Справочник химика 21. Фракции переработка нефти


Нефть и нефтяные фракции продукты переработки

    На рис. 111.7 перечислены пять фракций нефти в порядке возрастания температур кипения легко кипящий нефтяной газ — наверху, высоко кипящие фракции - внизу. Около каждой фракции стрелками указаны продукты, которые из нее получаются. Они продаются потребителям и могут подвергаться дальнейшей переработке. Перечислены также некоторые из самых важных областей использования этих продуктов. В нижнем правом углу показано, какое множество потребительских товаров можно получить из продуктов переработки нефти (см. разд. Г.4). [c.182]     До недавнего времени на нефтеперерабатывающих заводах старались не извлекать и утилизировать сернистые соединения нефтей, а разрушать и возможно полнее удалять их из товарных продуктов в основном с целью предотвращения коррозии аппаратуры и оборудования в процессах переработки нефти и применения нефтепродуктов. Сернистые соединения моторных топлив снижают их химическую стабильность и полноту сгорания, придают неприятный запах и вызывают коррозию двигателей. В бензинах, кроме того, они понижают антидетонационные свойства и приемистость к тетраэтилсвинцу, который добавляется для повышения качества. В настоящее время лучшим способом обессериваниЯ нефтяных фракций и остатков от перегонки нефтей является очистка в присутствии катализаторов и под давлением водорода. При этом сернистые соединения превращаются в сероводород, который затем улавливают и утилизируют с получением серной кислоты и элементарной серы. [c.29]

    Интенсификация областей промыпшенности, связанных с переработкой и использованием многокомпонентных органических смесей типа нефтей, нефтяных фракций, искусственных топлив, масел, продуктов переработки твердого топлива, полимеров и т.п., требует разработки новых методов экспрессного контроля качества. [c.16]

    Большинство природных и технологических процессов, протекавших вокруг нас, связаны с химическими превращениями многокомпонентных систем, состоящих из большого числа соединений. По-видимому, в природе существуют два типа многокомпонентных систем с более-менее четко выраженной степенью детерминированности и многокомпонентные стохастические системы (МСС) со случайным распределением компонентного состава [1-28]. К МСС относятся, прежде всего, геохимические объекты [1-6], каустобиолиты [7-11], нефти, торфы, природные газы, газоконденсаты, асфальты. Во-вторых, к этой группе принадлежат техногенные системы нефтепродукты и фракции нефтей [12,13], -продукты переработки твердого топлива [14], техногенные углеводородные газы [15-20], углеводородные масла и топлива [16,17], нефтяные асфальтены и смолы [22,23], продукты полимеризации многокомпонентных мономерных и олигомерных систем [23-25], полимерные смеси, продукты термо- или фотодеструкции органических веществ [26,27] и т. д. К аналогичным системам относится вещество межзвездных газопылевых туманностей [27], продукты метаболизма живого вещества [28] и геохимические системы биоценозов, например, почвы [1-3]. [c.5]

    Азотистые соединения нефти распределяются в продуктах переработки неодинаково. Основная масса их, еще в большей мере чем сернистые соединения, сосредоточивается в остаточных и тяжелых фракциях нефти. В более легких нефтяных дистиллятах азот отсутствует или обнаруживается в весьма небольших количествах. [c.24]

    Современные воздушно-реактивные двигатели работают на разнообразных топливах. Топлива для ВРД получаются из нефти и из продуктов переработки твердых ископаемых. По способу производства нефтяные топлива для ВРД разделяются на прямогонные и содержащие продукты термического и каталитического крекинга. Г1о фракционному составу топлива разделяются на топлива типа бензина, типа лигроина, типа керосина, типа газойля и типа широкой фракции. Максимально допустимые технические нормы на эти топлива приведены- в табл. 114. Топлива типа бензина в основном применяются для прямоточных и пульсирующих ВРД, а также для двигателей морских самолетов, ведущих боевые действия с авианосцев. Для турбокомпрессорных ВРД наибольшее распространение получило топливо типа керосина, получаемое из нефти путем прямой перегонки. Основные преимущества такого топлива заключаются в том, что оно обладает низкой температурой кристаллизации, высокой теплотой сгорания на единицу объема, низкой упругостью паров и относительной пожаробезопасностью. [c.323]

    Рассмотрено состояние топливно-энергетического комплекса России. Дана краткая история развития исследования нефти и процессов ее переработки, описаны физико-химические и коллоидно-дисперсные свойства нефти, нефтяных фракций и остатков. Приведена характеристика основных продуктов переработки. Особое внимание уделено научным основам и методам подготовки нефти к переработке, технологии прямой перегонки нефти на атмосферных и атмосферно-вакуумных установках, а также вторичной перегонке дистиллятов. Рассмотрены аппаратурное оформление технологических процессов, их автоматизация, технико-экономические показатели, надежность работы оборудования и вопросы экологической безопасности процессов и охраны окружающей среды. [c.2]

    Особое внимание авторы уделили физико-химическим и коллоидно-дисперсным свойствам жидкого нефтяного сырья (нефти, нефтяных фракций и остатков) и технологии его переработки, ассортименту продуктов нефтеперерабатывающих предприятий, а также процессам подготовки нефти к переработке, прямой перегонке нефти (атмосферной, атмосферно-вакуумной) и вторичной перегонке дистиллятов, наметили перспективы дальнейших разработок в области интенсификации технологических процессов и воздействия различных факторов на качество исходного сырья и получаемых продуктов. [c.7]

    Настоящая глава посвящена описанию свойств сырья для производства ЗПГ, включая твердые виды топлива (разные сорта угля и лигнита, кокса и антрацита), жидкое нефтяное топливо (сырую нефть и фракции, получаемые в процессе ее обычной переработки) и ряд жидких продуктов, иногда получаемых при очистке природного газа газового конденсата, состоящего из пропана, бутанов и так называемого природного (или газового) бензина (см.гл. 2). [c.62]

    Сырьем каталитического риформинга служат как прямогонные бензиновые фракции нефтей и газовых конденсатов, так и бензины вторичного происхождения, получаемые при термической и термокаталитической переработке тяжелых нефтяных фракций, а также выделяемые нз продуктов-переработки углей и сланцев (табл. 3.1). Основной источник сырья риформинга — прямогонные бензиновые фракции, роль бензинов вторичного происхождения будет возрастать ири углублении переработки нефти. [c.105]

    Основные преимущества гидрокрекинга но сравнению с другими процессами переработки нефтяных фракций следующие 1) гибкость процесса, т. е. возможность получения из одного сырья различных целевых продуктов, а также возможность переработки самых разных видов сырья — от тяжелых бензинов до нефтяных остатков 2) большой выход светлых продуктов наиример, выход реактивного топлива можно увеличить с 2—3% на нефть до 15%, а выход зимнего дизельного топлива с 10—15% до 100% 3) высокое качество получаемых продуктов. [c.310]

    А. Выделение ароматических углеводородов из нефтяных фракций. Сюда относится извлечение бензола, толуола или ксилолов из соответствую-ш их узких фракций, получаемых из нефти или продуктов ее переработки, или смеси этих ароматических углеводородов из бензиновых фракций, выкипающих в более широких температурных интервалах. [c.194]

