Способ добычи нефти. Добыча нефти нкт


способ добычи нефти - патент РФ 2177534 -

Изобретение относится к нефтяной и газовой промышленности, а конкретно к способам добычи нефти, обеспечивает возможность откачки нефти с любых глубин при высокой производительности насосов и невысокой потребной мощности насосов. Сущность изобретения: по способу в зоне динамического уровня скважинного флюида устанавливают насосы с пакерами или без пакеров. Откачивают флюид по насосно-компрессорным трубам (НКТ) на устье скважины в систему сбора нефти. В НКТ выше насоса выполняют радиальные отверстия. Снизу насоса подсоединяют колонну НКТ до расчетного уровня, включая кровлю пласта. На конце колонны устанавливают струйный насос с возможностью соединения зоны разрежения с объемом скважины под насосом. В НКТ заливают нефть до устья скважины и включают прямую или обратную подачу насоса с кольцевой прокачкой жидкости по НКТ и их затрубью через струйный насос с созданием режима депрессии на пласт и откачкой флюида пласта. 1 з.п.ф-лы, 2 ил. Изобретение относится к нефтяной и газовой промышленности, а конкретно - к способам добычи нефти. Существуют два основных способа добычи нефти: фонтанный и с помощью насосов (В. Н. Васильевский, А.И. Петров. Техника и технологии определения параметров скважин пластов.- М.: Недра, 1989, с. 38.63). Фонтанирующих скважин со временем становится все меньше, поэтому приходится переходить к более дорогостоящим способам добычи нефти с помощью насосов разных типов. В качестве прототипа изобретения выбран способ добычи нефти установленными в скважине насосами типа электроцентробежного насоса, штанговоглубинного насоса и им подобными, включающий установку насосов в зоне динамического уровня скважинного флюида и его откачку по насосно-компрессорным трубам (НКТ) на устье скважины в систему сбора нефти с установкой или без установки пакеров (Е.И. Бухаленко, В.Е. Бухаленко. Оборудование и инструмент для ремонта скважин.- М.: Недра, 1991, с. 13-50). Сущность способа прототипа заключается в том, что насос, установленный преимущественно на глубине 500-1500 м, должен преодолеть напор столба жидкости с гидростатическим давлением 50-150 атмосфер и подать флюид на устье скважины в систему сбора нефти. Недостатками способа являются: - невозможность установки насосов на больших глубинах; - невозможность добычи нефти с больших глубин; - недостаточная производительность насосов; - большие затраты мощности при работе насосов; - низкая отдача пласта при работе с насосами. Задачей изобретения является создание способа добычи нефти, не имеющего указанных недостатков. Техническим результатом при использовании предложенного изобретения является возможность откачки нефти с любых глубин при высокой производительности насосов, высокой отдаче пласта и сравнительно невысокой потребности мощности насосов. Указанный технический результат достигается тем, что в способе добычи нефти скважинным насосом, включающем их установку с пакером или без пакеров в зоне динамического уровня скважинного флюида и откачку флюида по насосно-компрессорным трубам на устье скважины в систему сбора нефти, согласно изобретению, в насосно-компрессорных трубах выше насоса выполняют радиальные отверстия, снизу насоса подсоединяют колонну насосно-компрессорных труб до расчетного уровня, включая кровлю пласта, на конце колонны устанавливают струйный насос с возможностью соединения зоны разряжения с объемом скважины под насосом, в насосно-компрессорные трубы заливают нефть до устья скважины и включают прямую или обратную подачу насоса с кольцевой прокачкой жидкости по насосно-компрессорным трубам и их затрубью через струйный насос с созданием режима депрессии на пласт и откачкой флюида пласта, при этом скважинный насос периодически отключают на короткое время разово или многократно. Выполнение радиальных отверстий в НКТ необходимо для возможности соединения объема нагнетания флюида с объемом всасывания. В этом случае жидкость из затрубья, воспринявшая давление всего столба жидкости, расположенного в НКТ выше насоса, сама перетекает через струйный насос в колонну НКТ и в скважинный насос при его работе и компенсирует гидростатическое давление всего столба жидкости от устья скважины. Насос освобождается от необходимости преодолевать давление и тратит усилие только на компенсацию гидравлических потерь. Подсоединение к скважинному насосу снизу колонны НКТ со струйным насосом на конце позволяет устанавливать струйный насос в любой точке скважины и откачивать в этой точке флюид. Установка струйного насоса, соединенного зоной разряжения с объемом скважины под насосом, обеспечивает в процессе работы создание под насосом пониженного давления (режима депрессии). Пласт в