Ядерные методы геофизического исследования скважин. Гамма каротаж нефть


каротаж - сущность метода и интерпретация

Гамма-каротаж (ГК) (англ. Gamma Ray Log (GR)) показывает естественную радиоактивность (или гамма-активность) пород в скважине, образуемую за счёт радиоактивных изотопов глинистых минералов: полевого шпата, слюды, иллита и минералов группы фосфатов.

Данный метод ГИС является наиболее распространённым и доступным видом радиоактивного каротажа.

Сущность метода

Содержащиеся в литологической толще скважины радиоактивные минералы, излучают гамма-активность, которая регистрируется геофизическим прибором.

Рис. 1. Радиоактивные изотопы и минералы.

Помимо глин, значительной радиоактивностью обладают полимиктовые песчаники, при незначительной глинистости за счёт калийсодержащих минералов: полевого, шпата, глауконита, микроклина.

Для чего применяют гамма-каротаж?

С помощью кривой ГК можно:

  1. Оценивать литологию.
  2. Выделять интервалы коллекторов.
  3. Оценивать глинистость (лучший метод для определения глиносодержания)
  4. Производить привязку глубины при проведении прострелочно-взрывных работ.

Метод работает как в открытом стволе, так и в обсаженных колонной скважинах.

Интерпретация гамма-каротажа

Показания в глинах отклоняются вправо, в песчаниках и известняках – влево. Чем выше глиносодержание пород, тем более сильное отклонение вправо (исключение — полимиктовые песчаники даже при малой глинистости обладают значительной радиоактивностью и их показания ГК высокие). Крайнее правоеположение кривой ГК – линия глин, крайнее левое отклонение кривой ГК – линия песков. Показания российского метода выражаются интенсивностью гамма-излучения в мкр/час (микрорентген/час) или имп/мин (импульсы/минута). В зарубежной практике показания метода выражаются в условных единицах американского нефтяного института (API).

Рис. 2. Контроль перфорации после прострелочно-взрывных работ. Продуктивный пласт отмечается меньшей глинистостью и меньшими значениями гамма-каротажа.

Определение литологии с помощью гамма-каротажа

Основное назначение гамма-каротажа – это выделение глинистых отложений по их высокой радиоактивности. На рисунке 3 показано как различные литологические разности отображаются на кривой гамма каротажа. Глины и битуминозные глины показывают наиболее высокие значения гамма активности, а чистые песчаники, известняки, доломиты, уголь и ангидриты характеризуются наименьшими показаниями. Следует учитывать, что чистые (неглинистые) разности отложений могут содержать полевые шпаты (аркозовые песчаники), слюды, глауконит или тяжёлые минералы, которые увеличивают показания гамма каротажа по сравнению с чистыми разностями песчаников.

Рис. 3. Литологическое расчленение разреза по гамма каротажу.

Выделение интервалов коллекторов

Коллекторы выделяются по наименьшим показаниям гамма каротажа (отклонение кривой влево), соответствующим чистым неглинистым разностям пород. Следует учитывать, что плотные неглинистые породы (неколлекторы) также будут характеризоваться низкими значениями ГК.

Определение глинистости

Глинистость отложений позволяет судить об объёмном содержании глин в коллекторах и как следствии их качестве. Глинистость определяется (Кгл или V shale в зарубежной практике) следующим путём: сначала вычисляется относительная амплитуда интенсивности гамма излучения (I( или IGR) по формуле:

Рис. 4. Определение глинистости по гамма каротажу. I – показания ГК в интересующем нас интервале (GR log) Iп – показания ГК в чистых неглинистых породах (GR min) Iгл – показания ГК в глинах (GR max)

В упрощенном виде можно принять, что вычисленная I( (IGR) и есть коэффициент глинистости Кгл:

Более точные расчёты могут быть выполнены по эмпирической зависимости между Iγ глинистостью, определённой по лабораторному изучению керна или по зависимостям Ларионова.

Что влияет на показания?

  1. Толщина пласта – чем меньше толщина пласта, тем меньше показания гамма-каротажа. С помощью ГК  можно выделять пласты мощностью порядка 30-40 см.
  2. Скважинные условия – в интервалах кавернообразования показания ГК занижены.

 

www.geolib.net

Гамма-каротаж ГК

Гамма-каротаж (ГК).

Метод измерения естественной радиоактивности горных пород в разрезах относится к основным исследованиям, проводится во всех поисковых и разведочных скважинах, в открытом стволе, перед спуском каждой технической или эксплуатационной колонны, по всему разрезу, включая кондуктор.

Метод ГК обеспечивает высокое вертикальное расчленение разреза (выделяются

контрастные по естественной радиоактивности прослои мощностью 0,3-0,4 м), но показания метода ГК зависят от радиоактивности вмещающих пород и от технологии замеров.

Физические основы метода.

Сущность гамма-каротажа заключается в изучении естественной радиоактивности горных пород по стволу скважины путем регистрации интенсивности гамма-излучения, возникающего при самопроизвольном распаде радиоактивных элементов (в основном U, Th и K40 ).

Гамма-каротаж в комплексе методов общих исследований применяется при решении задач указанных в разделе «Стандартный электрический каротаж» и дополнительно к ним:

- выделение высокорадиоактивных пластов-реперов;

- разделение глин-покрышек по минералогическому составу;

- разделение пород фундамента по составу (от основных до кислых магм), выделение кор выветривания, других контрастных по данным ГК образований;

- литологическое расчленение различных типов горных пород. Интенсивность гамма-излучения зависит от содержания в породах радиоактивных элементов. Т.к. оно в разных породах различно, по данным ГК можно судить о характере горных пород.

- определение глинистости горных пород. Определение коэффициента глинистости по данным гамма-метода основано на близкой к прямой зависимости этого коэффициента от естественной гамма-активности песчано-глинистых горных пород;

- привязка к разрезу результатов исследования другими методами каротажа, интервалов перфорации и др. Основана на возможности проводить ГК в обсаженных скважинах.

Оценка качества .

Качество материала ГК оценивается по следующим параметрам:

- предельное расхождение от рабочего эталона (в сравнении с днем градуировки) не должно превышать 10%;погрешность измерений по результатам основной и контрольной записи не должна превышать 20% при радиоактивности пород до 10 мкР/ч, 15% - при радиоактивности от 10 до 20 мкР/ч и 10% - при более высоких значениях радиоактивности;

Основные методологичесие требования к диаграммам ГК:

- диаграммы ГК должны быть высокого качества;

- параметры регистрации диаграмм ГК (скорость записи, стабильность работы канала ГК, время интегрирования) должны обеспечивать статистическую достаточность характеристик пластов по естественной радиоактивности по всему диапазону ее значений;

- скорость регистрации диаграмм ГК должна быть в соответствии со свойствами разреза и не должна превышать расчетную;

- масштаб регистрации ГК 0,75 мкР/час/см при соотношении последующих масштабов как 1:2:5:25, т.е. соответственно 1,5:3,75:18,75 мкР/час/см;

- диаграмма ГК должна записываться всегда одновременно с записью диаграмм НКТ.

Метод ГК реализован в следующей аппаратуре:

- СРК;

- РКС.

СРК-01.

Назначение.

Прибор СРК предназначен для исследования нефтяных и газовых скважин методами двухзондового нейтрон-нейтронного каротажа по тепловым и надтепловым нейтронам (2ННКТ и 2ННКНТ ), нейтронного гамма-каротажа (НГК) и гамма-каротажа (ГК), по данным которых определяется водонасыщенная пористость (водородосодержание) и мощность экспозиционной дозы естественного гамма-излучения горных пород.

В ПГО ТПГ аппаратуру СРК используют для работы в режимах 2ННКТ и ГК.

Данные по аппаратуре.

Скважинный прибор обеспечивает проведение измерений в скважинах диаметром 110-350 мм, заполненных водной промывочной жидкостью с содержанием NaCl от десятых долей процента до минерализации, соответствующей насыщению, NaOH - до 20%, нефти - до 10% и pH до 10, при значениях температуры окружающей среды от -10 до 120 °С и гидростатического давления 120 МПа.

Скважинный прибор эксплуатируется с использованием:

- источника быстрых нейтронов полоний-бериллиевым типа ВНИ-2 или плутоний- бериллиевым типа ИБН8-5 с потоком нейтронов от 5x106 до 1x107 с-1 ;

- кабеля типа КГ3-60-180 длиной до 7000м.

Диапазон измерений мощности экспозиционной дозы гамма-излучения, обеспечиваемый скважинным прибором, от 1.4 до 251.4 мкР/час.

Диапазон измерений водонасыщенной пористости (водородосодержания), обеспечиваемый скважинным прибором, от 1 до 40%.

Регистрация гамма-излучения (шифр параметра GR) осуществляется блоком детектирования, содержащим два детектора NaI(Tl) размерами 40x80 мм типа СДН.16.40.80. и два фотоэлектронных умножителя ФЭУ-74А.

Регистрация нейтронного излучения осуществляется блоком детектирования, который содержит два гелиевых счетчика тепловых нейтронов типа СНМ-56 (по 1 шт. в каналах ННКТ МЗ и ННКТ БЗ ).

Расстояние между центром источника нейтронов и ближними к нему торцами счетчиков СНМ-56:

- для зонда ННКТ МЗ (шифр параметра RNTN)- 258 ± 5 мм;

- для зонда ННКТ БЗ (шифр параметра RFTN)- 508 ±5 мм.

