10 источников энергии, которые уничтожат нефтяную промышленность. Электроэнергия из нефти


Электроэнергия из мазута, нефтяных отходов

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника ⇐ ПредыдущаяСтр 2 из 3Следующая ⇒

К сожалению, Казахстан экспортирует большую часть своей нефти в сыром виде. Это несет в себе многократный ущерб:

  • фактически отнимается собственность будущих поколений, продаваемая за рубеж по цене как минимум на порядок ниже той, которая будет в будущем,
  • из-за отсутствия переработки основной части нефти в Казахстане теряется выгода от продажи готовых дорогих продуктов крекинга,
  • теряется возможность развития собственной нефтехимии на базе продуктов перегонки нефти.
  • теряется возможность развития мазутной и нефтешламовой электроэнергетики, которая в Казахстане составляет менее 5% от вырабатываемой электроэнергии, тогда как, к примеру, в США этот сектор энергетики является основным. В результате США имеет очень дешевую электроэнергию и ее мировой максимум на душу населения.

Альтернативным рачительным и экологичным решением может быть постройка нефтеперегонных заводов, производящих с помощью крекинга - разделения нефтяных фракций более дорогих и готовых к употреблению нефтепродуктов, и веществ для химической промышленности, а для энергетики - производство дешевого и более экологичного, чем бурый уголь, топлива - мазута.

Атомная энергия

Единственная атомная электростанция в Казахстане находилась в городе Актау с реактором на быстрых нейтронах с мощностью в 350 МВт. АЭС работала в 1973—1999 годах. В настоящий момент атомная энергия в Казахстане не используется, несмотря на то, что запасы урана в стране оценены в 469 тысяч тонн. Основные залежи находятся на западе в Мангыстау, на востоке Казахстана и между реками Чу и Сырдарья. Сейчас рассматривается вопрос о строительстве новой атомной электростанции мощностью 1900 МВт около озера Балхаш. По мнению экспертов - сейсмологов данная местность находится в зоне повышенного сейсмического риска, что показало Баканасское землетрясение 1979 года магнитуды Ms=6. Сам проект является "наследственно-лоббируемым", так как остался как наследство от проекта военной АЭС, разработанного в советское время для полигона ПРО "Сарышаган-Приозерск", предназначенный для импульсной работы, то есть кратковременных пусков системы лазерной ПРО, то есть совершенно непригодный для гражданских нужд, но ныне лоббируемый Атоммашем РФ, так как уже разработан и готов к продаже.

Атомная энергетика является источником повышенного риска катастрофического типа, когда все текущие малые преимущества по ее использованию перекрываются ущербом от возможных и реально происходящих катастроф, таких как Чернобыльская катастрофа и Фукусимская катастрофа.

mykonspekts.ru

Мировая энергетика. Часть I

Современная цивилизация существует в основном благодаря использованию огромного, по сравнению с более ранними временами, количества энергии в разнообразных машинах в широком смысле этого слова. Более того, потребление энергии человечества постоянно растёт. При этом энергия в годной к употреблению форме является ограниченным ресурсом, так что относительная доступность энергии оказывает серьёзное влияние на развитие как отдельных стран, так и цивилизации в целом.

Существует несколько организаций, ведущих регулярный статистический учёт производства и потребления энергии. В данной статье, в частности, используются данные Международного энергетического агентства (IEA). Выводы и прогнозы различных организаций часто цитируются, но при этом редко поясняется, каким образом и на каких принципах они строятся, что открывает простор для неверных интерпретаций. В данной статье мы постараемся исправить это упущение.

Первичная энергия

При учёте энергии возникает одна сложность — до потребления энергии в её конечной форме она проходит через цепочку преобразований, иногда довольно длинную. Электрочайник кипятит воду — происходит потребление энергии в форме тепла, преобразованной из энергии в форме электричества в сети. В свою очередь в эту форму энергия была преобразована из механической формы — энергии вращения турбин на электростанции, а та была получена из тепловой энергии пара, полученной путём сжигания какого-то топлива, то есть из потенциальной химической энергии. В таком, казалось бы, простом деле оказалось сразу пять этапов преобразования энергии; причём на каждом этапе часть энергии, конечно же, теряется, так что потребление энергии в конечной форме всегда существенно меньше, чем её производство. На каком этапе вести учёт?

В связи с описанной сложностью, в энергетической статистике фиксируется производство и потребление энергии по возможности ближе к началу цепочки, в форме так называемой первичной энергии. Отслеживается только два вида преобразования первичной энергии: электрогенерация, то есть производство электрической энергии, и теплогенерация, то есть производство тепловой энергии (без последующего преобразования в какую-либо другую форму). Дальнейшие преобразования энергии в статистике не учитываются.

Более подробно поясним понятие первичной энергии чуть позже, а пока перечислим виды источников первичной энергии:

Невозобновляемые, в том числе:

  • Ископаемое топливо, в том числе:
    • Нефть
    • Природный газ
    • Уголь
  • Атомная энергетика

Возобновляемые, в том числе:

  • Гидроэнергетика
  • Биотопливо/биомасса
  • Солнечная энергетика
  • Ветроэнергетика
  • Геотермальная энергетика и пр.

В нашем списке можно увидеть разделение источников на возобновляемые и невозобновляемые. Под возобновляемостью источника подразумевается его потенциальная неисчерпаемость в масштабах человеческой деятельности. Конечно, это разделение во многом условно. Так, например, ископаемое топливо на самом деле в недрах Земли формируется (то есть возобновляется) постоянно, просто делает оно это по меркам наших энергетических нужд настолько медленно, что пытаться его использовать возобновляемым способом совершенно бессмысленно. Более важный пример — это биотопливо, которое включает в себя такую банальную вещь как дрова. Источником дров, как известно, является лес, и его люди на самом деле легко могут исчерпать, так что возобновляемым он является только до определённой границы. Тем не менее, разделение это важное и часто используемое.