этом случае увеличивает отдачу, и производительность насоса возрастает. Добычи нефти увеличивается. Расчетный уровень установки струйного насоса на колонне НКТ необходим для создания расчетной величины депрессии на пласт, обеспечивающей максимальную отдачу пласта. Заливка нефти в НКТ до уровня устья скважины позволяет скважинному насосу начать процесс добычи нефти струйным насосом с минимальными затратами энергии и с получением изложенных выше преимуществ. Выбор включения прямой или обратной подачи скважинного насоса принципиального значения не имеет, так как в обоих случаях струйный насос создает режим депрессии для пласта с получением всех приведенных выше преимуществ. Кольцевая прокачка жидкости по НКТ и затрубью через струйный насос необходима, с одной стороны, для работы струйного насоса и создания режима депрессии, с другой, для полной разгрузки скважинного насоса, в-третьих, для установки струйного насоса на любой глубине и откачки флюида с этой глубины. При установке струйного насоса на кровле пласта обеспечивается максимальная величина депрессии и отдачи пласта. Периодическое отключение насоса на короткое время обеспечивает увеличение давления в зоне пласта, так как режим депрессии прекращается с прекращением работы насосов, при этом происходит очистка фильтра. При включении насоса часть засоряющих частиц удаляется через фильтр в скважину. При многоразовом отключении-включении насоса достигается полная очистка фильтра и призабойной зоны пласта, в результате чего отдача пласта возрастает до следующей закупорки фильтра и его промывки отключением-включением насоса. Схема предложенного способа приведена на чертеже, где изображены: - на фиг. 1 - продольный разрез скважины с установленным в ней насосом с прямой подачей флюида и другими устройствами, позволяющими реализовать предложенный способ; - на фиг. 2 - продольный разрез скважины с установленным в ней насосом с обратной подачей флюида и другими устройствами, позволяющими реализовать предложенный способ. На схеме показаны: скважинные насосы 1, пакеры 2, динамический уровень 3 скважинного флюида, насосно-компрессорные трубы 4 для откачки флюида, устье 5 скважины 6, система сбора нефти 7, радиальные отверстия 8 в НКТ 4 и колонна НКТ 9, подсоединенная к насосу 1 снизу, кровля 10 пласта 11, струйный насос 12, соединенный зоной разрежения 13 с объемом 14 скважины 6 под струйным насосом 12, нефть 15, направление прямой подачи нефти 16, направление обратной подачи нефти 17, объем 18 в трубе (НКТ), объем 19 в затрубье. Способ выполняют следующим образом. В скважину 6 опускают сборку из НКТ 4, насоса 2, колонны НКТ 9, струйного насоса 12, пакеров 2. Закрывают устье 5, заливают в НКТ 4 нефть до уровня устья 5 и включают насос 1 по прямой 16 или обратной 17 схеме подачи флюида. Подаваемая насосом 1 жидкость проходит через струйный насос 12. Зона разрежения 13 засасывает флюид из объема 14 и подает его в НКТ 4. Отдача пласта увеличивается. Так как насос 1 находится и внутри и снаружи в закольцованной жидкости, то ему не приходится преодолевать гидростатическое давление столба жидкости, в связи с чем для работы насоса не требуются большие мощности. При остановке двигателя 1 давление всего столба жидкости от устья передается через каналы в насосе 12 и пакере 2 на объем 14 в зоне фильтра и призабойной зоне пласта 11, и они прочищаются входящими струями жидкости. При включении насоса 1 создается режим депрессии на пласт 11 и засоряющие частицы выбрасываются с потоком флюида в скважину 6. При многократном отключении-включении насоса фильтр и призабойную зону пласта можно очистить полностью, что увеличит приток флюида и отдачу пласта. В результате реализации способа производительность насоса и добыча нефти возрастают.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ добычи нефти скважинными насосами, включающий их установку с пакерами или без пакеров в зоне динамического уровня скважинного флюида и откачку флюида по насосно-компрессорным трубам нa устье скважины в систему сбора нефти, отличающийся тем, что в насосно-компрессорных трубах выше насоса выполняют радиальные отверстия, снизу насоса подсоединяют колонну насосно-компрессорных труб до расчетного уровня, включая кровлю пласта, на конце колонны устанавливают струйный насос, с возможностью соединения зоны разрежения с объемом скважины под насосом, в насосно-компрессорные трубы заливают нефть до устья скважины и включают прямую или обратную подачу насоса с кольцевой прокачкой жидкости по насосно-компрессорным трубам и их затрубью через струйный насос с созданием режима депрессии на пласт и откачку флюида пласта. 2. Способ по п.1, отличающийся тем, что скважинный насос периодически отключают на короткое время.

