодически (через 60 мин и 120 мин) извлекают и проводят анализ на содержание в них меркаптанов и серы. Результаты анализа представлены в таблице.

Пример 2. Фракцию керосина используемого в примере 1, подвергают предварительной обработке следующим образом.

Исходную фракцию керосина пропускают через колонку, содержащую

100 см слабоосновной анионообменной ,смолы, представляющей собой пористую матрицу на основе стиролдивинилбензольного полимера с поперечными связями, содержащего в качестве функ|цион аль ной группы третичный ами н. ! (АаЬегlyst А-21) в форме пористых бусинок размером 0,4-0,55 мм. Средний размер диаметра пор смолы составляет 700-1200 Х, площадь поверхности 20-30 м2/г. Объемная скорость подачи сырья 1 ч . Затем прошедшую предварительную обработку фракцию керосина обрабатывают в условиях примера 1.

Результаты опыта приведены в таблице, в сравнении с аналогичными данными, полученными при осуществлении примера 1.

Как видно иэ таблицы, при проведении способа согласно изобретению, содержание вредных соединений в целевых продуктах резко снижается.

Способ очистки нефтяных дистиллятов от сернистых соединений и каталитических ядов путем предварительной обработки исходного сырья

40 и окисления обработанного сырья кислородом в присутствии металлфталоцианинового катализатора в щелочной среде, отличающийся тем, что, с целью повышения эффективности процесса, предварительную обработку исходного сырья проводят контактированием последнего со слабоосновной анионообменной смолой, представляющей собой пористую матрицу íà основе стиролдивинилбенэольного поли5О мера с поперечными связями, содержащего в качестве функциональной группы третичный амин.

Источники информации, принятые во внимание при экспертизе

55 1. Патент ClrlA Р 3148137, кл. 208-206, опублик. 1964.

2. Патент СССР Р 355805, кл. С 10 G 27/06, опублик. 1972 (прототип).

   

www.findpatent.ru

Нефть удаление сернист соединений - Справочник химика 21

    Небольшое время контакта при очистке рекомендуется для того, чтобы свести к минимуму те реакции, которые не связаны с удалением сернистых соединений. Необходимая глубина сероочистки достигается очень быстро [41, 56]. На рис. 1У-3 приведены зависимости между содержанием серы и потенциальных смол, потерями от полимеризации и временем контакта, наблюдавшиеся при очистке крекинг-дистиллята иранской нефти 96 %-ной серной кислотой при 4—10° С (расход кислоты 2 о вес. на дистиллят). [c.232]     Гидроочистку прямогонных фракций проводят лишь для удаления сернистых соединений это можно осуществлять при относительно невысоком парциальном давлении водорода в процессе [61]. На рис. 45 приведены результаты обессеривания прямогонного дизельного топлива, полученного из восточных нефтей СССР и содержащего 1 вес. % серы, при температуре 380° С, удельной объемной скорости подачи сырья 1,0 в зависимости от парциального давления водорода. [c.203]

    В послевоенные годы в ряде исследовании [16, 15, 17) были сообщены интересные данные по удалению из нефти разнообразных сернистых соединений с помощью безводного жидкого фтористого водорода. Часть этих данных, показывающая процент удаляемой серы в случае различных по структуре сернистых соединений и в стандартных условиях (20% объемных безводной НР — 99,5 , о-ной чистоты, длительность перемешивания мешалкой с 1725 об/мин. — 1 час), приведена ниже  [c.316]

    Микропримеси, которые могут оказаться в этилене, идущем на полимеризацию, бывают обусловлены различными причинами. Такие микропримеси, как азот и другие инертные газы, могут присутствовать в углеводородном газе или в растворенном виде во фракциях нефти, подвергающихся крекингу или пиролизу. В нефти содержатся сернистые соединения, из которых при пиролизе образуется сероводород, частично сероокись углерода и другие сернистые соединения. В процессе пиролиза углеводородов образуются водород, метан, ацетилен, этан, пропилен и другие углеводороды. При пиролизе в присутствии водяного пара образуются двуокись и окись углерода. В тех случаях, когда для удаления нежелательных компонентов применяются растворители, пары этих растворителей также попадают в этилен или иной продукт. [c.303]

