Справочник химика 21. Химическая очистка нефти


Химическая очистка нефтяных продуктов и фракций

    Очистка нефтяных продуктов от серы, а также от смолообразующих веществ, азота, металлов и других примесей, снижающих качество этих продуктов, применяется в нефтеперерабатывающей промышленности со времени ее зарождения. Требования неуклонного повышения качества нефтепродуктов настолько велики, что методы очистки, вполне удовлетворительные в прошлом, в настоящее время уже непригодны. С развитием каталитических процессов крекинга и риформинга, перерабатывающих различные нефтяные фракции, а также в связи с передачей некоторых из этих фракций для последующей переработки на химические и нефтехимические предприятия, выявилась необходимость глубоко очищать от указанных примесей не только товарные продукты, но и сами фракции. [c.49]     До недавнего времени на нефтеперерабатывающих заводах старались не извлекать и утилизировать сернистые соединения нефтей, а разрушать и возможно полнее удалять их из товарных продуктов в основном с целью предотвращения коррозии аппаратуры и оборудования в процессах переработки нефти и применения нефтепродуктов. Сернистые соединения моторных топлив снижают их химическую стабильность и полноту сгорания, придают неприятный запах и вызывают коррозию двигателей. В бензинах, кроме того, они понижают антидетонационные свойства и приемистость к тетраэтилсвинцу, который добавляется для повышения качества. В настоящее время лучшим способом обессериваниЯ нефтяных фракций и остатков от перегонки нефтей является очистка в присутствии катализаторов и под давлением водорода. При этом сернистые соединения превращаются в сероводород, который затем улавливают и утилизируют с получением серной кислоты и элементарной серы. [c.29]

    Одним из продуктов, получаемых из смол полукоксования, является дизельное топливо. Однако дизельное топливо, например, то, которое получается из смол прибалтийских сланцев, в случае применения только щелочной очистки совершенно не удовлетворяет требованиям, предъявленным ГОСТом. Это обстоятельство связано с химическим составом дизельной фракции, содержащей после дефеноляции до 25% (объемных) нейтральных кислородных соединений. Топливо такой очистки имеет очень резкий, неприятный запах, обладает низким цетановым числом, высоким коксообразованием и т. д. Кроме указанных нежелательных свойств, такое топливо нестабильно при хранении, в нем появляются кислые продукты с одновременным ростом коксообразующей способности. Вопросу стабильности дизельных топлив нефтяного происхождения не уделялось сколько-нибудь серьезного внимания по той простой причине, что такие топлива в основе своей состоят из углеводородов, сохраняю- [c.102]

    ХИМИЧЕСКАЯ ОЧИСТКА НЕФТЯНЫХ ПРОДУКТОВ И ФРАКЦИИ [c.265]

    Серная кислота явилась одним из первых химических продуктов, применявшихся для очистки нефтяных фракций. Пытались применять также 4>тористоводородную, соляную, азотную и фосфорную кислоты, но в большинстве случаев никаких преимуществ по сравнению с серной кислотой они не дают. На протяжении многих лет серная кислота сохраняла свое значение важнейшего реагента для очистки легких дистиллятов и смазочных масел. Однако в последние годы применение кислотной очистки значительно сократилось в связи с разработкой таких прогрессивных нроцессов, как экстракция избирательными растворителями, гидрирование, адсорбционные методы, щелочная очистка и др. [c.109]

    В основе некоторых процессов очистки нефтяных фракций лежит взаимодействие нежелательных продуктов с химическими реагентами с образованием соединений, удаляемых из очищаемого продукта (гидроочистка, очистка серной кислотой, растворами щелочей и т. л.). В других процессах происходит физическое разделение нефтяных фракций на составляющие без изменения структуры углеводородов, содержащихся в исходном сырье (очистка избирательными растворителями, адсорбционная очистка, депарафинизация).  [c.13]

    В последние десятилетия перед нефтяной промышленностью стала новая грандиозная задача обеспечить сырьем и промежуточными продуктами быстро развивающиеся химическую и нефтехимическую промышленности. Сырьем для них служат природные и попутные газы, индивидуальные углеводороды, жидкие нефтяные фракции, ароматические углеводороды, сырье для сажи, синтетические жирные кислоты, спирты и многие другие продукты. Такое бурное развитие отрасли стало возможным только благодаря использованию достижений научно-технического прогресса. Особенно большую роль сыграло широкое внедрение каталитических процессов (каталитического крекинга, каталитического риформинга, изомеризации, гидрогенизационной очистки нефтяных дистиллятов, получаемых из сернистых и высокосернистых нефтей), а также селективной очистки избирательными растворителями (в производстве масел и парафинов). [c.4]

    Масляные фракции и остаток, полученные при вакуумной перегонке мазута, не являются товарными продуктами, поскольку содержат компоненты, ухудшающие их эксплуатационные свойства. Эти компоненты удаляют методами очистки, различающимися по назначению, сущности и условиям проведения. Методы очистки нефтяного сырья делятся на химические и физико-химические. [c.38]

    В результате каталитического крекинга нефтяного сырья образуются соединения, отличающиеся от первоначальных по физико-химическим свойствам. В зависимости от вида сырья, применяемого катализатора и параметров процесса выход бензина при крекинге составляет от 28 до 58% (масс.) на сырье. Наряду с бензином образуются и другие жидкие продукты (легкий и тяжелый газойли), а также газообразные и твердые (кокс, отлагающийся на катализаторе). При каталитическом крекинге нефтяных фракций, особенно при температурах выше 500 °С, в значительной степени превращаются в бензин и газообразные продукты, которые можно использовать для производства высокооктановых компонентов бензина или как сырье для нефтехимических процессов. Легкие газойли (с к. к. до 350 °С) можно использовать не только для рециркуляции, но и в качестве компонентов дизельного топлива иногда после гидроочистки или селективной очистки), а также наряду с тяжелыми газойлями (н. к. выше 350 °С)—в качестве сырья для производства сажи. Тяжелый газойль часто используют и как разбавитель (для снижения вязкости и температуры застывания) при производстве сортовых мазутов и котельных топлив. [c.16]

    Хотя на ряде нефтеперерабатываюш их заводов считают целесообразным использовать побочный водород риформинга как сырье для синтеза аммиака, высказываются предположения, что собственное потребление водорода на нефтеперерабатывающих заводах настолько увеличится, что потребуется дополнительное количество водорода сверх получаемого в качестве побочного продукта при каталитическом риформинге. В настоящее время лишь около /з ресурсов побочного водорода риформинга применяется для процесса гидроочистки, но доля эта, несомненно, будет расти. Можно ожидать, что к 1965 г. мощности гидрогенизационной очистки возрастут с современного уровня 223 тыс. м сутки (около 15% от мощности атмосферной перегонки) приблизительно до 685 тыс. сутки, или 38% от мощности прямой перегонки. Водород, который не будет использован для вОО облагораживания нефти и нефтяных фракций, можно будет направить на химические производства, напри-, мер, для синтеза аммиака. [c.119]

    Исходным материалом является нефтяной кокс, обычно приготовляемый из рафинированного тяжелого масла путем полимеризации и дистилляции летучих фракций при 450°. Если произвести химическую и высокотемпературную очистки, можно также в качестве исходного материала использовать некоторые сорта антрацита с низкой концентрацией серы [105]. Сырой нефтяной кокс содержит около 95% С. При последующем нагревании выделяется значительное количество углеводородов. Количество выделившихся при 1000°С летучих газов может достигать 7—16%. Содержание золы составляет обычно 0,1—2,2%, а содержание серы 0,1 —4,3%. Получающийся продукт прокаливается при 1300°С, что приводит к некоторой усадке. Содержание металлических примесей оказалось следующим (в частях на миллион )  [c.33]

    Из практики окисления жидких и твердых нефтяных углеводородов известно, что наличие ароматических углеводородов или продуктов их окисления тормозит процесс окисления. Это подтверждается нашими опытами по окислению депарафинизированного дистиллята трансформаторного масла. Поэтому с целью предотвращения отрицательного влияния указанных продуктов, исходное сырье, как было указано выше, подвергалось очистке. Физико-химические показатели депарафинизированного и деароматизированного дистиллята трансформаторного масла (нафтено-изопарафиновой фракции) представлены в табл. 3. [c.68]

    В результате гидроочистки получаются вполне стабильные продукты, лишенные сернистых соединений. При гидроочистке крекинг-бензинов и бензинов реформирования их октановое число, естественно, падает, но резко повышается приемистость к ТЭСу. Замена сернокислотно-контактной очистки масел гидроочисткой позволяет более тонко регулировать химический состав и улучшать эксплуатационные свойства масел. При гидроочистке полностью удаляются вредные смолистые вещества, снижается содержание полициклических ароматических углеводородов за счет раскрытия циклов. Ценные малоциклические ароматические углеводороды с длинными парафиновыми цепями остаются в масле. Применение гидроочистки нефтяных фракций ограничивается отсутствием дешевых источников водородсодержащих газов. Принципиально новый путь был предложен Портером [240], разработавшим процесс обессеривания водородом без потребления водорода извне. Сущность автогидроочистки состоит в использовании водорода, выделяющегося при дегидрировании нафтеновых углеводородов сырья, для гидрирования серусодержащих соединений. [c.256]