    Замедленное коксование. Процесс замедленного коксования (коксования в необогреваемых камерах) служит для получения из тяжелых остатков переработки нефти нефтяного кокса и широкой бензино-керосино-газойлевой фракции. Нагретое в печи сырье смесь исходного сырья с рециркулирующей тяжелой газойлевой оракцией) поступает в пустотелый цилиндр — коксовую камеру, продукты раопада исходного сырья отводятся сверху камеры на [c.125]

    Разложение углеводородов при высокой температуре без доступа воздуха было известно еще в прошлом столетии. В 1875 г. ассистент Петербургского технологического института А. А. Летний, изучая действие высокой температуры на тяжелые нефти, установил, что при этом образуются летучие продукты (бензин). Д. И. Менделеев неоднократно указывал на необходимость изучения действия высокой температуры на тяжелые нефтяные масла, отмечая, что они претерпевают при этом изменения, и среди образующихся продуктов найдутся технически важные и полезные. В 1885 г. в Баку была построена установка для получения керосина путем нагрева нефтяных остатков. Промышленные крекинг-установки для получения бензина из нефтяных фракций стали строить в США, начиная с 1913 г. Первоначальные способы термической переработки нефти и применявшаяся для этого аппаратура подвергались в дальнейшем различным усовершенствованиям. В Советском Союзе первые крекинг-установки системы Виккерса были построены в Баку в 1927—1928 гг. [c.269]

    Битумы класса СГ получают компаундированием вязкого дорожного битума БНД-60/90 с разжижителями нефтяного либо каменноугольного происхождения с температурами начала кипения 160—180°С и конца кипения 260—300°С. Битумы класса МГ получают в остатке после перегонки нефти и нефтяных фракций и продуктов деструктивной переработки нефти и компаундированием вязких битумов с разжижителями нефтяного или каменноугольного происхождения. В качестве поверхностноактивных веществ для жидких битумов классов СГ и МГ рекомендуется применять при необходимости катионоактивные вещества типа высокомолекулярных алифатических аминов и диаминов, а также анионоактивные вещества типа высокомолекулярных карбоновых кислот и мыл тяжелых щелочно-земельных металлов и этих кислот. [c.368]

    Такое направление не противоречит основной линии развития нефтеперерабатывающей промышленности — увеличению глубины отбора от нефти. В результате первичной переработки нефти получают 30—60% тяжелых остатков. Из-за повышенной вязкости их использование в качестве котельных топлив затрудняется кроме того, при транспортировании таких продуктов создаются определенные неудобства. В течение нескольких десятков лет нефтяные остатки прямой перегонки при переработке их по топливной схеме подвергались термическому крекингу для снижения вязкости и получения дополнительного количества бензиновых фракций. Однако в связи с усложнением конструкции карбюраторных двигателей требования к качеству автомобильных бензинов существенно возросли. Кроме того, за последнее десятилетие ведущее место в топливном балансе страны надолго закрепили за собой сернистые, высокосернистые и высокосмолистые нефти Сибири, Башкирии и Татарии. Б результате значительно возросло содержание серы в остатках прямой перегонки, а следовательно, стало невозможным получить из этих остатков при помощи термического крекинга стандартное котельное топливо и базовый компонент автомобильных бензинов. Потребность в больших количествах малозольных углеродистых веществ, а также возможность получения маловязких дистиллятных топлив с содержанием серы на 15—20%, а золы на 85—90% меньше, чем в исходном сырье, обусловили строительство на нефтеперерабатывающих заводах установок коксования. [c.8]

    Элементарная сера, сероводород и дисульфиды. Элементарная сера, сероводород и дисульфиды содержатся в нефтях и нефтепродуктах в малых концентрациях. Элементарная сера и сероводород в сырых нефтях обычно от сутствуют, они образуются в основном как вторичные продукты разложения сераорганических соединений при термическом воздействии в процессах перегонки, деструктивной переработки и гидроочистки нефтяных фракций, дисульфиды образуются при окислении меркаптанов (табл. 78). [c.243]

    Переработку нефти обычно начинают с разделения сырой нефти на фракции. Этот процесс осуществляется путем перегонки и основан на том, что разные фракции нефти имеют различную температуру кипения. В табл. 24.3 указаны фракции, на которые обычно разгоняют нефть. Нетрудно понять, что фракции, кипящие при более высоких температурах, состоят из молекул с большим числом атомов углерода. Фракции, полученные при первичной перегонке, могут потребовать дальнейшей обработки для получения пригодного к применению продукта. Например, бензин, полученный прямой перегонкой нефти, нуждается в специальной модификации, чтобы его можно было использовать в качестве горючего для автомобилей. Точно так же фракция нефтяного топлива может потребовать дополнительной обработки с целью удаления серы, чтобы [c.418]

    Содержание и состав сернистых соединений в нефтяных фракциях зависит лишь от природы нефти и методов ее переработки кислородные же соединения могут образовываться при автоокислении некоторых углеводородов фракции, главным образом во время хранения и эксплуатации в двигателе, причем продуктов окисления может быть больше, чем кислородных соединений, перешедших во фракцию из сырья. Количество их зависит от наличия нестабильных углеводородов, продолжительности и условий окисления, накопления ингибирующих автоокисление соединений и др. [c.14]

    Промышленность химической переработки нефти зародилась в США в 1919—1920 гг. своим возникновением она обязана исследовательским работам, проведенным во время первой мировой войны. В двадцатых-тридцатых годах в этой промышленности развивались главным образом методы производства и использования простейших олефинов — этилена, пропилена и бутиленов. Этилен получали прямым крекингом жидких нефтяных фракций или пропана. Пропилен и бутилены получали либо одновременно с этиленом при этих прямых крекинг-процессах, либо выделяли как побочные продукты из газов при переработке нефти, в особенности после того, как внедрение термического риформинга, а позднее каталитического крекинга и каталитического риформинга приблизило химические процессы нефтепереработки к их промышленному осуществлению. [c.19]

    Извлечение нафтеновых кислот из нефтяных фракций представляет собой необходимую стадию процесса переработки нефти. Количество нафтеновых кислот в нефти гораздо больше того количества, которое выпускается на рынок в виде товарного продукта, но операции по извлечению нафтеновых кислот, не связанные с дальнейшей технологической подготовкой нефтяного продукта, экономически себя не оправдывают. [c.396]

    Коллоидно-химические представления при рассмотрении физических и физико-химических превращений нефтяного сырья позволяют в некоторых случаях достичь оригинальных результатов при анализе и теоретическом обосновании аномалий, выявленных в ходе экспериментальных исследований, а также при совершенствовании существующих и разработке новых процессов и видов продуктов с заданными функциональными свойствами. Особый интерес при этом представляют процессы переработки и продукты высокомолекулярной составляющей нефти. К подобным процессам можно отнести уже упоминавшиеся ранее вакуумную перегонку мазута, различные виды термического крекинга нефтяного остаточного сырья, производство битумов и т.п. Как правило, интенсификация указанных процессов связана с внешними воздействиями на сырье. Другим, не менее важным направлением является исправление качества конечных продуктов переработки, создание товарной продукции на базе промежуточных и побочных фракций нефтеперерабатывающих установок. [c.239]