    Рост переработки сернистых нефтей увеличил значение способов обес-серивания, а внедрение в переработку таких тонких каталитических процессов, как платформинг, потребовало возможно полного удаления сернистых соединений во избежание отравления дорогостоящего катализатора. Наоборот, стабильность действия катализаторов, содержащих сернистый вольфрам и молибден, обеспечивается добавкой сульфида натрия в сырье гидрогенизации. [c.144]

    Например, при коксовании гудрона сернистой нефти (в камерах) при выходе кокса 24% образуется 16% бензина (до 205°С), 26% керосино-газойлевой фракции (205—350°С) и 23% тяжелого газойля (>350 °С). Все эти дистилляты содержат непредельные углеводороды, т. е. нестабильны если перерабатывают сернистое сырье, то эти дистилляты к тому же и сернистые, т. е. нуждаются в облагораживании. Бензин имеет невысокое октановое число, но он может быть подвергнут гидроочистке с последующим каталитическим риформингом и дает 80% масс. (т.е. 16-0,8=12,8% масс, на сырье коксования) высококачественного бензина с октановым числом не ниже 80. Керосино-газойлевую фракцию после гидроочистки для удаления сернистых соединений и непредельных углеводородов используют как компонент дизельного топлива. Выход последнего при гидроочистке составляет 95% масс. (т. е. 26-0,95=24,7% масс, на сырье). Наконец, тяжелый газойль может [c.81]

    Провести полную аналогию между синтетическими и природными сернистыми соединениями препятствует то обстоятельство, что пока еще не разработан метод определения группового состава высококипящих сернистых соединений нефти и отсутствуют конкретные данные о составе природных сернистых соединений масляных фракций туймазинской нефти [5, 6]. По этой причине исследование ингибитирующих свойств природных сернистых соединений было проведено путем сопоставления стабильности компонентов масла до и после удаления сернистых соединений. [c.122]

    В большинстве случаев присутствие их в продуктах переработки нефти нежелательно и удаление сернистых соединений является одной из важнейших проблем переработки нефти, особенно принимая во внимание резко возрастающий удельный объем сернистых нефтей в общей добыче нефти по Советскому Союзу. Если в кавказских нефтях содержание серы не превышает 0,1— 0,2%, то в настоящее время более 70% добываемой в СССР нефти содержит серы до 2%. В отдельных нефтях содержание серы достигает 3,0—3,5%. [c.11]

    Увеличение добычи сернистых нефтей определило новые направления очистки и в первую очередь гидроочистки. Применение ранее описанных методов для удаления сернистых соединений реагентами не всегда обеспечивает получение нефтепродуктов требуемых качеств. [c.44]

    АДСОРБЦИОННОЕ УДАЛЕНИЕ СЕРНИСТЫХ СОЕДИНЕНИИ ИЗ ТУЙМАЗИНСКОЙ ДЕВОНСКОЙ НЕФТИ [c.162]

    Большая часть экстракционных процессов, применяемых в промышленности нефтехимического синтеза, предназначена для разделения углеводородов, входящих в состав легких погонов нефти и фракций смазочных масел (очистка масел), или для удаления сернистых соединений из нефтепродуктов. Существует таклнесколько процессов другого назначения. [c.633]

    Продукты прямой перегонки парафинистых нефтей проходят депарафинизацию прежде всего карбамидным методом. Для удаления сернистых соединений из дизельных топлив в основном применяют каталитическую гидроочистку, осуществляемую преимущественно с подачей водорода извне. В отдельных случаях при гидроочистке топлив, обогащенных нафтеновыми углеводородами, используют водород, выделяющийся при дегидрогенизации последних (автогидроочистка). [c.82]

    Наиболее значительно изменяются свойства фракций нолициклических ароматических углеводородов. Если до удаления сернистых соединений у фракции 17, выделенной из концентрата мазута сураханской отборной нефти, Рк = 100 кГ, то после удаления этих соединений Р = 80 кГ. Особенно резко изменяется коэффициент диспергирующей способности фракций ароматических углеводородов. Так, например, у фракции 17 он изменился в 70 раз (от 0,2 до 14). [c.208]

    Фракции моноциклических ароматических углеводородов бесцветны, нижекипящие фракции бициклических ароматических углеводородов, содержащие и сернистые соединения, также бесцветны затем с новышением температуры кипения они приобретают слегка желтоватую окраску, доходящую до темно-желтой для последних фракций, кипящих в пределах 350—400°. После удаления сернистых соединений фракция бициклических ароматических углеводородов, выделенная из туймазинской девонской нефти, выкипавшая в нределах 200—400°, потеряла окраску и стала бесцветной. После хранения в течение года фракция приобрела желтоватый оттенок. [c.495]

