Фазовые переходы в нефти, воде и газе. Фазовые переходы нефти


Фазовые переходы в нефти, воде и газе

Фазовые переходы подчиняются определённым закономерностям, в основе которых лежит понятие равновесия фаз. Равновесие фаз характеризуется константой равновесия, которая зависит от температуры и давления.

Константа фазового равновесия i-го компонента характеризуется отношением мольной доли компонента в газовой фазе (yiилиNyi) к мольной доле этого компонента в жидкой фазе (xiилиNxi), находящейся в равновесном состоянии с газовой фазой:

Для определения равновесного состояния газожидкостных смесей используются законы Дальтона и Рауля.

Согласно закону Дальтона каждый компонент, входящий в газовую фазу имеет своё парциальное давление Pi, а общее давление в газовой системе равно сумме парциальных давлений:

Согласно закону Рауля, парциальное давление компонента над жидкостью (нефтью) равно давлению насыщенного пара (Pнас. пара) или упругости пара (Qi) и этого компонента, умноженному на его мольную долю в нефти:

где Qi– упругость паров компонента;

Nxi– мольная доля компонента;

piнас. пара – давление насыщенного параi-го компонента.

В момент равновесия парциальное давление i-го компонента в газовой фазе равно парциальному давлению компонента над жидкостью. Отсюда следует закон Дальтона-Рауля для равновесного состояния газовой и нефтяной фазы:

где Ki– константа равновесияi-го компонента при данной температуре и давлении смеси.

Уравнение материального баланса для одного моля нефтегазовой смеси:

где L– мольная доля жидкой фазы;

V– мольная доля паровой фазы;

Nzi– мольные доли компонентов в нефтегазовой смеси.

По условию сумма мольной доли жидкой и паровой фаз равна единице. Отсюда:

Используя уравнения (4.6) и (4.7) получим выражение для мольной доли компонента жидкой фазы:

и для мольной доли компонента газовой фазы:

2. Пластовые воды и их физические свойства.

Пластовые воды оказывают весьма существенное влияние на качественные и количественные показатели работ при углублении ствола, креплении и цементировании нефтяных и газовых скважин. Пластовые воды — постоянные спутники нефтегазовых месторождений. Они играют большую роль в поисках, формировании и разработке залежей.

Вода различается по наличию растворенных в ней примесей и солей. По температуре воды делятся на холодные, теплые, горячие и очень горя­чие. Температура воды существенно влияет на количество содержащихся в ней солей и газов. По положению относительно нефтегазоносных горизон­тов пластовую воду относят к краевой, подошвенной воде; она бывает верхней, нижней, погребенной (реликтовой), находящейся непосредствен­но в нефтяном пласте и остающейся неподвижной при движении нефти. Солевой состав вод в нефтяном пласте неодинаков для всех частей струк­туры.

При изучении пластовых вод для характеристики их свойств принято определять общую минерализацию воды и ее жесткость, содержание глав­ных шести ионов, рН, плотность, запах, вкус, прозрачность, поверхностное натяжение, а также проводить анализ растворенных газов - бактериологи­ческий или микробиологический.

Общая минерализация воды выражается суммой содержащихся в ней химических элементов, их соединений и газов. Она оценивается по сухому (или плотному) остатку, который получается после выпаривания воды при температуре 105-110 °С. По размеру сухого остатка воды разделяются на пресные (содержание солей < 1 г/л), слабосолоноватые (1-5 г/л), солонова­тые (5-10 г/л), соленые (10-50 г/л), рассолы (>50 г/л).

Главные химические компоненты в подземных водах: хлор - ион (С1-),

сульфат - ион (SO24- ), гидрокарбонатный и карбонатный ионы (НСО3-) и

(COg ), а также ионы щелочных и щелочноземельных металлов и оксидов:

натрия Na+, кальция Са2+, магния Мд2+, железа и SiO2 (в коллоидном со­стоянии). В воде растворяются азот, кислород, углекислый газ, сероводород и т.д. В настоящее время принята форма химического анализа воды - ион­ная. Так как молекулы солей в растворе распадаются на катионы и анионы, те и другие должны находиться в эквивалентных количествах. Для перево­да результатов анализа воды, выраженных в ионной форме, в эквивалент­ную, следует количество каждого найденного элемента (в мг/л) разделить на его эквивалентную массу. Эквиваленты ионов могут быть выражены также в процентах от суммы анионов и катионов, каждая сумма анионов и катионов принимается за 50 или 100 %.

Для подземных вод нефтегазовых месторождений характерно повы­шенное содержание иода, брома, бора, аммония и вблизи нефтяной зале­жи — нафтеновых кислот. По химическому составу это обычно хлоридно-кальциево-натриевые рассолы с общей минерализацией 50 г/л и выше. Во­ды нефтяных месторождений бывают кислые и щелочные гидрокарбонат-но-натриевого и иногда хлоридно-сульфатно-натриевого состава.

При оценке подземных вод (для питания паровых котлов, хозяйствен­ных целей и т.д.) следует обращать внимание на жесткость воды, под кото­рой понимают свойство воды, обусловленное содержанием в ней солей кальция и магния: Ca(HCO3)2r Mg(HCO3)2r CaCO3, CaCl2, MgCl2. Различают жесткость общую, характеризующуюся присутствием солей Са и Мд, по­стоянную, обусловленную содержанием солей Са и Мд, за исключением бикарбонатов, и временную, определяемую наличием бикарбонатов Са и Мд. Временная жесткость воды может быть найдена по разности общей и постоянной. Кипяченая вода характеризуется только постоянной жестко­стью. Природные воды по жесткости разделяются на следующие типы: очень мягкие, умеренно жесткие, жесткие и очень жесткие.

В основу классификации пластовых вод по Пальмеру положено соот­ношение в воде количеств ионов щелочных металлов К+ и Na+ (а), ионов щелочноземельных металлов Са2+ и Mg2+(fo) и анионов сильных кислот СГ (d).

В зависимости от преобладания тех или иных ионов в воде Пальмер разделяет все воды на пять классов:

I..................................................... d<a

II.................................................... d = a

III................................................... a<d<a ++ b

IV.................................................. d = a + b

V.................................................... d>a + b

Для характеристики качества воды используются шесть показателей: первичная соленость, первичная щелочность, вторичная соленость, вторич­ная щелочность, третичная соленость, третичная щелочность.