www.freepatent.ru

Способ добычи нефти

 

Изобретение относится к нефтяной и газовой промышленности, а конкретно к способам добычи нефти, обеспечивает возможность откачки нефти с любых глубин при высокой производительности насосов и невысокой потребной мощности насосов. Сущность изобретения: по способу в зоне динамического уровня скважинного флюида устанавливают насосы с пакерами или без пакеров. Откачивают флюид по насосно-компрессорным трубам (НКТ) на устье скважины в систему сбора нефти. В НКТ выше насоса выполняют радиальные отверстия. Снизу насоса подсоединяют колонну НКТ до расчетного уровня, включая кровлю пласта. На конце колонны устанавливают струйный насос с возможностью соединения зоны разрежения с объемом скважины под насосом. В НКТ заливают нефть до устья скважины и включают прямую или обратную подачу насоса с кольцевой прокачкой жидкости по НКТ и их затрубью через струйный насос с созданием режима депрессии на пласт и откачкой флюида пласта. 1 з.п.ф-лы, 2 ил.

Изобретение относится к нефтяной и газовой промышленности, а конкретно - к способам добычи нефти.

Существуют два основных способа добычи нефти: фонтанный и с помощью насосов (В. Н. Васильевский, А.И. Петров. Техника и технологии определения параметров скважин пластов.- М.: Недра, 1989, с. 38.63). Фонтанирующих скважин со временем становится все меньше, поэтому приходится переходить к более дорогостоящим способам добычи нефти с помощью насосов разных типов. В качестве прототипа изобретения выбран способ добычи нефти установленными в скважине насосами типа электроцентробежного насоса, штанговоглубинного насоса и им подобными, включающий установку насосов в зоне динамического уровня скважинного флюида и его откачку по насосно-компрессорным трубам (НКТ) на устье скважины в систему сбора нефти с установкой или без установки пакеров (Е.И. Бухаленко, В.Е. Бухаленко. Оборудование и инструмент для ремонта скважин.- М.: Недра, 1991, с. 13-50). Сущность способа прототипа заключается в том, что насос, установленный преимущественно на глубине 500-1500 м, должен преодолеть напор столба жидкости с гидростатическим давлением 50-150 атмосфер и подать флюид на устье скважины в систему сбора нефти. Недостатками способа являются: - невозможность установки насосов на больших глубинах; - невозможность добычи нефти с больших глубин; - недостаточная производительность насосов; - большие затраты мощности при работе насосов; - низкая отдача пласта при работе с насосами. Задачей изобретения является создание способа добычи нефти, не имеющего указанных недостатков. Техническим результатом при использовании предложенного изобретения является возможность откачки нефти с любых глубин при высокой производительности насосов, высокой отдаче пласта и сравнительно невысокой потребности мощности насосов. Указанный технический результат достигается тем, что в способе добычи нефти скважинным насосом, включающем их установку с пакером или без пакеров в зоне динамического уровня скважинного флюида и откачку флюида по насосно-компрессорным трубам на устье скважины в систему сбора нефти, согласно изобретению, в насосно-компрессорных трубах выше насоса выполняют радиальные отверстия, снизу насоса подсоединяют колонну насосно-компрессорных труб до расчетного уровня, включая кровлю пласта, на конце колонны устанавливают струйный насос с возможностью соединения зоны разряжения с объемом скважины под насосом, в насосно-компрессорные трубы заливают нефть до устья скважины и включают прямую или обратную подачу насоса с кольцевой прокачкой жидкости по насосно-компрессорным трубам и их затрубью через струйный насос с созданием режима депрессии на пласт и откачкой флюида пласта, при этом скважинный насос периодически отключают на короткое время разово или многократно. Выполнение радиальных отверстий в НКТ необходимо для возможности соединения объема нагнетания флюида с объемом всасывания. В этом случае жидкость из затрубья, воспринявшая давление всего столба жидкости, расположенного в НКТ выше насоса, сама перетекает через струйный насос в колонну НКТ и в скважинный насос при его работе и компенсирует гидростатическое давление всего столба жидкости от устья скважины. Насос освобождается от необходимости преодолевать давление и тратит усилие только на компенсацию гидравлических потерь. Подсоединение к скважинному насосу снизу колонны НКТ со струйным насосом на конце позволяет устанавливать струйный насос в любой точке скважины и откачивать в этой точке флюид. Установка струйного насоса, соединенного зоной разряжения с объемом скважины под насосом, обеспечивает в процессе работы создание под насосом пониженного давления (режима депрессии). Пласт в этом случае увеличивает отдачу, и производительность насоса возрастает. Добычи нефти увеличивается. Расчетный уровень установки струйного насоса на колонне НКТ необходим для создания расчетной величины депрессии на пласт, обеспечивающей максимальную отдачу пласта. Заливка нефти в НКТ до уровня устья скважины позволяет скважинному насосу начать процесс добычи нефти струйным насосом с минимальными затратами энергии и с получением изложенных выше преимуществ. Выбор включения прямой или обратной подачи скважинного насоса принципиального значения не имеет, так как в обоих случаях струйный насос создает режим депрессии для пласта с получением всех приведенных выше преимуществ. Кольцевая прокачка жидкости по НКТ и затрубью через струйный насос необходима, с одной стороны, для работы струйного насоса и создания режима депрессии, с другой, для полной разгрузки скважинного насоса, в-третьих, для установки струйного насоса на любой глубине и откачки флюида с этой глубины. При установке струйного насоса на кровле пласта обеспечивается максимальная величина депрессии и отдачи пласта. Периодическое отключение насоса на короткое время обеспечивает увеличение давления в зоне пласта, так как режим депрессии прекращается с прекращением работы насосов, при этом происходит очистка фильтра. При включении насоса часть засоряющих частиц удаляется через фильтр в скважину. При многоразовом отключении-включении насоса достигается полная очистка фильтра и призабойной зоны пласта, в результате чего отдача пласта возрастает до следующей закупорки фильтра и его промывки отключением-включением насоса. Схема предложенного способа приведена на чертеже, где изображены: - на фиг. 1 - продольный разрез скважины с установленным в ней насосом с прямой подачей флюида и другими устройствами, позволяющими реализовать предложенный способ; - на фиг. 2 - продольный разрез скважины с установленным в ней насосом с обратной подачей флюида и другими устройствами, позволяющими реализовать предложенный способ. На схеме показаны: скважинные насосы 1, пакеры 2, динамический уровень 3 скважинного флюида, насосно-компрессорные трубы 4 для откачки флюида, устье 5 скважины 6, система сбора нефти 7, радиальные отверстия 8 в НКТ 4 и колонна НКТ 9, подсоединенная к насосу 1 снизу, кровля 10 пласта 11, струйный насос 12, соединенный зоной разрежения 13 с объемом 14 скважины 6 под струйным насосом 12, нефть 15, направление прямой подачи нефти 16, направление обратной подачи нефти 17, объем 18 в трубе (НКТ), объем 19 в затрубье. Способ выполняют следующим образом. В скважину 6 опускают сборку из НКТ 4, насоса 2, колонны НКТ 9, струйного насоса 12, пакеров 2. Закрывают устье 5, заливают в НКТ 4 нефть до уровня устья 5 и включают насос 1 по прямой 16 или обратной 17 схеме подачи флюида. Подаваемая насосом 1 жидкость проходит через струйный насос 12. Зона разрежения 13 засасывает флюид из объема 14 и подает его в НКТ 4. Отдача пласта увеличивается. Так как насос 1 находится и внутри и снаружи в закольцованной жидкости, то ему не приходится преодолевать гидростатическое давление столба жидкости, в связи с чем для работы насоса не требуются большие мощности. При остановке двигателя 1 давление всего столба жидкости от устья передается через каналы в насосе 12 и пакере 2 на объем 14 в зоне фильтра и призабойной зоне пласта 11, и они прочищаются входящими струями жидкости. При включении насоса 1 создается режим депрессии на пласт 11 и засоряющие частицы выбрасываются с потоком флюида в скважину 6. При многократном отключении-включении насоса фильтр и призабойную зону пласта можно очистить полностью, что увеличит приток флюида и отдачу пласта. В результате реализации способа производительность насоса и добыча нефти возрастают.