    Смолы —очень широкое понятие. Это и сложная смесь органических веществ — продукт термической переработки (горючих) ископаемых и древесины, и различные полимерные продукты. Нефтяные смолы —высокомолекулярные неуглеводородные компоненты нефти нейтрального характера, растворимые в петролейном эфире и Нефтяных фракциях (перегонки). Природные смолы — вещества, выделяемые растениями при нормальном физиологическом обмене, а также при их надрезах. Смолы понижают температуру стеклования битуминозного вещества, придают термическую устойчивость и повышают эластичность связующих. [c.215]

    Если не считать термических методов, переработка нефтей и нефтяных фракций с применением водорода для получения ценных товарных продуктов возникла и начала использоваться в промышленности раньше, чем другие промышленные процессы превращения, в том числе каталитический крекинг, алкилирование и каталитический риформинг. На протяжении многих лет. гидрирование углеводородов является предметом интенсивных исследований. Эти исследования продолжаются и в настоящее время и охватывают широкую область, что и объясняет многочисленность публикаций, посвященных этой теме, включая патенты. [c.116]

    В сборнике также рассмотрены научно-методические вопросы, связанные с выполнением технологических расчетов отдельных видов оборудования, нормированием водопотребления, расчетов и анализа состава и свойств нефтяных фракций, продуктов переработки нефти, а также результаты исследований закономерностей процессов компаундирования, адсорбционной очистки различных фракций нефти. В отдельных публикациях отражены достижения института по созданию ингибиторов коррозии, катализаторов процесса Клаус, битумполимерных композиций. [c.2]

    Определение среднего молекулярного веса сырья. Молекулярный вес нефти, продуктов ее перегонки (нефтяных фракций) и переработки (бензина, керосина, дизельного топлива и др.) в расчетной практике определяют с применением известной формулы Б. П. Воинова (9), которая в общем виде выглядит так  [c.15]

    Получёние ароматических углеводородов из нефти осуществляется, следовательно, в три стадии получение четкой ректификацией необходимых нефтяных фракций, собственно каталитический риформинг этих фракций, включающий с химической точки зрения два основных процесса — дегидрирование и изомеризацию нафтенов — и, наконец, переработка высокоарома-тизированных продуктов риформинга для получения чистых индивидуальных углеводородов, как бензол, толуол и ксилольная фракция. [c.105]

    Однако нефтяные углеводородные фракции с температурой кипения, начиная приблизительно от 100°, представляют собой весьма еоднородные смеси, в которых соотношение различных типов углеводородов (парафиновых, нафтеновых и ароматических) в значительной степени зависит от происхождения исходной нефти. Поэтому успешная химическая переработка подобных продуктов оказывается невозможной без предварительного разделения на отдельные компоненты (главным образом физическими способами) и дополнительной химической очистки парафиновой фракции. [c.13]

    Сераорганические соединения входят в состав большинства нефтей. Башкирские нефти и продукты их переработки высокосернистые. Кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов [ 1 ]. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ) [2], которые определяют специфику взаимодействия веществ с растворителями, [c.269]

    Сырьем для производства смазочных масел служат нефтяные фракции, выкипающие выше 350 °С. В этих фракциях концентрируются высокомолекулярные соединения нефти, представляющие собой сложные многокомпонентные смеси углевюдородов различных грушп и их гетеропроизводных, в молекулах которых содержатся атомы кислорода, серы, азота и некоторых металлов (никеля, ванадия и др.). Компоненты масляных фракций обладают различными свойствами, и содержание их в готовых маслах может быть полезным и необходимым или вредным и нежелательным. Поэтому наиболее распространенным путем переработки масляных фракций для получения масел является удаление из них нежелательных компонентов при максимально возможном сохранении желательных , способных обеспечить готовым продуктам необходимые физико-химические и эксплуатационные свойства. [c.7]

    Для выбора наиболее рациональной технологии процесса переработки, позволяющей получать масла задаиных качеств с максимальным выходом, необходимо иметь достаточно полное представление о химическом составе исходных нефтей и тех нефтяных фракций, которые поступают в производство. Очевидно, экономически и технически целесообразно перерабатывать на масла те нефти, в тяжелых фракциях которых превалируют желательные компоненты. Наоборот, большое количество смолисто-ас-фальтеновых веществ, полициклических ароматических углеводородов, серосодержащих и других гетеросоединений усложняет переработку, способствует малому выходу целевых продуктов и во многих случаях не позволяет обеспечить нужное их качество. [c.7]

    Для фракций с температурой застывания зтемпературой застывания Гз5г20°С...70 °С Для узких и широких нефтяных фракций, фракций продуктов вторичной переработки нефтей, стабильных газовых конденсатов и их фракций при наличии данных о показателе преломления относительной плотности р4 и средней мольной массе М величины и а могут определяться по [c.195]

    Гидрокрекинг — одно- или двухступенчатый каталитический процесс (на неподвижном или движущемся слое катализатора), протекающий в среде водорода при его расходе от 1 до 5% (масс.), при температурах до 430°С на первой ступени и до 480 °С — на второй, объемной скорости подачи сырья до 1,5 ч , давлении до 32 МПа и циркуляции водородсодержащего газа 500—2000 м /м сырья. Процесс сопровождается частичным расщеплением высокомолекулярных комнонентов сырья и образованием углеводородов, на основе которых в зависимости от условий процесса и вида сырья можно получать широкую гамму продуктов от сжиженных газов до масел и нефтяных остатков с низким содержанием серы. В качестве сырья используют бензиновые фракции (для получения сжиженного газа), керосино-дизельные фракции и вакуумные дистилляты (для получения бензина, реактивного й дизельного топлив) остаточные продукты переработки нефти (для получения бензина, реактивного и дизельного топлив) гачи и парафины (для получения высокоиндексных масел) высокосернистые нефти, сернистые и высокосернистые мазуты, полугудроны и гудроны (для получения дистиллятных продуктов или котельного топлива с низким содержанием серы). [c.207]

    Успехи органической химии позволяют производить ряд ценных органических продуктов из самого разнообразного сырья. Так, напрнмер, этиловый спирт, используемый в громадных количествах в производстве синтетического каучука, искусственных волокон, илас ическпх масс, взрывчатых веществ, эфиров и т. п., можно получать из пищевых продуктов (зерна, картофеля, сахарной свеклы), гидролизом древесины и гидратацией этилена. Этилен же, в свою очередь, получается при химической переработке природных газов, нефти и других видов топлива. Вначале пищевое сырье в производстве спирта стала вытеснять древесина. Из 1 т древесины при гидролизе получается около 160 кг этилового спирта, что заменяет 1,6 т картофеля или 0,6 т зерна. Производство гидролизного спирта обходится дещевле, чем из пищевого сырья. При комплексной химической переработке древесина используется вместо пищевого сырья также в производстве глицерина, кормового сахара, кормовых дрожжей, уксусной, лимонной и молочной кислот и других продуктов. Особенно быстро развивается производство синтетического спирта гидратацией этилена таким образом, растительное сырье вытесняется минеральным. Себестоимость синтетического спирта из нефтяных газов в три раза ниже, чем из пищевого сырья. Интенсивно развивается также производство синтетического каучука из бутан-бутиленовой фракции попутных нефтяных газов, поэтому этиловый спирт потерял доминирующее значение в производстве. синтетического каучука. Из продуктов переработки газов и нефти ныне вырабатывают также уксусную кислоту, глицерин и жиры для производства моющих средств. При этом экономятся громадные количества пищевого сырья и получается более дешевая продукция. [c.23]