    Гидроочистка применяется для удаления сернистых соединений из бензиновых, керосиновых и дизельных фракций прямой перегонки высокосернистых и сернистых нефтей. Процесс гидроочистки осуществляется введением водорода при повышенном давлении (5 МПа) над катализаторами. При этом водород вытесняет серу в виде сероводорода. Гидроочистку применяют также и для очистки продуктов вторичного происхождения от непредельных соединений, которые, присоединяя водород, превращаются в предельные. [c.272]

    С целью удаления из прямогонных бензинов не только углеводородных газов, но и сероводорода, образующегося при разложении сернистых соединений нефти в печи атмосферной колонны, бензины отбензинивающей и атмосферной колонн подвергают совместной стабилизации. [c.270]

    Прп сернокислотной бчистке удаление сернистых соединений из очищаемой фракции происходит как в результате селективного растворения последних в кислоте, так и в результате определенных химических реакций между кислотой и сернистыми соединениями [47—49]. Изменение концентрации влияет как па растворяющую способность серной кислоты по отношению к сернистым соединениям, так п па интенсивность соответствующих реакций. Результаты обработки крекинг-дистиллята калифорнийской нефти примерно одинаковым количеством серной кислоты различной концентрации приведены в табл. 1У-2 [50]. [c.229]

    Прямогонные дистилляты — бензины, керосино-газойлевые и масляные фракции — подвергают гидроочистке главным образом с целью удаления сернистых соединений. При этом получаются малосерпистые дистилляты, представляющие собой очень хорошее сырье для каталитического крекинга, каталитического риформинга [144, 166, 184, 200—205] и производства смазочных масел. Гидроочистка дает возможность существенно улучшать качества остаточных продуктов (напр, котельных топлив) и даже сырых нефтей [101, 104, 121]. К числу эксплуатационных свойств нефтепродуктов различных классов, улучшающихся при гидроочистке, соответственно относятся прдемистость к ингибиторам окисления, легкость деэмульсации, индекс вязкости кислотное число, коксуемость по Конрадсону, антиокислительная стабильность масел, содержание металлов, кислородных и азотистых соединений. [c.251]

    Многочисленные работы по сере в нефти имеют в настоящее время / псчерпываюп(ий библиографический указатель, составленный Борг-стромом, Бостом и Брауном. Указатель этот, составленный по журнальным статьям и патентным описаииям, составляет объемистый труд, заключающий 4 ООО рефератов. Для СССР проблема удаления сернистых соединений из углеводородов также представляет практический интерес вследствие намечающегося у нас строительства промышленности искусственного жидкого топлива на базе битуминоз- [c.172]

    Сернистые соединения, присутствующие в нефти и газолине, полученном либо из нефти перегонкой, либо адсорбцией из природного газа, являются нежелательными. К их числу относятся сероводород H S, сероуглерод Sj, меркаптаны с общей формулой RSH, тиоэфи-ры RSR, тиофены н др. [113, 121, 124]. Эти соединения вызывают коррозию аппаратуры (HjS и RSH в присутствии свободной серы), имеют неприятный запах (RSH), вызывают потемнение бензина, снижают действие добавок для повышения октанового числа, например тетраэтилсвинца [117, 124]. Из этих соображений становится обязательным удаление сернистых соединений, в первую очередь HjS и RSH. Процесс удаления довольно дорог, но во многих случаях оправдывает себя. [c.403]

    В послевоенный период методы гидрогенизации начинают проникать в 11ер0ра6отку нефти. Этому способствовал ряд факторов. Так, прогресс двигателестроения требовал моторных топлив и масел все более высокого качества. Первостепенное значение приобрела необходимость снижения содержания или даже полного удаления сернистых соединений из бензинов, реактивных и дизельных топлив, масел. [c.9]

