Справочник химика 21. Физические состав нефти


Каковы физические свойства и состав нефти?

Состав и физические свойства нефти и газа

Нефть горючая маслянистая жидкость со специфическим запахом. Состоит она в основном из жидких углеводородов, которые образованы только углеродом и водородом. Причм в составе нефти углерод преобладает его содержится 7988%, а водорода всего 1114%. Кроме жидких углеводородов нефть в небольших количествах (до 5%) содержит серу, кислород и азот. В очень незначительных концентрациях (до 0,03% ) в нефти присутствуют металлы ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, калий, натрий, цинк, кальций, серебро, галлий, а также бор, мышьяк, йод.

Одна из важных характеристик сырой (непере-работанной) нефти плотность. Она возрастает с увеличением процентного содержания в ней тяжлых углеводородов (например, смол) . По плотности выделяют лгкую (800 870 кг/м3, среднюю (871910 кг/м3) и тяжлую (свыше 910 кг/м3) разновидности нефти. Для специалистов важны и такие показатели, как температура начала кипения (выше 28 С) , удельная теплота сгорания (43,746 МДж/кг) и температура вспышки (35120 С) . Вязкость показатель текучести сырой нефти возрастает с увеличением е плотности.

Основу горючих газов составляет смесь газообразных углеводородов метана, этана, пропана, бутана и пентана. Доля углерода в горючих газах составляет 4278%, водорода 1424%. Обычно содержание азота в виде примеси не превышает 11%, но иногда достигает 3050% и более. Кроме того, присутствуют углекислый газ, водяные пары. Содержание углекислого газа колеблется от долей процента до 24%, реже до 1015% и более. В горючих газах содержатся также гелий, аргон, водород, ртуть. Концентрации гелия в большинстве случаев составляют сотые и тысячные доли процента, но имеются месторождения горючих газов с содержанием гелия 58%. Кислород находится в связанном состоянии в составе углекислого газа. Природный горючий газ обычно бесцветный и, как правило, без запаха. Исключением является газ, в состав которого входит сероводород.

Горючие газы состоят в основном из метана (8599,5%). В залежах газа иногда присутствуют газоконденсаты, представляющие собой природную смесь газообразных и легкокипящих жидких углеводородов. При больших давлениях и высоких температурах, господствующих в недрах, газоконденсаты находятся в парообразном состоянии. Но в условиях низких температур и обычного атмосферного давления из них выпадает жидкая составляющая конденсат. Это бесцветная или светло-коричневая жидкость. Природный газ помимо главного своего назначения служить топливом используется в химической промышленности для производства синтетического каучука и полиэтилена.

Наиболее ценное свойство нефти и горючего газа то, что они выделяют при горении значительное количество тепла. Отношение количества теплоты, выделяющейся при горении, к массе сгоревшего до конца (т. е. до образования углекислоты и воды) вещества называется теплотой сгорания топлива. Нефть, природный горючий газ и их производные обладают наивысшей среди всех видов топлива теплотой сгорания. Теплота сгорания природных горючих газов в среднем равна 3840 МДж/кг, а нефти 4247 МДж/кг.

info-4all.ru

Химический состав и физические свойства нефти

    Основное различие между нефтью, добытой в различных географических районах, обусловлено не химическим составом, а содержанием отдельных компонентов последнее и влияет на химические и физические свойства сырой нефти. Некоторые нефтепродукты почти бесцветны, в то время как другие имеют черную, янтарную, коричневую и зеленую окраску. Некоторые нефтепродукты имеют приятный запах, похожий на запах эфира, скипидара и камфоры. Некоторые нефтепродукты имеют очень неприятный запах, обычно вызываемый присутствием серосодержащих компонентов. Биологические и химические свойства различных углеводородов существенно различаются, поэтому, при оценке влияния компонентов нефти на окружающую среду необходимо знать состав определенного нефтепродукта. [c.347]     Следует отметить то обстоятельство, что при физической дифференциации меняются фракционный состав нефтей, содержание в них смол, общие свойства, но не химический состав узких фракций. Продуктами физической дифференциации нефтей отчасти являются такие образования, как газоконденсаты и озокериты. [c.247]