Для ископаемого и биологического топлива количество первичной энергии определяется очень просто: это удельная теплота сгорания, умноженная на массу топлива. Удельная теплота сгорания ископаемого топлива зависит от содержания в нём водорода: для метана, в котором на один атом углерода приходится четыре атома водорода, она равна 50 МДж/кг; для угля, в котором на один атом углерода приходится примерно ноль атомов водорода — около 30 МДж/кг; для нефти — примерно посередине. Понятно, что на практике теплота сгорания для разных сортов одного и того же топлива может быть несколько разной, и в статистике это, по возможности, учитывается.

Все остальные, нетопливные, источники энергии используются практически только для электро- и теплогенерации. Первичная энергия для них немного по-разному. В тех случаях, когда электричество вырабатывается из тепловой энергии, то именно она считается за первичную. Так происходит в атомной энергетике, а также на геотермальных и гелиотермальных электростанциях. Если же электричество генерируется напрямую из природного источника, то первичной считается собственно сама произведённая электроэнергия. Так происходит в гидро- и ветроэнергетике, а также фотовольтаике (вид солнечной энергетики).

Для измерения первичной энергии используются различные единицы. Мы будем использовать так называемую тонну нефтяного эквивалента (тнэ), равную 41,868 ГДж. Предполагается, что такое количество тепловой энергии выделяется при сгорании одной среднестатистической тонны нефти. Тысяча кубических метров природного газа содержит в среднем около 0,8 тнэ. Также одна тонна нефтяного эквивалента равна 11 630 киловатт-часов. Если вы знаете, сколько киловатт-часов у вас дома набегает за месяц по электрическому счётчику, то вы сможете представить себе, какое количество энергии содержит 1 тнэ.

Производство энергии: тепло- и электрогенерация

Примерно 40% первичной энергии сегодня используется в ходе тепло- и электрогенерации. Эти процессы рассматривают вместе по причине широкого применения в энергетике когенерации — совместного производства полезного тепла и электричества, например, на теплоэлектроцентрали (ТЭЦ). ТЭЦ является разновидностью тепловой электростанции (ТЭС). ТЭЦ отличается тем, что на ней тепло отработанного пара передаётся в теплосеть, а на остальных ТЭС — в окружающую среду. За счёт этого коэффициент полезного действия (КПД) у ТЭЦ заметно выше и достигает 50-60%, по сравнению с 30-40% у обычных ТЭС. Но давайте рассмотрим по порядку имеющиеся сегодня в нашем распоряжении способы генерации электричества и тепла.

ТЭС существуют с конца 19 века и устроены довольно просто. За счёт сжигания топлива вода в котле превращается в пар с очень высокой температурой и давлением. Этот пар направляется на лопатки турбины и тем самым вращает её. Вращение передается на вал электрогенератора с закреплёнными на нём магнитами; вращающееся магнитное поле создаёт электрический ток в замкнутом проводнике в соответствии с законом электромагнитной индукции. Отработанный пар из турбины попадает в конденсатор, где охлаждается и превращается обратно в воду, которая затем снова поступает в котёл.

Выше описан принцип действия ТЭС с паротурбинной установкой. Существуют ещё и газотурбинные установки: в них турбину вращают непосредственно продукты сгорания топлива в виде потока раскалённых газов (таким образом, газовая турбина является двигателем внутреннего сгорания, а паровая — внешнего). Самый же высокий КПД достигается на комбинированной парогазовой установке, состоящей из двух двигателей в тандеме; в этой установке всё ещё горячие отработанные газы из газовой турбины используются для нагрева котла паровой турбины.

Вообще электрогенератору безразлично, что именно вращает его вал, так что комбинация любого теплового двигателя (в том числе поршневого) с электрогенератором составляет тепловую электростанцию того же типа, что и двигатель. Собственно говоря, принцип тот же и для большинства нетепловых электростанций: сначала с помощью какого-либо двигателя энергия из своей исходной формы преобразуется в механическую, а затем превращается в электрическую энергию с помощью электрогенератора.

Топливом для ТЭС служат уголь, природный газ и, гораздо реже, нефтепродукты (мазут или дизель). В газотурбинных и парогазовых ТЭС используется в основном природный газ; уголь используется практически только на ТЭС с паротурбинными установками. Существуют также ТЭС, работающие на биотопливе. Это могут быть отходы деревообработки или сельского хозяйства в виде прессованных гранул, а также биогаз — продукт жизнедеятельности бактерий, перерабатывающих различные биологические отходы, в том числе бытовые и канализационные.

На атомной электростанции (АЭС) в роли котла для создания пара высокого давления выступает ядерный реактор, использующий энергию распада ядер радиоактивных изотопов в ходе цепной реакции. Больше АЭС ничем принципиально не отличается от паротурбинной ТЭС — полученный пар поступает на турбину, и так далее. На АЭС также может быть реализована когенерация тепла и электричества, тогда получится атомная теплоэлектроцентраль — АТЭЦ. Ядерное топливо производится из урана, добываемого на соответствующих месторождениях с конечными запасами. Это означает, что атомная энергетика является невозобновляемым источником энергии.

Все остальные способы тепло- и электрогенерации используют возобновляемые источники энергии. Так, на гидроэлектростанции (ГЭС) вал электрогенератора вращает, как нетрудно догадаться, гидротурбина. В свою очередь последняя вращается за счёт энергии напора воды. Плотина на ГЭС нужна для того, чтобы создать необходимый перепад высот. Если уклон реки достаточно велик (как зачастую бывает в горах), то можно обойтись и без плотины.