Формула изобретения

1. Способ добычи нефти скважинными насосами, включающий их установку с пакерами или без пакеров в зоне динамического уровня скважинного флюида и откачку флюида по насосно-компрессорным трубам нa устье скважины в систему сбора нефти, отличающийся тем, что в насосно-компрессорных трубах выше насоса выполняют радиальные отверстия, снизу насоса подсоединяют колонну насосно-компрессорных труб до расчетного уровня, включая кровлю пласта, на конце колонны устанавливают струйный насос, с возможностью соединения зоны разрежения с объемом скважины под насосом, в насосно-компрессорные трубы заливают нефть до устья скважины и включают прямую или обратную подачу насоса с кольцевой прокачкой жидкости по насосно-компрессорным трубам и их затрубью через струйный насос с созданием режима депрессии на пласт и откачку флюида пласта. 2. Способ по п.1, отличающийся тем, что скважинный насос периодически отключают на короткое время.

РИСУНКИ

Рисунок 1, Рисунок 2

www.findpatent.ru

Способы добычи нефти - Справочник химика 21

из "Оператор обзвоживающей и обессоливающей установки"

Нефть добывается двумя основными способами фонтанным и механизированным. Если нефть поднимается на поверхность под действием естественной энергии нефтяного пласта, способ добычи называется фонтанным. Если энергии пласта недостаточно для подъема жидкости на поверхность и приходится применять дополнительное оборудование, способ добычи называется механизированным. [c.14] Оборудование фонтанной скважины состоит из колонны насосно-компрессорных труб и устьевой фонтанной арматуры с выкидными линиями. К вспомогательному оборудованию относятся отсекатель для отключения скважины в случае ее неисправности, манометр для контроля за давлением, штуцер для регулирования дебита скважин, камера пуска шара для очистки выкидных нефтепроводов от парафина (рис. 3). [c.14] Насосно-компрессорные трубы (НКТ) служат для подъема на поверхность земли продукции фонтанной скважины. Их выпускают с внутренним диаметром от 40,3 до 100,3 мм. Диаметр НКТ подбирают опытным путем в зависимости от ожидаемого дебита, пластового давления, глубины скважины и условий эксплуатации. Чем больше дебит скважины, тем больше диаметр НКТ. [c.14] Для подвешивания колонны НКТ, герметизации кольцевого аространства между обсадной колонной и колонной НКТ, контроля за работой скважины и направления газожидкостной сме-св в выкидную линию устье сквал ины оборудуют стальной фонтанной арматурой, которая состоит из трубной головки и фонтанной елки. [c.15] Выпускается тройниковая и крестовая фонтанная арматура. [c.15] Фонтанный способ добычи нефти наиболее дешевый и наименее трудоемкий по сравнению с другими. Однако при эксплуа-тацнн фонтанных скважин иногда возникают осложнения. К ним относятся запарафинивание подъемных труб, отложение солей в трубах, образование песчаных пробок, появление воды и т. д. [c.15] Для предотвращения отложения парафина в выкидных линиях после отсекателя устанавливается устройство для периодического запуска вручную резиновых шаров. Шар движется за счет энергии потока газонефтяной смеси, по мере его продвижения по трубам внутренние стенки их очищаются от отложений парафина. [c.15] В последние годы для очистки труб от парафинов стали широко применять специальные химические реагенты-ингибиторы парафннообразования, а также различные растворители на углеводородной основе, в том числе получаемые в качестве побочного продукта на установках подготовки нефти. [c.15] При механизированном способе добычи подъем нефти из пласта на поверхность осуществляется при помощи газлифта, электроцентробежных насосов н штанговых скважинных насосов. [c.15] Газлнфтная эксплуатация нефтяных скважин схожа с фонтанным способо.