    Химические реакции, ведущие к получению синтетических низкомолекулярных кислот, как правило, сопровождаются протеканием побочных процессов (деструкции, образованием альдегидов, кетонов, кетокислот). Это обстоятельство приводит к тому, что низкомолекулярные кислоты получаются в виде смесей, содержащих различные соединения. Поскольку ценность низкомолекулярных органических кислот в большой мере определяется степенью их чистоты, понятно, какое большое значение приобретают методы селективного разделения и очистки кислот, обеспечивающие получение продукции в соответствии со стандартами, принятыми при переработке традиционного сырья — индивидуальных соединений. Благодаря невысокой стоимости фракций нефтяного сырья, методы получения смесей кислот с последующим их разделением и получением индивидуальных продуктов обеспечивают более высокую экономическую эффективность проведения процесса в этом случае. [c.49]

    Однако нефтяные углеводородные фракции с температурой кипения, начиная приблизительно от 100°, представляют собой весьма еоднородные смеси, в которых соотношение различных типов углеводородов (парафиновых, нафтеновых и ароматических) в значительной степени зависит от происхождения исходной нефти. Поэтому успешная химическая переработка подобных продуктов оказывается невозможной без предварительного разделения на отдельные компоненты (главным образом физическими способами) и дополнительной химической очистки парафиновой фракции. [c.13]

    В отличие от коксохимических продуктов, содержащих лишь несколько процентов примесей неароматического характера, фракции каталитического риформинга и смолы пиролиза содержат до 75% неароматических углеводородов, имеющих близкие к ароматическим углеводородам температуры кипения. Поэтому для продуктов химического превращения нефтяных фракций очень важной стадией является экстракция с целью выделения ароматизированных концентратов. Ректификация или кристаллизация являются завершающими стадиями получения ароматических углеводородов из нефтн. Смолы пиролиза предварительно подвергаются гидроге-низационной обработке для очистки от непредельных и сернистых соединений. [c.149]

    Количество этих неуглеводородных компонентов, которые выделяют при переработке нефти в виде продуктов, представляющих рыночную ценность, непрерывно растет. Сероводород и меркаптаны как первоначально присутствовавшие в природной нефти, так и образовавшиеся в процессах ее переработки и очистки, используются для производства элементарной серы и серной кислоты. Крезолы и другие фенолы экстрагируются при очистке нефтяных фракций и используются как сырье для химической промышленности. Ванадий можно улавливать в виде летучей золы и из облицовки высоких дымовых труб. Тем не менее сера, кислород, азот и металлы являются с точки зрения нефтеперерабатывающей промышленности весьма нежелательными примесями. Их удаление требует знатательных затрат. Иногда очистку производят в начальных стадиях переработки, а иногда как последнюю операцию перед выпуском товарных продуктов. [c.45]

    Гидрогенизационная очистка нефтяных топлиЕ в значительной степени вытеснила ранее применявшиеся химические процессы. Преимущества использования водорода для процессов очистки нефтяных фракций заключаются в более полном удалении серы и других нежелательных примесей, уменьшении потерь нефтепродуктов и устранении проблем, связанных с обезвреживанием и сбросом отработанных растворов, а также в обеспечении высокого выхода целевых продуктов. [c.3]

    Циклогексан СвИхд. Для выделения этого нафтена легкие ногоны пенсильванской нефти были сначала медленно разогнаны 9 раз за этой предварительной разгонкой следовали химическая очистка фракций, промывка и сушка после 33 новых фракционировок углеводород перегонялся в пределах 80,55—80,65° но, судя по несколько сниженному удельному весу (0,7722 вместо 0,7896), все еще содержал примесь парафинов. При его окислении получен характерный продукт окисления циклогексана, адипиновая кислота. Путем вымораживания нефтяного углеводорода циклогексан был получен затем в почти чистом виде (т. пл. 4,7° вместо 6,4°). [c.200]

    Процессы очистки и разделения нефтяных фракций с применением избирательных растворителей широко распространены. В зависимости от химической природы эти растворители растворяют одни и не растворяют другие компоненты очищаемого или разделяемого сырья. Их применяют при производстве топлив, масел и твердых углеводородов, а также при разделении продуктов переработки нефти с целью получения сырья для нефтехимического синтеза, компонентов топлив и других продуктов (извлечения ароматических углеводородов из бензинов платформинга, газоконденсатов, бензинов прямой перегонки и др.). При очистке избирательными растворителями из очищаемого сырья удаляются следующие компоненты асфальтены, смолы, полициклические ароматические и ыафтено-ароматические углеводороды с короткими боковыми цепями, непредельные углеводороды, серо- и азотсодержащие соединения, твердые парафиновые углеводороды. [c.177]

    Масла пруппы 1 во многих случаях регенерируют централизованно на созданных для этой цели установках. Зиачительную часть отработанных масел других групп регенерируют в пунктах потребления. Поступающие на регенерацию масла содержат обычно воду в эмульгированном виде, а также 1—6% относительно легких горючих продуктов, которые понижают температуру вспыщки и вязкость масла. Содержание ценных углеводородов в отработанных нефтяных маслах, даже моторных, высока, и при регенерации выход базовых масел составляет 70—85% (масс.) на обезвоженное масло, содержащее около 5% нижекипящих фракций (бензино-керосиновых и легких газойлевых). Выход базового масла зависит как от глубины очистки, так и от технологии регенерации. По групповому углеводородному составу и физико-химическим свойствам регенерированные масла близки соответствующим свежим. [c.406]

    Измельчение (англ. grmding) — процесс разрушения кускового материала с целью получения фракций с меньшим размером кусков (частиц). Измельчение применяют в различных отраслях промышленности в нефтяной, нефтегазоперерабатывающей, химической, угольной, горнодобывающей, при производстве строительных материалов. В частности, в нефтяной промышленности измельчение применяется при получении твердых компонентов буровых растворов, в нефтегазоперерабатывающей — при дроблении кокса (продукта коксования остаточного сырья), производстве катализаторов, молотой серы и отбеливающих глин для адсорбционной очистки масел. [c.57]

    Нефтяные углеводороды, как известно, являются прекрасными растворителями для самых разнообразных веществ, особенно органических, и широко применяются в этом нанравлении в лабораториях и в промышленности в виде разного рода легких нефтяных погонов петролейного эфира, лигроина и т. п. Наряду с этими продуктами,известное нрименение находят тагоке более узкие нефтяные фракции таковы, например, нефтяной пентан или нефтяной гексан, которые можно найти в прейскурантах всех крупных химических фирм. Эти нефтяные углеводороды получаются из соответствующих, более или менее тщательно выделенных нефтяных фракций путем очистки их кислотами — азотнох и серной. Из них нефтянох пентан получил за последнее время применение в качестве исходного материала для приготовления амиловых спиртов и их уксусных эфиров, которые широко применяются как растворители для нитролаков в лаковой промышленности (см. ч. IV). [c.145]

    Непременным условием рационального использования каждого химического сырья является, несомненно, знание его химического состава. Кислые гудроны представляют собой весьма сложную смесь, состав которой находится в зависимости от химической природы очищаемой нефтяной фракции, условий очистки (в частности, от крепости серной кислоты и температуры процесса) и отчасти от продолжительности хранения самих кислых гудронов. Кроме избыточной серной кислоты, посторонней и реакционной воды, кислые г дроны содержат органическое вещество, состояц],б( из увлеченного нефтепродукта и разнородных продуктов реакции серной кислоты с углеводородами, кислородными, серНйстыми и азотистыми соеДй--нениями нефти. Следовательно, органическая масса представляет собой очень сложную и разнообразную смесь органических соединений, каждая группа которых, в свою очередь, является смесью различных классов химических соединений. Несмотря на то, что кислые гудроны уже много десятилетий являются постоянным побочным продуктом производства, групповой химический состав их органической массы до сих пор изучен недостаточно из-за отсутствия правильного метода ее исследования. [c.308]