    В некоторых литературных источниках и исследовательских работах до последнего времени можно встретить деление твердых углеводородов нефти на две различные группы, а именно на парафиновые и на церезиновые углеводороды с отнесением этих углеводородов к различным самостоятельным классам и даже к самостоятельным гомологическим рядам. Эти группы углеводородов рассматриваются иной раз как вполне обособленные и каждой из них приписывается особый химический состав и структура и специфические физические свойства. Указывалась также возможность совместного присутствия нарафинов и церезинов в одних и тех же фракциях нефти и чуть ли не возможность их отделения друг от друга. [c.77]

    Существующие лабораторные методы исследования нефтяных остатков позволяют определять групповой химический состав нефтепродукта. Идентифицировать же индивидуальные углеводороды в нефтяных фракциях очень сложно, а иногда невозможно ввиду их многообразия [2.1]. При разделении и исследовании наиболее тяжелой части нефти возрастает значение физических и физико-химических методов анализа, которые позволяют изучать ее природу и свойства, не вызывая существенных химических изменений в объектах исследования. [c.34]

    Изучение физических и физико-химических свойств нефти, нефтепродуктов и углеводородов имеет очень большое значение для всех разделов науки о нефти. В химии нефти определение таких свойс 1в, как удельный все, молекулярный вес, показатель преломления, удельная рефракция, критические температуры растворения и другие позволяет установить химический состав отдельных фракций нефти. Многие физические свойства характеризуют и нефть в целом. [c.67]

    В табл. 25 приведены физические свойства, групповой химический состав и дизельный индекс топлив, полученных из ряда нефтей Апшеронского полуострова [12]. Эти данные подтверждают и.эложенные выше положения о влиянии природы сырья и химического состава топлив на их цетановую характеристику. Высокосмолистые беспарафинистые нефти (балаханская тяжелая, бинагадинская тяжелая, кергезская и др.) дают дизельные топлива с высоким содержанием ароматических углеводородов, низким содержанием алканов и, как следствие этого, с низким цетановым числом. Нефти малосмолистые парафинистые (сураханская, кара-чухурская и др.), а также нефти смолистые беспарафинистые (раманинская, балаханская масляная и др.) дают дизельные топлива с низким содержанием ароматических углеводородов, высоким содержанием алканов и, как следствие этого, с высоким цетановым числом. Дизельные топлива из пара-финистых нефтей имеют высокую температуру застывания. С этой точки зрения лучшим сырьем для получения дизельных топлив являются смолистые беспарафинистые нефти типа бала-ханской масляной I сорта, раманинской П сорта и им подобные. [c.84]

    Подробно рассматриваются такие вопросы, как химический состав нефтей и нефтяных фракций очистка нефтяных фракций физическими и химическими методами теория термо-ката-литических процессов нефтепереработки (крекинг, пиролиз, риформинг, гидрирование, алкилирование) теоретические аспекты применения и эксплуатационных свойств нефтепродуктов. При этом большое внимание уделяется термодинамическим и кинетическим закономерностям, механизма реакций, теории катализа, теории сорбционных процессов и процессов экстракции, явлениям детонации, стабильности нефтепродуктов. [c.4]

    Как мы видели выше, нефть не представляет собой однородное вещество, а является сложной смесью взаимно-растворимых углеводородов, отличающихся химическим составом, а следовательно, и физическими свойствами. Углеводороды входят в состав нефти в самых разнообразных соотношениях, поэтому физические свойства нефти не постоянны, зависят от преобладания в ней тех или иных углеводородов и могут меняться в зависимости от изменения состава (нри улетучивании легких частей, при окислении и уплотнении некоторых углеводородов и т. д.). [c.17]

    ХИМИЧЕСКИЙ СОСТАВ И ФИЗИЧЕСКИЕ СВОЙСТВА НЕФТИ [c.18]