В соответствии с классификацией природных вод по В.А. Сулину, применяемой в нефтегазодобывающей промышленности, последние под­разделяются на четыре генетических типа: I - сульфатно-натриевые; II -гидрокарбонатно-натриевые; III - хлормагниевые; IV - хлоркальциевые. Принадлежность воды к определенному генетическому типу устанавлива­ется по отношению эквивалентов отдельных ионов. Каждый тип вод подразделяется на группы: А - гидрокарбонатные, Б - сульфатные, В - хлоридные. Группы, в свою очередь, подразделяются на классы и подгруппы. Воды относятся к определенной группе и подгруппе на основании отноше­ния эквивалентов отдельных ионов.

В большинстве пластовых вод содержатся анионы и мыла нафтеновых и жирных кислот, фенолы и азотсодержащие кислоты.

studfiles.net

ФАЗОВЫЕ ПЕРЕХОДЫ В НЕФТИ, ВОДЕ И ГАЗЕ

 

Фазовые переходы подчиняются определённым закономерностям, в основе которых лежит понятие равновесия фаз. Равновесие фаз характеризуется константой равновесия, которая зависит от температуры и давления.

Константа фазового равновесия i-го компонента характеризуется отношением мольной доли компонента в газовой фазе (уi или Nyi) к мольной доле этого компонента в жидкой фазе (хi или Nxi), находящейся в равновесном состоянии с газовой фазой:

 

. (3.1)

 

Для определения равновесного состояния газожидкостных смесей используются законы Дальтона и Рауля.

Согласно закону Дальтона каждый компонент, входящий в газовую фазу имеет своё парциальное давление Pi, а общее давление в газовой системе равно сумме парциальных давлений:

 

(3.2)

 

Согласно закону Рауля, парциальное давление компонента над жидкостью (нефтью) равно давлению насыщенного пара (Рнас. пара) или упругости пара (Qi) и этого компонента, умноженному на его мольную долю в нефти:

 

или , (3.3)

 

где Qi – упругость паров компонента;

Nxi – мольная доля компонента;

piнас. пара – давление насыщенного пара i-го компонента.

В момент равновесия парциальное давление i-го компонента в газовой фазе равно парциальному давлению компонента над жидкостью. И это описывается законом Дальтона-Рауля для равновесного состояния газовой и нефтяной фазы:

 

; (3.4)

 

, (3.5)

 

где Кi – константа равновесия i-го компонента при данной температуре и давлении смеси.

Оценить состав газовой (Nyi) и жидкой (Nxi) фаз можно на основе уравнения материального баланса, записанного для одного моля нефтегазовой смеси (Nzi):

 

, (3.6)

где L – мольная доля жидкой фазы;

V – мольная доля паровой фазы;

Nzi – мольные доли компонентов в нефтегазовой смеси.

По условию сумма мольной доли жидкой и паровой фаз равна единице. Отсюда:

V=1–L. (3.7)

 

Используя уравнения (3.6) и (3.7) получим выражение для мольной доли компонента жидкой фазы:

 

, (3.8)

или

, (3.9)

 

и для мольной доли компонента газовой фазы:

 

. (3.10)

 

Величины: V и L оцениваются и уточняются методом последовательных проб и приближений (см. разд. "Практикум для самостоятельной работы"). .

 

 

Похожие статьи:

poznayka.org

ФАЗОВЫЕ ПЕРЕХОДЫ В НЕФТИ, ВОДЕ И ГАЗЕ

 

Фазовые переходы подчиняются определённым закономерностям, в основе которых лежит понятие равновесия фаз. Равновесие фаз характеризуется константой равновесия, которая зависит от температуры и давления.

Константа фазового равновесия i-го компонента характеризуется отношением мольной доли компонента в газовой фазе (уi или Nyi) к мольной доле этого компонента в жидкой фазе (хi или Nxi), находящейся в равновесном состоянии с газовой фазой:

 

. (4.1)

 

Для определения равновесного состояния газожидкостных смесей используются законы Дальтона и Рауля.

Согласно закону Дальтона каждый компонент, входящий в газовую фазу имеет своё парциальное давление Pi, а общее давление в газовой системе равно сумме парциальных давлений:

 

(4.2)

 

Согласно закону Рауля, парциальное давление компонента над жидкостью (нефтью) равно давлению насыщенного пара (Рнас. пара) или упругости пара (Qi) и этого компонента, умноженному на его мольную долю в нефти:

 

или (4.3)

 

где Qi – упругость паров компонента;

Nxi – мольная доля компонента

piнас. пара – давление насыщенного пара i-го компонента.

В момент равновесия парциальное давление i-го компонента в газовой фазе равно парциальному давлению компонента над жидкостью. Отсюда следует закон Дальтона-Рауля для равновесного состояния газовой и нефтяной фазы:

 

; (4.4)

 

, (4.5)

 

где Кi – константа равновесия i-го компонента при данной температуре и давлении смеси.

Уравнение материального баланса для одного моля нефтегазовой смеси:

 

, (4.6)

 

где L – мольная доля жидкой фазы;

V – мольная доля паровой фазы

Nzi – мольные доли компонентов в нефтегазовой смеси.

 

По условию сумма мольной доли жидкой и паровой фаз равна единице. Отсюда:

V=1–L. (4.7)

 

Используя уравнения (4.6) и (4.7) получим выражение для мольной доли компонента жидкой фазы:

 

, (4.8)

 

и для мольной доли компонента газовой фазы:

 

. (4.9)

 

ПОВЕРХНОСТНО-МОЛЕКУЛЯРНЫЕ СВОЙСТВА

СИСТЕМЫ ПЛАСТ-ВОДА

 

Нефтяной пласт представляет собой залежь осадочных пород в виде тела с огромным скоплением капиллярных каналов и трещин, поверхность которых очень велика. Поэтому закономерности движения нефти в пласте и её вытеснения из пористой среды зависят также и от свойств пограничных слоёв соприкасающихся фаз и процессов, происходящих на поверхности контакта нефти, газа и воды с породой.

На формирование залежей углеводородов оказывает влияние количество остаточной воды в залежи (остаточная водонасыщенность, SB), которая в свою очередь зависит от свойств воды и углеводородов и от природы поверхности горной породы. Под природой поверхности понимаются гидрофильность – способность вещества смачиваться водой и гидрофобность – способность вещества не смачиваться водой.

Физико-химические свойства поверхностей раздела фаз и закономерности их взаимодействия характеризуются рядом показателей – поверхностным натяжением на границе раздела фаз, явлениями смачиваемости и растекания, работой адгезии и когезии, теплотой смачивания.