    Процессы очистки и разделения нефтяных фракций с применением избирательных растворителей широко распространены. В зависимости от химической природы эти растворители растворяют одни и не растворяют другие компоненты очищаемого или разделяемого сырья. Их применяют при производстве топлив, масел и твердых углеводородов, а также при разделении продуктов переработки нефти с целью получения сырья для нефтехимического синтеза, компонентов топлив и других продуктов (извлечения ароматических углеводородов из бензинов платформинга, газоконденсатов, бензинов прямой перегонки и др.). При очистке избирательными растворителями из очищаемого сырья удаляются следующие компоненты асфальтены, смолы, полициклические ароматические и ыафтено-ароматические углеводороды с короткими боковыми цепями, непредельные углеводороды, серо- и азотсодержащие соединения, твердые парафиновые углеводороды. [c.177]

    Осповная масса всех гетероорганических высокомолекулярных веществ относится к нейтральным смолам. Асфальтенов в нефтях значительно меньше, чем нейтральных смол. Карбенов и карбои-дов в сырых нефтях почти нет, они характерны для остаточных продуктов термокаталитической переработки нефтяных фракций. Общее содержание смолисто-асфальтеновых веществ в различных нефтях колеблется в широких пределах от 1—2 до 40—45%. В настоящее время в мировой добыче нефти резко возросла доля высокосмолпстых нефтей. [c.41]

    Наиболее ценными для современной техники продуктами переработки нефти являются бензины. Однако при прямой перегонке из нефти получается лишь до 20% (в зависимости от сорта и мe fo-рождения нефти) бензиновой фракции. Выход ее может быть увеличен до 60—80% при помощи крекинга (стр. 55) высших нефтяных фракций. Первая установка по крекингу нефти была построена в 1891 г. в России инженером В. Г. Шуховым. [c.61]

    Из фракций нефти или из продуктов ее переработки, а также из природных и попутных газов путем описанной переработки их могут быть специально получены следуюш ие непредельные углеводороды, частично используемые в са мой нефтяной промышленности, но являющиеся дешевым и йысококачественйым сырьем для химической промышленности этилен, пропилен, -бутилены, изобутилен, дивинил, изопрен и др. [c.12]

    Ароматические углеводороды могут быть получены из нефти или отдельных нефтяных фракций путем пиролиза, т. е. нагревания до высоких температур (700 С и выше).. Этот способ впервые был практически осуществлен еще в 70-х годах прошлого столетия инж. А. А. Летним, который построил в г. Баку завод для переработки тяжелых нефтяных остатков с целью получения из них бензина, керосина и ароматических углеводородов. В настоящее время пиролиз нефтепродуктов осуществляется в крупных промышленных масштабах для получения этилена и пропилена образующиеся в этом процессе побочные жидкие продукты могут служить вспомогательным источником получения ароматических углеводородов. Некоторое количество бензола и его гомологов образуется в процессе каталитического крек1шга. [c.435]

    Количество этих неуглеводородных компонентов, которые выделяют при переработке нефти в виде продуктов, представляющих рыночную ценность, непрерывно растет. Сероводород и меркаптаны как первоначально присутствовавшие в природной нефти, так и образовавшиеся в процессах ее переработки и очистки, используются для производства элементарной серы и серной кислоты. Крезолы и другие фенолы экстрагируются при очистке нефтяных фракций и используются как сырье для химической промышленности. Ванадий можно улавливать в виде летучей золы и из облицовки высоких дымовых труб. Тем не менее сера, кислород, азот и металлы являются с точки зрения нефтеперерабатывающей промышленности весьма нежелательными примесями. Их удаление требует знатательных затрат. Иногда очистку производят в начальных стадиях переработки, а иногда как последнюю операцию перед выпуском товарных продуктов. [c.45]

    Требования к качеству всех нефтепродуктов непрерывно повышаются, хотя добыча и переработка растут исключительно за счет низкокачественных нефтей. Несомненно, удачно, что ресурсы водорода появились как раз в то время, когда значительпо возросло количество высокосернистых тяжелых нефтей, поступающих на переработку. Гидрогенизациопная очистка позволяет облагораживать эти нефти и нефтяные фракции и получать малосернистые высококачественные продукты. [c.119]

chem21.info

Переработка - нефтяная фракция - Большая Энциклопедия Нефти и Газа, статья, страница 1

Переработка - нефтяная фракция

Cтраница 1

Переработка нефтяных фракций для извлечения углеводородов нормального строения осуществляется в несколько ступеней.  [1]

Переработку нефтяных фракций в ароматические углеводороды можно осуществлять при помощи крекинга ( 450 - 650 С), пиролина ( 650 - 800 С), каталитической дегидрогенизации нафтепов и циклизации парафиновых углеводородов.  [2]

В случае переработки нефтяных фракций при атмосферном давлении активность платиновых катализаторов быстро снижается. Установлено, что характер отравления катализатора не зависит от строения сернистого соединения. Для подавления активности катализаторов на 70 - 80 % достаточно 6 - 7 вес.  [3]

Основным способом переработки нефтяных фракций являются различные виды крекинга.  [4]

Гидрирование в аспекте переработки нефтяных фракций является предметом курса технологии нефти и рассматриваться не будет.  [5]

Пщрогенизационными называются процессы переработки нефтяных фракций в присутствии водорода, вводимого в систему извне.  [6]

Гидрирование в аспекте переработки нефтяных фракций является предметом курса технологии нефти и рассматриваться не будет.  [7]

Применение водорода при переработке нефтяных фракций обеспечивает получение товарной продукции высокого качества. За последнее время в связи с углублением переработки нефти, а также поступлением на переработку более тяжелых, высокосернистых нефтей возникла необходимость расширения использования процессов с участием водорода. Гидрогенизацион-ные процессы отличаются высокой технологичностью и надежностью в эксплуатации. Их применение позволяет регулировать углеводородный и фракционный состав перерабатываемых нефтяных фракций, удалять из них серо - и азотсодержащие соединения, улучшать эксплуатационные характеристики нефтяных топлив, масел и сырья для нефтехимической переработки.  [8]

Особо интересным является создание пиролитических процессов переработки нефтяных фракций с преобладающим выходом газа по сравнению с выходом других продуктов. Так, уже в настоящее время известен процесс высокотемпературного пиролиза керосина, при котором выход газа достигает 70 - 80 %, причем в составе газа большую долю составляет этилен. В этом случае отрицательным является необходимость строительства специальных установок по газообразованию внутри химических заводов и затрата сырья для их работы, при наличии огромных ресурсов газов нефтепереработки, которые в значительной мере останутся неиспользуемыми.  [9]

Топочные мазуты представляют собой тяжелые крекинг-остатки переработки нефтяных фракций, а также смеси их с остатками, получаемыми при прямой перегонке нефти. Теплота сгорания мазутов составляет 38520 - 39358 кДж / кг.  [10]