м добычи. Отличие в том, что при фонтанировании источником энергии служит газ, поступающий вместе с нефтью из пласта, а при газлифтной эксплуатации подъем жидкости осуществляется при помощи сжатого газа, нагнетаемого в скважину с поверхности. [c.15] Оборудование газлифтной скважины почти не отличается от оборудования фонтанных скважин, только в НКТ устанавливают газлифтные клапаны для подачи газа в жидкость, поступающую из пласта. [c.15] В результате разгазирования плотность пластовой жидкости снижается, противодавление на пласт становится меньшим и скважина как бы начинает фонтанировать. [c.15] Откачка нефти из скважин при помощи щтанговых скважинных насосов получила широкое распространение в силу их простоты и сравнительной дешевизны. [c.16] Скважинный насос представляет собой обычный поршневой насос одинарного действия с проходны поршнем (плунжером). В нижней части насоса имеется приемный клапан I (см. рис. 4), открывающийся только вверх. Плунжер насоса, имеющий нагнетательный клапан 2, подвешивается на колонне насосных штанг 3. Верхняя штанга пропускаете через устьевой сальник 5 и соединяется с головкой балансира станка-качалки. При помощи шатунно-кривошипного механ11зма 7 балансир 8 передает возвратно-поступательное движен е колонне штанг и подвешенному на них плунжеру. Станок приводится в действие электродвигателем 9 с помощью клиноременной передачи. [c.16] При непрерывной работе насоса в результате подкалки жидкости уровень последней в насосных трубах поднимается До устья и она поступает в выкидную линию через тройник 4. [c.17] Штанговые насосные установки имеют ряд недостатков тяжелое громоздкое оборудование при больших глубинах с1 ва-жин, частые обрывы штанг вследствие больших нагрузок, ослОЖ нения при добыче нефти в наклонных скважинах, недостаточная подача для отбора больших объемов жидкости. Поэтому в настоящее время все большее применение находят бесштангоеые насосные установки. [c.17] Погружной электроцентробежный насос (рис. 5) состоит из расположенных вертикально на общем валу многоступенчатого центробежного насоса, электродвигателя и протектора, служащего для защиты электродвигателя от попадания в него пластовой жидкости. Питание электродвигатель получает по бронр ро-ваиному кабелю, который спускается в скважину одновременно со спуском НКТ, к нижней части которых крепится насос. Кабель крепится к трубам специальными металлическими поясками. [c.17]

Вернуться к основной статье

chem21.info

Способ добычи нефти

 

Изобретение относится к нефтяной промышленности, а более конкретно к технологии добычи нефти из нефонтанирующих скважин. Обеспечивает повышение производительности добычи нефти и глубины извлечения нефти. Сущность изобретения: способ включает возвратно-поступательное перемещение поршня в цилиндре, расположенном в колонне запакерованных труб, электродвигателем. Его устанавливают на устье скважины и соединяют с поршнем тягой. Подготовку добычи и добычу нефти выполняют с постоянной промывкой фильтра и призабойной зоны пласта попеременной подачей флюида вверх-вниз поршнем в цилиндре. Его устанавливают на любых глубинах вплоть до уровня пласта. Пакер на трубах устанавливают преимущественно на кровле пласта. Поршень утяжеляют грузом. Монтируют его на кабеле или тросе, которые навивают на барабан, подсоединенный к электродвигателю. Перемещают поршень вниз под собственным весом, отключив двигатель или барабан. Располагают поршень на разных глубинах в цилиндре, например на глубинах 1, или 2, или 3 км. В этих точках выполняют равное количество, например по 3, возвратно-поступательных перемещений поршня на равную величину хода с разной или равной скоростью подъема и спуска. Измеряют объем удаленной поршнем жидкости для каждой точки. Вычисляют объем ходов поршня в каждой точке и по соотношению указанных объемов определяют коэффициент перетока жидкости в зазорах между поршнем и цилиндром. Затем определяют дебит скважины в каждой точке как частное от деления объема удаленной поршнем жидкости за время его работы на указанный коэффициент. Повторяют то же самсое для других величин хода и скоростей перемещения поршня. Устанавливают в зоне пакера обратный клапан и все приведенное выше повторяют. Строят графики дебита по точкам. Сравнивают графики и выбирают зону установки поршня и целесообразность установки клапана из условия получения максимального дебита в процессе добычи. Устанавливают поршень в расчетную зону и выполняют процесс добычи нефти путем возвратно-поступательных перемещений поршня в режиме, выбранном из графика с максимальным дебитом. 2 з.п. ф-лы, 1 ил.

Изобретение относится к нефтяной промышленности, а более конкретно к технологии добычи нефти из нефонтанирующих скважин.