Схема зондовых установок прибора СРК-01 приведена на рис.14.

Рис.14. Схема зондовых установок прибора СРК-01

Водородосодержание рассчитывается по формулам:

, (1)

, (2)

, (3)

где

, , - водородосодержание по данным ННКМЗ, ННКБЗ и их отношению соответственно, %; , - скорость счета по каналам ННКМЗ и ННКБЗ соответственно, у.е.;

Электрическое сопротивление между 1 и 2 жилами должно быть практически равным удвоенному электрическому сопротивлению жилы кабеля. 3 жила в аппаратуре СРК не используется.

Питание скважинного прибора осуществляется постоянным электрическим током 95 мА. При этом напряжение питания на входе скважинного прибора не более 26 В.

Амплитуда выходных импульсов каналов скважинного прибора не менее 3 В, длительность выходных импульсов на уровне 0.5 их амплитуды не более 80 мкс.

Импульсы ННКМЗ и ННКБЗ передаются как разнополярные между 1 и 2 жилой, импульсы ГК - между ОК и 1 или 2 жилой кабеля.

Длина скважинного прибора - не более 2.91 м.

Диаметр скважинного прибора - не более 90 мм.

Масса скважинного прибора - не более 80 кг.

РКС-3М.

Назначение.

Прибор РКС-3М предназначен для исследования нефтяных и газовых скважин методами двухзондового нейтрон-нейтронного каротажа по тепловым нейтронам (2ННКт), и гамма-каротажа (ГК), по данным которых определяется водонасыщенная пористость (водородосодержание) и мощность экспозиционной дозы естественного гамма-излучения горных пород. Прибор также имеет датчик локатора муфт (ЛМ).

Данные по аппаратуре.

Скважинный прибор обеспечивает проведение измерений в скважинах диаметром 110-350 мм, заполненных водной промывочной жидкостью с содержанием NaCl от десятых долей процента до минерализации, соответствующей насыщению, NaOH - до 20%, нефти - до 10% и pH до 10, при значениях температуры окружающей среды от -10 до 120 °С и гидростатического давления 120 МПа.

Скважинный прибор эксплуатируется с использованием:

- источника быстрых нейтронов полоний-бериллиевым типа ВНИ-2 или плутоний- бериллиевым типа ИБН8-5 с потоком нейтронов от 5x106 до 1x107 с-1 ;

- кабеля типа КГ3-60-180 длиной до 7000м.

Диапазон измерений мощности экспозиционной дозы гамма-излучения, обеспечиваемый скважинным прибором, от 1.4 до 251.4 мкР/час.

Диапазон измерений водонасыщенной пористости (водородосодержания), обеспечиваемый скважинным прибором, от 1 до 40%.

Регистрация гамма-излучения (шифр параметра GR) осуществляется блоком детектирования, содержащим два детектора NaI(Tl) размерами 40x80 мм типа СДН.16.40.80. и два фотоэлектронных умножителя ФЭУ-74А.

Регистрация нейтронного излучения осуществляется блоком детектирования, который содержит два гелиевых счетчика тепловых нейтронов типа СНМ-56 (по 1 шт. в каналах ННКТ МЗ и ННКТ БЗ ).

Расстояние между центром источника нейтронов и ближними к нему торцами счетчиков СНМ-56:

- для зонда ННКТ МЗ (шифр параметра RNTN) - 258 мм;

- для зонда ННКТ БЗ (шифр параметра RFTN) - 508 мм.

Схема зондовых установок прибора РКС-3М приведена на рис.15.

Рис.15 Схема зондовых установок прибора РКС-3М

Водородосодержание рассчитывается по формуле:

, (4)

где Kп - водородосодержание, %;

Im, Ib , - скорость счета по каналам ННКМЗ и ННКБЗ соответственно, у.е.;

A, E0 - коэффициенты, определяемые при базовой калибровке.

Сигнал локатора муфт (шифр параметра CCL) передается по 3-й жиле кабеля относительно ОК в аналоговой форме.

Питание скважинного прибора осуществляется постоянным электрическим током 50 В в режиме стабилизации напряжения .

mirznanii.com

Ядерные методы геофизического исследования скважин Википедия

Я́дерные ме́тоды геофизи́ческого иссле́дования сква́жин — один из наиболее эффективных способов для определения целого ряда параметров, мало поддающихся измерению с помощью электрических методов каротажа (естественная радиоактивность, объёмная плотность, содержание водорода, элементный состав, зольность углей).

Кроме того, ядерные методы возможно использовать не только в открытом (не обсаженном трубами) стволе скважины, но и в закрытом, когда многие электрические методы принципиально неприменимы.

История методов и предпосылки

Зависимость аномалии гамма-каротажа от скорости передвижения геофизического зонда

В земной коре существует огромное количество естественных радиоактивных элементов, особенно в кислых и осадочных породах. Эти элементы могут быть и сами по себе полезными ископаемыми (радий, калийные соли, содержащие K-40), а могут быть и признаками других полезных ископаемых (радиоактивные примеси есть в углях, а радий редко встречается в природе отдельно от урана, поэтому служит признаком его наличия при поисках месторождений урана).

Ядерные методы, по понятным причинам, используют не все виды ядерных реакций. Например, принципиально не может существовать альфа-каротаж в скважине, так как у альфа-частиц крайне низкая проникающая способность (свободный пробег в воздухе составляет около 10 см, в листе фольги — меньше микрона). Бета-каротаж тоже практически неприменим, так как и у бета-частиц низкая проникающая способность. В силу этого, реальное распространение получили реакции, связанные только с нейтронами и гамма-квантами, которые имеют огромную проникающую способность. Самыми распространёнными являются методы: ГК, ГГК, НГК, ННК, ИННК и их разновидности, однако существуют и могут применяться и другие. Среди них можно встретить такие виды каротажа: НАК (нейтронно-активационный), ГНК (гамма-нейтронный), рентгенорадиометрический и другие.

Ядерный, как и любой другой каротаж, зависит от скорости спуска-подъёма геофизического зонда. Если зонд имеет слишком большую скорость перемещения, он может просто не успевать измерять меняющиеся параметры, а для ядерных методов это особенно актуально, так как многие ядерные реакции идут часами. Более того, нашли своё применение и раздельные измерения, когда второе измерение проводят в той же самой скважине, тем же самым прибором с той же самой скоростью, но спустя довольно продолжительное время, пока не завершатся все инициированные под землёй ядерные реакции.

Гамма-методы

Данные методы могут регистрировать как естественную радиоактивность пород, так и искусственную, созданную в скважине перед измерением.

ГК (гамма-каротаж)

Для регистрации естественного гамма-излучения применяют метод, который называется ГК (гамма-каротаж). Суть метода заключается в следующем: в ствол скважины на геофизическом кабеле опускают зонд, который состоит только из детектора гамма-излучения. Детектор преобразует попавшие в него гамма-кванты в электрический сигнал и сигнал по кабелю передаётся на поверхность, где его анализируют. Чем больше гамма-квантов, тем больше показания, то есть зависимость прямо пропорциональная. Соответственно, самые высокие показания наблюдаются у гамма-радиоактивных пород.

Метод ГК тоже можно применять как в закрытом стволе (скважине, обсаженной обсадными трубами), так и в открытом (пробуренной скважине, но ещё без труб). Это возможно благодаря высокой проникающей способности гамма-квантов.

Детектор — основной элемент зонда, чаще всего делают на основе ФЭУ. Реже встречаются другие конструкции.

Принципиально с помощью ГК можно решить следующие задачи:

  • Литологическое расчленение разреза на пласты. Интенсивность гамма-излучения отличается у разных пластов пород, так как в них содержится разное количество радиоактивных элементов. Наибольшие показания у породы, содержащей калий-40, радий и другие радиоактивные элементы; отдельно следует упомянуть граниты и глины, содержащие большое их количество. Минимальные значения наблюдаются у карбонатов и чистых песчаников, углей, пород гидрохимического происхождения, хемогенных осадков (ангидритов, гипсов, галита).
  • Определение глинистости горных пород. Опытным путём установлено, что для песчано-глинистых пород содержание глины (глинистость) прямо пропорционально гамма-активности.
  • Спектрометрия гамма-излучения. Разные элементы излучают гамма-кванты различных энергий. По этому параметру можно отличить одни элементы в породе от других.

Но из всего перечисленного выше, ГК — это прежде всего оценка глинистости. Именно глина для ГК — это надёжный опорный горизонт.

ГГК (гамма-гамма-каротаж)

Данным методом измеряется искусственная радиоактивность (гамма-излучение) горных пород вокруг скважины.

Суть метода отражается его названием: буквы «ГГ» означают, что породу сначала облучают гамма-излучением, а в ответ тоже регистрируют только гамма-излучение, даже если там присутствуют и другие виды излучения. Ответное гамма-излучение позволяет более эффективно измерять параметры породы, нежели его естественное излучение, которое без искусственного облучения могло и отсутствовать.

Первоначально в ствол скважины опускают геофизический зонд. На интересующем участке скважины породу облучают гамма-излучением и она становится радиоактивной. В ответ порода излучает новые гамма-кванты, которые и регистрируются зондом. По этой причине зонд включает в себя и источник гамма-квантов, и детектор (аналогичен тому, что используется в методе ГК). Между ними помещают свинцовый экран-прослойку, чтобы источник не мешал своим собственным излучением детектору. Благодаря экрану детектор регистрирует излучение только от породы и не взаимодействует с источником.