Поверхностное натяжение s – избыток свободной энергии сосредоточенной на одном квадратном сантиметре площади поверхностного слоя на границе раздела двух фаз. По поверхностному натяжению пластовых жидкостей на различных поверхностях раздела можно судить о свойствах соприкасающихся фаз, закономерностях взаимодействия жидких и твёрдых тел, процессах адсорбции, количественном и качественном составе полярных компонентов в жидкости, интенсивности проявления капиллярных сил и т.д.

Поверхностное натяжение связано с такими понятиями как свободная энергия поверхностного слоя жидкости и сила поверхностного натяжения.

Свободная энергияповерхности:

 

Е = s × s, (5.1)

 

где s – поверхностное натяжение;

s – суммарная поверхность двух фаз.

Сила поверхностного натяжения – сила, действующая на единицу длины периметра взаимодействия двух фаз (линию смачивания):

 

, (5.2)

 

где – линия смачиваемости.

Коэффициент поверхностного натяжения s зависит от давления, температуры, газового фактора, свойств флюидов.

Если поверхностное натяжение между двумя жидкостями, газом и жидкостью можно измерить, то на поверхности раздела породы-жидкости и породы-газа измерить трудно. Поэтому для изучения поверхностных явлений на границе порода-жидкость пользуются косвенными методами изучения поверхностных явлений: измерением работы адгезии и когезии, исследованием явлений смачиваемости и растекаемости, изучением теплоты смачивания.

Смачиванием называется совокупность явлений на границе соприкосновения трёх фаз, одна из которых обычно является твёрдым телом и две другие – не смешиваемые жидкости или жидкость и газ.

Капля жидкости может растекаться по поверхности, если поверхность хорошо смачивается, а если поверхность плохо смачивается, то капля растекаться не будет.

Интенсивность смачивания характеризуется величиной краевого угла смачивания Q, образованного поверхностью твёрдого тела с касательной, проведённой к поверхности жидкости из точки её соприкосновения с поверхностью (рис. 5.1).

 

Рис. 5.1. Форма капли, обусловленная поверхностными натяжениями на различных границах соприкасающихся фаз.

 

Краевой угол Q измеряется в сторону более полярной фазы (в данном случае в сторону воды). Принято условно обозначать цифрой 1 водную фазу, цифрой 2 – углеводородную жидкость или газ, цифрой 3 – твёрдое тело.

Предполагая, что краевой угол Q отвечает термодинамическому равновесию, получим уравнение, впервые выведенное Юнгом:

 

s2,3 = s3,1 +s1,2 × cosQ, (5.3)

 

откуда получим выражение для краевого угла Q:

 

. (5.4)

 

Если s23> s13, то 0<cosQ<1, из чего следует, что угол Q – острый (наступающий), а поверхность – гидрофильная.

Если s23> s13, то -1<cosQ<0, из чего следует, что угол Q – тупой (отступающий), а поверхность – гидрофобная.

Существуют также переходные поверхности (т.н. амфотерные), которые хорошо смачиваются как полярными, так и неполярными системами.

К гидрофильным поверхностям относятся силикаты, карбонаты, окислы железа. К гидрофобным поверхностям – парафины, жиры, воск, чистые металлы.

Краевой угол смачивания зависит от строения поверхности, адсорбции жидкостей и газов, наличия ПАВ, температуры, давления, электрического заряда.

Поверхностные явления описываются также работой адгезии.

Адгезия– прилипание (сцепление поверхностей) разнородных тел. Когезия – явление сцепления поверхностей разнородных тел, обусловленной межмолекулярным или химическим взаимодействием.

Работа адгезии оценивается уравнением Дюпре:

 

Wa = s1,2+ s2,3+ s1,3. (5.5)

 

Используя соотношения (5.3) и (5.5), мы получим уравнение Дюпре-Юнга:

 

Wa = s1,2(1+cosQ). (5.6)

 

Из соотношения

 

s2,3– s1,3= s1,2cosQ (5.7)

 

следует, что при смачивании свободная энергия единицы поверхности твёрдого тела уменьшается на величину s1,2cosQ, которую принято называть натяжением смачивания.

Работа когезии Wк характеризует энергетические изменения поверхностей раздела при взаимодействии частиц одной фазы.

Из уравнения (5.6) следует, что на отрыв жидкости от поверхности твёрдого тела при полном смачивании (когда cosQ=0) затрачивается работа, необходимая для образования двух жидких поверхностей – 2sжг, т.е. Wк = 2sж г, где 2sжг – поверхностное натяжение жидкости на границе с газом.

Это значит, что при полном смачивании жидкость не отрывается от поверхности твёрдого тела, а происходит разрыв самой жидкости, т.е. при полном смачивании s1,2 £ s1,3 .

Подставив в уравнение Юнга значения работ адгезии и когезии, получим:

 

(5.8).

 

Из этого уравнения следует, что смачиваемость жидкостью твёрдого тела тем лучше, чем меньше работа когезии (и поверхностное натяжение жидкости на границе с газом).

Для характеристики смачивающих свойств жидкости используют также относительную работу адгезии z=Wа/Wк.

Ещё одна характеристика, используемая для описания поверхностных явлений – теплота смачивания.

Установлено, что при смачивании твёрдого тела жидкостью наблюдается выделение тепла, так как разность полярностей на границе твёрдое тело–жидкость меньше, чем на границе с воздухом. Для пористых и порошкообразных тел теплота смачивания обычно имеет значение от 1 до 125 кДж/кг и зависит от степени дисперсности твёрдого тела и полярности жидкости.

Теплота смачивания характеризует степень дисперсности твёрдого тела и природу его поверхности. Большее количество теплоты выделяется при смачивании той жидкостью, которая лучше смачивает твёрдую поверхность.

 

pdnr.ru

3.2. Фазовые переходы в нефти, воде и газе

 

Фазовые переходы подчиняются определённым закономерностям, в основе которых лежит понятие равновесия фаз. Равновесие фаз характеризуется константой равновесия, которая зависит от температуры и давления.

Константа фазового равновесия i-го компонента характеризуется отношением мольной доли компонента в газовой фазе (уi или Nyi) к мольной доле этого компонента в жидкой фазе (хi или Nxi), находящейся в равновесном состоянии с газовой фазой:

 

. (3.1)

 

Для определения равновесного состояния газожидкостных смесей используются законы Дальтона и Рауля.