    Смолисто-асфальтеновые вещества содержатся в основном в высококипящих нефтяных фракциях и относятся к классу полициклических соединений, содержащих помимо углерода и водорода кислород, серу, азот, а иногда и различные металлы. Смолисто-асфальтеновые вещества делятся на смолы и асфальтены. Смолы являются конденсированными органическими гетероооедине-ниями, в углеводородной части которых содержатся ароматические и нафтеновые кольца с короткими парафиновыми цепями. Смолы содержат также кислород, серу и азот. Асфальтены представляют собой насыщенные гетероциклические соединения, также содержащие серу, кислород и азот и часто различные металлы С , V, Ре и др.). По химическому строению и свойствам эти продукты довольно близки друг к другу. Отличаются они молекулярной массой, которая выше у асфальтенов вследствие большего числа колец в структуре молекулы. В связи с этим асфальтены при растворении в нефтепродуктах дают коллоидные растворы, а смолы — истинные. Смолисто-асфальтеновые вещества являются нежелательными компонентами нефтепродуктов и удаляются в процессе деасфальтизации (малые количества смолисто-асфальтеновых веществ могут быть удалены при селективной и адсорбционной очистках). [c.10]

chem21.info

ХИМИЧЕСКИЕ МЕТОДЫ ОЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ

    ХИМИЧЕСКИЕ МЕТОДЫ ОЧИСТКИ НЕФТЯНЫХ ФРАКЦИЙ [c.53]

    Очистка нефтяных фракций от сернистых соединений может быть осуществлена различными методами (сульфированием, гидрированием, окислением, экстракцией растворителями и др.), но большинство из указанных методов не позволяет полностью отделить сераорганическую часть от углеводородной части, не изменяя физико-химические свойства последней. [c.142]

    Нефтяные фракции, полученные при прямой перегонке нефти, содержат различные количества нежелательных примесей и поэтому зачастую требуют дополнительной очистки при помощи химических методов. Некоторые классы соединений могут рассматриваться в качестве примесей или нежелательных компонентов только для определенных фракций. Так, ароматические углеводороды желательны в бензине, но нежелательны в керосине. Другие классы соединений следует считать примесями пли нежелательными компонентами для всех нефтепродуктов. Сюда в первую очередь относятся легко окисляемые и вообще химически нестабильные соединения, а также смолистые или асфальтеновые вещества. Вредными, как правило, являются сернистые соединения, и их предельно допустимое содержание обычно строго ограничивается техническими нормами на нефтепродукты. В тех случаях, когда очистка нефтепродукта от примесей или нежелательных компонентов недостижима обычными физическими методами, прибегают к химическим методам очистки при помощи различных реагентов, которые селективно реагируют с веществами, подлежащими удалению. [c.222]

    Подробно рассматриваются такие вопросы, как химический состав нефтей и нефтяных фракций очистка нефтяных фракций физическими и химическими методами теория термо-ката-литических процессов нефтепереработки (крекинг, пиролиз, риформинг, гидрирование, алкилирование) теоретические аспекты применения и эксплуатационных свойств нефтепродуктов. При этом большое внимание уделяется термодинамическим и кинетическим закономерностям, механизма реакций, теории катализа, теории сорбционных процессов и процессов экстракции, явлениям детонации, стабильности нефтепродуктов. [c.4]

    Очистка нефтяных продуктов от серы, а также от смолообразующих веществ, азота, металлов и других примесей, снижающих качество этих продуктов, применяется в нефтеперерабатывающей промышленности со времени ее зарождения. Требования неуклонного повышения качества нефтепродуктов настолько велики, что методы очистки, вполне удовлетворительные в прошлом, в настоящее время уже непригодны. С развитием каталитических процессов крекинга и риформинга, перерабатывающих различные нефтяные фракции, а также в связи с передачей некоторых из этих фракций для последующей переработки на химические и нефтехимические предприятия, выявилась необходимость глубоко очищать от указанных примесей не только товарные продукты, но и сами фракции. [c.49]

    Серная кислота явилась одним из первых химических продуктов, применявшихся для очистки нефтяных фракций. Пытались применять также 4>тористоводородную, соляную, азотную и фосфорную кислоты, но в большинстве случаев никаких преимуществ по сравнению с серной кислотой они не дают. На протяжении многих лет серная кислота сохраняла свое значение важнейшего реагента для очистки легких дистиллятов и смазочных масел. Однако в последние годы применение кислотной очистки значительно сократилось в связи с разработкой таких прогрессивных нроцессов, как экстракция избирательными растворителями, гидрирование, адсорбционные методы, щелочная очистка и др. [c.109]

    Гл. II. Химические методы очистки нефтяных фракций [c.54]

    Масляные фракции и остаток, полученные при вакуумной перегонке мазута, не являются товарными продуктами, поскольку содержат компоненты, ухудшающие их эксплуатационные свойства. Эти компоненты удаляют методами очистки, различающимися по назначению, сущности и условиям проведения. Методы очистки нефтяного сырья делятся на химические и физико-химические. [c.38]

    Нефтяные кислоты и фенолы. Нефтяные кислоты представляют собой соединения алифатического, алициклического, ароматического и смешанного строения, различающиеся молекулярными массами и химической активностью. Щелочное выделение кислот из средних фракций нефтей длительное время применяется в промышленности для очистки топливных фракций и получения химического сырья, Промышленные и лабораторные методы [c.91]

    В монографии систематизированы известные данные и полученные автором экспериментальные результаты исслгдования азоторганическн соединений иефти. Рассмотрены важнейшие закономерности, связывающие состав и содержание азоторганических соединений с условиями залегания и типом нефти. Изложены методы выделения и очистки нефти и нефтяных фракций от азоторганических соединений, их физические и химические характеристики, влияние на эксплуатационные свойства нефтепродуктов. Показаны области применения и методы анализа азоторганических соединений. [c.2]

    Зимина с сотрудниками [92] применили метод инфракрасной спектроскопии для характеристики химической природы смол, выделенных из масляных дистиллятов, гудронов и экстрактов масляной очистки [72—75]. Полученные результаты, свидетельствующие о наличии в смолах характеристических максимумов поглощения, соответствующих ароматическому кольцу и группам СН, СНа, СНз, СО, согласуются с химическими данными. Утверждение о том, что карбонильная группа присутствует во всех нефтяных смолах, нельзя считать доказанным. В наших исследованиях некоторые Неразделенные нефтяные смолы и, особенно, фракция смолы, [c.477]

    Исследования в области геохимических методов поисков нефти и газа, начатые в СССР в лаборатории автора (Московский нефтяной институт), позволили разработать приборы, при помощи которых можно было определить до 10 —10 % (0,1—1 часть на миллион) углеводородных газов в воздухе или ином неуглеводородном газе. Эти приборы были основаны на химической очистке и вымораживании углеводородов с последующим их сжиганием. Разделительная способность приборов для углеводородных смесей была невелика, поэтому в дальнейших работах были применены адсорбционно-десорб-ционные хроматографические методы с получением кривых разделения в результате последовательного выделения отдельных компонентов или фракций [47, 81 ]. На рис. 103 в качестве примера показана кривая десорбции с поверхности стекла около 1 нмм газовой смеси. Компоненты — закись азота, этан, пропан, бутан — идентифицировали по времени их выхода из сорбционной трубки. Таким путем еще в 1937 — 1938 гг. было открыто широкое распространение в подпочвенном воздухе закиси азота (в концентрациях 10 —10 %). Приблизительно такие же фоновые концентрации наблюдались и для метана. [c.298]

    Химические реакции, ведущие к получению синтетических низкомолекулярных кислот, как правило, сопровождаются протеканием побочных процессов (деструкции, образованием альдегидов, кетонов, кетокислот). Это обстоятельство приводит к тому, что низкомолекулярные кислоты получаются в виде смесей, содержащих различные соединения. Поскольку ценность низкомолекулярных органических кислот в большой мере определяется степенью их чистоты, понятно, какое большое значение приобретают методы селективного разделения и очистки кислот, обеспечивающие получение продукции в соответствии со стандартами, принятыми при переработке традиционного сырья — индивидуальных соединений. Благодаря невысокой стоимости фракций нефтяного сырья, методы получения смесей кислот с последующим их разделением и получением индивидуальных продуктов обеспечивают более высокую экономическую эффективность проведения процесса в этом случае. [c.49]

    Физико-химические осноеы указанных методов очистки нефтяных фракций и В >йеления парафинов можно найти в специальной литературе. [c.76]

    При исследовании химического состава высококипящих нефтяных фракций обычно недостаточно используют методы идентификации при помощи тех или иных химических реакций. Между тем Коновалов, Марковников, Зелинский и их ученики, результатам исследований которых мировая химия обязана современными знаниями в области химического состава легких фракций, широко использовали избирательность определенных химических реакций для идентификации нефтяных компонентов и для очистки их от нримесей. [c.235]

    Непременным условием рационального использования каждого химического сырья является, несомненно, знание его химического состава. Кислые гудроны представляют собой весьма сложную смесь, состав которой находится в зависимости от химической природы очищаемой нефтяной фракции, условий очистки (в частности, от крепости серной кислоты и температуры процесса) и отчасти от продолжительности хранения самих кислых гудронов. Кроме избыточной серной кислоты, посторонней и реакционной воды, кислые г дроны содержат органическое вещество, состояц],б( из увлеченного нефтепродукта и разнородных продуктов реакции серной кислоты с углеводородами, кислородными, серНйстыми и азотистыми соеДй--нениями нефти. Следовательно, органическая масса представляет собой очень сложную и разнообразную смесь органических соединений, каждая группа которых, в свою очередь, является смесью различных классов химических соединений. Несмотря на то, что кислые гудроны уже много десятилетий являются постоянным побочным продуктом производства, групповой химический состав их органической массы до сих пор изучен недостаточно из-за отсутствия правильного метода ее исследования. [c.308]