Схематическая диаграмма ГГК-П. I — наблюдённая кривая, II — теоретическое поле. Породы: 1 — песчаник; 2 — уголь; 3 и 5 — глины, суглинки; 4 — известняк. Плотный известняк характеризуется низкими значениями, а низкоплотный уголь — аномально высокими

Попадающие в породу гамма-кванты воздействуют на неё по-разному. Основными для геофизики являются следующие виды взаимодействия квантов с веществом:

  • фотоэффект (происходит на внутренних электронных оболочках атомов), энергия квантов должна быть менее 0,5 МэВ
  • эффект Комптона (происходит на внешних электронных оболочках атомов), энергия квантов должна быть выше 0,5 МэВ, но меньше 1,02 МэВ
  • образование электрон-позитронных пар, энергия кванта должна быть выше 1,02 МэВ (то есть больше, чем удвоенная масса электрона)

Есть и другие, менее существенные виды взаимодействия, такие как ядерный фотоэффект. В зависимости от того, какой из них проявил основное влияние при измерениях, реально выделяют два вида ГГК:

  • ГГК-П (плотностной гамма-каротаж), когда показания характеризуются в основном по комптоновскому эффекту, сильно зависящему от плотности породы
  • ГГК-С (селективный гамма-каротаж, он же Z-ГГК), когда показания характеризуются в основном фотоэффектом, зависящим от порядкового номера элементов в таблице Менделеева

ГГК-П применяют на нефтяных и газовых месторождениях, так как плотность породы напрямую связана с её пористостью, а хорошие нефтегазоносные коллекторы как раз и отличаются высокой пористостью. ГГК-П можно применять и на угольных месторождениях, но это связано с тем, что угольный пласт всегда имеет плотность меньшую, чем окружающие его породы.

ГГК-С применяют на рудных и угольных месторождениях. С его помощью, например, определяют зольность углей. Чистый уголь состоит из углерода, порядковый номер которого (z — число Менделеева) в периодической таблице равен 6, а негорючие примеси в угле, обычно, состоят из кремнезёма и глины, средний порядковый номер которых 12-13 единиц. На рудных месторождениях, соответственно, определяют порядковый номер металла, который содержится в руде.

Нейтронные методы

Естественного — природного — нейтронного излучения не существует. Поэтому простого нейтронного каротажа, аналогичного гамма-каротажу, тоже не существуют. Нейтронные виды каротажа работают только с помощью искусственно созданного нейтронного излучения. По этой же причине эти методы классифицируют иначе, нежели гамма-методы. Вдобавок, измеренные показания, в отличие от гамма-методов, зависят не только от характера взаимодействия, но и от продолжительности облучения. Поэтому методы делят на две большие группы:

  • собственно нейтронные методы, когда породу облучают непрерывным потоком нейтронов
  • импульсные нейтронные методы, когда породу облучают короткими нейтронными вспышками

Нейтроны могут по-разному взаимодействовать с веществом, через которое они проходят. Поэтому каждая из этих групп делится и по характеру взаимодействия нейтронов с облучаемой породой. Основные виды взаимодействия нейтронов с веществом следующие:

  • Неупругое рассеяние
  • Упругое рассеяние
  • Радиационный захват

Геофизический зонд для нейтронного каротажа обязательно включает в себя источник нейтронов, например, содержащий самопроизвольно распадающийся Cf-252. Источник нейтронов, помимо самопроизвольно делящихся элементов, может работать и на искусственно созданных реакциях, так как они позволяют получить нейтроны с большей энергией. Например, поток нейтронов можно получить при реакций дейтерия и трития или бериллия с альфа-частицей:

  • 12H+13H→24He+01n{\displaystyle {}_{1}^{2}{\textrm {H}}+{}_{1}^{3}{\textrm {H}}\rightarrow {}_{2}^{4}{\textrm {He}}+{}_{0}^{1}{\textrm {n}}}
  • 49Be+24He→612C+01n{\displaystyle {}_{4}^{9}{\textrm {Be}}+{}_{2}^{4}{\textrm {He}}\rightarrow {}_{6}^{12}{\textrm {C}}+{}_{0}^{1}{\textrm {n}}}

НГК (нейтронный гамма-каротаж)

Схематическая диаграмма НГК. I — наблюдённая кривая, II — теоретическое поле. Породы: 1 — глины; 2 — песчаник; 3 — известняк. В глине всегда содержится большое количество связанной воды в порах (до 44 %). В плотном известняке воды и других содержащих водород веществ практически нет.

Суть метода отражена в его названии (буквы НГ): породу облучают постоянным потоком нейтронов, а в ответ регистрируют образовавшееся гамма-излучение. Соответственно геофизический зонд состоит из источника нейтронов, а также детектора гамма-квантов, как в методе ГК.

Быстрые нейтроны, после многочисленных соударений с атомами лёгких элементов, теряют часть своей энергии и замедляются до тепловых энергий (около 0,025 эВ). Показания метода, по этой причине, в основном зависят от содержания водорода в исследуемой среде. Это свойство позволяет детектировать как нефть, так и воду в коллекторах. Вдобавок, НГК позволяет отчасти измерять минерализацию пластовых вод, так как они содержат хлор, который повышает вторичное гамма-излучение. Также метод подходит для литологического расчленения скважины и определения мощности пластов.

Следует упомянуть реакцию НГК на глины. Несмотря на то, что глина — классический водоупор, который практически не пропускает воду, в ней присутствует огромное количество субкапиллярных пор, которые уже заполнены так называемой связанной водой, которая не в состоянии покинуть глину из-за поверхностного натяжения, водородных связей и других факторов. По этой причине внешне практически сухая глина даёт аномально низкие показания.

Недостатком НГК является то, что он зависит от конструкции скважины. Во-первых, содержащийся в скважине буровой раствор — тоже водородосодержащий посредник, вносящий весомую долю в измерения. Учитывая непостоянный диаметр скважины и, как следствие, разную толщину «прослойки» бурового раствора между стенкой скважины и геофизическим зондом, наличие этого раствора учитывать очень тяжело. Во-вторых, тот же буровой раствор содержит в себе соль, в которой есть хлор. Как уже отмечалось выше, хлор способствует увеличению вторичного гамма-излучения.

ННК (нейтрон-нейтронный каротаж)

Тепловой нейтрон сталкивается с парафиновым экраном и не в состоянии его преодолеть, а надтепловой нейтрон проходит через парафин и попадает в детектор, но уже в качестве теплового.

В данном методе породу облучают постоянным потоком нейтронов, в ответ тоже регистрируют ответный поток нейтронов. Последние могут быть двух видов: тепловые (со сравнительно низкой энергией) и надтепловые (с повышенной энергией). Поэтому различают два вида ННК:

  • ННК-Т — нейтрон-нейтронный каротаж по тепловым нейтронам
  • ННК-НТ — нейтрон-нейтронный каротаж по надтепловым нейтронам

При проведении ННК-Т измеряют изменившуюся плотность потока тепловых нейтронов, вылетевших из зонда. Эта плотность зависит и от замедляющих нейтроны свойств среды, и от поглощающих их свойств. Фактически это означает, что ННК-Т измеряет водородосодержание среды и наличие элементов-поглотителей, у которых высокое сечение захвата тепловых нейтронов. Поэтому ННК-Т выдаёт такие же результаты, как и НГК.

ННК-НТ заключается в измерении плотности потока надтепловых нейтронов (у них энергия от 0,5 эВ до 20 кэВ). Эта плотность уже практически не зависит от поглощающих свойств среды и ей можно определять только водородосодержание. Это основное преимущество ННК-НТ. Любопытный факт: некоторое время каротаж по надтепловым нейтроном считался технически невозможным из-за того, что надтепловые нейтроны сложно фиксировать отдельно от тепловых, если они идут в одном потоке. Решение данной проблемы оказалось простым: в геофизическом зонде для ННК-НТ помещают детектор не надтепловых нейтронов, а тепловых, но помещают его в оболочку из парафина. Так как парафин имеет очень высокое водородосодержание, он непреодолим для тепловых нейтронов, если они идут в одном потоке с надтепловыми. Поэтому через парафиновый заслон проходят только надтепловые нейтроны из среды, а тепловые в детектор попасть не могут. При этом прошедшие надтепловые нейтроны замедляются в парафине и превращаются в обычные тепловые, которые детектор и регистрирует. Благодаря этому, измеряя поток более простых тепловых нейтронов, фактически регистрируют количество надтепловых нейтронов, так как зарегистрированные тепловые нейтроны «только что» были надтепловыми.

ИННК (импульсный нейтрон-нейтронный каротаж)

Сравнение ИННК и ННК. I — наблюдённая кривая, II — теоретическое поле. ИННК уверенно отбивает контакт воды с нефтью в трещиноватом карбонатном пласте. ННК-Т, при этом, определил только наличие самого пласта.

Импульсный нейтрон-нейтронный каротаж принципиально отличается от остальных тем, что породу облучают не непрерывным потоком нейтронов, а короткими вспышками — импульсами. В ответ регистрируют не столько сами нейтроны от породы, сколько исследуют их время жизни. По этому показателю породы принципиально отличаются.