    Прочие реакции серной кислоты с компонентами нефтяных фракций. Имеющиеся в составе нефти гзотистые соединения взаимодействуют с серной кислотой, образуя сульфаты, переходящие в кислый гудрон. Нафтеновые кислоты частично растворяются в серной кислоте, а частично сульфируются, причем карбоксильная группа нафтеновых кислот при сульфировании не разрушается. Продукты взаимодействия нафтеновых 1 серной кислот ослабляют эффективность действия серной кислогы на другие соединения, поэтому целесообразно перед сернокислотной очисткой предварительно удалить из очищаемого продукта нафтеновые кислоты. Условия очистки. Технологический режим сернокислотной очистки зависит от ее назначения. Дли очистки, имеющей целью удаление смолистых веществ из мaзo ныx масел, повышение качества осветительных керосинов, удаление сернистых соединений, применяют 93% кислоту. При деароматизации используется 98% кислота или олеум. Легкая очистка бензина, предназначенная для улучшения цвета или удаления азотистых оснований, проводится серной кислотой с концентрацией 85% г ниже. Применение разбавленной кислоты там, где это возможно, предпочтительнее, так как кислый гудрон образуется в меньших количествах, ослабляются процессы полимеризации. [c.317]

    Основная масса реактивных топлив производится прямой перегонкой сернистых и малосернистых нефтей [1]. Дистиллаты реактивных топлив (Т-1, ТС-1 и Т-2) подвергаются щелочной очистке и водной промывке для удаления сероводорода и некоторой части органических кислот. Частично при этом из топлив ТС-1 и Т-2 удаляются меркаптаны. Для более глубокого удаления сернистых соединений, а также кислородных и азотистых соединений, дистиллаты реактивных топлив (ТС-1) из сернистых нефтей подвергаются гидроочистке. В результате получается топливо Т-7, которое обладает меньшей коррозионной агрессивностью и повышенной термической стабильностью [2]. При получении тяжелых реактивных топлив типа Т-5 из малосернистых нефтей используется сернокислотная очистка, позволяющая снизить в топливе количество кислых соединений и смол, что позволяет повысить его термическую стабильность [3]. За рубежом для очистки реактивных топлив от активных сернистых соединений, главным образом меркаптанов, используют обработку хлоридом меди, сульфидом свинца (процесс Бендер ), воздухом в щелочной среде (процесс Мерокс ), воздухом в присутствии едкого натра и уксусного ангидрида (процесс Солютайзер ), водным раствором едкого атра в присутствии метанола (процесс Юнисол ), Эти процессы позволяют снизить содержание меркаптановой серы в реактивных топливах, полученных из сернистых нефтей, ниже 0,001%. В США с помощью процессов Мерокс и Бендер в 1964 г. было получено 3 млн. г реактивного топлива, что составило 12% от общего количества вырабатываемых топлив. При этом общая мощность установок была равна примерно 30% от мощности установок по гидроочистке [4]. [c.8]

    Работы по снижению коррозионной агрессивности сернистых реактивных топлив развиваются по линии снижения содержания в них меркаптановой серы и путем добавки в топливо антикоррозионных присадок. Среди многочисленных методов удаления сернистых соединений из топлив, в нефтепереработке в последнее время предпочтение отдается гидроочистке и гидрокрекингу. Гидроочищенные топлива из сернистых нефтей не вызывают коррозии цветных металлов и их сплавов при нагреве до 120—150° и выше 1131]. [c.37]

    Тракторные керосины прямой перегонки и крекинга, полученные из сернистых нефтей, защелачиваются для удаления нафтеновых кислот и сернистых соединений. Дистилляты несернистых нефтей, используемые для получения осветительного керосина, защелачиваются для удаления нафтеновых кислот. Только небольшая часть керосина дсполнительно очищается сернокислотным способом для удаления смол дистилляты из сернистых нефтей должны подвергаться гидроочистке для удаления сернистых соединений. [c.277]

    Фракции дизельных топлив из низкозастываюш.их несернистых нефтей только защелачиваются для удаления нафтеновых кислот фракции дизельных топлив из сернистых парафинистых нефтей, получаемые прямой перегонкой, крекингом и коксованием, должны подвергаться гидроочистке для удаления сернистых соединений и денарафинизации карбамидом для удаления парафина [c.277]

    Гидрогенизационные процессы в нефтепереработке стали особенно быстро развиваться в связи с ростом/добычи нефтей с высоким содержанием серы, а также прогрессом двигателе-строения. Первостепенное значение приобрело снижение содержания или даже полное удаление сернистых соединений из бензинов, реактивных и дизельных топлив и масел, поскольку сернистые соединения вызывают повышенный расход моторных топлив и быстрый износ моторов. Кроме того, в последнее время ведется борьба с загрязнением окружающей среды, особенно сернистыми соединениями. Развитию гидрогенизацион-ных процессов способствует и диспропорция между масштабами потребления бензина и других легких дистиллятов и содержанием их в нефти прямая перегонка нефти дает их недостаточно. нужна деструкция тяжелых углеводородов до более ле]>- [c.60]