    Существуют всевозможные химические, генетические, промышленные и товарные классификации нефтей. На ранних этапах развития нефтяной промышленности определяющим показателем качества нефти считалась плотность. В зависимости от плотности нефти подразделяли на легкие (р] 0,884). В легких нефтях содержится больше бензиновых фракций, относительно мало смол и серы. Из нефтей этого типа вырабатываются смазочные масла высокого качества. Тяжелые нефти характ( ризуются высоким содержанием смол чтобы получить из них масла, необходимо применять специальные методы очистки — обработку избирательными растворителями, адсорбентами и т. п. Однако тяжелые нефти — наи-лучшее сырье для производства битумов. Классификация нефтей по плотности сугубо приблизительна, и на практике известны случаи, когда описанные вын1е закономерности не подтверждались. [c.22]

    Вторую группу составляют методы химической обработки нефтяных фракций с избыточным содержанием меркаптанов, основанные на способности последних реагировать с щелочами. К этой группе методов можно причислить процессы обработки углеводородных смесей водными и спиртовыми растворами щелочи 182], двухфазными растворителями, например щелочными растворами с добавкой крезола (крезплатом натрия или калия) [83], аминоэтоксидом натрия (HoN jH iONa), растворенным в безводном этилендиамине 84 . Обработке растворителями подвергаются главным образом бензиновые фракции эффективность очистки зависит от реакционной способности меркаптанов. [c.60]

    После очистки нефти от этих веществ ее подвергают переработке. Методы переработки могут быть физическими и химическими. Первичным (основным) процессом переработки является прямая перегонка, т. е. термическое разделение нефти на ее составные части — фракции (физический метод переработки). При этом 1ЮЧТИ не происходит разложения (деструкции) углеводородов. Разделение основано на различии температур кипения отдельных нефтяных фракций, имеющих разную молекулярную массу. Обычно получают следующие фракции  [c.53]

    Сначала было проведено систематическое исследование химической стойкости этой фракции по описанному выше методу. Был исследован депарафинн-ровашшй образец, подвергнутый окончательной очистке (кислотой, отбеливающей глиной) интенсивность обработки серной кислотой на протяжении опыта менялась, температура же оставалась в течение всего опыта в пределах 28—30°. Хотя при этой температуре сернистый ангидрид и выделялся, сульфирование масла совершенно не было отмечено. После отделения кислого гудрона и очистки отбеливающими глинами (при температуре 120°) отфильтрованные масла были прозрачны и не содержали ни минеральных кислот, ни щелочей. Их показатель цвета был 2—3 (Юнион). Для сравнения мы исследовали также методом лабораторного окисления нефтяные смазочные масла без добавок — товарные моторные масла SAE 30, высоковязкие масла SAE 60 и смеси нефтяного масла SAE 60 и фракции В гидрированного сланцевого масла. [c.476]

chem21.info

Очистка нефтепродуктов - Справочник химика 21

    Установки по очистке нефтепродуктов. Основная масса нефтепродуктов — дистиллятов, получаемых при перегонке нефти и мазута, а также при деструктивных процессах, содержит примеси, ухудшающие свойства продуктов, применяемых в качестве моторных топлив, смазочных масел, а также для других целей (осветленные керосины, растворители и пр.). Для удаления примесей дистиллятные продукты подвергают очистке. Выбор способа очистки зависит от качества подлежащего очистке дистиллята, от назначения целевого продукта и предъявляемых к нему требований. [c.91]     Нефтяные фракции, полученные при прямой перегонке нефти, содержат различные количества нежелательных примесей и поэтому зачастую требуют дополнительной очистки при помощи химических методов. Некоторые классы соединений могут рассматриваться в качестве примесей или нежелательных компонентов только для определенных фракций. Так, ароматические углеводороды желательны в бензине, но нежелательны в керосине. Другие классы соединений следует считать примесями пли нежелательными компонентами для всех нефтепродуктов. Сюда в первую очередь относятся легко окисляемые и вообще химически нестабильные соединения, а также смолистые или асфальтеновые вещества. Вредными, как правило, являются сернистые соединения, и их предельно допустимое содержание обычно строго ограничивается техническими нормами на нефтепродукты. В тех случаях, когда очистка нефтепродукта от примесей или нежелательных компонентов недостижима обычными физическими методами, прибегают к химическим методам очистки при помощи различных реагентов, которые селективно реагируют с веществами, подлежащими удалению. [c.222]

    По оптическим свойствам нефтей и нефтепродуктов можно косвенно судить о содержании в них асфальто-смолистых веществ, о глубине очистки нефтепродуктов, о превалировании тех или иных групп углеводородов, о возрасте и происхождении нефти и т. д. К оптическим свойствам нефтепродуктов относятся цвет, лучепреломление и оптическая активность. [c.95]

    Некоторые процессы имеют исключительно качественное значение, например различные формы очистки нефтепродуктов, синтез присадок и катализаторов, каталитический крекинг легких дистиллятов, пиролиз нефтяных фракций, ароматизация, обессеривание, окисление, сульфирование нефтепродуктов и т. п., которые, как правило, в конечном итоге снижают глубину отбора товарной продукции. [c.102]

    Жженую магнезию применяют в производстве магния, в качестве наполнителя в производстве резины, для очистки нефтепродуктов, в производстве огнеупоров, строительных материалов и др. [c.478]

    Концентрация серной кислоты после реактора снижается до 85—87 % (масс.). Такую кислоту можно использовать для очистки нефтепродуктов (в частности, масел), для производства деэмульгаторов или передать на регенерацию. [c.62]

    В нефтеперерабатывающей промышленности олеум (раствор триоксида серы 80з в серной кислоте) используют для доочистки н-парафинов от ароматических углеводородов, очистки нефтепродуктов от сернистых и непредельных органических соединений. [c.114]

    При сернокислотной очистке нефтепродуктов получаются в основном два вида отработанной кислоты от очистки легких фракций (бензина и керосина) и от очистки масляных дистиллятов, медицинских масел и т. д. Считается, что при очистке последних действие кислоты частично имеет физическую природу, заключающуюся в осаждении асфальтенов и смол при одновременном растворении сернистых соединений и веществ, портящих цвет масла [c.570]

    Очистка нефтепродуктов растворами щелочи [c.114]

    Зольность нефтепродуктов зависит от качества нефти и от условий ее переработки. Нефти, богатые кислородными соединениями (смолами и нафтеновыми кислотами), обладают наибольшей зольностью. Значительное влияние на зольность оказывает степень удаления солей при подготовке нефти к переработке и очистке нефтепродуктов. Неполное удаление отбеливающих глин при контактной очистке масел также приводит к повышенной зольности. [c.165]

    Цвет нефтепродукта, т. е. интенсивность его окраски по сравнению с окраской эталонных растворов или стекол, характеризует степень очистки нефтепродукта от смолистых веществ, обладающих красящей способностью. Поэтому цвет нормируется для тех нефтепродуктов, глубина очистки которых имеет особое значение по условиям их применения. Цвет нефтепродуктов определяется при помощи колориметра КН-51 по ГОСТ 2667—52 или при помощи фотоэлектроколориметра по ГОСТ 8933—58. [c.168]

    ХИМИЧЕСКИЕ МЕТОДЫ ОЧИСТКИ НЕФТЕПРОДУКТОВ [c.222]

    В качестве реагентов для химической очистки нефтепродуктов был испробован целый ряд веществ, но лишь немногие из них выдержали испытание временем и нефтезаводской практикой. Наиболее прочно утвердились лишь серная кислота (предложенная для очистки нефтепродуктов еще в 1855 г. [1]), водные растворы щелочей и еще несколько веществ, применяемых для нейтрализации активных сернистых соединений. За последние годы в производстве смазочных масел сернокислотная очистка все больше вытесняется селективной и контактной очисткой. Для очистки более глубокой, чем та, которая достигается нри сернокислотном методе, был применен безводный хлористый алюминий. Гидрогенизационный метод очистки от серы и улучшения качества нефтепродуктов был разработан еще в 1930 г., однако широкое внедрение этого метода в промышленную практику началось примерно в 1955 г., когда появился доступный и дешевый водород с установок каталитического риформинга. [c.222]

    ОЧИСТКА НЕФТЕПРОДУКТОВ СЕРНОЙ КИСЛОТОЙ [c.223]