КОТЕЛЬНЫЕ ТбПЛИВА, жидкие смеси тяжелых продуктов переработки нефтяных фракций, а также продукты полукоксования горючих сланцев и каменных углей; используются в качестве топлив для стационарных ( ГЭС и ТЭЦ) и транспортных ( судовых) котельных установок, пламенных пром.  [11]

Указанный процесс гидрокрекинга ( гидроизомеризации) применим и для переработки нефтяных фракций с большим содержанием парафиновых углеводородов, полученных, например, из мангыш-лакских, ставропольских и иных высокопарафинистых нефтей.  [12]

Приведенное определение охватывает химические продукты, образующиеся в процессах переработки нефтяных фракций и подвергающиеся дальнейшей химической переработке с последующей передачей их другому, четко очерченному разделу промышленности, а в некоторых случаях и непосредственно потребителю. Строго говоря, нефтехимическое производство нельзя рассматривать как единую отдельную отрасль промышленности.  [13]

Промышленное производство ароматических углеводородов базируется главным образом на процессах переработки нефтяных фракций и в значительно меньшей мере - на процессах коксования каменных углей.  [14]

Полимеризацией и алкшгарованием газов крекинга, пиролиза и других процессов переработки нефтяных фракций получают дополнительно различные сорта бензинов ( полимер-бензин, алкил-бензин, пиробензол), либо его высококачественные компоненты.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Перегонка нефти на топливные фракции и мазут

    Принципиальная технологическая схема такой установки приведена на рис. П1-2. Как видно из схемы, переработка нефти здесь осуществляется в три ступени атмосферная перегонка нефти с получением топливных фракций и мазута, вакуумная перегонка мазута с получением узких масляных фракций и гудрона и вакуумная перегонка смеси мазута и гудрона с получением широкой масляной фракции и утяжеленного остатка, используемого для производства битума. Применение двух ступеней вакуумной перегон- [c.147]     В зависимости от варианта переработки нефти получают различный ассортимент топливных и масляных фракций. На установках АТ при неглубоком топливном варианте и на атмосферных блоках установок АВТ по топливно-масляному варианту переработки получают бензиновые, керосиновые и дизельные фракции при глубоком топливном варианте переработки нефти на атмосферном блоке установки АВТ получают бензиновые и керосино-газойлевые фракции. Утяжеленный по составу мазут подвергается дальнейшей переработке на блоках вакуумной перегонки с получением одной или нескольких масляных фракций и гудрона. [c.147]

    Поскольку асфальтены являются нелетучими соединениями и в них концентрируются порфири-ны из нефти, качество широкой масляной фракции ухудшается в основном за счет жидкости, уносимой после однократного испарения сырья в питательной секции колонны. Поэтому при топливном варианте перегонки мазута более важно уменьшить унос тяжелой флегмы в концентрационной части колонны, нежели обеспечить четкое разделение мазута на масляные фракции и гудрон. Вследствие этого вакуумные колонны по топливному варианту имеют небольшое число тарелок или невысокий слой насадки и развитую питательную секцию (рис. П1-22). В верху колонны обычно два циркуляционных орошения для лучших условий регенерации тепла. В секции питания устанавливается отбойник из сетки и промывные тарелки. Часть остатка мо жет охлаждаться и закачиваться вновь в колонну для снижения температуры низа [47]. Качество вакуумного газойля контролируется по его коксуемости, цвету и фракционному составу. Для автоматического регулирования процесса целесообразно определить экспериментально зависимость содержания металлов в вакуумном газойле и его цвет от коксуемости. Исследование радиоактивными изотопами содержания асфальтенов и металлов (N 0 и УгОз) в вакуумном газойле показало, что между ними сущест- 12 вует линейная зависимость (рис. П1-23) [48]. [c.176]

    На рис. 1.4—1.6 изображены три схемы потоков современных НПЗ. Заводы с неглубокой переработкой нефти по топливному варианту (рис. 1.4) до недавнего времени строились в тех районах, где отсутствуют другие источники органического топлива (уголь, природный газ), а для снабжения энергетических установок используется остаток от перегонки нефти — мазут. Из нефти выделяют изначально содержащиеся в ней светлые дистиллятные фракции, которые затем облагораживают с применением вторичных процессов — каталитического риформинга, изомеризации, гидроочистки. В схеме завода предусмотрено также получение жидкого парафина — сырья для биохимических производств и битума. [c.16]

    Головным процессом переработки нефти (после ЭЛОУ - электрообессоливающей установки) является атмосферная перегонка (АТ- атмосферная трубчатка), где отбираются топливные фракции (бензиновые, осветительного керосина, реактивного и дизельного топлив) и мазут, используемый либо как компонент котельного топлива, либо как сырье для последующей глубокой переработки. Топливные фракции атмосферной перегонки далее подвергаются облагораживанию гидроочистке от гетероатомных соеди- [c.111]

    Головным процессом переработки нефти (после ЭЛОУ - электрообессоливающей установки) является атмосферная перегонка (АТ -атмосферная трубчатка), где отбираются топливные фракции (бензиновые, осветительного керосина, реактивного и дизельного топлив) и мазут, используемый либо как компонент котельного топлива, либо как сырье для последующей глубокой переработки. Топливные фракции атмосферной перегонки далее подвергаются облагораживанию гидроочистке от гетероатомных соединений, а бензины - каталитическому риформингу с целью повышения их качества или получения индивидуальных ароматических углеводородов - сырья нефтехимии (бензола, толуола, ксилолов и др.). Из мазута путем вакуумной перегонки (на установках ВТ - вакуумной трубчатки) получают либо широкую фракцию (350...500°С) вакуумного газойля - сырья для последующей переработки на установках каталитического крекинга или гидрокрекинга с получением, главным образом, компонентов моторных топлив, либо узкие дистиллятные масляные фракции, направляемые далее на последующие процессы очистки (селективная очистка, депарафинизация и др.) Остаток вакуумной перегонки - гудрон - служит при необходимости для получения остаточных масел или как сырье для глубокой переработки с получением дополнительного количества моторных топлив, нефтяного кокса, дорожного и строительного битума или же в качестве компонента котельного топлива. [c.38]

    Перегонка нефти на топливные фракци>е мазут - --- [c.153]

    На НПЗ России глубина переработки нефти не превышает 68-70% против 80-95% в развитых странах Запада. Повысить глубину переработки возможно за счет более полного извлечения топливных фракций из нефти при ее первичной перегонке, подбора наиболее благоприятного состава топливных продуктов (бензин, реактивное топливо, дизельное топливо), а самое главное, за счет развития деструктивных процессов переработки нефтяных остатков с получением ценных топливных и нефтехимических продуктов. К таким процессам относятся термические, каталитические и гидрогенизационные технологии переработки вакуумных дистиллятов, мазутов и гудронов. [c.7]

    По данной схеме переработка нефти осуществляется в три ступени атмосферная перегонка с получением топливных фракций и мазута, вакуумная перегонка мазута с получением узких масляных фракций и гудрона и вакуумная перегонка смеси мазута и гудрона, или с получением широкой масляной фракции и утяжеленного остатка, используе- [c.334]