На солнечных электростанциях, как правило, используется явление фотоэлектрического эффекта: частицы света (фотоны) определённой энергии (длины волны) могут выбивать электроны из атомов определённым образом организованного вещества (обычно полупроводниковые фотоэлементы, собранные в солнечные батареи). Такая технология называется ещё фотовольтаикой. Она выгодно отличается от других способов производства электроэнергии полным отсутствием движущихся деталей — энергия солнечного излучения напрямую преобразуется в электрическую, минуя стадию механической энергии.

Другая разновидность солнечной энергетики — это гелиотермальные электростанции, на которых энергия солнца собирается в виде тепла и используется опосредованно для электрогенерации по принципу обычных ТЭС. Для сбора солнечной энергии обычно применяются системы линз и зеркал — это так называемые солнечные электростанции концентрирующего типа (CSP).

Ветряные электростанции преобразуют в электричество механическую энергию вращения лопастей ветрогенератора под действием ветра. Ветрогенератор вполне ожидаемо состоит из ветротурбины и электрогенератора. Циркуляция атмосферы Земли, то есть ветер, существует в основном из-за неравномерного нагрева земной поверхности Солнцем. Следовательно, как и солнечная электростанция, ветрогенератор использует возобновляемую энергию Солнца.

Существуют также геотермальные электростанции, устроенные аналогично тепловым, но использующие для нагрева котла энергию горячих подземных вод. Тепло геотермальных источников можно использовать и напрямую для обогрева. Из-за того, что температура подземных вод сравнительно невелика, КПД геотермальных электростанций довольно низок — всего около 10%.

Наконец, приливные и волновые электростанции используют, соответственно, энергию морских приливов/отливов и волн. В совокупности эти способы получения электроэнергии можно назвать морской энергетикой.

В 2013 году всего в мире было сгенерировано и потреблено 23318 тераватт-часов (или 2008 млн тнэ) электроэнергии, а также 354 млн тнэ теплоэнергии; в сумме тепла и электричества получается 2362 млн тнэ. При этом было израсходовано 5115 млн тнэ первичной энергии в различных формах. Таким образом, средний КПД тепло- и электрогенерации (отношение произведённой энергии к первичной) составил 46%.

На рисунке 1 приведена диаграмма использования различных видов первичной энергии для тепло- и электрогенерации. Из диаграммы видно, что ископаемое топливо (то есть уголь, нефть и природный газ) составляет три четверти затрачиваемой в этих целях первичной энергии. Оставшаяся четверть приходится на атомную и возобновляемую энергетику.

Рисунок 1. Использование первичной энергии по источникам для тепло- и электрогенерации в 2013 году (всего 5115 млн тнэ).

Однако если посмотреть на диаграмму распределения по источникам собственно самой произведённой электроэнергии (рисунок 2), то картина будет заметно отличаться в силу того, что разные способы электрогенерации имеют разный КПД (в смысле отношения произведённой электроэнергии к первичной). Так, КПД фотовольтаики, а также гидро- и ветроэнергетики в рамках энергетической статистики считается равным 100%: как уже говорилось, под первичной энергией у этих источников понимается собственно полученная электроэнергия. Практически по всем остальным источникам — первичной энергией является тепло, которое преобразуется в электрическую энергию через механическую. Электрический КПД этого процесса зависит от типа используемого теплового двигателя и достигаемой температуры, и составляет в среднем около 30—40%. Кроме того, из этих источников производится также и полезное тепло, которое в данные рисунка 2 не включено.

Рисунок 2. Произведенная электроэнергия по источникам в 2013 году (всего 2008 млн тнэ или 23318 ТВт*ч).

В итоге на рисунке 2 доля гидроэнергетики выросла до 16%, а доля ветроэнергетики стала, по крайней мере, заметной — 3%. Доля солнечной энергетики всё ещё прячется среди 1% «прочих». Для нас, конечно, важнее именно то, какую долю произведённой электроэнергии нам даёт тот или иной источник, поэтому в диаграмме на рисунке 2 больше практического смысла, чем в диаграмме на рисунке 1. А несколько неочевидным понятием первичной энергии удобно пользоваться, если необходимо, например, занизить значение возобновляемых источников. Но это вовсе не означает, что понятие плохое и ненужное. Дело в том, что на тепло- и электрогенерацию тратится лишь около двух пятых используемой во всём мире первичной энергии; остальную мы расходуем другими способами.

Потребление первичной энергии

На рисунке 3 приведена схема мирового потребления энергии в 2013 году с выделением промежуточного этапа тепло- и электрогенерации. На схеме видно, что всего на все нужды за год было израсходовано 13559 млн тнэ первичной энергии. В том числе 5115 млн тнэ первичной энергии было израсходовано на тепло- и электрогенерацию, что дало в результате 2362 млн тнэ готовой к потреблению тепло- и электроэнергии, а 2753 млн тнэ энергии было потеряно в процессе генерации. В так называемом энергетическом секторе — на добычу и переработку энергоносителей, производство энергии, преобразование энергии из одного вида в другой, а также транспорт энергии в виде тепла и электричества — было израсходовано 1686 млн тнэ энергии, в том числе 1291 млн тнэ первичной энергии и 395 млн тнэ вторичной, то есть сгенерированного тепла и электричества. Оставшиеся 7153 млн тнэ первичной энергии было потреблено в различных секторах экономики другими способами; с учётом 1967 млн тнэ вторичной (сгенерированной) энергии общее конечное потребление энергии составило 9120 млн тнэ.

Рисунок 3. Схема мирового потребления энергии по источникам в 2013 году. Все значения в млн тнэ.

Пройдёмся более подробно по секторам потребления энергии в разрезе её источников.