Согласно закону Дальтона каждый компонент, входящий в газовую фазу имеет своё парциальное давление Pi, а общее давление в газовой системе равно сумме парциальных давлений:

 

(3.2)

 

Согласно закону Рауля, парциальное давление компонента над жидкостью (нефтью) равно давлению насыщенного пара (Рнас. пара) или упругости пара (Qi) и этого компонента, умноженному на его мольную долю в нефти:

 

или , (3.3)

 

где Qi – упругость паров компонента;

Nxi – мольная доля компонента;

piнас. пара – давление насыщенного пара i-го компонента.

В момент равновесия парциальное давление i-го компонента в газовой фазе равно парциальному давлению компонента над жидкостью. И это описывается законом Дальтона-Рауля для равновесного состояния газовой и нефтяной фазы:

 

; (3.4)

 

, (3.5)

 

где Кi – константа равновесия i-го компонента при данной температуре и давлении смеси.

Оценить состав газовой (Nyi) и жидкой (Nxi) фаз можно на основе уравнения материального баланса, записанного для одного моля нефтегазовой смеси (Nzi):

 

, (3.6)

где L – мольная доля жидкой фазы;

V – мольная доля паровой фазы;

Nzi – мольные доли компонентов в нефтегазовой смеси.

По условию сумма мольной доли жидкой и паровой фаз равна единице. Отсюда:

V=1–L. (3.7)

 

Используя уравнения (3.6) и (3.7) получим выражение для мольной доли компонента жидкой фазы:

 

, (3.8)

или

, (3.9)

 

и для мольной доли компонента газовой фазы:

 

. (3.10)

 

Величины: V и L оцениваются и уточняются методом последовательных проб и приближений (см. разд. "Практикум для самостоятельной работы"). .

 

 

4. Поверхностно-молекулярные свойства системы пласт-вода-нефть-газ

 

Нефтяной пласт представляет собой залежь осадочных пород в виде тела с огромным скоплением капиллярных каналов и трещин, поверхность которых очень велика. Поэтому закономерности движения нефти в пласте и её вытеснения из пористой среды зависят также и от свойств пограничных слоёв соприкасающихся фаз и процессов, происходящих на поверхности контакта нефти, газа и воды с породой.

На формирование залежей углеводородов оказывает влияние количество остаточной воды в залежи (остаточная водонасыщенность, SB), которая в свою очередь зависит от свойств воды и углеводородов и от природы поверхности горной породы. Под природой поверхности понимаются гидрофильность – способность вещества смачиваться водой и гидрофобность – способность вещества не смачиваться водой.

Физико-химические свойства поверхностей раздела фаз и закономерности их взаимодействия характеризуются рядом показателей – поверхностным натяжением на границе раздела фаз, явлениями смачиваемости и растекания, работой адгезии и когезии, теплотой смачивания.

Поверхностное натяжение s – избыток свободной энергии сосредоточенной на одном квадратном сантиметре площади поверхностного слоя на границе раздела двух фаз. По поверхностному натяжению пластовых жидкостей на различных поверхностях раздела можно судить о свойствах соприкасающихся фаз, закономерностях взаимодействия жидких и твёрдых тел, процессах адсорбции, количественном и качественном составе полярных компонентов в жидкости, интенсивности проявления капиллярных сил и т.д.

Поверхностное натяжение связано с такими понятиями как свободная энергия поверхностного слоя жидкости, сила поверхностного натяжения и работа поверхностного натяжения.

Поверхностное натяжение можно рассматривать как избыток свободной энергии сосредоточенной на 1 см2 единицы поверхностного слоя на границе раздела фаз:

Е = s × s, (4.1)

 

где s – поверхностное натяжение;

s – суммарная поверхность двух фаз.

Поверхностного натяжения – это сила, действующая на единицу длины периметра взаимодействия двух фаз (линию смачивания):

 

, (4.2)

 

где – линия смачиваемости.

Поверхностного натяжения – это работа, образования 1 см2 новой поверхности в изотермических условиях:

 

, (4.3)

 

Коэффициент поверхностного натяжения s зависит от давления, температуры, газового фактора, свойств флюидов.

Если поверхностное натяжение на границе раздела между двумя жидкостями, газом и жидкостью можно измерить, то поверхностное натяжение на границе раздела порода-жидкость и породы-газа измерить трудно. Поэтому для изучения поверхностных явлений на границе порода-жидкость пользуются косвенными методами изучения поверхностных явлений: измерением работы адгезии и когезии, исследованием явлений смачиваемости и растекаемости, изучением теплоты смачивания.

Смачиванием называется совокупность явлений на границе соприкосновения трёх фаз, одна из которых обычно является твёрдым телом и две другие – не смешиваемые жидкости или жидкость и газ.

Капля жидкости может растекаться по поверхности, если поверхность хорошо смачивается, а если поверхность плохо смачивается, то капля растекаться не будет.

Интенсивность смачивания характеризуется величиной краевого угла смачивания Q, образованного поверхностью твёрдого тела с касательной, проведённой к поверхности жидкости из точки её соприкосновения с поверхностью (рис. 4.1).

 

Рис. 4.1. Форма капли, обусловленная поверхностными натяжениями на различных границах соприкасающихся фаз.

Краевой угол Q измеряется в сторону более полярной фазы (в данном случае в сторону воды). Принято условно обозначать цифрой 1 водную фазу, цифрой 2 – углеводородную жидкость или газ, цифрой 3 – твёрдое тело.

Предполагая, что краевой угол Q отвечает термодинамическому равновесию, получим уравнение, впервые выведенное Юнгом:

 

s2,3 = s3,1 +s1,2 × cosQ, (4.3)

 

откуда получим выражение для краевого угла Q:

 

. (4.4)

 

Если s23 > s13, то 0 < cosQ < 1, из чего следует, что угол Q – острый (наступающий), а поверхность – гидрофильная.

Если s23 > s13, то –1 < cosQ < 0, из чего следует, что угол Q – тупой (отступающий), а поверхность – гидрофобная.

Существуют также переходные поверхности (т.н. амфотерные), которые хорошо смачиваются как полярными, так и неполярными системами.

К гидрофильным поверхностям относятся силикаты, карбонаты, окислы железа. К гидрофобным поверхностям – парафины, жиры, воск, чистые металлы.

Краевой угол смачивания зависит от строения поверхности, адсорбции жидкостей и газов, наличия ПАВ, температуры, давления, электрического заряда.

Поверхностные явления описываются также работой адгезии.

Адгезия – прилипание (сцепление поверхностей) разнородных тел. Когезия – явление сцепления поверхностей разнородных тел, обусловленной межмолекулярным или химическим взаимодействием.