    Нефть и особенно ее высококипящие фракции и остатки характеризуются невысокой термической стабильностью. Для большинства нефтей температура термической стабильности соответствует температурной границе деления примерно между дизельным топливом и мазутом по кривой ИТК, то есть =350 - 360 °С. Нагрев нефти до более высоких температур будет сопровождаться ее деструкцией и, следовательно, ухудшением качества отбираемых продуктов перегонки. В этой связи перегонку нефти и ее тяжелых фракций проводят с ограничением по температуре нагрева. В условиях такого ограничения для выделения дополнительных фракций нефти, выкипающих выше предельно допустимой температуры нагрева сырья, возможно использовать практически единственный способ повышения относительной летучести компонентов - перегонку под вакуумом. Так, перегонка мазута при остаточных давлениях в зоне питания вакуумной колонны =100 и =20 мм рт. ст. (=133 и 30 гПа) позволяет отобрать газойлевые (масляные) фракции с температурой конца кипения соответственно до 500 и 600 °С. Обычно для повышения четкости разделения при вакуумной (а также и атмосферной) перегонке применяют подачу водяного пара для отпаривания более легких фракций. Следовательно, с позиций термической нестабильности нефти технология ее глубокой перегонки (то есть с отбором фракций до гудрона) должна включать как минимум 2 стадии атмосферную перегонку до мазута с отбором топливных фракций и перегонку под вакуумом мазута с отбором газойлевых (масляных) фракций и в остатке гудрона. [c.200]

    Прямая перегонка нефти представляет собой процесс разделения ее на отдельные фракции, отличающиеся между собой в первую очередь температурой кипения. Для этого нефть нагревают, а образующиеся пары отбирают и конденсируют по частям. В результате перегонки получают топливные дистилляты и остаток, называемый мазутом, который в дальнейшем может быть использован для химической переработки или получения смазочных масел. [c.8]

    На установках АТ осуществляют неглубокую перегонку нефти с получением топливных (бензиновых, керосиновых, дизельных) фракций и мазута. Установки ВТ предназначены для перегонки мазута. Получаемые на них газойлевые, масляные фракции и гудрон используют в качестве сырья процессов последующей (вторичной) переработки их с получением топлив, смазочных масел, кокса, битумов и других нефтепродуктов. [c.217]

    I подают в трубчатую печь 4, где нагревают до требуемой температуры и направляют в атмосферную колонну 2. Часть отбензиненной нефти из печи 4 возвращают в низ колонны I в качестве горячей струи. С верха колонны 2 отбирают тяжелый бензин, а сбоку через отпарные колонны 3 выводят топливные фракции 180-220 (230), 220 (230)-280 и 280-350 °С. Атмосферная колонна, кроме острого орошения, имеет два циркуляционных орошения, которыми отводят тепло ниже тарелок отбора фракций 180-220 и 220-280 °С. В нижние части атмосферной и отпарных колонн подают перегретый водяной пар для отпарки легко кипящих фракций. С низа атмосферной колонны выводят мазут, который направляют на блок вакуумной перегонки. Ниже [c.127]

    Основная масса гетероорганических соединений при прямой перегонке нефти или вакуумной перегонке мазута переходит в среднедистиллятные, остаточные топливные и масляные фракции. [c.722]

    При прямой перегонке получают сначала горючее, а из мазутов, оставшихся после отбора из нефти светлых топливных фракций, затем получают смазочные масла. [c.12]

    На установках АТ осуществляют неглубокую перегонку нефти с получением топливных (бензиновых, керосиновых, дизельных) фракций и мазута. Установки ВТ предназначены для перегонки мазута. Получаемые на них газойлевые, масляные фракции и гудрон используют в качест- [c.420]

    Обезвоженная и обессоленная на ЭЛОУ нефть дополнительно подогревается в теплообменниках и поступает на разделение в колонну частичного отбензинивания 1. Уходящие с верха этой колонны углеводородный газ и легкий бензин конденсируются и охлаждаются в аппаратах воздушного и водяного охлаждения и поступают в емкость орошения. Часть конденсата возвращается на верх колонны 1 в качестве острого орошения. Отбензиненная нефть с низа колонны 1 подается в трубчатую печь 4, где нагревается до требуемой температуры и поступает в атмосферную колонну 2. Часть отбензиненной нефти из печи 4 возвращается в низ колонны 1 в качестве горячей струи. С верха колонны 2 отбирается тяжелый бензин, а сбоку через отпарные колонный выводятся топливные фракции 180...220 (230), 220(230)...280 и 280...350 °С. Атмосферная колонна кроме острого орошения имеет 2 циркуляционных орошения, которыми отводится тепло ниже тарелок отбора фракций 180...220 и 220...280°С. В нижние части атмосферной и отпарных колонн подается перегретый водяной пар для отпарки легкокипящих фракций. С низа атмосферной колонны выводится мазут, который направляется на блок вакуумной перегонки. Ниже приведены материальный баланс, технологический режим и характеристика ректификационных колонн блока атмосферной перегонки нефти (типа самотлорской) [c.423]

    В переработке нефти существует три основных направления топливное, топливно-асфальтовое, топливно-масляно-битумное. Для каждого вида сырья используют определенные методы обработки с получением различных продуктов. При атмосферной перегонке нефти получают бензин, лигроин, керосин, соляровое масло и мазут. При атмосферно-вакуумной переработке мазута в условиях температуры 400—425° получают соляровое и вазелиновое масла (легкая фракция), машинное и цилиндровое масла (средняя фракция), а также гудрон в остатке. После применения сернокислотной и щелочной очистки [c.110]

    Ассортимент продуктов вакуумной перегонки мазута зависит от варианта переработки нефти. Существуют две схемы переработки мазута масляная и топливная. При масляной схеме получают несколько фракций — вакуумных дистиллятов, при топливной — одну. [c.125]

    Процессы первичной переработки нефти, к которым относятся прямая перегонка под атмосферным давлением (получение топливных дистиллятов и мазута) и под вакуумом (получение масляных дистиллятов, гудрона), основываются на законах физического разделения нефти на узкие фракции. Полученные при атмосферной перегонке светлые нефтепродукты при их дополнительной вторичной обработке с помощью каталитических процессов облагораживания (изомеризация, риформинг, гидроочистка) обеспечивают выработку различных моторных топлив — автомобильных бензинов, реактивных и дизельных топлив. Масляные дистилляты подвергаются различным процессам облагораживания по соответствующим поточным схемам НПЗ топливно-масля-ного профиля. [c.4]

    Процесс легкого крекинга является разновидностью термического крекинга. Он увеличивает выход продуктов крекинга с повышенным содержанием углеводородов олефинового ряда (по сравнению с продуктами прямой перегонки на первой стадии дистилляции при атмосферном давлении). Общий диапазон точек кипения дистиллятов легкого крекинга ниже, чем исходной нефти, тогда как плотность легкой крекинг-смолы значительно выше, чем донных продуктов атмосферной фракционной разгонки. Дистил-ляционные нефтепродукты и остаточные мазуты перемешиваются и подвергаются прямому крекингу до фракций, соответствующих требованиям к качеству конечных продуктов — бензина и топливной нефти. [c.18]