    Со времени существования нефтеперерабатывающей промышленности множество химических веществ подвергалось испытанию на предмет их пригодности для очистки нефтепродуктов. В этом отношении наиболее интересны те химические соединения, которые активно реагируют с нестабильными углеводородами, подлежащими удалению из нефтепродукта. В большинстве случаев испытывавшиеся вещества оказывались непригодными для применения, так как они не обнаруживали достаточной селективности и реагировали также и с ценными компонентами очищаемого нефтепродукта. [c.238]

    Перечень соединений, которые предлагались в качестве селективных растворителей для очистки нефтепродуктов, очень велик и включает в себя органические сложные эфиры, спирты, альде- [c.280]

    Коэффициент расширения уменьшается с очисткой нефтепродуктов так, машинный дистиллят до очистки имел а=0,000609 при 10—20° С и после обработки серной кислотой и обесцвечивания флоридином а=0,000599. [c.62]

    Часть третья — очистка нефтепродуктов и производство специальных продуктов. Автор — профессор, доктор технических наук, лауреат государственной премии СССР, заслуженный деятель науки и техники РСФСР Н. И. Черножуков. [c.9]

    Ценнейший вклад в науку о нефти и методах ее переработки внес выдающийся химик-нефтяник Л. Г. Гурвич. В своей книге Научные основы переработки нефти , выдержавшей четыре издания, переведенной на многие иностранные языки, Л. Г. Гурвич критически сопоставил и обобщил литературные и экспериментальные данные по химии и переработке нефти. Оригинальными являются воззрения Л. Г. Гурвича о действии водяного пара и роли вакуума при перегонке мазута, о роли серной кислоты и щелочи при очистке нефтепродуктов. Он исследовал обесцвечивающую способность отбеливающих глин по отношению к нефтепродуктам, обнаружил при этом помимо адсорбционных свойств каталитическое (полимери-зующее) действие естественных алюмосиликатов и разработал теоретические основы адсорбционной очистки масел. Л. Г. Гурвич установил закономерности, лежащие в основе современной хроматографии и каталитического крекинга на алюмосиликатных катализаторах. [c.12]

    Первая часть учебника включает разделы, посвященные физико-химическим свойствам и классификации нефтей и нефтепродуктов, физическим методам переработки природных углеводородных газов, процессам подготовки нефти к переработке и технологии первичной переработки нефти. Вторая часть посвящена технологии вторичных методов переработки нефти и газа (термических, каталитических и гидрогенизационных), предназначенных для производства различных видов топлив и сырья для нефтехимической промышленности. В третьей части иззп1аются процессы очистки нефтепродуктов с целью, придания им товарных качеств и технология производства специальных продуктов. [c.9]

    Сернистые соединения. Интерес к изучению нефтяных сернистых соединений особенно усилился в последние годы в связи с тем, что доля сернистых и высокосернистых нефтей в общей добыче нефти все возрастает. Очистка нефтепродуктов от серы требует дополнительных средств, специальных установок, и это значительно увеличивает стоимость продуктов. [c.22]

    Наиболее рациональным решением этих важнейших задач является широкое внедрение каталитических процессов, прогрессивных методов очистки нефтепродуктов, а также применение различных высокоэффективных присадок. [c.118]

    Подача газа (смеси газов, воздуха) в аппараты, печи и машины для технологической обработки (очистка, разделение, улавливание жидких фракций), химического синтеза (производство спирта, полиэтилена и др.), для сгорания (в двигателях, печах) и для осуществления и интенсификации других процессов (очистка нефтепродуктов от сернистых соединений, переработка нефти и нефтепродуктов) з а-качка воздуха в пласт для внутрипластового горения. [c.267]

    В лабораторной практике и научных исследованиях для определения химического состава нефтепродуктов в дополнение к методам анализа часто используют такие оптические свойства, как цвет, коэффициент (показатель) преломления, оп — гическая активность, молекулярная рефракция и дисперсия. Эти юказатели внесены в ГОСТы на некоторые нефтепродукты. Кроме того, по оптическим показателям можно судить о глубине очистки нефтепродуктов, о возрасте и происхождении нефти. [c.86]

    Нефтяная промышленность Румыния, как и СССР, является старой. 60 нефтяных колодцев разрабатывалось уже тогда, когда Дрек пробурил первую скважину в Пенсильвании. Румынские нефти разнообразны по своим свойствам, но в общем характеризуются низким содержанием серы и высоким содержанием ароматических углеводородов [24, 15а, 18а, 32а]. Действительно, наличие ароматических углеводородов в керосиновых дистиллятах привело Эделеану в 1909 г. к разработке процесса экстракции керосиновых фракций жидкой двуокисью серы — процесса, который является предшественником С01ременных методов очистки нефтепродуктов экстракцией растворителями [12]. [c.57]

    Недеструктивные процессы применяются также и при селективном гидрировании олефинов в бензинах каталитического крекинга. Одновременно гидрирование влечет за собой и очистку нефтепродуктов от серы, азота и кислорода. Они удаляются из нефтепродуктов в виде таких соединений, как сероводород, аммиак и вода. Сущность изл1енений, происходящих ири недеструктивном гидрировании бензина каталитического крекинга, демонстрируется в табл. П-6 [203—205]. [c.94]

    Кислый гудрон, образующийся при сернокислотной очистке нефтепродуктов, имеет очень сложную природу, даже когда очистке подвергается бензин или керосин. В кислом гудроне содержатся эфиры и спирты, которые образуются при взаимодействии кислоты с олефинами сульфокислоты, которые образуются прп сульфировании ароматики, нафтенов и фенолов соли, которые образуются при реакции кислоты с азотистыми основаниями нафтеновые кислоты, сернистые соединения и асфальтены, для которых серная кислота является селективным растворителелк К этому перечню соединений следует еще добавить продукты окислительно-восстановительных реакций, т. е. смолы и растворимые в кислоте углеводороды, а также воду и свободную серную кислоту. Гурвич [66] считает, что в кислом гудроне присутствует много непрочных соединений кислоты с углеводородами эти соединения легко разлагаются при хранении кислого гудрона или при разбавлении его водой. Очевидно, что соотношение между перечисленными компонентами кислого гудрона будет различным в различных конкретных случаях и зависит как от природы очищаемого нефтепродукта, так и от технологического режима очистки и от крепости применяемой кислоты. [c.236]

    Процессы очистки нефтепродуктов основаны на освобождении их от нежелательных компонентов с целью получения товарных нефтепродуктов высокого качества. К нежелательным компонентам относятся, например, при производстве реактивных и дизельных топлив сернистые соединения, ароматические углеводороды и высокозасты- [c.198]

    При активировании глины серной кислотой не обязательно применять свежую кислоту. Для этой цели пригодна регенерированная кислота от про-н,ессов очистки нефтепродуктов, содержащая не более 1—2 % углерода, считая на серную кислоту (моногидрат). Для обеспечения достаточной механической прочности таблетки активированной глины должны подвергаться сжатию под высоким давлением, порядка 20—40 МПа. 1 ежим теплового активирования определяется условиями процессов ката.титического крекинга и регенерации отработанной активированной глины, причем, как правило, после промывок глина переносится па полотняные фильтры и сушится при комнатной температуре до воздушно-сухого состояния, ( ушку можно ускорить, выдерживая отжатую на фильтре глину в сушильном шкафу при температуре 100 °С, по при этом глину нужно предварительно таблети-ровать. [c.94]

    В настоящее время трудно найти такую отрасль нефтепереработки и нефтехимии, в которой не использовались бы катализаторы. Кроме каталитического крекинга катализаторы применяются в процессах алкилировапия, гидрогенизации, полимеризации и др. облагораживание бензинов (риформинг) и контактную очистку нефтепродуктов также проводят в присутствии катализаторов. Эффективность действия катализаторов зависит от характеристики вторичной пористой структуры, величины и свойств внутренней поверхности, а также от химической природы и размеров молекул реагирующего вещества. [c.13]

    Цель работы. Целью работы являлась интенсификация и совершенствование процессов очистки нефтепродуктов от сернистых соединений с использованием отечественных катализаторов на существующих промышленных установках, освоение процесса Изоселекториформинга и разработка новой технологии получения базового компонента авиационного бензина Б-91/115, обладающего высокой детонационной стойкостью при относительно низком содержании ароматических углеводородов, близкого по фракционному составу товарному авиабензину. [c.5]

    На основании проведенных исследований и опьпа промышленной эксплуатации разработана, спроектирована и построена на Куйбьнпевском НПЗ комплексная схема очистки нефтепродуктов от меркаптанов в составе новой установки АВТ-5. [c.87]

    При щелочной очистке нефтепродуктов, природного газа и газового конденсата от серусодержащих соединений образуются щелочные сточные воды, содержащие сульфиды и смеси низших алкилмеркапти-дов. Эти сточные воды плохо поддаются переработке и создают неблагоприятную экологическую обстановку вокруг нефте- и газоперерабатывающих заводов. [c.148]