Среднее время жизни надтепловых нейтронов зависит от содержания в породе поглотителей (хлора, например) и водорода. Возможные значения:

  • 0,3-0,6 мс — данное время жизни характерно для пористых пластов, насыщенных пресной водой или нефтью
  • 0,11-0,33 мс — данные значения характерны для пластов, насыщенных минерализованной водой
  • 0,6-0,8 мс — по такому времени жизни можно говорить о том, что пласт насыщен природным газом

Благодаря такой достаточно чёткой разнице (по времени) на диаграммах ИННК удаётся не только отличить водяной пласт от нефтяного, но даже можно найти границу водонефтяного контакта (ВНК), если в пласте одновременно есть и вода, и нефть. Часто приходится искать и границу газа с нефтью (ГНК), в то время как ННК не способен эти границы различать.

Комплексирование методов

По объективным причинам ни один метод геофизики не даёт полных и достоверных результатов. Поэтому одиночно их применять обычно нецелесообразно, из-за этого разные методы применяют вместе. Комбинируя полученную с их помощью информацию, можно более достоверно «расшифровать» содержимое недр.

Выделение угольных пластов комплексом методов ГИС. I — наблюдённая кривая, II — теоретическое поле. Породы: 1, 3, 5 и 7 — суглинки, 2 и 4 — каменный уголь, 6 — известняк.

На приведённом разрезе возникает сложная геологическая задача — нахождение глубины залегания угольных пластов. Метод кажущегося сопротивления (КС) — это метод электрического каротажа, который не позволил без привлечения дополнительных изысканий отличить на данном разрезе каменный уголь от известняка (у обоих примерно одинаковые сопротивления при прочих равных условиях). Однако привлечение плотностного ГГК позволяет тут же выявить в разрезе известняк. Простой ГК также позволяет утвердиться в данной точке зрения, так как он хорошо реагирует на глинистость: в угольных пластах и в известняке нет глины, поэтому напротив них показания ГК проваливаются. Для сравнения также приведена диаграмма кавернометрии (КМ). В методе КМ измеряют диаметр скважины, который меняется по её глубине. Напротив хрупкого каменного угля стенки скважины при бурении разрушаются, поэтому диаметр скважины становится больше, а плотный известняк не поддался такому же разрушению, поэтому КМ его разрушений и не зафиксировала.

Выделение пласта бокситов комплексом методов ГИС. Породы: 1 — мергель, 2 и 4 — известняк, 3 — бокситы.

В данном разрезе обнаружен пласт бокситов, так как их естественная радиоактивность выше, чем у вмещающих пород, поэтому по ГК пласт выделяется максимумом. Метод КС прекрасно отбивает пласт пониженным сопротивлением, особенно его кровлю. Метод ПС (самопроизвольной поляризации) также выделяет поляризуемый пласт бокситов, а провал показаний НГК свидетельствует о высоком содержании водорода (в бокситах много гидроксидов алюминия).

Комплексирование методов позволяет существенно расширить функционал любого, даже самого простого метода. Особенно возрастает роль недорогого гамма-метода для выявления коллекторов, когда скважина заполнена буровым раствором. Удельное электрическое сопротивление этого раствора сопоставимо с сопротивлением пластовых вод. Метод ПС в этих условиях их плохо различает и данные ГК становятся основными для выделения коллектора.

См. также

Литература

  • Сковородников И. Г. Геофизические исследования скважин. — Изд. 3-е, перераб. и доп.. — Екатеринбург: Институт испытаний, 2009. — 471 с. — 500 экз.
  • Асланян А.М., Асланян И.Ю., Масленникова Ю.С., Минахметова Р.Н., Сорока С.В., Никитин Р.С., Кантюков Р.Р. Диагностика заколонных перетоков газа комплексом высокоточной термометрии, спектральной шумометрии и импульсного нейтрон-нейтронного каротажа // Территория «НЕФТЕГАЗ». 2016. № 6. С. 52–59.

wikiredia.ru

Гамма-каротаж

 

 

Гамма-каротаж (ГК).

 

     Метод измерения естественной радиоактивности горных пород в разрезах относится к основным исследованиям, проводится во всех поисковых и разведочных скважинах, в открытом стволе, перед спуском каждой технической или эксплуатационной колонны, по всему разрезу, включая кондуктор.

Метод ГК обеспечивает высокое вертикальное расчленение разреза (выделяются

контрастные по естественной радиоактивности прослои мощностью 0,3-0,4 м), но показания метода ГК зависят от радиоактивности вмещающих пород и от технологии замеров.

 

Физические основы метода.

 

Сущность гамма-каротажа заключается в изучении естественной радиоактивности горных пород по стволу скважины путем регистрации интенсивности гамма-излучения, возникающего при самопроизвольном распаде радиоактивных элементов (в основном U, Th и K40).

Гамма-каротаж в комплексе методов общих исследований применяется при решении задач указанных в разделе «Стандартный электрический каротаж» и дополнительно к ним:

  • выделение высокорадиоактивных пластов-реперов;
  • разделение глин-покрышек по минералогическому составу;
  • разделение пород фундамента по составу (от основных до кислых магм), выделение кор выветривания, других контрастных по данным ГК образований;
  • литологическое расчленение различных типов горных пород. Интенсивность гамма-излучения зависит от содержания в породах радиоактивных элементов. Т.к. оно в разных породах различно, по данным ГК можно судить о характере горных пород.
  • определение глинистости горных пород. Определение коэффициента глинистости по данным гамма-метода основано на близкой к прямой зависимости этого коэффициента от естественной гамма-активности песчано-глинистых горных пород;
  • привязка к разрезу результатов исследования другими методами каротажа, интервалов перфорации и др. Основана на возможности проводить ГК в обсаженных скважинах.

 

Оценка качества.

 

Качество материала ГК оценивается по следующим параметрам:

  • предельное расхождение от рабочего эталона (в сравнении с днем градуировки)      не должно превышать 10%;погрешность измерений по результатам основной и контрольной записи не должна превышать 20% при радиоактивности пород до 10 мкР/ч, 15% - при радиоактивности от 10 до 20 мкР/ч и 10% - при более высоких значениях радиоактивности;

Основные   методологичесие требования к диаграммам ГК:

  • диаграммы ГК должны быть высокого качества;
  • параметры регистрации диаграмм ГК (скорость записи, стабильность работы канала ГК, время интегрирования) должны обеспечивать статистическую достаточность характеристик пластов по естественной радиоактивности по всему диапазону ее значений;
  • скорость регистрации диаграмм ГК должна быть в соответствии со свойствами разреза и не должна превышать расчетную;
  • масштаб регистрации ГК 0,75 мкР/час/см при соотношении последующих масштабов как 1:2:5:25, т.е. соответственно 1,5:3,75:18,75 мкР/час/см;
  • диаграмма ГК должна записываться всегда одновременно с записью диаграмм НКТ.

Метод ГК реализован в следующей аппаратуре:

- СРК;

- РКС.

 

 

 

СРК-01.

Назначение.

Прибор СРК предназначен для исследования нефтяных и газовых скважин методами двухзондового нейтрон-нейтронного каротажа по тепловым и надтепловым нейтронам (2ННКТ и 2ННКНТ), нейтронного гамма-каротажа (НГК) и гамма-каротажа (ГК), по данным которых определяется водонасыщенная пористость (водородосодержание) и мощность экспозиционной дозы естественного гамма-излучения горных пород.

В ПГО ТПГ аппаратуру СРК используют для работы в режимах 2ННКТ и ГК.

 

Данные по аппаратуре.

Скважинный прибор обеспечивает проведение измерений в скважинах диаметром 110-350 мм, заполненных водной промывочной жидкостью с содержанием NaCl от десятых долей процента до минерализации, соответствующей насыщению, NaOH - до 20%, нефти - до 10% и pH до 10, при значениях температуры окружающей среды от -10 до 120 °С и гидростатического давления 120 МПа.

Скважинный прибор эксплуатируется с использованием:

- источника быстрых нейтронов полоний-бериллиевым типа ВНИ-2 или плутоний- бериллиевым типа ИБН8-5 с потоком нейтронов от 5x106 до 1x107 с-1;

- кабеля типа КГ3-60-180 длиной до 7000м.

Диапазон измерений мощности экспозиционной дозы гамма-излучения, обеспечиваемый скважинным прибором, от 1.4 до 251.4 мкР/час.

Диапазон измерений водонасыщенной пористости (водородосодержания), обеспечиваемый скважинным прибором, от 1 до 40%.

Регистрация гамма-излучения (шифр параметра GR) осуществляется блоком детектирования, содержащим два детектора NaI(Tl) размерами 40x80 мм типа СДН.16.40.80. и два фотоэлектронных умножителя ФЭУ-74А.

Регистрация нейтронного излучения осуществляется блоком детектирования, который содержит два гелиевых счетчика тепловых нейтронов типа СНМ-56 (по 1 шт. в каналах ННКТ МЗ и ННКТ БЗ ).

Расстояние между центром источника нейтронов и ближними к нему торцами счетчиков СНМ-56:

- для зонда ННКТ МЗ (шифр параметра RNTN)- 258 ± 5 мм;

- для зонда ННКТ БЗ (шифр параметра RFTN)- 508 ±5 мм.