Название сектора «промышленность» говорит само за себя. Энергия в этом секторе в основном потребляется в металлургической, химической и нефтехимической промышленности, а также при производстве строительных материалов (цемента) и целлюлозно-бумажном производстве. Однако потребление энергии при перевозке товаров, а также добыче и переработке ископаемого топлива сюда не входит. Кроме того, потребление энергоносителей относится к данному сектору только в том случае, когда они используются именно как энергоносители, а не как сырьё или исходный материал для производства.

Ископаемое топливо в промышленности используется в основном для нагрева, то есть когда технология производства требует высокой температуры. Известный всем пример — выплавка металлов. Нагрев необходим и при производстве цемента (барабанные печи), а также на определённых этапах химического и нефтехимического производства. Кроме того, использование нефтепродуктов в качестве топлива для строительной и другой специальной техники тоже отражается в данном секторе. Биоэнергетика в промышленном секторе — это, в основном, утилизация древесных отходов в лесозаготовительной, деревообрабатывающей и целлюлозно-бумажной промышленности.

Транспортный сектор включает в себя потребление энергии в дорожном, воздушном, водном, железнодорожном и трубопроводном транспорте. К этому сектору не относится потребление топлива техникой, основным назначением которой является не перевозка пассажиров и грузов, а другая деятельность, например, строительство, добыча полезных ископаемых, лесозаготовки, рыболовство и т. п. Около 40-50% энергии в данном секторе потребляется легковыми автомобилями.

В транспортном секторе ожидаемо более 90% энергии даёт нефть, то есть топливные нефтепродукты: бензин, дизельное топливо, керосин, мазут и пр. Большая часть оставшегося — это природный газ в различных формах. Применение биотоплива и электроэнергии на сегодняшний день едва заметно, несмотря на то, что, в частности, электровозы в железнодорожном и трамваи с троллейбусами в городском транспорте достаточно широко применяются уже много десятков лет.

В сектор с не вполне прозрачным названием «здания» включается энергия, потраченная в жилых и разного рода общественных (но не промышленных) зданиях в целях обогрева, охлаждения, горячего водоснабжения, освещения, а также для работы бытовых приборов и оборудования для приготовления пищи. Около 40-45% произведённой тепло- и электроэнергии расходуется именно в этом секторе, больше, чем в каком-либо другом. Сравнительно высокая доля природного газа объясняется, очевидно, применением кухонного газа. Также в данном секторе потребляется более 60% всей первичной биоэнергии. В основном это древесное и другое твёрдое биотопливо, очень широко используемое, в частности, в традиционных обществах так называемых развивающихся стран. Таким образом, на сегодняшний день под модным словом «биоэнергетика» скрываются, по большей части, дрова и сухой навоз.

Наконец, в сектор «прочее» входит потребление энергии в сельском хозяйстве и подобных ему отраслях (рыболовство, лесное хозяйство). В этом же секторе учитывается использование ископаемого топлива не для получения энергии, а в качестве сырья для производства смазочных материалов, асфальта, растворителей, продуктов химической и нефтехимической промышленности и т. д. В этом секторе расходуется в основном нефть, причём сюда приходится довольно значительная часть её общего потребления — около 16%.

Использование тепло- и электроэнергии во всех секторах достаточно прозрачно. Отметим лишь, что около 16% произведённой электроэнергии (331 млн тнэ) тратится в энергетическом секторе на добычу и переработку ископаемого и ядерного топлива, а также теряется при передаче по электрическим сетям. Аналогичные потери происходят и при передаче тепловой энергии по теплосетям. Данный расход энергии включён на схеме в так называемый «энергетический сектор».

В этом же «энергетическом секторе» учитываются затраты энергии на добычу и переработку ископаемого топлива, производство биотоплива, преобразование топлива из одной формы в другую (сжижение газа и угля, преобразование газа в жидкость, газификация угля и нефти), коксование угля, а также потери при транспортировке и хранении газа, нефти, угля и биотоплива.

Рисунок 4. Мировое потребление первичной энергии в 2013 году по источникам.

На рисунке 4 приведено распределение мирового потребления первичной энергии по источникам в соответствии со схемой на рисунке 3. Таким образом, в целом сегодня человечество получает более 80% первичной энергии из ископаемого топлива (то есть угля, нефти и природного газа), и более 85% — из невозобновляемых источников (то же, плюс атомная энергетика). На возобновляемые источники пока что приходится менее 15% первичной энергии. При этом следует помнить, что, с одной стороны, ряд возобновляемых источников (гидроэнергетика, ветроэнергетика, фотовольтаика) по определению имеют стопроцентный КПД, что резко увеличивает их значимость с точки зрения конечного потребления. А с другой стороны, биоэнергетика, составляющая две трети всех возобновляемых источников и 10% общего потребления первичной энергии, по большей части присуща неиндустриальным обществам; поэтому вряд ли стоит связывать её с инновационностью и продвинутостью, приписываемой прочим возобновляемым источникам энергии.

О том, какие существуют прогнозы в отношении мировой энергетики, расскажем в следующей части.

22century.ru

10 источников энергии, которые уничтожат нефтяную промышленность

Альтернативная энергия имеет ряд преимуществ, но те, кто использует ископаемое топливо для получения прибыли будут уверять в обратном. Пора перестать использовать популярный, но токсичный источник энергии и заменить его на более экологический. Несмотря на то, что крупнейшие нефтегазовые компании уже нашли своих потенциальных покупателей и этот бизнес неустанно набирает обороты, все же и ему придется подвинуться и дать место новым альтернативным источникам энергии.

В 2012 году углеродное топливо, уголь, нефть и природный газ покрыли 87% мирового энергопотребления. Поняв истинную стоимость использования ископаемого горючего, мировые лидеры осознали важность альтернативных источников энергии. Еще одна причина для этого - снижение поставок нефти во всем мире. Месторождения нефти иссякают с рекордной скоростью. .