    Серная кислота — один из важнейших продуктов химической промышленности. В СССР ежегодно производят миллионы тонн Н2804. Серная кислота используется в производстве фосфорных удобрений, для очистки нефтепродуктов (от сернистых соединений, которые сульфируются легче углеводородов), в органическом син-. тезе (нитрование смесью Н1Ч0з + Н2504, сульфирование и другие процессы), Е гидрометаллургии  [c.455]

Химический энциклопедический словарь (1983) -- [ c.12 , c.132 , c.133 , c.273 , c.520 ]

Общая химическая технология органических веществ (1966) -- [ c.51 ]

Технология переработки нефти и газа (1966) -- [ c.0 ]

Общая химическая технология (1964) -- [ c.476 , c.478 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.12 , c.132 , c.133 , c.273 , c.520 ]

Основы технологии органических веществ (1959) -- [ c.136 ]

Химическая литература Библиографический справочник (1953) -- [ c.332 ]

Общая химическая технология органических веществ (1955) -- [ c.104 , c.169 ]

Технология переработки нефти и газа Часть 3 (1967) -- [ c.0 ]

Основы технологии органических веществ (1959) -- [ c.136 ]

Общие свойства и первичные методы переработки нефти и газа Издание 3 Часть 1 (1972) -- [ c.12 ]

Общая химическая технология (1977) -- [ c.317 , c.318 ]

Общая химическая технология Том 1 (1953) -- [ c.235 ]

chem21.info

Химическая очистка нефтепродуктов серной кислотой

    Способ химической очистки нефтепродуктов серной кислотой был изобретен братьями Дубиниными в двадцатых годах XIX столетия и впервые применялся в России. [c.19]

    Характерная черта физических методов — отсутствие химических изменений разделяемых компонентов. Химические методы разделения в отличие от физических связаны с химическим изменением по крайней мере одного из компонентов разделяемой смеси. Примером химического метода является очистка нефтепродуктов серной кислотой. Ароматические компоненты смеси при этом сульфируются, а получающиеся сульфоновые кислоты растворяются в избытке серной кислоты, не смешивающейся с нефтью. [c.13]

    В качестве реагентов для химической очистки нефтепродуктов был испробован целый ряд веществ, но лишь немногие из них выдержали испытание временем и нефтезаводской практикой. Наиболее прочно утвердились лишь серная кислота (предложенная для очистки нефтепродуктов еще в 1855 г. [1]), водные растворы щелочей и еще несколько веществ, применяемых для нейтрализации активных сернистых соединений. За последние годы в производстве смазочных масел сернокислотная очистка все больше вытесняется селективной и контактной очисткой. Для очистки более глубокой, чем та, которая достигается нри сернокислотном методе, был применен безводный хлористый алюминий. Гидрогенизационный метод очистки от серы и улучшения качества нефтепродуктов был разработан еще в 1930 г., однако широкое внедрение этого метода в промышленную практику началось примерно в 1955 г., когда появился доступный и дешевый водород с установок каталитического риформинга. [c.222]

    Тарельчатые быстроходные центрифуги. Для очистки смазочных и топливных масел, регенерации серной кислоты из кислого гудрона при химической очистке нефтепродуктов, удаления воды из топлив для реактивных двигателей и т. д. применяют тарельчатые быстроходные центрифуги. [c.89]

    Эти компоненты удаляются обработкой разнообразными реагентами серной кислотой и щелочью, хлоридами металлов, растворами гипохлорита натрия, водородом под давлением и т. д. Процесс носит название химической очистки нефтепродуктов. Часто применяются физические методы очистки отбеливающими глинами и селективными растворителями. [c.243]

    Появление сернистого газа в воздухе вызывается главным образом сжиганием в промышленности и в быту топлива, содержащего серу. Загрязнение воздуха сернистым газом происходит также при обжиге и плавлении сернистых руд, при работах в кузнечных, литейных, плавильных, прокатных и других цехах металлургического производства, при химических процессах производства серной кислоты, получения сульфитов, при отбеливании шерсти, шелка в случае применения сернистого газа как дезинфицирующего средства, а также в рефрижераторах, при очистке нефтепродуктов, при изготовлении резины, при производстве удобрений, при получении доменного, коксового, светильного газов и при других промышленных процессах. [c.41]

    Но узкие рамки этой темы не могли удовлетворить пытливый ум исследователя. От частного вопроса улучшения нефтяных компонентов гарного масла он переходит к общей проблеме переработки и очистки нефти. В 1911 г. его внимание сосредоточивается на отходах химической очистки продуктов первичной переработки нефти. Цель этой очистки заключалась в удалении из нефтепродуктов примесей, из-за которых продукты приобретали неприятный запах, темный цвет, становились нестойкими к действию кислорода воздуха. Старейшим методом химической очистки нефтепродуктов, применяемым с момента возникновения нефтяной промышленности, была обработка серной кислотой с последующей нейтрализацией остатка серной кислоты щелочью. Такая очистка была, пожалуй, наиболее слабым местом всего нефтеперерабатывающего производства. Требовалась тщательная очистка от образующихся на этой стадии отходов в виде сульфокислот (органические вещества, содержащие группу ЗОзН), так как даже небольшая примесь их вызывала осмоление готовых продуктов. Кроме того, при щелочном промывании готового продукта суль- [c.21]

    До недавнего времени на нефтеперерабатывающих заводах старались не извлекать и утилизировать сернистые соединения нефтей, а разрушать и возможно полнее удалять их из товарных продуктов в основном с целью предотвращения коррозии аппаратуры и оборудования в процессах переработки нефти и применения нефтепродуктов. Сернистые соединения моторных топлив снижают их химическую стабильность и полноту сгорания, придают неприятный запах и вызывают коррозию двигателей. В бензинах, кроме того, они понижают антидетонационные свойства и приемистость к тетраэтилсвинцу, который добавляется для повышения качества. В настоящее время лучшим способом обессериваниЯ нефтяных фракций и остатков от перегонки нефтей является очистка в присутствии катализаторов и под давлением водорода. При этом сернистые соединения превращаются в сероводород, который затем улавливают и утилизируют с получением серной кислоты и элементарной серы. [c.29]

    В присутствии платинового катализатора она около 400°С протекает слева направо практически нацело. Образующийся SO3 улавливают крепкой серной кислотой. Стоимость производства по контактному способу несколько выше, чем по нитрозному, зато серная кислота получается сколь угодно крепкой и очень чистой. Последнее обусловлено тщательной предварительной очисткой образующихся при сжигании пирита газов, что необходимо для обеспечения нормальной работы катализатора. Основными потребителями контактной серной кислоты являются различные химические производства и нефтепромышленность (для очистки нефтепродуктов). Доля контактного метода в общей продукции серной кислоты с каждым годом все более возрастает, [c.318]

    Сернокислотная очистка. Обработка жидких нефтепродуктов крепкой серной кислотой (реже газообразным 50з) — наиболее старый, универсальный и распространенный химический метод очистки. Одновременно он является одним из наиболее неудобных и дорогих процессов. При взаимодействии серной кислоты с нефтепродуктом получают окисленный, иначе кислый, нефтепродукт и отходы — кислый гудрон и сернистый ангидрид. [c.288]

    Серная кислота является одним из важнейших продуктов химической промышленности. Ее расходуют в огромных количествах для производства минеральных удобрений (суперфосфат, сульфат аммония), используют для приготовления других кислот из их солей, при производстве взрывчатых веществ, в больших количествах ее употребляют в нефтяной промышленности, для очистки нефтепродуктов. Концентрированная серная кислота является катализатором в производстве синтетических волокон, пластмасс и т.д. За годы десятой пятилетки наблюдался неуклонный рост производства серной кислоты. Так, только в 1980 г. получено 23 млн. т серной кислоты, что составило 103% к количеству кислоты, изготовленной в 1979 г. [c.295]

    Очистка прямогонных нефтяных дистиллятов раствором щелочи (щелочная очистка) позволяет удалить из них кислые органические соединения (нафтеновые кислоты, фенолы), легкие сернистые соединения (сероводород, низшие меркаптаны), а также остатки серной кислоты, если перед этим дистиллят подвергался кислотной очистке. Очистка осуществляется смешением нефтепродукта с 15-20%-м водным раствором гидроксида натрия (едкого натра), за счет химического взаимодействия которого с указанными выше нежелательными примесями последние нейтрализуются  [c.434]

    Защита водоемов от загрязнений нефтепродуктами и химическими веществами, содержащимися в сточных водах. Сокращением потерь нефтепродуктов со сточными водами одновременно достигается и защита водоемов от загрязнения. Но кроме нефтепродуктов в сточных водах содержится значительное количество ядовитых химических соединений, получающихся в результате переработки и очистки нефтепродуктов (сернистые щелоки, сероводород, серная кислота и пр.). Недостаточное внимание, уделяемое зачастую вопросам очистки сточных вод, приводит к тяжелым последствиям. Реки, в которые выпускаются сточные воды заводов, насто.пько загрязняются, что ниже заводов по течению не могут служить источником не только хозяйственно-питьевого, но и производственного водоснабжения. В связи с нарушением кислородного [c.4]