    Так как нефть представляет собой не химически индивидуальное вещество, а чрезвычайно сложную смесь, к тому же переменного состава, то говорить о константах нефти, как говорят, например, о константах химически чистой воды, спирта или какого-либо углеводорода, очевидно, невозможно, тем более, что состав и свойства нефти, в зависимости от условий ее хранения, улетучивания легких частей и т. п., могут весьма существенно изменяться. И тем не менее для характеристики нефти определение ряда ее физических свойств имеет весьма важное значение. При всей простоте определения таких свойств, как удельный вес, температура кипения или застывания, они дают первую, хотя и грубую характеристику нефти в отношении ее состава и товарных качеств. Определение некоторых других физических свойств нефти является важным в ином отношении они дают основания для расчета и проектировки нефтепроводов, аппаратуры для переработки данной нефти и т. п. Подробное рассмотрение различных физических свойств нефти и методов их определения могло бы составить предмет специального курса Физика нефти в последующем изложении вопросы, относящиеся к этой обширной теме, будут освещены лишь в самых общих чертах.  [c.22]

    Нейтральные смолы — полужидкие, а иногда почти твердые, вещества темно-красного цвета, плотностью около единицы. Они растворяются в петролейном эфире, бензоле, хлороформе и четыреххлористом углероде. В отличие от асфальтенов нейтральные смолы образуют истинные растворы. Кроме углерода и водорода в состав смол входят сера, кислород и иногда азот. Углеводороды находятся в смолах в виде ароматических и нафтеновых циклов со значительным количеством (40—50 вес. %) боковых парафиновых цепей. Весовое соотношение углерод водород составляет примерно 8 1. Сера и кислород входят в состав гетероциклических соединений. Смолы химически не стабильны. Под воздействием адсорбентов в присутствии кислорода частично происходит окислительная конденсация их в асфальтены. Физические свойства смол зависят от того, из каких фракций нефти они выделены. Смолы из более тяжелых фракций имеют большие плотность, молекулярный вес, красящую способность и содержат больше серы, кислорода и азота. Достаточно добавить в бензин 0,005 вес. % тяжелой смолы, чтобы придать ему соломенно-желтую окраску. [c.32]

    Нефть — жидкое горючее ископаемое, обычно темно-бурого цвета. В ее состав входят многочисленные соединения углеводородов, обладающие различными физическими и химическими свойствами. Химический состав нефти зависит от того, в каком районе она добыта. [c.11]

    Успешное решение структурно-молекулярных вопросов во многом зависело от разработки эффективных методов разделения смол и асфальтенов — этих сложных гетерогенных смесей, на более простые группы близких по составу и строению веществ. Еще Д. И. Менделеев настойчиво пропагандировал и сам применял в своих опытах физические методы разделения и исследования нефтей. В статье По нефтяным делам , опубликованной в 1885 г., он писал, что ...химический состав нефти не может быть иначе определяем, как при помощи первоначального физического разделения составных начал нефти на основании их летучести и различия в температуре кипения, растворимости и тому подобных свойств [1, с. 426], и далее ...я убедился, что важнейший и новый материал лабораторные точные исследования нефти могут дать именно со стороны физического анализа нефти [1, с. 428]. [c.90]

    Необходимость развития методов разделения компонентов нефти подчеркивалась Менделеевым еще в 1885 г. Химический состав нефти не может быть иначе определен, как при помощи первоначального физического разделения составных начал нефти на основании их летучести и различия в температуре кипения, растворимости и тому подобных свойств . [c.52]

    Тепловые свойства нефти имеют важное значение в технологии ее переработки, поскольку все технологические процессы связаны с процессами нагревания и охлаждения, а их расчет соответственно базируется на знании тепловых свойств. К ним относятся все известные тепловые физические величины (теплоемкость, теплопроводность, энтальпия и др.), но применительно к нефтяным фракциям, имеющим очень сложный химический состав, определение этих величин носит специфичный характер и требует специального рассмотрения. [c.150]

    В табл. 1-11 приведены результаты исследования масляной фракции оклахомской нефти [75]. Масляная фракция подвергалась разгонке под вакуумом. Затем методом противоточной экстракции ее разделяли на целый ряд относительно однородных компонентов. Химический состав каждого из этих компонентов уточнялся на основании соотношения физических свойств, включая молекулярный вес и углеродно-водородное соотношение до. и после гидрирования ароматики в соответствующие нафтены. [c.27]