Схема зондовых установок прибора СРК-01 приведена на рис.14.

 

 

Рис.14. Схема зондовых установок прибора СРК-01

Водородосодержание рассчитывается по формулам:

,  (1)

,         (2)

,                   (3)

 

где , , - водородосодержание по данным ННКМЗ, ННКБЗ и их отношению соответственно, %;

, - скорость счета по каналам ННКМЗ и ННКБЗ соответственно, у.е.;

Электрическое сопротивление между 1 и 2 жилами должно быть практически равным удвоенному электрическому сопротивлению жилы кабеля. 3 жила в аппаратуре СРК не используется.

Питание скважинного прибора осуществляется постоянным электрическим током 95 мА. При этом напряжение питания на входе скважинного прибора не более 26 В.

Амплитуда выходных импульсов каналов скважинного прибора не менее 3 В, длительность выходных импульсов на уровне 0.5 их амплитуды не более 80 мкс.

Импульсы ННКМЗ и ННКБЗ передаются как разнополярные между 1 и 2 жилой, импульсы ГК - между ОК и 1 или 2 жилой кабеля.

Длина скважинного прибора - не более 2.91 м.

Диаметр скважинного прибора - не более 90 мм.

Масса скважинного прибора - не более 80 кг.

 

РКС-3М.

Назначение.

 

Прибор РКС-3М предназначен для исследования нефтяных и газовых скважин методами двухзондового нейтрон-нейтронного каротажа по тепловым нейтронам (2ННКт), и гамма-каротажа (ГК), по данным которых определяется водонасыщенная пористость (водородосодержание) и мощность экспозиционной дозы естественного гамма-излучения горных пород. Прибор также имеет датчик локатора муфт (ЛМ).

 

Данные по аппаратуре.

 

Скважинный прибор обеспечивает проведение измерений в скважинах диаметром 110-350 мм, заполненных водной промывочной жидкостью с содержанием NaCl от десятых долей процента до минерализации, соответствующей насыщению, NaOH - до 20%, нефти - до 10% и pH до 10, при значениях температуры окружающей среды от -10 до 120 °С и гидростатического давления 120 МПа.

Скважинный прибор эксплуатируется с использованием:

- источника быстрых нейтронов полоний-бериллиевым типа ВНИ-2 или плутоний- бериллиевым типа ИБН8-5 с потоком нейтронов от 5x106 до 1x107 с-1;

- кабеля типа КГ3-60-180 длиной до 7000м.

Диапазон измерений мощности экспозиционной дозы гамма-излучения, обеспечиваемый скважинным прибором, от 1.4 до 251.4 мкР/час.

Диапазон измерений водонасыщенной пористости (водородосодержания), обеспечиваемый скважинным прибором, от 1 до 40%.

Регистрация гамма-излучения (шифр параметра GR) осуществляется блоком детектирования, содержащим два детектора NaI(Tl) размерами 40x80 мм типа СДН.16.40.80. и два фотоэлектронных умножителя ФЭУ-74А.

Регистрация нейтронного излучения осуществляется блоком детектирования, который содержит два гелиевых счетчика тепловых нейтронов типа СНМ-56 (по 1 шт. в каналах ННКТ МЗ и ННКТ БЗ ).

Расстояние между центром источника нейтронов и ближними к нему торцами счетчиков СНМ-56:

- для зонда ННКТ МЗ (шифр параметра RNTN) - 258  мм;

- для зонда ННКТ БЗ (шифр параметра RFTN) - 508  мм.

Схема зондовых установок прибора РКС-3М приведена на рис.15.

 

 

Рис.15 Схема зондовых установок прибора РКС-3М

 

Водородосодержание рассчитывается по формуле: 

,   (4)

где Kп - водородосодержание, %;

Im, Ib, - скорость счета по каналам ННКМЗ и ННКБЗ соответственно, у.е.;

A, E0 - коэффициенты, определяемые при базовой калибровке.

 

Сигнал локатора муфт (шифр параметра CCL) передается по 3-й жиле кабеля относительно ОК в аналоговой форме.

Питание скважинного прибора осуществляется постоянным электрическим током 50 В в режиме стабилизации напряжения .

Амплитуда выходных импульсов каналов скважинного прибора не менее 3В, длительность выходных импульсов на уровне 0.5 их амплитуды не более 80 мкс.

Импульсы ННКМЗ и ННКБЗ передаются как разнополярные между 1 и 2 жилой, импульсы ГК - между ОК и 1 или 2 жилой кабеля.

Длина скважинного прибора - не более 2.91 м.

Диаметр скважинного прибора - не более 90 мм.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Литература

 

 

Померанц Л.И.  Геофизические методы исследования нефтяных и

 

газовых скважин

 

 

znakka4estva.ru

Ядерные методы геофизического исследования скважин — Википедия РУ

Я́дерные ме́тоды геофизи́ческого иссле́дования сква́жин — один из наиболее эффективных способов для определения целого ряда параметров, мало поддающихся измерению с помощью электрических методов каротажа (естественная радиоактивность, объёмная плотность, содержание водорода, элементный состав, зольность углей).

Кроме того, ядерные методы возможно использовать не только в открытом (не обсаженном трубами) стволе скважины, но и в закрытом, когда многие электрические методы принципиально неприменимы.

История методов и предпосылки

  Зависимость аномалии гамма-каротажа от скорости передвижения геофизического зонда

В земной коре существует огромное количество естественных радиоактивных элементов, особенно в кислых и осадочных породах. Эти элементы могут быть и сами по себе полезными ископаемыми (радий, калийные соли, содержащие K-40), а могут быть и признаками других полезных ископаемых (радиоактивные примеси есть в углях, а радий редко встречается в природе отдельно от урана, поэтому служит признаком его наличия при поисках месторождений урана).

Ядерные методы, по понятным причинам, используют не все виды ядерных реакций. Например, принципиально не может существовать альфа-каротаж в скважине, так как у альфа-частиц крайне низкая проникающая способность (свободный пробег в воздухе составляет около 10 см, в листе фольги — меньше микрона). Бета-каротаж тоже практически неприменим, так как и у бета-частиц низкая проникающая способность. В силу этого, реальное распространение получили реакции, связанные только с нейтронами и гамма-квантами, которые имеют огромную проникающую способность. Самыми распространёнными являются методы: ГК, ГГК, НГК, ННК, ИННК и их разновидности, однако существуют и могут применяться и другие. Среди них можно встретить такие виды каротажа: НАК (нейтронно-активационный), ГНК (гамма-нейтронный), рентгенорадиометрический и другие.

Ядерный, как и любой другой каротаж, зависит от скорости спуска-подъёма геофизического зонда. Если зонд имеет слишком большую скорость перемещения, он может просто не успевать измерять меняющиеся параметры, а для ядерных методов это особенно актуально, так как многие ядерные реакции идут часами. Более того, нашли своё применение и раздельные измерения, когда второе измерение проводят в той же самой скважине, тем же самым прибором с той же самой скоростью, но спустя довольно продолжительное время, пока не завершатся все инициированные под землёй ядерные реакции.

Гамма-методы

Данные методы могут регистрировать как естественную радиоактивность пород, так и искусственную, созданную в скважине перед измерением.

ГК (гамма-каротаж)

Для регистрации естественного гамма-излучения применяют метод, который называется ГК (гамма-каротаж). Суть метода заключается в следующем: в ствол скважины на геофизическом кабеле опускают зонд, который состоит только из детектора гамма-излучения. Детектор преобразует попавшие в него гамма-кванты в электрический сигнал и сигнал по кабелю передаётся на поверхность, где его анализируют. Чем больше гамма-квантов, тем больше показания, то есть зависимость прямо пропорциональная. Соответственно, самые высокие показания наблюдаются у гамма-радиоактивных пород.

Метод ГК тоже можно применять как в закрытом стволе (скважине, обсаженной обсадными трубами), так и в открытом (пробуренной скважине, но ещё без труб). Это возможно благодаря высокой проникающей способности гамма-квантов.

Детектор — основной элемент зонда, чаще всего делают на основе ФЭУ. Реже встречаются другие конструкции.

Принципиально с помощью ГК можно решить следующие задачи:

  • Литологическое расчленение разреза на пласты. Интенсивность гамма-излучения отличается у разных пластов пород, так как в них содержится разное количество радиоактивных элементов. Наибольшие показания у породы, содержащей калий-40, радий и другие радиоактивные элементы; отдельно следует упомянуть граниты и глины, содержащие большое их количество. Минимальные значения наблюдаются у карбонатов и чистых песчаников, углей, пород гидрохимического происхождения, хемогенных осадков (ангидритов, гипсов, галита).
  • Определение глинистости горных пород. Опытным путём установлено, что для песчано-глинистых пород содержание глины (глинистость) прямо пропорционально гамма-активности.
  • Спектрометрия гамма-излучения. Разные элементы излучают гамма-кванты различных энергий. По этому параметру можно отличить одни элементы в породе от других.

Но из всего перечисленного выше, ГК — это прежде всего оценка глинистости. Именно глина для ГК — это надёжный опорный горизонт.

ГГК (гамма-гамма-каротаж)

Данным методом измеряется искусственная радиоактивность (гамма-излучение) горных пород вокруг скважины.