Известна технология добычи нефти насосами различного типа (Е.И. Бухаленко, В. Б. Бухаленко. Оборудование и инструмент для ремонта скважин. М., Недра, 1991, с. 32; В.Н. Моисеев. Применение геофизических методов в процессе эксплуатации скважин. М., Недра, 1990, с. 19). Наиболее распространенные электрические центробежные насосы (ЭЦН) являются недостаточно надежными. Причиной частного выхода из строя является чувствительность ЭЦН к падению уровня нефтяного столба в скважине, к наличию песка, парафинов, воды, газовой фазы, к температуре флюида. Известен также способ добычи нефти штанговыми глубинными насосами (ШГН) (В.Е. Гавура, В.В. Исайчев, А.К. Курбанов и др. Современные методы и системы разработки газонефтяных залежей. М., ВНИИОУНП, 1994, с. 265). Данный способ, принятый за прототип, частично лишен недостатков технологии добычи нефти с использованием ЭЦН. Он включает возвратно-поступательное перемещение поршня в цилиндре, расположенном в колонне запакерованных насосно-компрессорных труб (НКТ), электродвигателем, установленным на устье скважины и соединенным с поршнем тягой. Такие насосы менее чувствительны к отрицательным факторам, оказывающим сильное влияние на работу ЭЦН, и этим обеспечивается их более высокая надежность и работоспособность. Тем не менее ШГН не имеют качественных преимуществ перед ЭЦН, что обусловлено следующими их недостатками: - штанги имеют большой вес, увеличивающийся пропорционально глубине установки насоса. В связи с этим глубина установки насосов (как ШГН, так и ЭЦН) не превышает как правило 1-1,5 км, ниже этих глубин нефть не извлекают и она остается в скважине; - производительность ШГН недостаточна ввиду большого веса штанг и уравновешивающих грузов, которые не позволяют задавать большую скорость перемещения поршня и ограничивают величину его хода. Задачей заявленного изобретения является создание способа добычи нефти, лишенного недостатков прототипа и обеспечивающего повышение производительности добычи и глубины извлечения нефти. Техническим результатом, достигаемым при использовании предлагаемого изобретения, является возможность установки и работы поршня в цилиндре на любых глубинах, вплоть до уровня пласта, а также перемещение поршнем столба жидкости над ним с устранением его давления на столб жидкости под поршнем или, наоборот, со сложением давлений этих столбов, и, кроме того, изоляция и устранение влияния затрубного столба жидкости. Указанный технический результат достигается тем, что в способе добычи нефти, включающем возвратно-поступательное перемещение поршня в цилиндре, расположенном в колонне запакерованных НКТ, электродвигателем, установленным на устье скважины и соединенным с поршнем тягой, согласно изобретению выполняют подготовку добычи и добычу нефти с постоянной промывкой фильтра и призабойной зоны пласта попеременной подачей флюида вверх-вниз поршнем в цилиндре, установленном на любых глубинах вплоть до уровня пласта, пакет на НКТ устанавливают преимущественно на кровле пласта, поршень утяжеляют грузом, монтируют его на кабеле или тросе, трос навивают на барабан, подсоединенный к электродвигателю, перемещают поршень вниз под собственным весом, отключив двигатель или барабан, располагают поршень на разных глубинах в цилиндре, например на глубинах 1, 2, 3 км, и в этих точках выполняют равное количество, например по 3, возвратно-поступательных перемещений поршня на равную величину хода с разной или равной скоростью подъема и спуска, измеряют объем удаленной поршнем жидкости для каждой точки, вычисляют объем ходов поршня в каждой точке и по соотношению указанных объемов определяют коэффициент перетока жидкости в зазорах между поршнем и цилиндром, затем определяют дебит скважины в каждой точке как частное от деления объема удаленной поршнем жидкости за время его работы на указанный коэффициент, повторяют то же самое для других величин хода и скоростей перемещения поршня, устанавливают в зоне пакера обратный клапан и все приведенное выше повторяют, строят графики дебита по точкам, сравнивают графики и выбирают зону установки поршня и целесообразность установки клапана из условия получения максимального дебита в процессе добычи, устанавливают поршень в расчетную зону и выполняют процесс добычи нефти путем возвратно-поступательных перемещений поршня в режиме, выбранном из графика с максимальным дебитом; при падении дебита в процессе добычи ее прекращают и повторяют приведенный выше порядок действий, строят новый график с максимальным дебитом и начинают добычу с новыми параметрами по указанному графику; при отсутствии повышения дебита при повторном возбуждении пласта проводят другие воздействия на пласт; повторную перфорацию, использование химических веществ, пороховых генераторов давления, гидроразрыва пласта и др. и повторяют приведенный выше порядок действий, затем строят новый график с максимальным дебитом и начинают добычу нефти с новыми параметрами по указанному графику. Возвратно-поступательные перемещения поршня перед началом и в процессе добычи необходимы для постоянной промывки фильтра и призабойной зоны пласта за счет пульсации давления жидкости в скважине: при подъеме поршня вверх он отсекает столб жидкости над ним и давление в зоне пласта падает до уровня, определяемого оставшимся столбом жидкости под поршнем вплоть до нулевого уровня; при опускании поршня вниз верхний столб жидкости ударяет через поршень по нижнему столбу и давление резко увеличивается до уровня давления столба жидкости от устья и даже выше вследствие соударения столбов. Такая пульсация давления приводит к пульсации перемещения жидкости в пласт и из пласта, что поддерживает фильтр, призабойную зону пласта и сам пласт в очищенном состоянии, обеспечивающем максимальную величину отдачи пласта и притока нефти. Установка пакера преимущественно на кровле пласта необходима для обеспечения возможности проводить подготовку добычи и добычу на глубинах от устья до пласта без помех со стороны давления затрубной жидкости. При этом амплитуда колебания давления в зоне пласта при подъеме и спуске поршня соизмерима с величиной гидростатического давления столба жидкости в той же зоне. Если пакер установить значительно выше пласта, то депрессию можно будет создать только на уровне гидростатического давления столба скважинной жидкости до пакера. Ниже пакера давление будет определяться действием затрубного столба жидкости даже в том случае, когда поршень спущен в НКТ в зону пласта и отсекает столб жидкости и его давление над поршнем при движении поршня вверх. Пакер, установленный преимущественно на кровле пласта, выполняет весьма важную функцию: он ликвидирует действие затрубного столба жидкости и позволяет создавать приведенную пульсацию давления жидкости в зоне пласта и постоянную его промывку. Утяжеление поршня грузом необходимо для того, чтобы поршень мог опускаться вниз под собственным весом без приложения усилий от привода. В этом случае появляется возможность смонтировать поршень на