    Недавно разработан процесс получения стирола, исходя непосредственно из бензиновых фракций нефти, богатых ароматическими и нафтеновыми углеводородами. В этом процессе бензиновая фракция нефти с т. кип. 40—193° С подвергается гидроочистке для удаления сернистых соединений и фракционируется. Затем проводится (при 480°С и 18—21 ат) каталитический риформинг, в результате которого получается фракция ароматических углеводородов, содержащая около 28% этилбензола. Этипбен-зол 99,6—99,9%-ной чистоты выделяется из ксилольной фракции и подвергается дегидрированию в стирол. Мощность одного из заводов по производству стирола, работающего по этому методу, составляет 45,4 тыс. т в год. Выход стирола составляет 0,53 % от перерабатываемой на этом предприятии нефти. В 1964 г. было известно семь установок по получению стирола из нефтяного этилбензола. Общая продукция стирола весьма высокая в США, например, в 1965 г. она достигла 900 тыс. т. [c.187]

    В этой главе рассматриваются сернистые соединения нефти с точки зрения их хим ической природы, их выделения из нефти и воз.можной утилизации. Из методов выделения или удаления сернистых соединений из нефтяных погонов упоминаются лишь те, которые основаны на том или и1ном характерном Х1имиче-ском свойстве данного соединения. Простейшие типы содержащих серу компонентов нефти — элементарная сера, сероводород и меркаптаны-—подвергались более подробному изучению с указанных точек эрения, чем (более сложные соединения типа тиоэфиров и тиофена. Поэтому химия простейших соединений излагается в дальнейшем более детально. [c.458]

    Согласно первому направлению, предусматривающему прежде всего получение ароматических углеводородов, свободных от сернистых соединений, сернистые соединения могут быть удалены из соответствующих фракций окислением их в сульфоны перекисью водорода с последующим удалением сульфонов адсорбционным методом [1—6]. Применимость этого метода к высшим фракциям нефтей еще не может считаться вполне обоснованной. Имеются указания на то, что при этом способе происходит неполное удаление сернистых соединений [6] неясно также, не будет ли окисление распространяться и на некоторые типы ароматических углеводородов, которые при этом могут безвозвратно теряться. [c.125]

    Удаление сернистых соединений из легких нефтяных дистиллятов с самого начала развития нефтяной пролшшленности было одной из главных проблем технологии нефти. [c.375]

    Фракции после дестилляции подвергают очистке, степень которой зависит от назначения продукта. В сырой нефти могут присутствовать ароматические и непредельные углеводороды и, кроме того, некоторое количество непредельных углеводородов может образоваться в процессе дестилляции. Очистка заключается в обработке фракции серной кислотой или серным ангидридом и последующим удалением образовавшихся сульфосоедине-ний. Процесс удаления ненасыщенных углеводородов не следует смешивать с процессом, имеющим целью удаление сернистых соединений. Парафиновое масло, иногда называемое русским минеральным маслом, белым маслом или Nujol , получают подобным же путем, но с применением более глубокого сульфирования. [c.145]

    Гидроочистка осуществляется при температурах 340—430° С под давлением водорода 50—70 ат на алюмо-кобальто-молибдено-вом катализаторе. Срок скужбы катализатора — 2 года. Гидроочистка применяется для удаления сернистых соединений из сырья, идущего на каталитический риформинг, для очистки керосинов и дизельных топлив и, наконец, для гидрирования тяжелых дистиллатов сернистых нефтей с целью подготовки качественного сырья для крекинга. В последнее время гидроочистка стала внедряться и в производство масел при этом достигается не только обессеривание, но и гидрирование полициклических ароматических и гибридных углеводородов. [c.253]