Люди не могут создать ископаемые источники, на их формирование уходят миллионы лет. Если человечество не уменьшит зависимость от этих ресурсов, то они иссякнут навсегда. 10 самых чистых городов планеты отказались от природных источников энергии в пользу альтернативных. Они являются самыми экологически чистыми городами в мире. К 2035 году будет возможно на 25% покрыть энергопотребления возобновляемыми источниками. Трудно поверить, но ископаемое топливо намного опаснее ядерного. Это дает толчок развитию альтернативных и возобновляемых источников энергии. Зачем тратить миллиарды на загрязнение планеты, когда энергию можно получать из природных, возобновляемых источников вроде солнца, ветра, рек и океанов?

10. Ветер

Ветер - неиссякаемый ресурс. Он не разрушает озоновый слой. Еще до повсеместной электрификации, ветряные мельницы качали воду, помогали шахтерам и мололи зерно. Но, несмотря на это, энергия ветра не выглядела альтернативным источником энергии до 1980 годов, когда в Калифорнии запустили первые мельницы.

На 2014 г в Калифорнии используется 13000 ветряных турбин. Простую трехлопастную турбину менее 100 кВТ можно подключить напрямую к дому, промышленному зданию или вспомогательным сооружениям, а мельницу с мощностью более 100 кВт можно подключать уже к общей энергосистеме. Сейчас набирает популярность еще один способ получения энергии из ветра – морские ветряные фермы. Они берут энергию из ветра, который дует над поверхностью океана и работают по тому же принципу, что и наземные турбины. Еще один плюс ветряной энергии - для работы не используется вода, которая является жизненно необходимым элементом.

9. Гидроэнергетика

Энергия, добываемая из воды достаточно популярна во всем мире. Она покрывает более 75% энергопотребления чистой и дешевой энергией.

Дамба Итапу в Парагвае производит 90% энергии в стране и почти 20% энергии в Бразилии за счет вод. Первая гидроэлектростанцию построили на Ниагарском водопаде на границе между США и Канадой в 1879 году. Она производит нечто большее, чем просто экологически чистую энергию – водохранилище питает окружные поселения и контролирует уровень воды в реке, предотвращая наводнения.

В настоящее время гидроэлектростанция обходится дешевле вполовину, чем солнечные панели. Гидроэнергетика сейчас является наиболее эффективным источником энергии. КПД угольных и газовых электростанций составляет 50 %, в то время как коэффициент полезного действия ГЭС составляет 90%.

8. Солнечная энергия

В 1767 году швейцарский ученый Орас Бенедикт де Соссюр построил первое устройство для получения солнечной энергии. Тепло, которое получилось из солнечного света, использовалось для купания и готовки. Клэренс Кэмп запатентовал первый водонагреватель, который работал на солнечных лучах.

Эта отрасль жизнеспособна в отличие от иссякающих запасов нефтяного топлива. Современные солнечные панели требуют малых усилий для поддержания рабочего состояния. Срок службы - от 20 до 30 лет. Стоимость установки панелей окупится в течение нескольких лет. Окна, крыши, дороги, машины и поезда, покрытые панелями, могут стать источником энергии в будущем.

7. Биоэнергетика

Этот вид энергии получают из биологических организмов. Все начинается с фотосинтеза в растениях.

Биомасса – источник возобновляемой, экологически чистой энергии, которую можно накапливать и использовать. Жидкое биотопливо уже широко используется по всему миру. Среди всех видов можно выделить этанол и биодизель, которыми заправляют автомобили после некоторых модификаций. Твердое топливо получают из стеблей кукурузы, рисовой шелухи и отходов производства. Биоэнергетика уменьшает количество отходов сельского хозяйства и является постоянным источником топлива для автомобилей.

6. Геотермальная энергия

Энергия земных недр давно используется людьми. Ученые оценивают температуру ядра в 5960 градусов Цельсия. Пласты земли проводят тепло из глубин на поверхность. Тут начинается геоэнергетика.

Эта энергия использует тепло земных глубин. В 2010 году в Исландии пять геотермальных электростанций производили 25% электричества, необходимого в стране. Для получения энергии бурят шахту глубиной в километр, чтобы добраться до пара или подземных горячих озер. Вода и пар поднимаются на поверхность, где вращают турбины и вырабатывают электричество.

5. Энергия приливов

Приливные турбины используют приливные и отливные течения для выработки энергии. Минусы с поиском подходящего места покрываются предсказуемостью этого ресурса. Ветреные и солнечные источники зависят от погоды, которую предугадать трудно, в то время, как приливы и отливы стабильны. Течения крутят морские подводные турбины, что позволяет получать энергию и не сказывается на пейзаже.

4. Энергия волн

Энергия океана не исчерпывается приливами и подводными течениями. Волновые фермы находятся на поверхности, образую линии, вырабатывающие энергию.

Устройства используются для получения энергии из волн. Кабели передают их на морские или наземные накопители. В 2008 году Португалия опробовала первую морскую волновую ферму, которая располагалась в 5 км от берега.

3. Водородная энергетика

Водород добывают из ископаемых источников, но в его использовании нет вредных выбросов. В результате получается экологически чистое горючее.

В настоящее время, водородная энергетика является комбинацией из возобновляемых и ископаемых ресурсов. Уголь, природный газ и прочие источники используют для работы турбины, которая создает чистую энергию. Разработки с солнечной энергией позволят не зависеть от горючих элементов.

2. Солнечные, ветреные и биоэнергетические фермы

Эти три ресурса, находящиеся на одной местности увеличивают до максимума производительность энергии. Солнечные панели и ветряные турбины уже используются в связке. Ученые подумывают о добавлении биотоплива в эту комбинацию. Используемые ресурсы тесно связаны с погодными условиями, когда энергия, полученная от растений постоянна.