кабеле или тросе, который имеет прочностные возможности поднимать поршень вверх с еще большим усилием, чем тяги на ШГН, но не имеет возможности толкать поршень вниз. Имеются и другие преимущества использования кабеля: высокая прочность при малом диаметре, обеспечивающем небольшой вес и высокую гибкость, которая позволяет навивать его на барабан. Главным же преимуществом использования кабеля является то, что он позволяет опускать поршень на любую глубину, то есть до 3-7 км в существующих скважинах. Такая возможность позволяет вести добычу нефти при падении ее динамического уровня вплоть до уровня пласта. Коэффициент извлечения нефти из пласта достигнет в этом случае максимально возможного уровня. Существующие насосы позволяют вести добычу нефти с глубин 1-1,5 км с коэффициентом ее извлечения 0,3-0,4. Столб нефти высотой 2-3 км и более, свидетельствующий о возможностях пласта поддерживать такой динамический уровень флюида, оказывается неизвлеченным из скважины и остается в ней с последующим списанием скважины. Нефть в количестве 30-70% остается в пласте и скважине. Предложенный способ позволяет извлекать нефть даже при падении динамического уровня флюида до нулевого значения. Намотка кабеля на барабан позволяет осуществлять как быстрый подъем поршня вверх, так и быстрое его перемещение вниз под собственным весом, что повышает производительность добычи. Установка поршня перед началом добычи на разных глубинах и выполнение в них возвратно-поступательных перемещений на равную величину хода, например 10-50 м, в разных режимах, необходима для определения максимального дебита, с которым потом и ведут добычу. Определение и использование коэффициента перетока жидкости позволяет уточнять дебит и выполнять соответствующие расчеты и планирование условий добычи. Регулированием скоростей подъема и спуска поршня регулируют объем жидкости, входящей в призабойную зону пласта и уходящей из нее. Например, если скорость подъема выше скорости спуска, то есть подъем идет более длительное время, то и объем притока флюида из пласта превышает объем возвращаемой в пласт жидкости. В этом случае происходит добыча нефти. При другом соотношении скорости можно кратковременно воздействовать на фильтр и призабойную зону пласта в усиленном промывочном режиме с транспортировкой в пласт кислот, поверхностно-активных веществ и т.п. Более качественная промывка фильтра и призабойной зоны пласта позволит затем увеличить дебит скважины. Установка обратного клапана необходима для определения сравнительной величины дебита в этих условиях и определения условий для получения максимального дебита скважины. Съемный обратный клапан используют также для поиска альтернативных условий максимальной добычи. Повторение приведенного порядка действий после падения дебита и после разных стимулирующих воздействий на пласт снова обеспечивает работу скважины с максимальной производительностью в новых условиях. Таким образом, предложенный способ обеспечивает достижение и поставленной задачи, и технического результата: нефть можно извлекать из скважины до уровня пласта, а процесс ее извлечения является максимально производительным. На чертеже представлена схема осуществления предложенного способа. На схеме показаны: нефтяная скважина 1, поршень 2, цилиндр 3, расположенный в колонне НКТ 4 с установленным на ней пакером 5, электродвигатель 6 с барабаном 7, подсоединенным к электродвигателю 6, установленными на устье 8 скважины 1, кабель (трос) 9, навиваемый на барабан 7 и соединенный с поршнем 2 утяжеленным грузом 10, кровля 11 нефтяного пласта 12, точки 13, 14, 15 установки поршня 2 на глубинах 1, 2 и 3 км соответственно; труба 16 для отвода добываемой нефти в бак или в систему отвода нефти; съемный обратный клапан 17, установленный в зоне пакера 5. Выполняют предложенный способ следующим образом. Опускают поршень 2 с грузом 10 в колонну НКТ 4, внутренняя поверхность которой может быть подготовлена в качестве цилиндра 3 как на всей длине НКТ, так и на ее части. Отпускают тормоза барабана 7 и поочередно опускают поршень 2 с грузом 10 в точки 13, 14, 15. Включают двигатель 6 и в каждой точке выполняют возвратно-поступательные перемещения поршня 2, например, на 10-15 м в разных режимах. При подъеме поршня 2 вверх столб жидкости в НКТ 4, расположенный над поршнем 2, поднимается вверх. Соответствующий ходу поршня 2 объем жидкости (флюида) выливается через трубу 16 в бак, где его величина измеряется. Давление измеряемого столба жидкости на столб жидкости под поршнем прекращается сразу же после начала подъема поршня 2. Давление скважинной жидкости в зоне пласта уменьшается, например, на 100, 200 или 300 атмосфер при расположении движущегося поршня 2 соответственно в точках 13, 14 или 15. Уменьшение давления (депрессия) вызывает активную отдачу пласта 12 и флюид начинает перемещаться в скважину 1. При этом выносятся не только механические частицы породы, но и парафины, асфальтены, соли, продукты загрязнения призабойной зоны пласта 12. Но в процессе притока фильтр и призабойная зона пласта 12 вновь быстро засоряются (кольматируются). Однако при возвращении поршня 2 вниз под давлением собственного веса и столба жидкости вес обоих столбов суммируется с дополнительными кратковременным увеличением давления сверх указанного в момент соударения столбов (явление гидроудара). Давление в зоне пласта 12 возрастает и жидкость из скважины 1 направляется в пласт 12, взвешивая все закольматированные частицы в бурлящем потоке. При следующем ходе поршня 2 вверх процесс выноса частиц в скважину 1 возобновляется. Таким образом, процесс очистки фильтра и призабойной зоны пласта 12 идет постоянно в процессе добычи. Для возможности получения дебита процесс подъема поршня 2 выполняют с меньшей скоростью, чем его спуск. В первом случае поток флюида из пласта успевает стабилизироваться и дойти до скважины, так как этот процесс более длителен. Напротив, процесс входа жидкости в пласт занимает более короткое время, в связи с чем этот объем значительно меньше. Разность объемов выходящего из пласта и входящего в пласт флюида составляет дебит пласта. По данным дебита в точках 13, 14, 15 строят график дебита, выбирают максимальное значение дебита, и добычу нефти ведут с максимальной производительностью. При этом исследования в точках 13, 14, 15 ведут при разных режимах, в том числе и при разных стимуляциях пласта при необходимости повышения дебита. В результате такой подготовки получают максимально возможный дебит. Идеальное, невиданное ранее состояние фильтра и призабойной зоны пласта как раз и обеспечивает максимальные показатели добычи. Возможность работы поршня в любой точке спущенной до пласта 12 колонны НКТ 4 позволяет полностью извлечь выходящие из пласта флюиды даже в зоне пласта. Такая возможность тоже появилась впервые. Таким образом, предложенное изобретение дает возможность увеличить добычу нефти из любой нефонтанирующей скважины планеты как неистощенной, так и истощенной.