    Для перегонки легких нефтей с высоким содержанием рас — ТВС римых газов (1,5 —2,2 %) и бензиновых фракций (до 20—30 %) и фракций до 350 °С (50 — 60 %) целесообразно применять атмосферную перегонку двухкратного испарения, то есть установки с предварительной отбензинивающей колонной и сложной ректификационной колонной с боковыми отпарными секциями для разделения частично отбензиненной нефти на топливные фракции и мазут. Двухколонные установки атмосферной перегонки нефти получили в отечественной нефтепереработке наибольшее распространение. Они обладают достаточной технологической гибкостью, универсальностью и способностью перерабатывать нефти различного фрак — ционного состава, так как первая колонна, в которой отбирается 50 — 60 % бензина от потенциала, выполняет функции стабилизатора, сг/аживает колебания в фракционном составе нефти и обеспечивает стабильную работу основной ректификационной колонны. Применение отбензинивающей колонны позволяет также снизить данление на сырьевом насосе, предохранить частично сложную Ko.voHHy от коррозии, разгрузить печь от легких фракций, тем самым не жолько уменьшить требуемую тепловую ее мощность. [c.183]

    При невысоких требованиях к четкости разделения между дизельным топливам и мазутом экопомически выгодно в атмосферной колонне максимально отбирать светлые продукты. Практика же перегонки нефти и сравнительные расчеты показывают, что высокий отбор светлых и четкое деление между тяжелыми фракциями дизельного топлива и мазутом по температурной границе 350—360°С возможны только при выделение тяжелых топливных фракций в условиях умеренного вакуума. В связи с этим в рассмотренных далее схемах двух- [7] и трехкратного испарения нефти [8] и в схеме установки АВТ, рекомендуемой в работе [9], температурная граница деления нефти при атмосферном давлении заметно сдвинута в сторону легких дизельных фракций. [c.158]

    Из испарителя высокого давления снизу уходит бензиновая фракция (рис. 1П-7, а) или сумма светлых нефтепродуктов (рнс. 111-7,6) в последнем случае для четкого отделения светлых фракций от мазута предусматривается еще колонна вторичной перегонки. Очевидно, схема а предназначена для перегонки малосернистых нефтей, а схема б —для перегонки средне- и вьгсокосерни-стых нефтей. Комбинирование процессов первичной перегонки нефти и гидроочистки топливных фракций в одной технологической установке позволяет снизить эксплуатационные затраты на величину, необходимую для повторного нагрева топливных фракций в процессе их гидроочистки. [c.159]

    Нефть представляет собой многокомпонентное сырье с непрерывным характером распределения фракционно1 о состава и соответственно летучести компонентов. Расчеты показывают, что значение коэффициента относительной летучести непрерывно (экспоненциально) убывает по мере утяжеления фракций нефти, а также по мере сужения температурного интервала кипения фракций. Эта особенность нефтяного сырья обусловливает определенные ограничения как на четкость погоноразделения, особенно относительно высококипящих фракций, гак и по отношению к "узости" фракций. С экономической точки зрения, нецелесообразно требовать от процессов перегонки выделить, например, индивидуальный чистый углеводород или сверхузкие фракции нефти. Поэтому в нефтепереработке довольствуются получением следующих топливных и газойлевых фракций, выкипающих в достаточно широком интервале температур бензиновые н.к.— 140 С (180 °С) керосиновые 140 (180)—240 °С дизельные 240 — 350 °С вакуумный дистиллят (вакуумный газойль) 350—400 °С, 400—450 °С и 450—500 °С тяжелый остаток — гудрон >490 °С (>500 °С). Иногда ограничиваются неглубокой атмосферной перегонкой нефти с получением в остатке мазута >350 °С, используемого в качестве котельного топлива. [c.166]

    Мазут — остаток атмосферной перегонки нефти — перегоняется на самостоятельных установках вакуумной перегонки или на вакуумных секциях атмосферно-вакуумных трубчаток (АВТ). На современных вакуумных установках применяют следующие технологические схемы перегонки мазута однократного испарения всех отгоняемых фракций в одной вакуумной колонне однократного испарения с применением отпарных колонн двухкратного испарения отгоняемых фракций в двух вакуумных колоннах. Получаемые при вакуумной перегонке мазута дистилляты могут быть использованы в качестве сырья каталитического крекинга (работа по топливной схеме) и в качестве фракций для производства масел (работа по масляной схеме). При работе по топливной схеме на установке получается одна широкая фракция, направляемая в качестве сырья (широкого вакуумного отгона) на установки каталитического крекинга. Если вакуумная перегонка ведется с целью получения масляных дистиллятов, то к качеству получаемых фракций и в частности к их фракционному составу предъявляются более жесткие требования. На установках, запроектированных и построенных в последние годы, предусматривается получение двух масляных фракций 350—420 °С и 420—490 °С (для типового сырья из ромашкинской и туймазинской нефтей). Далее путем компаундирования можно получить на их основе различные масляные фракции. [c.32]

    На атмосферно-вакуумных трубчатых установках производится полная перегонка нефти до гудрона или полугудрона. В зависимости от качества перерабатываемой нефти и заданного ассортимента продукции работа АВТ может протекать по диум схемам масляной или топливной. При переработке на АВТ нефтей по первой схеме на атмосферной части установки получают светлые нефтепродукты (первая ступень переработки), а на вакуумной части — масляные дистилляты (вторая ступень переработки). При переработке нефти на АВТ по топливной схеме на атмосферной части установки вырабатываются те же светлые нефтелродукты, а на вакуумной части от мазута отбирается широкая фракция, служащая сырьем для каталитического крекинга. В остатке получают либо гудрон, который направляют для переработки в нефтебитум, либо полугудрон, являющийся сырьем для термического крекинга. [c.155]

    Перегонка нефти (англ. preliminary distillation) — процесс разделения нефти ректификацией на отдельные фракции. Ректификацию нефти осуществляют при атмосферном давлении (0,1—0,2 МПа), выделяя из нефти фракции светлых продуктов бензина, реактивного топлива, керосина, дизельного топлива (зимнего и летнего) и в качестве остатка темный продукт — мазут. Перегонку мазута производят под вакуумом при остаточном давлении 20-60 мм рт. ст. В зависимости от варианта переработки (масляного или топливного) мазут могут разделять на масляные фракции (соляровую, веретенную, машинную) с целью дальнейшей выработки масел или выделять из него широкую фракцию как сырье для каталитического крекинга или гидрокрекинга. Остаток перегонки мазута — гудрон служит сырьем для коксования, производства битума или остаточных масел. [c.121]

    Для перегонки легких нефтей с высоким содержанием растворимых газов (1,5... 2,2%) и бензиновых фракций (до 20...30%) и фракций до 350 °С (50...60%) целесообразно применять атмосферную перегонку двухкратного испарения, то есть установки с предварительной отбен-зинивающей колонной и сложной ректификационной колонной с боковыми отиарными секциями для разделения частично отбензиненной нефти на топливные фракции и мазут. [c.422]