Суть метода отражается его названием: буквы «ГГ» означают, что породу сначала облучают гамма-излучением, а в ответ тоже регистрируют только гамма-излучение, даже если там присутствуют и другие виды излучения. Ответное гамма-излучение позволяет более эффективно измерять параметры породы, нежели его естественное излучение, которое без искусственного облучения могло и отсутствовать.

Первоначально в ствол скважины опускают геофизический зонд. На интересующем участке скважины породу облучают гамма-излучением и она становится радиоактивной. В ответ порода излучает новые гамма-кванты, которые и регистрируются зондом. По этой причине зонд включает в себя и источник гамма-квантов, и детектор (аналогичен тому, что используется в методе ГК). Между ними помещают свинцовый экран-прослойку, чтобы источник не мешал своим собственным излучением детектору. Благодаря экрану детектор регистрирует излучение только от породы и не взаимодействует с источником.

  Схематическая диаграмма ГГК-П. I — наблюдённая кривая, II — теоретическое поле. Породы: 1 — песчаник; 2 — уголь; 3 и 5 — глины, суглинки; 4 — известняк. Плотный известняк характеризуется низкими значениями, а низкоплотный уголь — аномально высокими

Попадающие в породу гамма-кванты воздействуют на неё по-разному. Основными для геофизики являются следующие виды взаимодействия квантов с веществом:

  • фотоэффект (происходит на внутренних электронных оболочках атомов), энергия квантов должна быть менее 0,5 МэВ
  • эффект Комптона (происходит на внешних электронных оболочках атомов), энергия квантов должна быть выше 0,5 МэВ, но меньше 1,02 МэВ
  • образование электрон-позитронных пар, энергия кванта должна быть выше 1,02 МэВ (то есть больше, чем удвоенная масса электрона)

Есть и другие, менее существенные виды взаимодействия, такие как ядерный фотоэффект. В зависимости от того, какой из них проявил основное влияние при измерениях, реально выделяют два вида ГГК:

  • ГГК-П (плотностной гамма-каротаж), когда показания характеризуются в основном по комптоновскому эффекту, сильно зависящему от плотности породы
  • ГГК-С (селективный гамма-каротаж, он же Z-ГГК), когда показания характеризуются в основном фотоэффектом, зависящим от порядкового номера элементов в таблице Менделеева

ГГК-П применяют на нефтяных и газовых месторождениях, так как плотность породы напрямую связана с её пористостью, а хорошие нефтегазоносные коллекторы как раз и отличаются высокой пористостью. ГГК-П можно применять и на угольных месторождениях, но это связано с тем, что угольный пласт всегда имеет плотность меньшую, чем окружающие его породы.

ГГК-С применяют на рудных и угольных месторождениях. С его помощью, например, определяют зольность углей. Чистый уголь состоит из углерода, порядковый номер которого (z — число Менделеева) в периодической таблице равен 6, а негорючие примеси в угле, обычно, состоят из кремнезёма и глины, средний порядковый номер которых 12-13 единиц. На рудных месторождениях, соответственно, определяют порядковый номер металла, который содержится в руде.

Нейтронные методы

Естественного — природного — нейтронного излучения не существует. Поэтому простого нейтронного каротажа, аналогичного гамма-каротажу, тоже не существуют. Нейтронные виды каротажа работают только с помощью искусственно созданного нейтронного излучения. По этой же причине эти методы классифицируют иначе, нежели гамма-методы. Вдобавок, измеренные показания, в отличие от гамма-методов, зависят не только от характера взаимодействия, но и от продолжительности облучения. Поэтому методы делят на две большие группы:

  • собственно нейтронные методы, когда породу облучают непрерывным потоком нейтронов
  • импульсные нейтронные методы, когда породу облучают короткими нейтронными вспышками

Нейтроны могут по-разному взаимодействовать с веществом, через которое они проходят. Поэтому каждая из этих групп делится и по характеру взаимодействия нейтронов с облучаемой породой. Основные виды взаимодействия нейтронов с веществом следующие:

  • Неупругое рассеяние
  • Упругое рассеяние
  • Радиационный захват

Геофизический зонд для нейтронного каротажа обязательно включает в себя источник нейтронов, например, содержащий самопроизвольно распадающийся Cf-252. Источник нейтронов, помимо самопроизвольно делящихся элементов, может работать и на искусственно созданных реакциях, так как они позволяют получить нейтроны с большей энергией. Например, поток нейтронов можно получить при реакций дейтерия и трития или бериллия с альфа-частицей:

  • 12H+13H→24He+01n{\displaystyle {}_{1}^{2}{\textrm {H}}+{}_{1}^{3}{\textrm {H}}\rightarrow {}_{2}^{4}{\textrm {He}}+{}_{0}^{1}{\textrm {n}}} 
  • 49Be+24He→612C+01n{\displaystyle {}_{4}^{9}{\textrm {Be}}+{}_{2}^{4}{\textrm {He}}\rightarrow {}_{6}^{12}{\textrm {C}}+{}_{0}^{1}{\textrm {n}}} 

НГК (нейтронный гамма-каротаж)

  Схематическая диаграмма НГК. I — наблюдённая кривая, II — теоретическое поле. Породы: 1 — глины; 2 — песчаник; 3 — известняк. В глине всегда содержится большое количество связанной воды в порах (до 44 %). В плотном известняке воды и других содержащих водород веществ практически нет.

Суть метода отражена в его названии (буквы НГ): породу облучают постоянным потоком нейтронов, а в ответ регистрируют образовавшееся гамма-излучение. Соответственно геофизический зонд состоит из источника нейтронов, а также детектора гамма-квантов, как в методе ГК.

Быстрые нейтроны, после многочисленных соударений с атомами лёгких элементов, теряют часть своей энергии и замедляются до тепловых энергий (около 0,025 эВ). Показания метода, по этой причине, в основном зависят от содержания водорода в исследуемой среде. Это свойство позволяет детектировать как нефть, так и воду в коллекторах. Вдобавок, НГК позволяет отчасти измерять минерализацию пластовых вод, так как они содержат хлор, который повышает вторичное гамма-излучение. Также метод подходит для литологического расчленения скважины и определения мощности пластов.

Следует упомянуть реакцию НГК на глины. Несмотря на то, что глина — классический водоупор, который практически не пропускает воду, в ней присутствует огромное количество субкапиллярных пор, которые уже заполнены так называемой связанной водой, которая не в состоянии покинуть глину из-за поверхностного натяжения, водородных связей и других факторов. По этой причине внешне практически сухая глина даёт аномально низкие показания.

Недостатком НГК является то, что он зависит от конструкции скважины. Во-первых, содержащийся в скважине буровой раствор — тоже водородосодержащий посредник, вносящий весомую долю в измерения. Учитывая непостоянный диаметр скважины и, как следствие, разную толщину «прослойки» бурового раствора между стенкой скважины и геофизическим зондом, наличие этого раствора учитывать очень тяжело. Во-вторых, тот же буровой раствор содержит в себе соль, в которой есть хлор. Как уже отмечалось выше, хлор способствует увеличению вторичного гамма-излучения.

ННК (нейтрон-нейтронный каротаж)

  Тепловой нейтрон сталкивается с парафиновым экраном и не в состоянии его преодолеть, а надтепловой нейтрон проходит через парафин и попадает в детектор, но уже в качестве теплового.

В данном методе породу облучают постоянным потоком нейтронов, в ответ тоже регистрируют ответный поток нейтронов. Последние могут быть двух видов: тепловые (со сравнительно низкой энергией) и надтепловые (с повышенной энергией). Поэтому различают два вида ННК:

  • ННК-Т — нейтрон-нейтронный каротаж по тепловым нейтронам
  • ННК-НТ — нейтрон-нейтронный каротаж по надтепловым нейтронам

При проведении ННК-Т измеряют изменившуюся плотность потока тепловых нейтронов, вылетевших из зонда. Эта плотность зависит и от замедляющих нейтроны свойств среды, и от поглощающих их свойств. Фактически это означает, что ННК-Т измеряет водородосодержание среды и наличие элементов-поглотителей, у которых высокое сечение захвата тепловых нейтронов. Поэтому ННК-Т выдаёт такие же результаты, как и НГК.

ННК-НТ заключается в измерении плотности потока надтепловых нейтронов (у них энергия от 0,5 эВ до 20 кэВ). Эта плотность уже практически не зависит от поглощающих свойств среды и ей можно определять только водородосодержание. Это основное преимущество ННК-НТ. Любопытный факт: некоторое время каротаж по надтепловым нейтроном считался технически невозможным из-за того, что надтепловые нейтроны сложно фиксировать отдельно от тепловых, если они идут в одном потоке. Решение данной проблемы оказалось простым: в геофизическом зонде для ННК-НТ помещают детектор не надтепловых нейтронов, а тепловых, но помещают его в оболочку из парафина. Так как парафин имеет очень высокое водородосодержание, он непреодолим для тепловых нейтронов, если они идут в одном потоке с надтепловыми. Поэтому через парафиновый заслон проходят только надтепловые нейтроны из среды, а тепловые в детектор попасть не могут. При этом прошедшие надтепловые нейтроны замедляются в парафине и превращаются в обычные тепловые, которые детектор и регистрирует. Благодаря этому, измеряя поток более простых тепловых нейтронов, фактически регистрируют количество надтепловых нейтронов, так как зарегистрированные тепловые нейтроны «только что» были надтепловыми.