1. Кинетическая энергия

Фитнес-центры появляются по всему миру. Чтобы питать тренажеры, владельцы используют энергию, полученную во время тренировок. Представьте, сколько энергии можно получить, если выстелить полы торговых центров панелями, вырабатывающими энергию при наступании.

Рекомендуем посмотреть:

Альтернативная энергия для частного жилища. Видеоматериал о доме, полностью независимом от сетей энергоснабжения.

batop.ru

электричество из песка вместо нефти

Получение электроэнергии альтернативным способом - такой эксперимент набирает обороты в Саудовской Аравии в последнее время. Тем более, что главного составляющего для этого - песка - в стран достаточно много.

Источник фотографии: архив Правда.Ру

Возглавляет группу ученых-экспериментаторов Хани Аль-Ансари, профессор инженерного колледжа университета короля Сауда (КГУ). По его словам, свое изобретение он уже запатентовал в Соединенных Штатах.

Этот проект поможет дать электричество в самых отдаленных деревнях, позволит снизить потребление дизельного топлива и защитить окружающую среду.

Производство электричества от раскаленного солнцем песка, при помощи отражающих зеркал - сегодня это самый современный способ получения чистой энергии в мире, говорит Хани Аль-Ансари. Раскаленный и сжатый воздух от песка создает давление для вращение турбин, вырабатывающих электроэнергию.

Эту идею поддержала Саудовская электрическая компания, которая и помогает в реализации этого проекта. Сам проект получения электроэнергии из песка был поддержан в свете стратегической переориентации компании на поиск альтернативных и возобнавляемых источников энергии.

Такие проекты могут удешевить стоимость электрофикации дальних сел и деревень. По мнению специалистов компании, проект уже показал свою жизнеспособность и вполне осуществим на практике.

Надо сказать, что аналогичная установка для получения электроэнергии прошла успешные испытания в штате Джорджия (США)

Согласно отчетам исследователей, песок пустынь может сохранять  энергию при температуре свыше 1800 градусов по Фаренгейту (1000 градусов Цельсия). Солнечные электростанции используют массивы зеркал, чтобы сконцентрировать солнечную энергию в центральное хранилище.

По мере необходимости энергия может быть использована для превращения  воды в пар, который заставляет  турбины вырабатывать электроэнергию. Используя местный песок в качестве тепловых накопителей энергии материал, а не синтетические масла или соли, используемые в настоящее время, можно дать существенный толчок развитию солнечной энергетики, поскольку позволяет снизить затраты.

Напомним, Правда.Ру рассказывала о том, что в Австралии разработали установку, которая вырабатывает электроэнергию, используя природные океанские приливы. И это не просто гениальная идея, а уже воплощенная в жизнь разработка, применяемая в некоторых районах Австралии, которая вырабатывает энергию при помощи погружных буйков и водяных насосов.

Читайте последние новости Pravda.Ru  на сегодня

Круглый стол: "Энергетика будущего"

www.pravda.ru

Производство электроэнергии - это... Что такое Производство электроэнергии?

Производство электроэнергии

Большую часть электроэнергии, производимой в мире, вырабатывают тепловые электростанции (ТЭС), и мы как раз прибыли на одну из них. Обратите внимание на  огромные резервуары цилиндрической формы.  В этих впечатляющих «сосудах», объем которых может достигать 14 000 м³, хранится мазут – тяжелая фракция нефти, служащая одним из видов топлива в энергетической промышленности.

Из нефти сегодня вырабатывают около 7% мировой электроэнергии. Это существенная доля, если учесть высокую стоимость нефтяного топлива. Его целесообразно использовать в районах, куда природный газ и каменный уголь доставить сложнее. В нашей стране на мазуте в основном работают электростанции, расположенные на Севере и на Дальнем Востоке. Кроме того, мазут часто применяют в качестве резервного топлива на ТЭС, использующих газ как основное топливо. В России доля таких электростанций составляет 35%.

Принцип работы ТЭС основан на преобразовании тепловой энергии в механическую, а затем – в электрическую. В топке котельного агрегата сжигают топливо, чтобы привести  в движение первичный двигатель, который, в свою очередь, заведет электрогенератор. Так, в самых распространенных в мире паротурбинных ТЭС, сжигая топливо, получают водяной пар высокого давления. Он приводит в движение ротор паровой турбины, соединенный с ротором электрического генератора.

Надо сказать, что мазут – не единственный нефтепродукт, который используют для получения электроэнергии.  Для привода электрогенераторов можно применять бензиновые или дизельные двигатели внутреннего сгорания. Их малая мощность и низкий КПД компенсируются компактным размером станции и низкими расходами на установку и обслуживание. Более того, такие электростанции бывают передвижными – и если нужно обеспечить энергией геологическую экспедицию или оказать помощь в месте бедствия, они становятся настоящим спасением.

Что же до мазута, то его использование в качестве топлива для электростанций постепенно сокращается. Это во многом связано с модернизацией нефтеперерабатывающих заводов, где планируют увеличить выработку легких нефтепродуктов, соответственно, уменьшая выход тяжелых.  В будущем нефть будет активнее использоваться в качестве ценнейшего сырья для химической промышленности. А электроэнергетическая отрасль сделает ставку на альтернативные источники энергии.

Пожалуй, активнее всего сейчас развивают использование ветрогенераторов. Пока они дают менее 1% от потребляемой в мире энергии, но ситуация быстро меняется. Так, в Испании доля «ветроэнергии» уже достигла 40%, а британское правительство планирует к 2020 году перевести на нее все домохозяйства страны. Относительная дешевизна, доступность и экологическая чистота – несомненные плюсы этого направления. Но есть и недостатки: сильный шум, неровный выход энергии, необходимость в больших площадях для того, чтобы огромные лопасти современных мельниц не мешали друг другу. И, конечно же, необходимы постоянные ветра, а значит, технология подходит далеко не для всех территорий.