Работа адгезии оценивается уравнением Дюпре:

 

Wa = s1,2 + s2,3+ s1,3. (4.5)

 

Используя соотношения (4.3) и (4.5), мы получим уравнение Дюпре-Юнга:

 

Wa = s1,2(1+cosQ). (4.6)

 

Из соотношения:

 

s2,3 – s1,3= s1,2cosQ (4.7)

 

следует, что при смачивании свободная энергия единицы поверхности твёрдого тела уменьшается на величину s1,2cosQ, которую принято называть натяжением смачивания.

Работа когезии Wк характеризует энергетические изменения поверхностей раздела при взаимодействии частиц одной фазы.

Из уравнения (4.6) следует, что на отрыв жидкости от поверхности твёрдого тела при полном смачивании (когда cosQ=0) затрачивается работа, необходимая для образования двух жидких поверхностей – 2sжг, т.е. Wк = 2sж г, где 2sжг – поверхностное натяжение жидкости на границе с газом.

Это значит, что при полном смачивании жидкость не отрывается от поверхности твёрдого тела, а происходит разрыв самой жидкости, т.е. при полном смачивании s1,2 £ s1,3 .

Подставив в уравнение Юнга значения работ адгезии и когезии, получим:

 

(4.8).

 

Из этого уравнения следует, что смачиваемость жидкостью твёрдого тела тем лучше, чем меньше работа когезии (и поверхностное натяжение жидкости на границе с газом).

Для характеристики смачивающих свойств жидкости используют также относительную работу адгезии z = Wа/Wк.

Ещё одна характеристика, используемая для описания поверхностных явлений – теплота смачивания.

Установлено, что при смачивании твёрдого тела жидкостью наблюдается выделение тепла, так как разность полярностей на границе твёрдое тело–жидкость меньше, чем на границе с воздухом. Для пористых и порошкообразных тел теплота смачивания обычно изменяется от 1 до 125 кДж/кг и зависит от степени дисперсности твёрдого тела и полярности жидкости.

Теплота смачивания характеризует степень дисперсности твёрдого тела и природу его поверхности. Большее количество теплоты выделяется при смачивании той жидкостью, которая лучше смачивает твёрдую поверхность.

Если через q1 – обозначить удельную теплоту смачивания породы водой, а через q2 - обозначить удельную теплоту смачивания породы нефтью, то для гидрофильных поверхностей будет выполняться соотношение : (q1/ q2) > 1, а для гидрофобных: (q1/ q2) < 1.

Явления смачиваемости рассматривались для равновесного состояния системы. В пластовых условиях наблюдаются неустойчивые процессы, происходящие на поверхности раздела фаз. За счет вытеснения нефти водой образуется передвигающийся трехфазный периметр смачивания. Угол смачивания изменяется в зависимости от скорости и направления движения жидкости (менисков жидкости, см. рис. 5.1.) в каналах и трещинах. Кинетическим гистерезисом смачивания принято называть изменение угла смачивания при передвижении по твердой поверхности трехфазного периметра смачивания. Величина гистерезиса зависит от:

  •         направления движения периметра смачивания, то есть от того, происходит ли вытеснение с твердой поверхности воды нефтью или нефти водой;

  •         скорости перемещения трехфазной границы раздела фаз по твердой поверхности;

  •         шероховатости твердой поверхности;

  •         адсорбции на поверхности веществ.

Явления гистерезиса возникают, в основном, на шероховатых поверхностях и имеют молекулярную природу. На полированных поверхностях гистересис проявляется слвбо.

studfiles.net

Фазовые переходы в нефти воде и газе

 

            Фазовые переходы подчиняются определённым закономерностям, в основе которых лежит понятие равновесия фаз. Равновесие фаз характеризуется константой равновесия, которая зависит от температуры и давления.

            Константа фазового равновесия i-го компонента характеризуется отношением мольной доли компонента в газовой фазе (уi или Nyi) к мольной доле этого компонента в жидкой фазе (хi или Nxi), находящейся в равновесном состоянии с газовой фазой:

 

.                  (3.1)

 

Для определения равновесного состояния газожидкостных смесей используются законы Дальтона и Рауля.

            Согласно закону Дальтона каждый компонент, входящий в газовую фазу имеет своё парциальное давление Pi, а общее давление в газовой системе равно сумме парциальных давлений:

 

               (3.2)

 

Согласно закону Рауля, парциальное давление компонента над жидкостью (нефтью) равно давлению насыщенного пара (Рнас. пара) или упругости пара (Qi) и этого компонента, умноженному на его мольную долю в нефти:

 

    или    ,   (3.3)

 

где Qi – упругость паров компонента;

Nxi – мольная доля компонента;

piнас. пара – давление насыщенного пара i-го компонента.

В момент равновесия парциальное давление i-го компонента в газовой фазе равно парциальному давлению компонента над жидкостью. И это описывается законом Дальтона-Рауля для равновесного состояния газовой и нефтяной фазы:

 

;             (3.4)

 

,        (3.5)

 

где Кi – константа равновесия i-го компонента при данной температуре и давлении смеси.

            Оценить состав газовой (Nyi) и жидкой (Nxi) фаз  можно на основе уравнения материального баланса, записанного для одного моля нефтегазовой смеси (Nzi):

 

,             (3.6)

            где L – мольная доля жидкой фазы;

V – мольная доля паровой фазы;

Nzi – мольные доли компонентов в нефтегазовой смеси.

            По условию сумма мольной доли жидкой и паровой фаз равна единице. Отсюда:

V=1–L.            (3.7)    

 

Используя уравнения (3.6) и (3.7) получим выражение для мольной доли компонента жидкой фазы:

 

 ,            (3.8)

         или

 ,      (3.9)

 

и для мольной доли компонента газовой фазы:

 

.             (3.10)

 

Величины: V и L оцениваются и уточняются методом последовательных проб и приближений (см. разд. "Практикум для самостоятельной работы").  .