ИННК (импульсный нейтрон-нейтронный каротаж)

  Сравнение ИННК и ННК. I — наблюдённая кривая, II — теоретическое поле. ИННК уверенно отбивает контакт воды с нефтью в трещиноватом карбонатном пласте. ННК-Т, при этом, определил только наличие самого пласта.

Импульсный нейтрон-нейтронный каротаж принципиально отличается от остальных тем, что породу облучают не непрерывным потоком нейтронов, а короткими вспышками — импульсами. В ответ регистрируют не столько сами нейтроны от породы, сколько исследуют их время жизни. По этому показателю породы принципиально отличаются.

Среднее время жизни надтепловых нейтронов зависит от содержания в породе поглотителей (хлора, например) и водорода. Возможные значения:

  • 0,3-0,6 мс — данное время жизни характерно для пористых пластов, насыщенных пресной водой или нефтью
  • 0,11-0,33 мс — данные значения характерны для пластов, насыщенных минерализованной водой
  • 0,6-0,8 мс — по такому времени жизни можно говорить о том, что пласт насыщен природным газом

Благодаря такой достаточно чёткой разнице (по времени) на диаграммах ИННК удаётся не только отличить водяной пласт от нефтяного, но даже можно найти границу водонефтяного контакта (ВНК), если в пласте одновременно есть и вода, и нефть. Часто приходится искать и границу газа с нефтью (ГНК), в то время как ННК не способен эти границы различать.

Комплексирование методов

По объективным причинам ни один метод геофизики не даёт полных и достоверных результатов. Поэтому одиночно их применять обычно нецелесообразно, из-за этого разные методы применяют вместе. Комбинируя полученную с их помощью информацию, можно более достоверно «расшифровать» содержимое недр.

  Выделение угольных пластов комплексом методов ГИС. I — наблюдённая кривая, II — теоретическое поле. Породы: 1, 3, 5 и 7 — суглинки, 2 и 4 — каменный уголь, 6 — известняк.

На приведённом разрезе возникает сложная геологическая задача — нахождение глубины залегания угольных пластов. Метод кажущегося сопротивления (КС) — это метод электрического каротажа, который не позволил без привлечения дополнительных изысканий отличить на данном разрезе каменный уголь от известняка (у обоих примерно одинаковые сопротивления при прочих равных условиях). Однако привлечение плотностного ГГК позволяет тут же выявить в разрезе известняк. Простой ГК также позволяет утвердиться в данной точке зрения, так как он хорошо реагирует на глинистость: в угольных пластах и в известняке нет глины, поэтому напротив них показания ГК проваливаются. Для сравнения также приведена диаграмма кавернометрии (КМ). В методе КМ измеряют диаметр скважины, который меняется по её глубине. Напротив хрупкого каменного угля стенки скважины при бурении разрушаются, поэтому диаметр скважины становится больше, а плотный известняк не поддался такому же разрушению, поэтому КМ его разрушений и не зафиксировала.

  Выделение пласта бокситов комплексом методов ГИС. Породы: 1 — мергель, 2 и 4 — известняк, 3 — бокситы.

В данном разрезе обнаружен пласт бокситов, так как их естественная радиоактивность выше, чем у вмещающих пород, поэтому по ГК пласт выделяется максимумом. Метод КС прекрасно отбивает пласт пониженным сопротивлением, особенно его кровлю. Метод ПС (самопроизвольной поляризации) также выделяет поляризуемый пласт бокситов, а провал показаний НГК свидетельствует о высоком содержании водорода (в бокситах много гидроксидов алюминия).

Комплексирование методов позволяет существенно расширить функционал любого, даже самого простого метода. Особенно возрастает роль недорогого гамма-метода для выявления коллекторов, когда скважина заполнена буровым раствором. Удельное электрическое сопротивление этого раствора сопоставимо с сопротивлением пластовых вод. Метод ПС в этих условиях их плохо различает и данные ГК становятся основными для выделения коллектора.

См. также

Литература

  • Сковородников И. Г. Геофизические исследования скважин. — Изд. 3-е, перераб. и доп.. — Екатеринбург: Институт испытаний, 2009. — 471 с. — 500 экз.
  • Асланян А.М., Асланян И.Ю., Масленникова Ю.С., Минахметова Р.Н., Сорока С.В., Никитин Р.С., Кантюков Р.Р. Диагностика заколонных перетоков газа комплексом высокоточной термометрии, спектральной шумометрии и импульсного нейтрон-нейтронного каротажа // Территория «НЕФТЕГАЗ». 2016. № 6. С. 52–59.

http-wikipediya.ru

Гамма - каротаж (ГК). Электрические методы исследования скважин

Похожие главы из других работ:

Акустический каротаж

2. Акустический каротаж по скорости и затуханию

По типу регистрируемых акустических параметров различают акустический каротаж по скорости и затуханию. Основным зондом, применяемым в акустическом каротаже, является трехэлементный (рис. 2). Рис. 2...

Географо-экономическая характеристика Каменной площади

2.2.1. Стандартный электрический каротаж

Стандартный электрический каротаж относится к основным исследованиям, проводится во всех поисковых, разведочных и эксплуатационных скважинах, по всему открытому стволу...

Географо-экономическая характеристика Каменной площади

2.2.2. Боковой каротаж (БК)

Боковой каротаж в масштабе глубин 1:500 относится к дополнительным методам, проводится в тех поисковых, разведочных и эксплуатационных скважинах...

Географо-экономическая характеристика Каменной площади

2.2.3. Акустический каротаж (АК)

Акустический каротаж (регистрация кинематических и динамических параметров продольных и поперечных волн и их относительных параметров) относится к основным методам, проводится в открытом стволе во всех поисковых скважинах...

Методы геофизического исследования скважин при поиске и разведке угольных месторождений

2.4 Каротаж на основе сейсмоакустических полей

Методы акустического каротажа (АК) основаны на возбуждении упругих волн в полосе частот f = 1-10 кГц. Существует несколько модификаций зондов АК. Наибольшее распространение получили трехэлементные зонды...

Методы плотностного и селективного гамма-гамма каротажа

1. История открытия и развития гамма-гамма методов

В 1910 году по инициативе и под руководством В.И. Вернадского в России была организована Радиевая экспедиция Академии Наук. Становление ядерной геофизике относится к 20-ым годам 20-ого столетия. Тогда А.П. Кириковым, А.Н. Богоявленским, А.Г...

Методы плотностного и селективного гамма-гамма каротажа

2. Метод плотностного гамма-гамма каротажа

Плотностной гамма-гамма-каротаж (ГГК-П) основан на изучении комптоновского рассеяния г -квантов в горных породах. Поскольку этот эффект наблюдается при достаточно высокой энергии г -квантов, то в ГГК-П используют источники с энергией Еу > 0,5 МэВ...

Применение концепций, основанных на использовании скоростей распространения сейсмических волн

3.1 Сейсмический каротаж

При сейсмическом каротаже в скважину на кабеле опускают сейсмоприемник (геофон) или гидрофон и регистрируют время, необходимое для прохождения сейсмических волн от пункта взрыва вблизи устья скважины до сейсмоприемника. (рис 3.1) Рис 3...

Применение концепций, основанных на использовании скоростей распространения сейсмических волн

3.2 Акустический каротаж

Непрерывные изменения скорости выполнятся с помощью одного или двух импульсных генераторов и двух или четырех приемников, которые помещают в один контейнер, называемый зондом и опускают в скважину. рис.3.3...

Спектральный гамма-метод

Метод естественной радиоактивности (гамма - метод)

Во всех горных породах в небольших количествах присутствуют радиоактивные элементы. Содержание радиоактивных элементов в различных горных породах, а следовательно, и интенсивность испускаемых ими ядерных излучений различны. Поэтому...

Электрические методы исследования скважин

Боковой каротаж (БК)

Фокусировка тока Это электрический метод, дающий информацию об удельном электрическом сопротивлении пластов. Следовательно, это разновидность метода КС, и исследования проводятся в необсаженной скважине...

Электрические методы исследования скважин

Индукционный каротаж (ИК)

Этот метод, основанный на измерении удельной электропроводности s = 1/с (или удельного электрического сопротивления) пород по вторичному магнитному полю. Относится он к категории электрических методов...

Электрические методы исследования скважин

Ядерно-магнитныи каротаж (ЯМК)

Исследования проводятся в бурящихся скважинах, где определяется много параметров емкостно-фильтрационных свойств пластов. Метод интенсивно развивался и внедрялся в Татарстане, где накоплен материал в большом количестве...

Электрические методы исследования скважин

Гамма - каротаж (ГК)

Это метод естественной радиоактивности пород. В разрезе скважины все породы обладают каким-то уровнем гамма-излучения. Причиной радиации является содержание остаточных соединений урана, радия, тория...

Электрические методы исследования скважин

Нейтронный гамма-каротаж (НГК)

Это метод искусственной радиоактивности, основанный на облучении пород нейтронами. В результате сложного взаимодействия нейтронов с ядрами элементов скважинной среды, порода отвечает гамма-излучением. Нейтрон...

geol.bobrodobro.ru

Гамма-гамма каротаж

Федеральное агентство по образованию Российской Федерации

Санкт-Петербургский государственный горный институт им. Г.В. Плеханова

(технический университет)

месторождений полезных ископаемых

РЕФЕРАТ

По дисциплине: промысловая геофизика

(наименование учебной дисциплины согласно учебному плану)

Тема:Гамма-Гамма-Каротаж

Выполнил: студент гр. НГ-07-2 ______________ /Каримов Т.Г./

Проверил: ассистент ______________ Познякова Н.А.