    Нефтеперерабатывающие заводы можно разделить на пять основных типов 1) топливные с неглубокой переработкой нефти, 2) топливные с глубокой переработкой нефти, 3) топливно-нефтехимические с глубокой переработкой нефти, 4) топливно-масляные, 5) энерго-х имические. На заводах первых двух типов вырабатывают в основном различные топлива. При неглубокой переработке нефти отбор котельного топлива и других темных нефтепродук-Т01В составляет 60—65% от перерабатываемой нефти, а светлых нефтепродуктов 30—35% при более глубокой переработке соотношение обратное. В отдельных случаях выход светлых может достигать 70—72%, а котельного топлива 9—12%. На заводах третьего типа кроме топлива вырабатывают нефтехимические продукты. В качестве сырья для их производства используют продукты (в основном газы), получаемые при глубокой переработке нефти, или прямогонные бензиновые и керосино-дизельные фракции (пиролиз с получением олефиновых и ароматических углеводородов, а также дивинила для производства синтетических каучуков). Кроме того, ароматические углеводороды можно получать при риформинге бензиновых фракций. На заводах четвертого типа наряду с топливами вырабатывают различные масла, парафины, церезины, битумы и другую продукцию масляного блока. Заводы пятого типа можно строить при ТЭЦ большой мощности (более 2400 тыс. кВт) или вблизи нее. На установках для перегонки нефти отбирают бензиновые и керосино-дизельные фракции, а мазут — остаток от перегонки — направляют на ТЭЦ в качестве топлива полученные фракции светлых нефтепродуктов используют в качестве сырья для пиролиза с получением непредельных и ароматических углеводородов. [c.320]

    При использовании насадки mellapak в вакуумной колонне, работающей по топливному варианту с получением широкой фракции тяжелого вакуумного газойля — сырья каталитического крекинга, в значительной степени снижается перепад давления в колонне. Вследствие этого давление в зоне испарения уменьшается с 65 мм рт. ст. (8,7 кПа) до 50 мм рт. ст. (6,7 кПа). Выход легкого газойля, оставшегося в мазуте после атмосферной перегонки нефти, увеличивается с 3 до 4 % (по отношению к питанию колонны). [c.363]

    Вакуумная перегонка мазута по топливному -варианту предназначена для получения широкой масляной фракции (вакуумного газойля) с температурами выкипания 350—500 °С как сырья установки (каталитического крекинга и гидрокрекинга. Широкая масляная фракция должна быть светлой или слегка окрашенной, свободной от смолисто-асфальтеновых веществ и содержать минимальные концентрации металлов, особенно Ni и V, которые сильно влияют на активность, селективность и срок службы алюмоси-ликатных катализаторов. Никель и ванадий находятся в нефти в виде комплексов с порфнринами, выкипающих при температуре около 450°С и концентрирующихся при перегонке главным образом в асфальтенах. [c.174]

    По топливной схеме, предусматривающей, как показывает ее название, максимальное получение из нефти топлива, мазут может быть переработан 1) на установке термического крекинга, где из него получают также топливные продукты — автомобильный бензин, крекинг-керосин, газ и крекинг-остаток. Последний может быть переработан на установках коксования и из него можно получить добавочное количество бензина, керосино-соляро-вую фракцию (дистиллят коксования), являющуюся сырьем для каталитического крекинга, газ и кокс 2) вакуумной перегонкой с получением широкой дистиллятной фракции (350—500°) и гудрона в остатке. Широкая фракция поступает в качестве сырья на установку каталитического или термического крекинга, а следовательно, опять перерабатывается на топливо. В результате каталитического крекинга широкой фракции получают автом бильный бензин, легкий газойль, являющийся компонентом дизельного топлива, и тяжелый газойль, используемый [c.53]

    НПЗ топливно-Масляного профиля. На этих предприятиях осуществляются процессы подготовка к переработке нефти и ее атм. перегонка вакуумная перегонка мазута, при к-рой получают неск. вакуумных дистиллятов и гудрон. Дистилляты проходят последовательно селективную очистку, депарафинизацию и гидродоочистку либо доочистку Н2 804 (см. Сернокислотная очистка) или с помощью отбеливающих глин (с.м. Адсорбционная очистка, Контактная очистка, Перколяционная очистка). Гз дроны подвергают деасфальтизации, причем образующийся де-асфальтизат обрабатывают по той же схеме, что и дистиллятные фракции, а остаток (т. наз. концентрат) используют для пронз-ва битумов или в качестве сырья для газификации. После доочистки дистиллятные и остаточный компоненты направляют на компаундирование (смешение). Изменяя соотношения компонентов и вводя разл. присадки, получают товарные смазочные масла. [c.226]

    За рубежом глубину переработкр- нефти определяют преимущественно как суммарный выход светлых нефтепродуктов от нефти, то есть имеется в виду глубина топливной переработки нефти. Были предложения характеризовать ГПН по величине отбора светлых нефтепродуктов только вторичными процессами (гидрокрекингом, каталитическим крекинго.м и т.д.) из фракций нефти, выкипаюших выше 3.50°С (то есть из мазута). В соответствии с этой методикой переработка нефти атмосферной перегонкой будет соответствовать кулевой глубине переработки [8]. [c.13]

chem21.info

Переработка нефти Википедия

Цель переработки нефти (нефтепереработки) — производство нефтепродуктов, прежде всего различных видов топлива (автомобильного, авиационного, котельного и т. д.) и сырья для последующей химической переработки.

Первичные процессы[ | код]

Первичные процессы переработки не предполагают химических изменений нефти и представляют собой её физическое разделение на фракции. Сначала промышленная нефть проходит первичный технологический процесс очистки добытой нефти от нефтяного газа, воды и механических примесей — этот процесс называется первичной сепарацией нефти[1].

Подготовка нефти[ | код]

Нефть поступает на НПЗ (нефтеперерабатывающий завод) в подготовленном для транспортировки виде. На заводе она подвергается дополнительной очистке от механических примесей, удалению растворённых лёгких углеводородов (С1-С4) и обезвоживанию на электрообессоливающих установках (ЭЛОУ).

Атмосферная перегонка[ | код]

Нефть поступает в ректификационные колонны на атмосферную перегонку (перегонку при атмосферном давлении), где разделяется на несколько фракций: легкую и тяжёлую бензиновые фракции, керосиновую фракцию, дизельную фракцию и остаток атмосферной перегонки — мазут. Качество получаемых фракций не соответствует требованиям, предъявляемым к товарным нефтепродуктам, поэтому фракции подвергают дальнейшей (вторичной) переработке.

Материальный баланс атмосферной перегонки западно-сибирской нефти

ПРЕДЕЛЫ ВЫКИПАНИЯ, °С ВЫХОД ФРАКЦИИ, % (МАСС.) Газ Бензиновые фракции Керосин Дизельное топливо Мазут Потери
1,1 %
<62°С 4,1%
62—85°С 2,3%
85—120°С 4,5%
120—140°С 3,0%
140—180°С 6,0%
180—240°С 9,5%
240—350°С 19,0%
49,4%
1,0%

Вакуумная дистилляция[ | код]

Вакуумная дистилляция — процесс отгонки из мазута (остатка атмосферной перегонки) фракций, пригодных для переработки в моторные топлива, масла, парафины и церезины, и другую продукцию нефтепереработки и нефтехимического синтеза. Остающийся после этого тяжелый остаток называется гудроном. Может служить сырьем для получения битумов.

Вторичные процессы[ | код]

Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

По своим направлениям, все вторичные процессы можно разделить на 3 вида:

ru-wiki.ru