 

 

www.tehnik.top

Фазовые превращения в нефтяных системах

    На(/ичие в нефтяных системах структурных фазовых переходов является надежно установленным фактом. Несмотря на возрастающее число публикаций по этой теме [1, 2, 4, 5 и др.], механизмы фазовых превращений, происходящих при термической переработке НДС, изучены недостаточно. Поэтому с точки зрения рационального использования сырья и выбора оптимальных технологических режимов необходимо детально исследовать динамику эволюции надмолекулярных структур НДС в широком интервале варьирования технологических параметров. [c.3]     ФАЗОВЫЕ ПРЕВРАЩЕНИЯ В НЕФТЯНЫХ СИСТЕМАХ [c.54]

    Описанные выше фазовые переходы в полной мере характерны и для органических соединений. Наиболее очевидным является тот факт, что каждое индивидуальное органическое соединение имеет два собственных фазовых перехода I рода температуру плавления Т я и температуру кипения Ткип- Поскольку нефтяные системы являются сложными смесями углеводородных соединений, при изменении внешних условий для них характерен ряд следующих фазовых превращений переход из одной кристаллической модификации в другую, растворение одной фазы в другой, насыщение или пересыщение одной фазы другой. [c.54]

    Развитие теории регулируемых фазовых переходов связано с созданием теоретических основ и рассмотрением прикладных аспектов физико-химической механики нефтяного сырья, разработкой оригинальных методик анализа и совершенствованием инструментальной базы в этой области. При этом представляется перспективным разработка новых инструментальных методов анализа для подробного изучения поведения нефтяных систем, с последующим аналитическим описанием происходящих в них превращений в процессах добычи, транспорта, переработки, хранения и эксплуатации. Применение принципов теории регулируемых фазовых переходов в нефтяных системах позволяет, наряду с интенсификацией технологических процессов, организовать квалифицированное использование остатков и отходов нефтепереработки и нефтехимии, решая таким образом проблемы экологии. [c.10]

    Относительная ошибка экспериментов составляла 5%. Все опыты проводили в токе гелия высокой чистоты при атмосферном давлении. Практически все нефтяные дисперсные системы вследствие различной склонности к межмолекулярным взаимо действиям содержащихся в них высокомолекулярных углеводородов характеризуются аномальными свойствами. Изучение аномальных свойств НДС позволяет разработать методы оценки и регулирования энергетических параметров фазовых превращений в реальных нефтяных системах. [c.140]

    В полной мере процесс структурирования в жидкой фазе при фазовых превращениях в нефтяных дисперсных системах осознан З.И. Сюняевым и развит в работах его школы [109] и др. В конце 1970-х годов, З.И. Сюняев заинтересовывается структурными единицами при рассмотрении физикохимической механики нефтяных дисперсных систем. Почему ученый уделяет большое внимание структурным единицам и в чем суть новой гипотезы  [c.68]

    Расчеты процесса промысловой сепарации природного и нефтяного газа, а также заводской его переработки сводятся к расчету равновесия фазовых превращений. Фазовые превращения углеводородных систем описываются системой уравнений фазовых концентраций, которые позволяют рассчитать разделение исходной системы на газовую и жидкую фазы и определить компонентный состав фаз в условиях термодинамического равновесия. [c.157]

    Сложные превращения веществ в реакциях изомеризации и рас-щеп.тения во многих случаях удовлетворительно объясняются соотношением радикальных и ионных. реакций. Изменением состава и свойств катализаторов уже возможно усиливать их способность ускорять либо ионные, либо радикальные превращения. Однако стройной и законченной системы взаимосвязи состава и свойств гидрирующих катализаторов с их активностью и селективностью нет. Во многих случаях эмпирически найденные весьма активные катализаторы не изучены даже настолько, чтобы судить об их химическом и фазовом составах. Это направление исследований — изучение взаимосвязи свойств катализаторов с механизмом и кинетикой протекающих в их присутствии реакций — является ключевым для создания новых гидрогенизационных процессов, в том ч сле процессов гидроочистки нефтей и нефтяных остатков и более селективных процессов гидрокрекинга. [c.336]

    Работы Брукса и Тейлора [15-16] о мезофазных превращениях при термолизе нефтепродуктов послужили очередным толчком для развития физических идей фазового перехода. Эти идеи в основном заключались в рассмотрении возникающих при термолизе структур, напоминающих по ряду свойств традиционные жидкие кристаллы. Акцент в исследованиях нефтепродуктов стал смещаться в сторону изучения их коллоидных свойств и процессов структурирования в жидкой фазе. Было введено понятие нефтяные дисперсные системы . [c.31]

    Появились новые представления о механизме превращений в нефтяных дисперсных системах в процессах их переработки. Оригинальными явились положения теории регулируемых фазовых переходов, предложенной проф. 3. И. Сюняевым [1]. Центральное место в этой теории отводится представлениям о формировании и разрушении надмолекулярных образований в НДС при воздействии на них внешних факторов. Для обозначения таких образований введено понятие сложная структурная единица . [c.10]

    Здесь следует сделать одно существенное замечание. При исследовании поведения высокозастывающего нефтяного сырья при пониженных температурах в области - -30...-20°С было замечено, что охлаждение системы не всегда сопровождается скачком в изменении состояния системы, то есть фазовые переходы не проявляются в ярко выраженной форме. Таким образом, несмотря на очевидный факт повышения упорядоченности такой многоуровневой системы, какой является нефть, при понижении температуры, по всей вероятности, резких качественных изменений структурных элементов системы в целом не происходит. Не вдаваясь в подробности механизма превращений, отметим, что было высказано предположение о проявлении во времени в системе конкурирующих процессов упорядочения-разупорядочения соответственно с выделением или поглощением тепла, что компенсировало тепловые эффекты [c.178]

    Трудности, с которыми сталкиваются физики, химики и тexнoJюги при анализе существа физико-химических явлений в технологических процессах, заключаются в различном характере их описания средствами названных выше областей знания. Физики интересуются фазовыми превращениями химики—условиями и механизмом протекания химических реакций в нефтяных системах технологи-нефтепереработчики заняты поиском технических решений для увеличения выхода и качества или улучшения эксплуатационных свойств нефтепродуктов технологи-промысловики ищут способы воздействия на пласт с целью повышения дебитов скважин технологи-транспортники решают технические проблемы транспортировки высоковязких нефтей инженеры-экологи предлагают технические способы защиты окружающей среды от вредного воздействия нефтяных загрязнений. Кажущаяся разорванность технологического цикла, связанного с добычей, транспортировкой, переработкой нефти и применением нефтепродуктов, а также с сопровождающими эти процессы экологическими проблемами, привела к той ситуации, что по существу одни и те же физико-химические явления изучаются различными технолога-ми-специалистами. Например, фазовый переход, связанный с выделением твердых углеводородов, представляет собой одну из проблем при добыче и транспортировке нефти этот же переход лежит в основе технологического процесса получения низкозастывающих масел — депарафииизации он же осложняет эксплуатацию дизельных топлив (табл. 1). [c.178]