    Таким образом нафтены, входящие в состав высших фракций нефтей, представляют собой углеводороды, состоящие из одного, двух и более полиметиленовых колец и производных этих соединений с длинными или короткими боковыми цепями, причем возможно существование углеводородов как с пятичленными, так и с шестичленными кольцами, а также смешанного типа. В зависимости от положения, числа боковых цепей и числа углеродных атомов в них, а также количества и строения нафтеновых колец, будут меняться физические и химические свойства нафтеновых углеводородов. [c.15]

    Упор на химический состав вместо таких физических свойств, как пределы кипения или плотность, оказывает глубокое влияние на экономику нефтеперерабатывающей промышленности. Комноненты, ранее считавшиеся наиболее ценными, например газовый бензин, в настоящее время имеют меньшую ценность, чем более тяжелые. Широкие масштабы ирименения каталитического крекинга уменьшают разрыв между цепами тяжелых и легких нефтей. В связи с этим стала рентабельной переработка нефтей некоторых месторождений, которые раньше нельзя было перерабатывать вследствие низкого качества, не оправдывающего затрат на нагрев, насосную эксплуатацию и перекачку, необходимые для иХ добычи и транспорта. [c.46]

    Масляные фракции, как указывалось ранее, отбирают не по температурам кипения, а по величине вязкости. Сравнение масляных фракций одинаковой вязкости, выделенных из различных нефтей, показывает, что их молекулярные массы могут различаться на 50—100 единиц. Это еще раз показывает, насколько различно строение высокомолекулярных углеводородов, входящих в состав различных нефтей, поскольку вязкость принадлежит к физическим свойствам, которые особенно сильно зависят от структуры химических соединений. [c.25]

    В учебнике рассмотрены химический состав нефти, физические и моторные свойства нефти и нефтепродуктов, а также химические процессы переработки нефти и газа. [c.608]

    Минеральные масла. Химический состав масел, полученных из нефтей различных месторождений, колеблется в широких пределах, что сильно влияет на физические свойства масла. Минеральные масла являются самыми дешевыми теплоносителями, однако они термически нестойки и взрывоопасны. При нагревании их до температуры, близкой к температуре вспышки, начинается термическое разложение и окисление, образующийся нагар ухудшает теплопередачу. [c.55]

    Так, в работе [36] указывается, что сера, входящая в состав тяжелых остатков перегонки нефтей, способствует получению битумов высокого качества. Авторы [37] рассматривают химическое действие серы как действие кислорода воздуха. По физическим свойствам битум, обработанный серой, близок к окисленному, но стоимость его высока из-за повышенного расхода серы, составляющего 20-25%. При обработке сырья серой значительное количество ее выделяется в виде сероводорода и летучих сернистых соединений. В готовом битуме остается небольшой процент серы. [c.9]

    Углеводородный состав керосинов из отечественных нефтей достаточно изучен еще 30—40 лет назад доступными в то время химическими и физическими методами [8, 10, 11], поскольку керосин представлял тогда значительный интерес как горючее для дизельных двигателей, тракторов и осветительных приборов. С развитием реактивной авиации керосин получил второе рождение, а углубленное исследование его состава и свойств возобновилось теперь уже на основе более совершенных и точных методов анализа [44, 45]. [c.15]

    Изучение твердых углеводородов нефти было начато еще в конце прошлого столетия. Это-классические исследования К. В. Харичкова, М.А. Ракузина, И. Маркуссона, Л.Г. Гурвича, С.С. Наметкина и др. Однако в течение длительного времени не было установившегося взгляда на их химический состав и кристаллическую структуру. Начальный период исследования этих компонентов характеризовался применением преимущественно химических методов, которые сыграли свою положительную роль, но ограниченные возможности их привели к неправильному толкованию состава твердых углеводородов нефти. Деление твердых углеводородов на парафины и церезины было сделано на основании различия кристаллической структуры этих углеводородов, их химических и физических свойств. При одинаковой температуре плавления [c.5]