Впрочем, то же можно сказать и про гелиостанции. Солнечные батареи становятся частью повседневной жизни именно в южных странах, где в году много ясных дней. Теперь это не только источник электроэнергии для космических кораблей, но и свет и тепло для жителей домов, на крышах которых установлены панели фотоэлементов. В Москве солнечные батареи можно увидеть на крыше высотного здания Академии наук. Несомненно, у этой технологии большое будущее, ведь звезда по имени Солнце поставляет Земле примерно в 100 тысяч больше энергии, чем нашей цивилизации необходимо на сегодняшний день. 

Геотермальные электростанции используют тепловую энергию, выделяемую земной корой в вулканических зонах – например, в Исландии, на Камчатке, в Новой Зеландии. Такие объекты достаточно дороги, зато их эксплуатация весьма экономична. В Исландии уже сейчас используют этот энергоресурс для отопления около 90% домов.

В приморских зонах можно строить приливные электростанции, использующие колебания уровня воды. Залив или устье реки перегораживают специальной плотиной, задерживающей воду при отливе. Когда воду выпускают, она вращает турбину. Еще более удивительный метод добычи энергии – использование разницы температур океанской воды. Теплая вода нагревает легко испаряющуюся жидкость (аммиак), пары приводят в движение турбину, а затем их конденсируют при помощи холодной воды. Такая электростанция работает, в частности, на Гавайях.

По оптимистичным прогнозам, во второй половине нашего столетия доля возобновляемых и альтернативных источников в мировой энергетике может достигнуть 50%.

Чтобы узнать больше о нефтяном топливе и  о новых методах получения энергии, можно отправиться на АЗС.

Интересные факты

В наши дни, когда львиная доля электроэнергии вырабатывается за счет невозобновляемых ресурсов, в том числе из драгоценной нефти, наш долг – соблюдать элементарные правила экономии. Они ничуть не сложнее традиционного «Уходя, гасите свет». Несколько фактов для тех, кто хочет прямо сейчас стать более сознательным и бережливым жителем Земли:

  • Энергосберегающая лампочка потребляет две третьих от количества энергии, необходимого для обычной лампочки, а служит на 70% дольше. 
  • Эффективность отопительных приборов и кондиционеров падает на 20% из-за банальных щелей в оконных рамах.
  • Если зарядное устройство для мобильного телефона постоянно подключено к сети, 95% энергии тратится впустую.
  • Неправильно выбранная программа стирки приводит к 30% перерасхода энергии.
  • Современные электроприборы маркируются в соответствии с классом энергоэффективности. Самые экономичные – приборы класса «А».

Краткий электронный справочник по основным нефтегазовым терминам с системой перекрестных ссылок. — М.: Российский государственный университет нефти и газа им. И. М. Губкина. М.А. Мохов, Л.В. Игревский, Е.С. Новик. 2004.

neft.academic.ru

Больше нефти для бога нефти. Когда у королей энергетики погаснет свет | Блог Already Yet

Закончив разговор о поисках Саудовской Аравией надёжного поставщика технологий мирного атома для снабжения своей экономики электроэнергией, получаемой от АЭС, необходимо, тем не менее, набросать примерный сценарный анализ того, что будет представлять собой экономика и энергетика Саудовской Аравии в период действия программы строительства АЭС, в период с 2015 по 2040 год.

Для понимания важности развития атомной энергетики для Королевства необходимо рассмотреть текущие демографические тенденции Саудовской Аравии, специфику рынка электроэнергии страны и сравнительные возможности, которые даёт производство электроэнергии из нефти, природного газа или же атомного топлива.

Во-первых, демография.

При инерционном сценарии развития демографической ситуации в Саудовской Аравии, без масштабных войн и революций на её территории, население Королевства вырастет ещё на 50% к 2040 году:

При этом, кроме такого кризисного сценария, исходя из внутренней популяционной динамики населения Саудовской Аравии, у страны не просматривается никаких рычагов для остановки естественного роста населения — текущий годовой прирост, хоть и упал с невероятных 6%, характерных для периода 1975–1985 гг., всё равно составляет около 2%, что обеспечивает устойчивый рост населения Королевства исключительно за счёт внутренних причин.

Репродуктивная модель мусульманской арабской семьи по-прежнему нацелена на расширенное воспроизводство поколений (3 и более детей на одну женщину) и господствующая религия и общественная модель никак не поменяют этой ситуации в ближайшем будущем. Кроме того, надо учитывать, что специфика саудовской экономики состоит в том, что граждане Королевства крайне неохотно занимают трудовые места, связанные с «грязными», непрестижными и низкооплачиваемыми работами, что приводит к тому, что, согласно независимым оценкам, в Саудовской Аравии в настоящий момент времени легально и нелегально работает около 9 миллионов гастарбайтеров, которые и занимают такие рабочие места в экономике Королевства.

С населением в 41–53 миллиона (в зависимости от соответствия «низкому» или «высокому» прогнозу ООН) и с 9–15 миллионами гастарбайтеров, которые по-прежнему будут присутствовать в экономике страны, Саудовская Аравия неизбежно столкнётся с потребностью удовлетворения растущего спроса на электроэнергию. Специфика потребления электроэнергии в Королевстве такова, что из 100% потреблённой электроэнергии около 52% потребляет население, ещё 32% приходится на муниципальный и коммерческий сектор, и лишь 13% приходится на промышленность и ещё 2% на сельское хозяйство. Отсюда следует и грустный для Саудовской Аравии, но неизбежный факт: потребление электроэнергии в стране к 2040 г. тоже неизбежно вырастет как минимум на 50%, поскольку за него отвечает в первую очередь растущее население Королевства, а попытка понижения стандартов жизни населения Саудовской Аравии опять-таки, практически неизбежно поставит на повестку дня вопрос внутренней стабильности страны, «слепленной» в начале ХХ века из весьма разнородных «лоскутков».