(должность) (подпись) (Ф.И.О.)

Санкт-Петербург

2009 г

Оглавление:

1. Аппаратура радиоактивного кароттажа

2. Поиски и разведка нефтяных месторождений

3. Физические основы нейтронных методов разделения пластов

4. Радиометрия и контроль перемещения подошвенной воды

5. Выделение продуктивных горизонтов

6. Выделение в разрезе коллекторов

7. Использование данных для изучения разрезов

8. Некоторые виды аппаратуры и комплексирование измерений

9. Аппаратура радиоактивного кароттажа

Гамма-Гамма-Каротаж

Метод радиоактивного кароттажа, основанный на измерении интенсивности рассеянного излучения источника у-квантов, на­зывают гамма-гамма-кароттаж (ГГК).В основу метода ГГК положено известное положение атомной физики о пропорциональности количества электронов, рассеиваю­щих у-излучение в единице объема вещества, его плотности.Первые заметки об этом методе появились в 1949 г. Позже Фаул и Титтл , а также Буш провели экспериментальные работы по исследованию скважин методом ГГК.В СССР первые сведения по этому методу относятся к 1951 г. (исследования А. А. Коржева во ВНИИГеофизике и др.).В нефтяной промышленности метод ГГК начали применять для изучения геологических разрезов скважин и определения пори­стости пород.На точность определения плотности горных пород по данным ГГК влияет изменение диаметра скважин, поэтому исследова­ния этим методом необходимо дополнять замерами каверно­мером.Для уменьшения влияния факторов от скважины во ВНИИГеофизике был сконструирован прибор, в котором счетчик y-излучения помещается в свинцовом экране и прижимается пружиной к стенке скважины.В качестве индикатора в приборе приме­нены галогенные счетчики и корпус прибора изготовлен из дураллюминия, что значительно уменьшает поглощение рассеянного y-излучения по сравнению со стальным корпусом.Породы повышенной плотности отмечаются на диаграммах пониженными значениями интенсивности рассеянного у-излучения. Методом ГГК можно определять пористость горных пород, если их минералогическая плотность сохраняется неизменной. Метод ГГК можно применить для отбивки уровня цементного кольца в затрубном пространстве скважин.

Аппаратура радиоактивного кароттажа

Для исследования крелиусных и сейсмических скважин малого диаметра, проведения радиоактивного кароттажа в бурильных и компрессорных трубах, а также для проведения радиоактивного кароттажа в скважинах, расположенных в труднодоступных и уда­ленных районах, необходима надежная, портативная и экономич­ная аппаратура. Однако применяющаяся аппаратура не удовлетворяет произ­водство ввиду больших габаритов, веса и большой мощности потреб­ляемого тока. Предприятие «Геофизприбор» и ВНИИГеофизика разрабатывают более совершенную малогабаритную аппаратуру. Дальнейшее повышение экономичности, уменьшение размера и веса аппаратуры будут затруднены до тех пор, пока в ней будут применяться накальные радиолампы, имеющие значительные га­бариты и потребляющие большую мощность. В настоящее время промышлен­ность стала выпускать газоразрядные галогенные счетчики у-излучения и тиратроны с холодным катодом, появилась возможность создания более совершенных приборов. Галогенные счетчики имеют но сравнению с обычными счетчиками более низкое рабочее напряжение (порядка 360—400 в), больший импульс тока при раз­ряде и больший срок службы.

Еще в 1955 г, во ВНИИГеофизике были изготовлены глубинные при­боры, вся схема которых состояла из семи галогенных счетчиков, одного сопротивления и одного конденсатора. Вследствие большой мощности импульсов тока при разряде в галогенных счетчиках они передавались на поверхность по кабелю без предварительного усиления. Питание счетчиков осуществлялось напряжением 360 в с поверхности.Поступающие на поверх­ность импульсы имели ма­лую амплитуду, поэтому пришлось изготовить специ­альную приставку, в кото­рой импульсы перед посту­плением на пульт усилива­лись двухкаскадным усили­телем., В этой же приставке помещался стабилизирован­ный источник высокого на­пряжения для питания глу­бинного прибора.Эта аппаратура была ус­пешно испытана еще в 50-х г.г. двадцатого века в Грознен­ском районе, однако, несмотря на простоту схемы и конструкции глубинного прибора, она имела следующие существенные недо­статки: заметный просчет импульсов при больших скоростях счета из-за большой их длительности, малую амплитуду импульсов на входе наземного пульта РК, малый срок службы счетчиков при примененном форсированном режиме их работы.

Поиски и разведка нефтяных месторождений ]

Всем известно, что электрометрические замеры, проводимые в скважинах, не давали возможности полного и объективного суждения о геологическом разрезе скважин, о физических параметрах пласта и других важных факторах, характеризующих скважину и ее эксплуатационные свойства.Благодаря трудам ученых и большой творческой работе геофизиков сейчас почти повсеместно стал применяться радиокароттаж. Внедрение раднокароттажа открыло новые пути изучения и исследования нефтяных месторождений и скважин. Теперь стало возможным более точно определять коллектор, отбивать водо-нефтяной контакт, определять физические параметры пласта.Однако, несмотря на то, что радиокароттаж применяется уже много лет, на промыслах еще плохо пользуются этим мощным орудием исследований. Попрежнему во многих районах спуск колонн, перфораторные работы, опробование скважин и другие работы осуществляются на основании только электрокароттажных диаграмм, что объясняется двумя основными причинами: промысловые геологи и инженеры плохо знают радиокароттаж, а геофизики доставляют диаграммы радиокароттажа с большим опозданием, порой после перфорации колонны.Такие недооценка и пренебрежение к радиометрии нередко приводят к тяжелым последствиям, излишним и дорогостоящим изоляционным работам, неоправданному спуску колонн. Радиометрия позволяет более полно и объективно определять физические параметры пластов (пористость, проницаемость, водо-нефтесодержание и др.), не менее полно, чем по керновому материалу.

Физические основы нейтронных методов разделения пластов

Теоретическими экспериментальными исследованиями, проведенными в Московском нефтяном институте им. акад. И. М. Губкина в 1953—1955 гг. было показано, что на результаты нейтронных измерений сильное влияние оказывают не только замедляющие свойства горных пород, зависящие в основном от концентрации ядер водорода в пласте, но и поглощающие свойства пластов.В частности, было показано, что очень сильное влияние оказывает хлор, обладающий аномальными нейтронными свойствами и содержащийся в значительной концентрации в пластовых водах восточных нефтяных месторождений.Как показывает теоретический расчет, в случае нефтеносного песчаника пористостью 20% основное влияние на показание индикатора НГК оказывают водород (50% излучения) и кремний (40-96 % излучения). В водоносном песчанике той же пористости с содержанием 396 вес. хлора влияние водорода уменьшается до 896, а кремния до 596, в то время как доля у-излучеиия хлора равняется 8596.Эксперименты на моделях пластов и расчеты показали, что при отбивке водо-нефтяного контакта скважина оказывает сильное экранирующее влияние на результаты измерений. Особенно значительное влияние оказывает железо обсадной колонны и кожуха прибора.Естественно поэтому, что для успешного решения проблемы отделения нефтеносных пластов от водоносных было необходимо уменьшить влияние водородосодержания и литологии и влияние скважины и кожуха прибора.

Радиометрия и контроль перемещения подошвенной воды

Для расчленения нефтеносных и водоносных пород в обсаженных эксплуатационных скважинах был разработан целый комплекс радиометрических методов. Широкое промышленное опробование этих методов было произведено в девонских отложениях ряда месторождений в 1954— 1955 гг. и показало их большую эффективность.В результате радиометрических исследований перемещения водо-нефтяного контакта (ВПК) в эксплуатационных скважинах Туймазинского месторождения в 1954 г.. были выявлены интересные случаи перемещения подошвенной воды по пласту. Наиболее слабое поднятие ВНК, за исключением районов перетока, отмечено в районе между внешним и внутренним контурами нефтеносности северо-западного крыла, где скорости подъема составили 6—10 см в месяц.В районе расположения первого ряда эксплуатационных скважин происходил более интенсивный подъем ВНК, достигающий 14—17 см в месяц. Наиболее интенсивный подъем подошвенной воды, со скоростью 30—40 см в месяц, происходил на юго-восточном крыле. Причем опережение скорости движения внутреннего контура нефтеносности внешним контуром привело к сильному искривлению поверхности ВНК. Разность их абсолютных отметок достигает 15—20 м.Именно этим объясняются факты безводной эксплуатации внутреннего ряда скважин, перфорированных до подошвы пласта, при полной обводненности скважин внешнего ряда.Исследования 1955 г. полностью подтвердили указанные особенности перемещения ВНК и правильность ряда прогнозов, сделанных в 1954 г. по данным радиометрии скважин, относительно дальнейшего передвижения его.Например, при указанных скоростях движения ВНК на юго-восточном крыле подошвенная вода к середине 1955 г. должна была подойти к скв. 5, 47-а и другим, расположенным почти на спаде структуры.

mirznanii.com