    Такая задача решается при помощи химических процессов переработки нефтяных продуктов, и для ее решения требуется тщательное изучение химических и физических свойств индивидуальных углеводородов, входящих или могущих входить в состав нефти. Вот почему в химической литературе последних десятилетий появляется много исс че-дований по получению углеводородов в очень чистом состоянии, по изучению их химических, преимущественно каталитических превращений, по определению заново с максимальной надежностью и точностью их физических свойств. [c.6]

    Поэтому нет ничего удивительного и неожиданного в том, что в связи с постановкой в порядок дня решения такой ваншой технико-экономической задачи, как разработка наиболее рациональных комплексных химико-технологических схем переработки тяжелых, высокосмолистых нефтей, обеспечивающих максимально полное использование сырья и производство широкого ассортимента товарных продуктов высокой технической ценности, практика поставила перед химией нефти много новых и весьма трудных вопросов. В связи с этим в исследовании химического состава и свойств нефти за последние годы стал все более и более повышаться удельный вес работ, посвященных изучению химического состава средней и высокомолекулярной частей нефти. Сложность состава этой части нефти, физическая и химическая пеодпородность ее, нестойкость азот-, серу- и кислородсодержащих органических соединений, входящих в значительных количествах в ее состав, обусловили основные трудности в выборе методов и экспериментальной техники при исследовании их. [c.5]

    Церезины же вырабатывают из остаточных продуктов нефти с началом кипения не ниже 450—500°, а иногда и выше. В состав церезина входят все наиболее высококипяпще кристаллические углеводороды нефти молекулярного веса от 450—500 и выше. Вследствие высокого молекулярного веса входяпще в состав церезина твердые углеводороды обладают весьма мелкой кристаллической структурой, которая определяет в значительной мере их физические свойства, а также ограничивает возможность достижения высокой чистоты их при обезмасливании. По химической природе входящие в состав церезина углеводороды относятся к тем же гомологическим рядам и группам, к каким относятся углеводороды, составляющие парафин. Но разница заключается в том, что в церезины входят наиболее высококипящие и высокомолекулярные представители этих групп, в то время как члены этих групп, составляющие технический парафин, обладают средними температурами кипения и средними молекулярными весами. Различным является и соотношение количеств углеводородов разных групп, входящих в церезин и в технический парафин. Если в техническом парафине преобладают и-алканы, то в церезине и-алканы содержатся в значительно меньшем относительном количестве и обычно составляют меньшую долю его массы. [c.78]

    Смолы и асфальтены относятся к высокомолекулярным неуглеводородным соединениям нефти [135,136]. В составе нефти они играют важную роль, определяя во многом ее физические свойства и химическую активность. В состав смол и асфальтенов входят полициклические ароматические структуры, состоящие из десятков колец, соединенных между собой гетероатомными структурами, содержащими серу, кислород, азот. Смолы - вязкие мазеподобные вещества, асфальтены - твердые вещества, не растворимые в низкомолекулярпых растворителях. Молекулярные массы смол 500-1200, асфальтенов - 1200-1300 [143]. Содержание ароматических углеводородов в нефти изменяется от 5 до 55 %, чаще всего 20-40%. Основную массу ароматических структур составляют моноядерные углеводороды - гомологи бензола. Полициклические ароматические углеводороды (ПАУ), т.е. углеводороды, состоящие из двух и более ароматических колец, содержатся в нефти в количестве от 1 до 4 % [91]. [c.24]

    Группу алкиларилсульфонатов, которые широко применяются в качестве детергентов, составляют так называемые махогани сульфюнаты, иногда именуемые нефтяными . Они представляют собою побочные продукты перегонки нефти в большинстве случаев изменчивого состава, хотя некоторым фирмам удается выпускать в продажу продукцию точно определенного состава в пределах ограниченной шкалы молекулярного веса. Все же, согласно данным Шварца и Перри (см. ссылку 126) химический состав и физические свойства такого рода продукции зависят от характера сырого материала, подвергшегося перегонке, а поэтому значительно варьируют. Алкиларилсульфонаты принято делить на две подгруппы водорастворимые зеленые кислоты и растворимые в углеводороде махогани кислоты . Рассмотрению изготовления и возможного состава этих кислот уделено место в труде Грюза и Стивенса (см. ссылку 127). [c.162]