    В различных условиях существования углеводородные системы, нефти, газовые конденсаты и продукты их переработки могут рассматриваться в виде многокомпонентных нефтяных дисперсных систем. Изменение термобарических условий приводит к превращениям инфраструктуры указанных систем, которые наиболее выражены в области фазовых переходов. При этом важнейшими параметрами, которые характеризуют систему на микроуровне, являются дисперсность, энергия межмолекулярных взаимодействий, размеры, конфигурация, поверхностная и объемная активность структурных образований, представляющих дисперсную фазу, степень их сольвати-рования компонентами дисперсионной среды. Изменение указанных параметров отражается на основных макрохарактеристиках системы, например плотности, вязкости, упругости пара, агрегативной и кинетической устойчивости. Причем, как правило, при отклике на внешние или внутренние возмущения на нефтяную дисперсную систему изменение этих характеристик сопровождается нелинейными и неаддитивными эффектами. Отклонения от аддитивности различных свойств нефтяных дисперсных систем в процессе их превращений характерны не только для смесей различных углеводородов, но могут проявляться даже в пределах одного гомологического ряда. [c.302]

    Из большого арсенала разработанных к настоящему моменту методов наиболее адекватную информацию о состоянии НДС тяжелого состава можно получить лишь при помощи неразрушающих методов, не связанных с добавлением растворителей или наложением интенсивных механических нагрузок на исследуемые нефтяные системы. Методы типа гель-нроникающей хроматографии, фотоколориметрии, седиментационные, реологические и другие методы являются малопригодньп и для точного измерения сфуктурных характеристик НДС и определения точек фазовых переходов. Они частично разрушают надмолекулярную структуру исследуемых систем, изменяют толщину и химический состав сольватных оболочек, а также приводят к диссоциации, либо рекомбинации части соединений, существенно искажая характеристики исследуемых нефтяных систем. Использование разрушающих методов, по словам некоторых исследователей, является лишь первым пробным шагом в изучении структурных превращений в НДС. Наиболее приемлемыми в этом отношении являются некоторые спектральные методы, а также различные виды микроскопии, которые, конечно же, не могут удовлетворить весь спектр исследований в области нефтяных дисперсных систем, но вполне достаточны для целей данной работы. [c.9]

    Экспериментальные температурные кривые изменения концентрации парамагнитных центров (ПМЦ) действительно содержат ряд экстремумов. В работе [3] приведены типичные зависимости концентрации различных носителей парамагнетизма в различных нефтяных системах от изменения температуры (рис. 1). В работе [16] были проведены уникальные исследования изменения концентрации парамагнитных центров в тяжелых нефтепродуктах при их нагреве до высоких температур. На рис. 2 приведены полученные кривые, которые имеют точки перегиба, соответствующие структурным фазовым переходам. Здесь же приводятся зависимости так называемой изотропной составляющей, которая определяется по характеру сверхтонкой структуры ЭПР-спектров и указывает на преимущественно свободное или структурно связанное состояние ванадиловых комплексов, что также является показателем структурных превращений в НДС. [c.10]

    Факт наличия процессов структурирования в жидкой фазе при фазовых превращениях в нефтяных дисперсных системах и их важная роль были осознаны и развиты в работах [9,17]. В них детально описываются механизмы и условия образования и развития сложных структурных единиц (ССЕ), состоящих из ядра и сольватной оболочки. При определенных условиях те или иные составляющие нефтепродуктов могут служить ядром ССЕ, которое измегсяел структуру окружающего пространства, создавая тем, самым оболочку, называемую сольватной. Толщина ее может изменяться в широких пределах в зависимости от внещних факторов и растворяющей способности среды, [c.31]

    Работы, посвященные регулированию фазовых переходов в нефтяных системах, являлись до недавнего времени в основном экспериментальными, и лишь в последнее десятилетие начала развиваться теоретическая база этих исследований. Создан1 мо-дели, описывающей взаимодействие молекул в многочисленных нефтяных системах, представляет чрезвычайно сложную задачу. Теоретические и практические разработки позволяют достаточно четко объяснить механизм превращений в нефтяных дисперсных системах, однако до последнего времени не удается предложить [c.9]

    В состав нефти, как известно, входят углеводороды парафинового, нафтенового и ароматического ряда, а также смешанные по составу углеводороды и гетероатом-ные соединения. Гетероатомные соединения могут включать атомы О, 3, N и мeтaJ -лов. Наличие этих атомов определяет полярность молекул и их ассоциацию с указанными выше молекулами углеводородов. В тяжелых нефтяных системах содержатся также высокомолекулярные парафиновые и полициклические ароматические углеводороды, смолы, асфальтены, карбены, карбоиды. Указанные углеводороды и их структурные образования составляют дисперсную фазу нефтяной системы, представленную в виде ассоциативных или агрегативных комбинаций. Последние имеют развитую сольватную оболочку, включающую мономерные или полимерные углеводороды, природа и состав которых определяют величину и тип межмолекулярных взаимодействий в ассоциативных или агрегативных комбинациях, а также их непосредственные контактные взаимодействия друг с другом. Следствием подобных взаимодействий являются фазовые превращения, лежащие в основе переработки не- [c.98]

    Решающее влияние на технологические процессы добычи, транспорта и переработки нефтяных дисперсных систем оказывают фазовые превращения, происходящие в различных реальных внешних условиях, Полиэкстремальные зависимости физико-химических свойств от внешних условий проявляются вследствие аналогичного изменения межмолекулярных взаимодействий между основными структурообразующими компонентами системы. Основной вклад в свойства углеводородных дисперсий вносят фазовые и полиморфные превращения высокомолекулярных соединений. Выявление и регулирование указанных превращений явл51ется важной прикладной задачей нефтяной отрасли. Особый интерес представляет изучение фазовых и полиморфных превращений в нефтяных дисперсных системах в присугствии поверхностно-активных веществ. Последние широко употребляются для регулирования процессов структурообразования в нефтяных дисперсных системах. В настоящее время проводятся интенсивные исследования влияния природы, концентрации и кристаллического строения дисперсной фазы на изменение межмолеку. ярного и контактного взаимодействия между элементами нефтяных дисперсных систем, взаимосвязи параметров фазовых и полиморфных переходов в этих системах, протекающих при изменении внешних условий их существования и различных воздействиях, с изменением физических и структурно-механических свойств рассматриваемых систем. [c.138]