    Для очистки светлых нефтепродуктов применяются химические методы удаления нежелательных примесей различными реагентами (серной кислотой, щелочами), физико-химические методы (адсорбция глинами, селективное растворение), а также каталитические методы обработки. Кроме того, для очистки газов и жидких продуктов от сернистых соединений существуют различные специальные методы. Переходим к рассмотрению отдельных способов очистки. [c.353]

    Серная кислота по объему производства является одним из важнейших продуктов химической промышленности и по разнообразному применению стоит на первом месте. Она необходима для производства минеральных кислот, солей и минеральных удобрений, получение которых составляет так называемую основную химическую промышленность. Поэтому по производству серной кислоты можно судить об общем развитии химической промышленности. Кроме того, ее используют и в других отраслях народного хозяйства в металлургии — для получения цветных металлов в машиностроении — для травления металлов в нефтеперерабатывающей промышленности — для очистки нефтепродуктов (бензина, керосина, [c.104]

    Применение и производство серной кислот ы. Серная кислота является одним из важнейших продуктов химической промышленности. Ее расходуют в огромных количествах для производства минеральных удобрений (суперфосфат, сульфат аммония), используют для приготовления других кислот из их солей, при производстве взрывчатых веществ, в больших количествах ее "употребляют в нефтяной промышленности, для очистки нефтепродуктов. Концентрированная серная кислота является катализатором в производстве синтетических волокон, пластмасс и т. д. [c.235]

    Серная кислота окисляет меркаптаны и тиоэфиры, содержащиеся в нефтепродуктах, сама при этом восстанавливаясь до сернистого газа. Сероводород, особенно если его много, окисляется серной кислотой до элементарной серы, которая растворяется в углеводородах дестиллата и может быть удалена лишь специальными способами очистки. Кроме химического взаимодействия с сернистыми соединениями, серная кислота растворяет их. [c.105]

    Применение. Серная кислота по объему производства — один из важнейших продуктов химической промышленности и по разнообразному применению стоит на первом месте. Она необходима для производства минеральных кислот, солей и минеральных удобрений, получение которых составляет так называемую основную химическую промышленность. Поэтому по производству серной кислоты можно судить об общем развитии химической промышленности. Кроме того, ее используют и в других отраслях народного хозяйства в металлургии — для получения цветных металлов в машиностроении — для травления металлов в нефтеперерабатывающей промышленности — для очистки нефтепродуктов (бензина, керосина, смазочных масел) в производстве искусственного волокна, пластических масс, красителей, фармацевтических и парфюмерных продуктов в текстильном и кожевенном производстве в пищевой промышленности — для получения патоки в производстве ядохимикатов и во многих других отраслях. [c.149]

    Производство серной кислоты. Серная кислота является одним из важнейших продуктов химической промышленности. Она используется для производства многих химических соединений минеральных удобрений, соляной и плавиковой кислот, железного и медного купороса, красок, порохов, эфира, глюкозы, вискозного шелка, целлофана, кино- и фотопленки. Серная кислота применяется для очистки нефтепродуктов (бензина, керосина, масел), для извлечения урана из руд, для травления металлов и нанесения покрытий. Огромные количества серной кислоты используются при изготовлении таких минеральных удобрений, как суперфосфат и сульфат аммония. [c.163]

    В производственных сточных водах нефтеперерабатывающих заводов содержится значительное количество и других вредных для водоема химических загрязнений, поступающих в воду в результате переработки нефти и очистки нефтепродуктов (сернистые щелочи, сероводород, серная кислота и др.). Недостаточное внимание к вопросам очистки сточных вод от этих загрязнений может привести к тяжелым последствиям. Этого можно избежать, если и для таких сточных вод запроектировать и построить соответствующие очистные сооружения и правильно их эксплуатировать. [c.7]

    Существуют химические и физические методы очистки нефтепродуктов. К химическим методам относятся очистка серной кислотой и гидроочистка, а к физическим — адсорбционные и абсорбционные методы очистки. [c.317]

    Серная кислота — главнейший продукт основной химической промышленности. Поэтому она занимает по выработке первое место среди неорганических кислот. Основным потребителем серной кислоты является производство минеральных удобрений— суперфосфата и сульфатов аммония и калия. Для этого может применяться как башенная (75—76% Н25 04), так и контактная (92,5—94%) серная кислота. Контактную кислоту используют для очистки нефтепродуктов, коксохимических продуктов, а также цветных металлов. Серной кислотой сульфируют органические соединения полученные вещества хорошо растворимы в воде (красители, лекарства, моющие средства и др.) ее применяют также при выработке вискозного волокна и как катализатор в промышленности органического синтеза. Для этого используют как контактную кислоту, так и дымящую (олеум). Ее применяют в качестве водоотнимающего средства в реакциях нитрования при производстве нитробензола, нитроцеллюлозы, нитроглицерина и т. д. Серная кислота сильная и малолетучая, поэтому она способна вытеснять летучие или слабые кислоты из их солей, что используется в производстве фтороводорода, хлороводорода, хлорной, фосфорной и борной кислот. Разбавленная горячая серная кислота хорошо растворяет оксиды металлов, и ее используют для травления металлов — очистки их, особенно железа, от оксидов. [c.34]

    Применение серной кислоты. Серная кислота по широкому, и разнообразному применению стоит на первом месте среди кислот. Она необходима для производства минеральных кислот, солей и минеральных удобрений, получение которых составляет так называемую основную химическую промышленносты Применяют серную кислоту и для изготовления ценных удобрений (например, сульфата аммония, суперфосфата и др.). Серная кислота используется в металлургии для получения цветных металлов, в машиностроении — для травления металлов, в нефтеперерабатывающей промышленности— для очистки нефтепродуктов бензина, керосина и смазочных масел. Она необходима при изготовлении многих взрывчатых веществ (бездымного пороха, тротила, нитроглицерина и ряда других), искусственного волокна, пластических масс, красок, лекарственных веществ, кожевенной, парфюмерной и в других отраслях промышленности. Будучи кислотой сильной и нелетучей, она применяется для получения других кислот соляной, плавиковой, фосфорной и т. д. Умеренно концетриро-ванная кислота (72—75%) применяется для приготовления пергаментной бумаги, а серная кислота с плотностью [c.274]

    Серная кислота является одним из важнейших продуктов основной химической промышленности. Наиболее крупным потребителем серной кислоты является про1мышленность минеральных удобрений, особенно фосфориых. Серная кислота в смеси с азотной широко применяется в многочисленных производствах для нитрования органических веществ. Большое количество крепкой серной кислоты расходуется в нефтяной промышленности для очистки бензинов, смазочных масел и других нефтепродуктов. Серная кислота применяется также в производстве сернокислых солей, в лакокрасочной промышленности и пр. [c.130]

    Серная кислота — один из важнейших продуктов химической промышленности. В СССР ежегодно производят миллионы тонн Н2804. Серная кислота используется в производстве фосфорных удобрений, для очистки нефтепродуктов (от сернистых соединений, которые сульфируются легче углеводородов), в органическом син-. тезе (нитрование смесью Н1Ч0з + Н2504, сульфирование и другие процессы), Е гидрометаллургии  [c.455]

    Пластификаторы. Один из методов получения изоляционного материала с заданными свойствами - это пластификация, т.е. введение в битум веществ, химически не взаимодействующих с ним, но образующих Гомогенную систему. Пластификаторы предназначены для повышения пластичности изоляционных материалов при нанесении их в условиях температур до -25 С. Пластификаторы считаются эффективными, если при введении их в битум наряду с приданием мастике упругопластичных свойств наблюдается минимальное снижение вязкости и температуры размягчения. Лучшими пластификаторами являются полимерные продукты - полнизобутилен с различной относительной молекулярной массой и полидиен. Менее эффективны а) масло осевое - неочищенные смазочные масла прямой перегонки нефти с кинематической вязкостью при температуре 50 °С 0,12-0,52 см /с содержанием механических примесей не более 0,07 % и воды не более 0,4 %, температурой вспышки не ниже 135 °С и температурой застывания не выше -55 °С б) масло зеленое - продукт пиролиза нефтепродуктов плотностью около 970 кг/м , с содержанием серы не более 1 % и воды не более 0,2 % в) лакойль - смесь полимеризованных углеводородов пиролиза нефти и кислого гудрона, получаемого при очистке легкого масла серной кислотой с вязкостью при 50 С от 0,035 до 0,16 см /с, температурой вспышки не ниже 35 С, содержанием воды не более 2 % г) масла автотракторные (автолы), трансформаторные. [c.81]

    Серная кислота - один иэ важнейших продуктов химической промышленности. Она используется в производстве фос4юрных удобрений, для очистки нефтепродуктов (от сернистых соединений, которые сульфируются легче углеводородов), в органическом синтезе (нитрование смесью HNOa + HiSO , сульфирование и другие процессы), в гидрометаллургии. [c.446]