    В обеспечении качества товарной нефти и продуктов ее переработки важная роль принадлежит системе тех параметров сырья и продукции, которые определяют их эксплуатационные (потребительские) свойства. Этими параметрами являются химический состав, структура, физические, физико-химические свойства и разнообразные специальные технические свойства. Поэтому значение, которое имеют измерения состава и свойств нефти и нефтепродуктой, трудно переоценить. [c.219]

    Небольшие примеси изоалканов и циклоалканов резко меняют физические свойства смеси углеводородов (способность фильтроваться, потеть) и, особенно, форму их кристаллов [83]. Систематическое исследование влияния нормальных алканов на общие физико-химические свойства смеси углеводородов, образовавших комплекс с тиокарбамидом, проведено автором на искусственных смесях. В состав смесей входили следующие алкано-циклоалкановые фракции 1) извлеченная из нефти карбамидом (соотношение нефть карбамид = 1 0,3, содержание нормальных алканов 97,5%) 2) выделенная из нефти тиокарбамидом (содержание нормальных алканов 76,1%) 3) извлеченная тиокарбамидом из фракции твердых углеводородов (содержание нормальных алканов 60,5%). [c.46]

    Существует несколько методов, которые могут быть положены в основу при рассмотреннн углеводородного состава нефтей. Углеводородный состав нефти можно рассматривать с чисто физической точки зрения в ней определяют содержание материалов или фракций, пределы кипения, молекулярный вес или физические свойства которых совпадают с соответствующими свойствами продуктов, намеченных к получению. Второй путь основан на изучении углеводородного и химического состава сырья для рационального выбора методов переработки, позволяющих получить требуемые продукты, обладающие определенными свойствами и в требуемых соотношениях. В прежнее время в нефтеперерабатывающей иромышленности ирименялась главным образом классификация, основанная на нервом принципе в настоящее время более важное значение имеет второй принцип классификации. [c.43]

    Обычно углеводородные газы, получаемые при деструктивпой переработке нефти, состоят нз алканов и алкенов до включительно. Водород — также постоянный компонент газов переработки. В отдельных специальных случаях в состав углеводородов газа входят бутадиен и иногда этин (ацетилен) и его гомологи. В табл, 56 даны физические свойства компонентов газа. Основное сырье для химической переработки — непредельные углеводороды. По масштабам производства на первом месте стоит выработка компонентов моторного топлива. Для получения полимерного бенйина используются бутены и пропен для изооктана — изобутен с добавкой нормальных бутенов для производства алкилбензинов — изобутан и алкены от jHg и выше, преимущественно бутены для алкилирования бензола — этен и пропен для производства нео-гексана — изобутан и этен. [c.335]

    Природным аналогом вещества поликомпонентного состава, включающим разные группы легких органических соединений, тяжелые углеводороды, сопутствующие природные газы, сероводород и сернистые соединения, высокоминерализованные воды с преобладанием хлоридов кальция и натрия, тяжелые металлы, включая ртуть, никель, ванадий, кобальт, свинец, медь, молибден, мышьяк, уран и др., является нефть [Пиков-ский, 1988]. Особенности действия отдельных фракций нефти и общие закономерности трансформации почв изучены достаточно полно [Солнцева,. 1988]. Наиболее токсичны по санитарно-гигиеническим показателям вещества, входящие в состав легкой фракции. В то же время, вследствие летучести и высокой растворимости их действие обычно не бывает долговременным. На аоверхности почвы эта фракция в первую очередь подвергается физико-химическим процессам разложения, входящие в ее состав углеводороды наиболее быстро перерабатываются микроорганизмами, но долго сохраняются в нижних частях почвенного профиля в анаэробной обстановке [Пиковский, 1988]. Токсичность более высокомолекулярных органических соединений выражена значительно слабее, но интенсивность их разрушения значительно ниже. Вредное экологическое влияние смолисто-асфальтеновых компонентов на почвенные экосистемы заключается не в химической токсичности, а в значительном изменении водно-физических свойств почв. Если нефть просачивается сверху, ее смолисто-асфальтеновые компоненты и циклические соединения сорбируются в основном в верхнем, гумусовом горизонте, иногда прочно цементируя его. При этом уменьшается норовое пространство почв. Эти вещества малодоступны микроорганизмам, процесс их метаболизма идет очень медленно, иногда десятки дет. Подобное действие тяжелой фракции нефти наблюдается на территории Ишимбайского нефтеперерабатывающего завода. Состав органических фракций выбросов других предприятий представлен в подавляющем большинстве легколетучими соединениями. [c.65]