    Как правило, большинство нефтяных дисперсных систем существуют в обычных условиях в неравновесных состояниях. Это приводит к проявлению многочисленных локальных коллоидно-химических превращений в структуре нефтяной дисперсной системы, которые в свою очередь отражаются на макросвойствах системы, например на седиментационной устойчивости, т.е. склонности к расслоению системы, ее вязко-стно-структурных характеристиках и т.д. Важнейшим проявлением макросвойств в нефтяных дисперсных системах являются фазовые переходы, спонтанно происходящие в них в различных условиях существования. Любая нефтяная дисперсная система отличается присухцей ее пространствеьшой внутренней организацией, которая претерпевает непрерывные превращения во времени с участием структурных элементов систем, Общепринятое понятие энтропии системы, яв уяющесся мерой упорядоченности структуры, в данном случае практически не применимо, вследствие чрезвычайной сложности нефтяной системы. В этой связи в нефтяных дисперсных системах фиксируются некоторые характеристические области вблизи состояний равновесия, где система находится в кризисном состоянии, которые проявляются в системе при изменении термобарических условий. В нефтяной дисперсной системе может существовать несколько таких областей. В каждой переходной области система проявляет характерные свойства, отличается наивысшей восприимчивостью к тем или иным воздействиям. [c.174]

    Принято считать, что появление а-фракции в КМ связано с достижением пороговой концентрации асфальтенов, обычно ассоциируемой с максимумом их концентрации или выхода на кинетических кривых. Однако анализ самой проблемы и многочисленных экспериментальных данных показывает необходимость уточнения усгановившихся представлений о механизме фазовых превращений в КМ. Дело в том, что о развитии сложной многокомпонентной системы в процессе карбонизации нефтяного сырья принято судить по результатам исследования агрегативно-кинетической устойчивости и расслоения совершенно иной системы, а именно - сильно разбавленного раствора КМ в некоторой выборке растворителей. Однако используя большой ряд растворителей с возрастающим параметром растворимости Гильдебранда (см. рис.5.2),можно получить какое угодно большое число кривых изменения выхода КМ и массовой доли в ней как угодно узких фракций. При этом кривые для промежуточных фракций (2,3,...,п-1) имеют экстремальный характер, а экспериментатор фиксирует [c.130]

    Прибор для определения момента фазового превращения на газовой ветви пограничной кривой равновесия жидкость-пар в бинарных системах, РОЖНОВ М.С,, КОШ В.Г,,ДИДОВИ-ЧВР Э.М, Сб.пТеплофизические свойства углеводородов, их смесей, нефтей и нефтяных фракций", вып.1. 1973. [c.262]

    При моделировании начального состава и фазового превращения газоконденсатной смеси в случае изменения давления в системе использовались две пробы жидких углеводородов. Первая проба, отобранная из скважины, которая расположена в газоконденсатной зоне при пластовом давлении, равном 10,5 МПа, представляла собой газовый конденсат, выделенный из пластового газа при его сепарации. Вторая проба состояла из выпавшего в пласте конденсата и пластовых жидких углеводородов нефтяной оторочки. Данная углеводородная смесь была отобрана с помощью газлифта из скважины, расположенной в переходной зоне пласта межд1г выделенными объектами при пластовом давлении, примерно равном 17 МПа, [c.22]

    Опыт комплексных исследований показал, что легкокипящая фракция (Сз-С ) нефтяных и газоконденсатных систем является достаточно информативным объектом для осуществления прогнозных оценок фазово-генетических типов залежей. В определенной мере это связано с присутствием этой фракции почти во всех УВ системах, дающей представление как о характере исходной биомассы, так и о степени термической превращенности ОВ пород и УВ флюидов. [c.58]

chem21.info

ФАЗОВЫЕ ПЕРЕХОДЫ В НЕФТИ, ВОДЕ И ГАЗЕ

 

Фазовые переходы подчиняются определённым закономерностям, в основе которых лежит понятие равновесия фаз. Равновесие фаз характеризуется константой равновесия, которая зависит от температуры и давления.

Константа фазового равновесия i-го компонента характеризуется отношением мольной доли компонента в газовой фазе (уi или Nyi) к мольной доле этого компонента в жидкой фазе (хi или Nxi), находящейся в равновесном состоянии с газовой фазой:

 

. (4.1)

 

Для определения равновесного состояния газожидкостных смесей используются законы Дальтона и Рауля.

Согласно закону Дальтона каждый компонент, входящий в газовую фазу имеет своё парциальное давление Pi, а общее давление в газовой системе равно сумме парциальных давлений:

 

(4.2)

 

Согласно закону Рауля, парциальное давление компонента над жидкостью (нефтью) равно давлению насыщенного пара (Рнас. пара) или упругости пара (Qi) и этого компонента, умноженному на его мольную долю в нефти:

 

или (4.3)

 

где Qi – упругость паров компонента;

Nxi – мольная доля компонента

piнас. пара – давление насыщенного пара i-го компонента.

В момент равновесия парциальное давление i-го компонента в газовой фазе равно парциальному давлению компонента над жидкостью. Отсюда следует закон Дальтона-Рауля для равновесного состояния газовой и нефтяной фазы:

 

; (4.4)

 

, (4.5)

 

где Кi – константа равновесия i-го компонента при данной температуре и давлении смеси.

Уравнение материального баланса для одного моля нефтегазовой смеси:

 

, (4.6)

 

где L – мольная доля жидкой фазы;

V – мольная доля паровой фазы

Nzi – мольные доли компонентов в нефтегазовой смеси.

 

По условию сумма мольной доли жидкой и паровой фаз равна единице. Отсюда:

V=1–L. (4.7)

 

Используя уравнения (4.6) и (4.7) получим выражение для мольной доли компонента жидкой фазы:

 

, (4.8)

 

и для мольной доли компонента газовой фазы:

 

. (4.9)

 

Дата добавления: 2015-07-08; просмотров: 82 | Нарушение авторских прав

Читайте в этой же книге: ТЕПЛОВЫЕ СВОЙСТВА ГОРНЫХ ПОРОД | Состав природных газов | Физико-химические свойства углеводородных газов | Растворимость газов в нефти и воде | Физико-химические свойства пластовых вод | Физико-химические свойства нефти | СИЛЫ, ДЕЙСТВУЮЩИЕ В ЗАЛЕЖИ | ОБЩАЯ СХЕМА ВЫТЕСНЕНИЯ ИЗ ПЛАСТА НЕФТИ ВОДОЙ И ГАЗОМ | НЕФТЕОТДАЧА ПЛАСТОВ ПРИ РАЗЛИЧНЫХ УСЛОВИЯХ ДРЕНИРОВАНИЯ ЗАЛЕЖИ |mybiblioteka.su - 2015-2018 год. (0.006 сек.)

mybiblioteka.su