    Получаемые из сернистых нефтей В. содержат в своем составе различные сернистые соединения, наличие которых снижает восприимчивость В. к ТЭС. Некоторые сернистые соединения, например HjS, элементарная сера и низшие меркаптаны вызывают коррозию металлов и присутствие их в В. недопустимо. Очистка В. от нежелательных примесей является одним из важных элементов их технологии. Необходимо удаление сернистых соединений, смолистых веществ, органич. к-т и их солей и др. Очистка В. может производиться серной к-той, щелочью, плюм-битом натрия, гипохлоритом, действием водорода под давлением (гидроочистка) и др,, а также обработкой адсорбентами, катализаторами, избирательными растворителями, В. газовые и прямой перегонки из малосернистых нефтей очищаются от сероводорода и меркаптанов щелочью, В случае высокосернистого сырья применяют гидроочистку, Крекинг-Б, обессеривают обработкой щелочью, после чего в них вводят ингибиторы. Последнее время в США получили распространение процессы удаления из В. нормальных парафиновых углеводородов путем адсорбции на высокоизбирательных адсорбентах — цеолитах ( молекулярных ситах ). При этом поры адсорбента заполняются только молекулами углеводородов с прямой цепью. Этот процесс позволяет значительно повысить 04 В, прямой перегонки и термич, крекинга. [c.202]

    Г в связи со значительным увеличением доли сернистых и высокосернистых нефтей в общем количестве перерабатываемой нефти и непрерывным ростом потребления малосернистых дизельных топлив, авиационных керосинов и высокооктанового автомобильного бензина широкое развитие получил процесс гидроочистки этих продуктов. Удаление сернистых соединений из дистиллятов способствует значительному увеличению моторесурсов двигателей, снижению или полному устранению коррозии аппаратуры при переработке и транспортировании гидроочищенных нефтяных фракций, улучшению цвета и запаха продуктов, а также увеличению их стабильности к смолообразованию при хранении. Кроме того, применение малрсернистых топлив предотвращает загрязнение воздухаД [c.185]

    Основная часть сернистых соедипеппн (70—80%) концентрируется в высококипящей части нефти, главным образом в мазутах. Почти во всех нефтях содержание серы растет с увеличением количества ароматических (особенно конденсированных) структур. При удалении из фракций нефти ароматических углеводородов удаляются обычно и сернистые соединения (табл. 10). [c.20]

chem21.info

Очистка нефтепродуктов, действие ее на сернистые соединения

    Исследования показали, что сульфиды образуются при действии сероводорода не на железо, а на продукты его коррозии. Наибольшей активностью обладают пирофорные отложения, образующиеся при хранении светлых дистиллятных нефтепродуктов, содержащих элементную серу и сероводород. Случаи самовозгорания пирофорных отложений нефтепродуктов чаще наблюдаются в резервуарах с бензиновым дистиллятом, полученным при первичной перегонке сернистых и высокосернистых нефтей, реже — при хранении бензинов от вторичных процессов переработки тех же нефтей. Наиболее радикальной мерой предупреждения образования пирофорных соединений железа в заводской аппаратуре является удаление сероводорода из нефти и нефтепродуктов защелачиванием или специальной очисткой моноэтаноламином или гидроочисткой. Другой путь устранения образования пирофорных соединений — применение специальных или биметаллических сталей или покрытий, защищающих металлическую поверхность от сероводородной коррозии. [c.329]     Как уже отмечалось, органические соединения серы, содержащиеся в сернистых нефтях, обладают различными химическими свойствами и неодинаковой термостойкостью. Поэтому прежде, чем приступить к проектированию завода на новом сорте сернистой нефти (или к разработке мероприятий, обеспечивающих работу действующего завода при переводе его с бессернистой на сернистую нефть), необходимо иметь все данные, характеризующие эту нефть, баланс и распределение серы и сернистых соединений по продуктам на технологических установках завода. Если это не представляется возможным, особенно когда на завод поступает смесь нефтей с йе-скольких месторождений, можно воспользоваться некоторыми общими положениями и литературными данными для ориентировочных расчетов, разработки мер по очистке нефтепродуктов и получению [c.32]

    При сернокислотной очистке нефтепродуктов получаются в основном два вида отработанной кислоты от очистки легких фракций (бензина и керосина) и от очистки масляных дистиллятов, медицинских масел и т. д. Считается, что при очистке последних действие кислоты частично имеет физическую природу, заключающуюся в осаждении асфальтенов и смол при одновременном растворении сернистых соединений и веществ, портящих цвет масла [c.570]