    Основными соединениями, входящими в состав нефтей, являются углеводороды парафинового, нафтенового и ароматического рядов (A0—90%). Кроме того, в нефтях содержатся в относительно небольших количествах кислородные, сернистые и азотистые соединения. Физические и химические свойства нефтей опрёделяются соотношением входящих в них соединений. [c.13]

chem21.info

СОСТАВ И ФИЗИЧЕСКИЕ СВОЙСТВА НЕФТИ И ВОДЫ

Количество просмотров публикации СОСТАВ И ФИЗИЧЕСКИЕ СВОЙСТВА НЕФТИ И ВОДЫ - 74

 

Нефтегазоносный пласт определяется не только породами, содержащими нефть или газ, но и самими насыщающими их фазами. Нефть и газ по химическому составу являются очень сложными углеводородами, находящимися при повышенных пластовом давлении и температуре. При извлечении углеводородов на поверхность давление и температура пластовой смеси уменьшаются. Состояние смеси углеводородов на поверхности зависит от состава углеводородов, добываемых из скважины, и от давления и температуры, при которых они извлекаются. Углеводороды, остающиеся в пласте на любой стадии его истощения, претерпевают физические изменения, так как пластовое давление по мере отбора из пласта нефти или газа уменьшается. Отсюда возникает крайне важно сть изучения физических свойств углеводородов, находящихся в природных условиях, и особенно изменений этих свойств исходя из давления и температуры. Знание физических закономерностей дает возможность оценить количество полученных газа и жидкости, приведенных к стандартным условиям, при добыче на поверхность единицы объёма пластовой жидкости. Из-за сложности природных углеводородных смесей очень часто приходится пользоваться эмпирическими данными, полученными в результате лабораторных исследований.

Химический состав углеводородных газов должна быть легко определœен до гептанов. Химический состав сырой нефти оценить труднее, так как она состоит в основном из более тяжелых углеводородов, чем гептаны.

Помимо свойств углеводородов, представляют интерес также свойства воды, каким-либо образом связанной с продуктивным пластом, так как вода занимает часть пространства пласта͵ создает энергию для добычи нефти, а также может добываться вместе с нефтью и газом.

Содержимое продуктивных пластов в основном находится в состоянии газа, пара или жидкости. При этом эти термины передают сущность состояния только при определœенных давлениях и температурах. Вещество исходя из давления и температуры, при которых оно находится, может существовать в газообразном или жидком состоянии. Понятие пар определяется как газообразное состояние любого вещества, ĸᴏᴛᴏᴩᴏᴇ при обычных условиях является жидкостью или твердым телом. Под обычными условиями принято понимать атмосферные условия давления и температуры. При рассмотрении углеводородов удобно понятия ʼʼгазʼʼ и ʼʼпарʼʼ считать синонимами.

Углеводородные системы, как и другие системы, бывают гомогенными или гетерогенными. В гомогенной системе всœе ее части имеют одинаковые физические и химические свойства. Для гетерогейной системы физические и химические свойства в разных точках различны.

Гетерогенные системы состоят из фаз. ʼʼфазаʼʼ — это ʼʼопределœенная часть системы, которая является гомогенной и физически отделœена от других фаз отчетливыми границамиʼʼ. К примеру, в гетерогенной системе одновременно содержатся лед, вода и водяной пар. Размещено на реф.рфСтепень дисперсности не определяет количества фаз. В приведенном примере лед независимо от того, существует он в виде одного куска или раздроблен на несколько частей, является одной фазой.

referatwork.ru


Смотрите также