На сегодняшний день Саудовская Аравия обеспечивает себя электроэнергией практически монопольно из двух основных источников — собственной нефти и природного газа. Нефть и природный газ ответственны за практически равные доли производства электроэнергии:

При этом Саудовская Аравия практически вынужденно пускает весь прирост добычи газа в стране на производство электроэнергии, так и не став за 30 лет экспортёром газа. Замещение отечественным природным газом такой же нефти собственной добычи в производстве электроэнергии позволяет Саудовской Аравии освобождать для продажи на мировом рынке более ликвидную и приспособленную для глобальной транспортировки нефть. Однако, по геологическим причинам, учитывая исследованность и ограниченность территории Саудовской Аравии, даже концепция замещения нефти газом для поддержания возможностей экспорта нефти тоже имеет свои пределы: на сегодняшний день Королевство уже практически полностью утилизирует попутный природный газ, который добывается на нефтяных месторождениях, а собственных масштабных газовых месторождений, сравнимых по потенциалу с катарским Северным или иранским Южным Парсом, у Королевства нет.

Кроме того, неминуемо приближающаяся, хотя и не произошедшая пока «смерть Гавара», связанная с резким падением добычи нефти на этом сверхгигантском месторождении, может поставить перед Королевством вопрос доступности нефти как для целей экспорта, так и для целей производства электроэнергии внутри страны. А нарастить добычу газа ещё на 100% от текущего уровня, чтобы заместить газовыми электростанциями существующие, работающие на нефти, Саудовской Аравии будет практически невозможно.

Исходя из этого, перед Саудовской Аравией стоит простой вопрос: чем обеспечивать неизбежный будущий рост потребления электроэнергии, связанный с растущим населением, и чем замещать выбывающие объёмы нефти, критичные как для нефтяного экспорта Королевства, так и для производства 50% электроэнергии.

И вот тут мы подходим к вопросу альтернатив нефти и природному газу, которые обеспечивали динамику развития Королевства всю вторую половину ХХ века.

Опубликованные в 2005 г. оценки Организации экономического сотрудничества и развития (ОЭСР) показывают, что средневзвешенная стоимость электроэнергии на АЭС составляла 2,1–3,1 цента за кВт-ч, в то время как стоимость электричества, произведенного электростанциями, работающими на природном газе, составила 3,7–6,0 цента за кВт-ч. Несмотря на последующую инфляцию мировых цен, этот принципиальный разрыв в себестоимости, составляющий 50–100%, остаётся слабым местом газовых электростанций и поныне.

Конкуренцию АЭС в мире по себестоимости производимой электроэнергии составляют только угольные электростанции:

Однако для Саудовской Аравии этот рецепт неприменим: Королевство не обладает сколь-либо значительными запасами качественных углей, в силу чего не может построить устойчивую и рентабельную электроэнергетику с использованием каменного или даже бурого угля.

Кроме того, важнейшим преимуществом ядерной энергетики является стабильность цен на электроэнергию в течение длительного периода времени. Как показано на вышеприведённом рисунке, структура затрат на производство электроэнергии в атомной энергетике существенно отличается от структуры формирования цен в энергетике, основанной на использовании ископаемого топлива. Это связано с тем, что себестоимость атомной электроэнергии определяется в основном капитальными вложениями (CAPEX) в строительство АЭС, а не эксплуатационными затратами (OPEX) на ядерное топливо, в отличие от электроэнергетики, основанной на сжигании нефти, газа или угля, где эксплуатационные затраты, связанные с топливом, могут достигать 80%. Топливная же составляющая в общей стоимости электроэнергии, вырабатываемой АЭС, на текущий момент составляет не более 25%, более того, испытывает тенденцию к снижению, связанную с тем, что вводимые дополнительные меры безопасности повышают капитальные затраты на постройку новых энергоблоков. Но, с другой стороны, в мире сейчас наблюдается локальное снижение цен на ядерное топливо, связанное с остановкой ядерной программы в Японии и Германии и рядом других факторов. Данное обстоятельство приводит к повышенной устойчивости цены на атомную электроэнергию по отношению к колебаниям цены на топливо.

С другой стороны, исчерпание дешёвых и доступных месторождений нефти и газа в мировых масштабах неизбежно будет приводить к тому, что тенденция увеличения капитальных и эксплуатационных затрат по разведке и добыче нефти будет вызывать рост стоимости этих энергоресурсов. Безусловно, это касается и ядерного топлива (урана), когда мир тоже вполне может столкнуться с тем, что нынешняя низкая цена на уран, определяемая мировым кризисом и массой других причин, потом вернётся на более высокий уровень. Однако такое возможное возрастание топливной составляющей приводит к увеличению себестоимости электроэнергии в различной пропорции для разных электростанций. Так, двукратное повышение цены на энергоноситель спровоцирует повышение стоимости электроэнергии на АЭС всего лишь на 9%, на угольных ТЭС себестоимость вырастет уже на 31%, а вот на газовых электростанциях себестоимость производства электроэнергии возрастёт, исходя из структуры расходов, уже на целых 66%.

Учитывая вышеизложенное, можно сделать вывод: выбор Саудовской Аравии и очевиден, и пугающ одновременно. Масштабные вложения в атомную энергетику Королевства могут свидетельствовать только об одном: аналитики Саудовской Аравии, имеющие доступ к реальной статистике по запасам нефти и природного газа Королевства, отчётливо видят безрадостные и туманные перспективы будущего рынка нефти и газа и прекрасно представляют те преимущества, которые может дать растущей Аравии использование устойчивого и прогнозируемого мирного атома.

Оригинал

×

cont.ws