    Вопросам термической стойкости сернистых соединений в нефти и распределению их в продуктах при переработке нефти не уделяется достаточного внимания, что иногда наносит ущерб производству. Имеют место случаи, когда на действующие заводы направляют высокосернистые нефти с новых месторождений, без учета приспособленности этих заводов к переработке таких нефтей. В результате ухудшается качество очистки нефтепродуктов, усиливается коррозия оборудования, увеличивается расход катализаторов и реагентов, недогружаются или перегружаются мощности но очистке продуктов и переработке сероводорода и т. д. [c.27]

    ДЕЙСТВИЕ ОЧИСТКИ НЕФТЕПРОДУКТОВ НА СЕРНИСТЫЕ СОЕДИНЕНИЯ 497 [c.497]

    Применение двухступенчатой очистки определяется, главным образом, присутствием сернистых соединений, фенолов и других веществ, обладающих наряду с токсичностью для активного ила более высокими по сравнению с нефтью скоростями окисления и обуславливающих более высокое значение БПКполн сточных вод. Кроме того, двухступенчатая схема очистки обеспечивает более глубокую степень очистки от нефтепродуктов и других трудноокисляемых органических загрязнений, поэтому ее применяют на большей части очистных станций действующих и проектируемых НПЗ. Схема двухступенчатой биохимической очистки сточных вод второй системы канализации приведена на рис. 4.2, а расчетные параметры —в табл. 4.3. Характеристика [c.128]

    Наиболее распространены и многообразны по конструктивному выполнению, схемам и компоновкам поршневые компрессоры, их различают по устройству кривошипно-шатунного механизма (крейцкопфные и бескрейцкопфные), устройству и расположению цилиндров (простого и двойного действия, 1-, У- и Ш-образные, горизонтальные и вертикальные, оппо-зитные, со ступенчатым поршнем и т. д.), числу ступеней сжатия. Поршневые компрессоры широко применяют в установках для получения искусственных удобрений и пластических масс, в холодильной промышленности и криогенной технике. В азотнотуковой промышленности поршневыми компрессорами сжимается азотно-водородная смесь до 25-50 МПа. В производстве полиэтилена сжатие этилена осуществляется до 200-250 МПа. В нефтедобывающей и нефтеперерабатывающей промышленности поршневые компрессоры применяются в газлифтах, в процессах очистки нефтепродуктов от сернистых соединений и [c.393]

    Еще более шестидесяти лет назад для очистки нефтей и светлых нефтепродуктов применялась концентрированная серная кислота. При этом было замечено, что отходы производства — кислые гудроны — обогащаются сернистыми соединениями. Из таких кислых гу фонов и были впервые выделены сульфиды [97, 98]. Сернокислотный экстракт разбавляли водой, нейтрализовали, перегоняли и отдельные фракции обрабатывали сулемой. Такой способ суммарного выделения сернистых соединений применялся в лабораториях довольно широко [И, 77, 78, 99]. Способ десульфурирования действием концентрированной серной кислоты основан на хорошей растворимости сернистых соединений в концентрированной серной кислоте, главным образом сульфидов [100—102] однако он не селективен — захватываются не только сернистые соединения других [c.17]

    В отличие от составных частей нефти, имеющих то или иное положительное значение или применение, сернистые соединения являются тем ее компонентом, который, вследствие корродирующего действия на металлы, имеет лишь отрицательное значение. Поэтому одна из задач очистки нефти и ее дестиллатов заключается в том, чтобы по возможности освободиться т сернистых соединений. Соответствующая методика — способы обес-серивания нефтепродуктов — будет, рассмотрена ниже, в ч. II. [c.247]

    Дистилляты, получаемые при переработке сернистых и высокосернистых нефтей, вследствие высокого содержания сероводорода и меркаптанов нуждаются в обязательной очистке. Очистка дистиллятов от этих соединений на большинстве нефтеперерабатывающих заводов осуществляется путем защелачивания растворами едкого натра. При этом сероводород и некоторая часть меркаптанов (около 25%) извлекаются из нефтепродуктов и переходят в щелочной раствор в виде сульфида, гидросульфида и меркаптидов натрия. Наряду с сернистыми соединениями при очистке дистиллятов нефтепереработки растворами едкого натра в щелочной раствор переходят также фенольные соединения, образуя соответствующие феноляты. При обезвреживании отработанных щелочей в результате гидролиза фенолятов натрия под действием кислот выделяется фенольно-крезольный концентрат (ФКК), который может найти разнообразные применения. [c.163]