Формула изобретения

1. Способ добычи нефти, включающий возвратно-поступательное перемещение поршня в цилиндре, расположенном в колонне запакерованных насосно-компрессорных труб, электродвигателем, установленным на устье скважины и соединенным с поршнем тягой, отличающийся тем, что подготовку добычи и добычу нефти выполняют с постоянной промывкой фильтра и призабойной зоны пласта попеременной подачей флюида вверх-вниз поршнем в цилиндре, установленном на любых глубинах вплоть до уровня пласта, пакер на насосно-компрессорных трубах устанавливают преимущественно на кровле пласта, поршень утяжеляют грузом, монтируют его на кабеле или тросе, который навивают на барабан, подсоединенный к электродвигателю, перемещают поршень вниз под собственным весом, отключив двигатель или барабан, располагают поршень на разных глубинах в цилиндре, например, на глубинах 1, или 2, или 3 км, и в этих точках выполняют равное количество, например по 3, возвратно-поступательных перемещений поршня на равную величину хода с разной или равной скоростью подъема и спуска, измеряют объем удаленной поршнем жидкости для каждой точки, вычисляют объем ходов поршня в каждой точке и по соотношению указанных объемов определяют коэффициент перетока жидкости в зазорах между поршнем и цилиндром, затем определяют дебит скважины в каждой точке как частное от деления объема удаленной поршнем жидкости за время его работы на указанный коэффициент, повторяют то же самое для других величин хода и скоростей перемещения поршня, устанавливают в зоне пакера обратный клапан и все приведенное выше повторяют, строят графики дебита по точкам, сравнивают графики и выбирают зону установки поршня и целесообразность установки клапана из условия получения максимального дебита в процессе добычи, устанавливают поршень в расчетную зону и выполняют процесс добычи нефти путем возвратно-поступательных перемещений поршня в режиме, выбранном из графика с максимальным дебитом. 2. Способ по п.1, отличающийся тем, что при падении дебита в процессе добычи ее прекращают и повторяют приведенный выше порядок действий, строят новый график с максимальным дебитом и начинают добычу с новыми параметрами по указанному графику. 3. Способ по п.1 или 2, отличающийся тем, что при отсутствии повышения дебита при повторном возбуждении пласта проводят другие воздействия на пласт: повторную перфорацию, использование химических веществ, пороховых генераторов давления, гидроразрыв пласта и повторяют приведенный выше порядок действий, затем строят новый график с максимальным дебитом и начинают добычу нефти с новыми параметрами по указанному графику.

РИСУНКИ

Рисунок 1

www.findpatent.ru