    Присутствие в нефтепродуктах агрессивных сернистых соединений не допускается, так как они оказывают коррозионное действие на металлы. Очистка нефтепродуктов от сернистых соединений производится водным раствором едкого натра. При заще-пачивании нефтепродуктов в щелочной раствор переходят фенолы, сероводород, меркаптаны и другие сернистые соединения. Для защелачивания применяют обычно 10—15%-ный рас-тво р щелочи, который после многократного использования с концентрацией I—2% и большим количеством связанных сернистых и других загрязнений с5ра1сывается в специальную сернисто-щелочную канализацию. [c.8]

    В процессе гидроочистки нефтепродуктов выделяется сероводород. Как видно из рис. 2, расход водорода на хидрирование сернистых соединений в процессе гидроочистки невелик и составляет даже в случае гидроочистки дизельного топлива 0,05—0,1%. Одновременно в процессе щдроочистки нефтепродукта от сернистых соединений происходит и очистка от азота и кислорода. Хотя современные катализаторы гидроочистки обладают селективным действием, все же протекают и другие реакции, на которые расходуется водород. [c.14]

    Сернистые соединения вследствие их корродирующего действия на металлы, а также неприятного запаха и токсичности рассматривались лишь как вредные компоненты нефтепродуктов. Поэтому одной из главных задач очистки нефти и ее дистиллятов являлось возможно полное освобождение их от сернистых соединений. За последние 20 лет положение в этом отношении почти не изменилось. К сера-органическим соединениям по-прежнему относятся лишь как к компонентам нефти, ухудшающим технические свойства углеводородных фракций, и не рассматривают их как возможные источники химического сырья. При использовании этого сырья не только откроются новые пути более полной и целесообразной утилизации нефти, но и появятся неизвестные в настоящее время в технике и в природе направления синтеза сераорганических соединений, которые обладают комплексом ценных для практического применения свойств (физиологическая активность, активные компоненты в технических изделиях на основе высоконолимерных веществ, антикатализаторы, консервирующие вещества и т. д.). Было проверено действие концентратов сераорганических соединений из южноузбекистанских нефтей как инсектисидов [12]. Опрыскивание водной эмульсией та1шх концентратов хлопчатника, пораженного паутинным клещи-ком, дало положительный эффект. [c.335]

    Необходимость нормирования серы вытекает из того обстоятельства, что как сами сернистые соединения, особенно сероводород и меркаптаны так и сернистый газ, образующийся при сгорании различных сернистых соединений, оказывают на различные части двигателей внутреннего сгорания (трубопроводы, клапаны, цилиндры) разъедающее действие, которое, естественно, особенно усиливается при повышенном содержании серы и при высокой температуре. Не менее вредное влияние некоторые виды сернистых соединений оказывают на стенки металлических резервуаров для хранения нефтепродуктов особенно сильную коррозию вызывают элементарная сера, сероводород и меркаптаны. Ввиду значительных труд ностей, с которыми сопряжено полное удаление некоторых видов сернистых соединений (см. ч. ПТ, гл. II, стр. 603), весьма важным представляется вопрос о рациональных нормах на серу в нефтепродуктах, так как практические тенденции здесь очевидны во избежание излишних расходов на очистку стремятся сохранить повышенное содержание серы в нефтепродуктах, выпускаемых на рынок. Таким образом, возникает вопрос о максимально допустимом содержании серы в различных нефтепродуктах особенно важное значение этот вопрос имеет для моторного топлива, и для его освещения проделаны большие и важные работы. [c.239]

    Использование присадок, улучшающих эксплуатационные свойства масел, совершенно не снимает требований к качеству выпускаемых заводом смазочных продуктов. Установлено, что в зависимости от степени очистки нефтепродукта масла и топлива обладают различной восприимчивостью к присадкам. Например, противоокислительные присадки к топливам теряют свое действие, если в составе топлив содержатся кислоты и фенолы добавление этих присадок к маслам эффективно в том случае, если из масел удалены в достаточной мере смолы и полициклические ароматические углеводороды с короткими цепями. Действие моющих и антикоррозионных присадок не проявляется в слабоочищенных маслах или в том случае, когда в топливе содержится большое количество сернистых соединений. Присадки, понижающие температуру застывания масел, не эффективны, если в маслах содержится значительное количество твердых углеводородов, смол, ароматических углеводородов и т. д. [c.284]

chem21.info