    Серная кислота — один из самых важных продуктов химической индустрии. Главный потребитель серной кислоты — промышленность минеральных удобрений кроме того, Нз504 необходима в производстве вискозы, красителей, взрывчатых и лекарственных веществ. Серная кислота применяется для получения других кислот, многих металлов и неметаллов, сульфатов, используется для очистки нефтепродуктов, минеральных масел, жиров. В химической промышленности в органическом синтезе серная кислота выполняет роль окислителя, осушителя и сульфирующего агента. Наконец, Н2504 (плотностью 1,15—1,25 г/см ) используется в качестве электролита в свинцовых аккумуляторах. [c.327]

    h3SO4 — важнейший продукт химической промышленности. Большинство химических соединений получается при прямом или косвенном ее участии. Серная кислота используется в производстве H I, СНзСООН, фосфорных удобрений, взрывчатых веществ, органических красителей, лекарственных препаратов, для очистки нефтепродуктов, в гидрометаллургии, органическом синтезе и т. д. [c.365]

    Работа электроразделптеля основана на сочетании очистки химическими реагентами (серная кислота, олеум, растворы щелочей) или промывки водой нефтепродукта при оптимальной ин- [c.200]

    Химические свойства. В химическом отношении алканы мало активны, за что и были названы парафинами от лат. рагит аШшз — лишенные сродства. Известный русский химик М. И. Коновалов (1858—1906 гг.) образно называл парафины химическими мертвецами за их пассивность. Однако инертность парафинов проявляется лишь к ионным реагентам. На них не действуют концентрированные кислоты (азотная, серная и др.), расплавленные и концентрированные щелочи, обычные окислители (перманганат калия, хромовая смесь). Металлы, даже щелочные, не вытесняют водород из этих соединений. Эти свойства используются на практике, например, щелочные металлы хранят в керосине, различные металлические изделия с целью предохранения их от коррозии покрывают смазочными маслами, концентрированную серную кислоту и концентрированные щелочи используют для очистки нефтепродуктов и др. [c.47]

    В нефтеперерабатывающей промышленности Соединенных Штатов почти с момента ее возникновения использовали технот логию химического и других производств. Одной из первых возникла проблема удаления соединений серы. Для успешного разрешения этой проблемы применялись методы химической очистки. Переработка нефти, таким образом, развилась с годами от простой перегонки и обработки серной кислотой до огромной по своему объему химической промышленности, использующей в широких масштабах катализ и химическую технологию. Когда возникли требования на большие количества более специализированных и высококачественных нефтепродуктов, были разработаны каталитические методы. В частности, так обстояло дело в отношении легких топлив. [c.581]

    Серная кислота — самый многотоннажный продукт химической промышленности. Мировое производство ее составляет более 46 млн. т в год. Она находит широкое применение в различных отраслях народного хозяйства. В основной химической промышленности серная кислота используется для производства фосфорных удобрений, минеральных кислот (фосфорной, плавиковой, борной), сернокислых солей различных металлов, а также в производстве красителей, минеральных пигментов и других соединений. Значительное количество серной кислоты, особенно в виде олеума, потребляется в промышленности органического синтеза, анилиновых красителей, синтетических материалов и волокон. С ее по-мош,ью очищают нефтепродукты и продукты, получаемые из каменноугольной смолы. В цветной металлургии серная кислота применяется при гидрометаллургической переработке руд, в металлобрабатывающей промышленности — для очистки поверхности металла от окисных пленок и во многих других отраслях промышленности. [c.167]

    Физико-химические свойства сернокислотных отходов в большой степени зависят от углеводородного состава нефтепродуктов, особенностей технологии переработки, а также от вида применяемого сульфирующего агента — серная кислота, олеум или газообразный триоксид серы. Основные физико-химические свойства кислого гудрона, получаемого при очистке жидкого парафина олез ом и триоксидом серы, по данным ГрозНИИ, приведены в табл. 2 [82]. [c.37]

chem21.info

Серная кислота очистка нефтепродуктов - Справочник химика 21

    Вторая крупная область применения серной кислоты — очистка нефтепродуктов. Серная кислота применяется в гидрометаллургии и металлообработке. Значительное количество ее расходуется при нитровании (в производстве взрывчатых веществ, красителей и фармацевтических препаратов) и для сульфирования. Серная кислота используется в производстве искусственного волокна. Она применяется такнполучения других кислот (соляной, фосфорной, борной, плавиковой, уксусной и др.) из соответствующих солей и для концентрирования азотной кислоты. Для этих целей требуется концентрированная серная кислота (например, 92%-ная), олеум (раствор трехокиси серы в безводной серной кислоте), а в ряде производств и трехокись серы. [c.373]     Сернокислотная очистка. Обработка жидких нефтепродуктов крепкой серной кислотой (реже газообразным 50з) — наиболее старый, универсальный и распространенный химический метод очистки. Одновременно он является одним из наиболее неудобных и дорогих процессов. При взаимодействии серной кислоты с нефтепродуктом получают окисленный, иначе кислый, нефтепродукт и отходы — кислый гудрон и сернистый ангидрид. [c.288]

    По технологической схеме нефтеперерабатывающего завода далее следует очистка полученных дистиллятов для удаления из нефтепродуктов тех веществ, которые портят цвет и запах или же являются источником смолообразования. Существует целый ряд методов и способов очистки, выбор которых в каждом конкретном случае зависит от природы перерабатываемой нефти, характера очищаемого дистиллята (полупродукта, фракции) и потребных качеств выпускаемого товарного продукта. Наиболее распространенными методами являются очистка концентрированной или даже дымящей серной кислотой, очистка раствором едкого натра (защелачивание), очистка раствором плюмбита натрия и очистка отбеливающими землями или аналогичными адсорбентами. [c.445]

    Кислые стоки, загрязненные серной кислотой и нефтепродуктами, подвергаются механической очистке в нефтеловушке и вбрасываются в водоем без дальнейшей обработки. [c.208]

    Очистка серной кислотой других нефтепродуктов (кроме масел) практически не применяется. [c.269]

    Концентрация серной кислоты после реактора снижается до 85—87 % (масс.). Такую кислоту можно использовать для очистки нефтепродуктов (в частности, масел), для производства деэмульгаторов или передать на регенерацию. [c.62]

    В нефтеперерабатывающей промышленности олеум (раствор триоксида серы 80з в серной кислоте) используют для доочистки н-парафинов от ароматических углеводородов, очистки нефтепродуктов от сернистых и непредельных органических соединений. [c.114]

    Кислые продукты в основном представляют собой либо органические кислоты (нафтеновые), являющиеся составной частью нефтей, либо кислоты, образовавшиеся нод влиянием кислорода воздуха при окислении нефтепродуктов в процессе их храпения и эксплуатации, либо минеральные кислоты (главным образом серная кислота), появляющиеся в результате недостаточно полной нейтрализации нефтепродуктов после кислотной очистки последних. [c.175]

    В качестве реагентов для химической очистки нефтепродуктов был испробован целый ряд веществ, но лишь немногие из них выдержали испытание временем и нефтезаводской практикой. Наиболее прочно утвердились лишь серная кислота (предложенная для очистки нефтепродуктов еще в 1855 г. [1]), водные растворы щелочей и еще несколько веществ, применяемых для нейтрализации активных сернистых соединений. За последние годы в производстве смазочных масел сернокислотная очистка все больше вытесняется селективной и контактной очисткой. Для очистки более глубокой, чем та, которая достигается нри сернокислотном методе, был применен безводный хлористый алюминий. Гидрогенизационный метод очистки от серы и улучшения качества нефтепродуктов был разработан еще в 1930 г., однако широкое внедрение этого метода в промышленную практику началось примерно в 1955 г., когда появился доступный и дешевый водород с установок каталитического риформинга. [c.222]

    ОЧИСТКА НЕФТЕПРОДУКТОВ СЕРНОЙ КИСЛОТОЙ [c.223]

    Примерно до 1930 г. очистка серной кислотой была почти универсальным методом очистки для всех видов нефтепродуктов, особенно для крекинг-бензинов, керосина и масляных дистиллятов. Крекинг-дистиллят обрабатывался серной кислотой для того, чтобы обеспечить его стабильность против окисления (которое ведет к образованию смол и порче цвета), а также, если нужно было, — для уменьшения содержания сернистых соединений. Однако сернокислотная очистка сопровождалась суш ественными потерями нефтепродуктов в результате полимеризации и растворения в кислоте. [c.223]

    Реакции серной кислоты с углеводородными смесями весьма сложны. Вещества, подлежащие удалению, обычно содержатся в очищаемом нефтепродукте в весьма малом количестве, но для того чтобы очистка была эффективной, расход кислоты должен быть во много раз большим. Поэтому неизбежно взаимодействие кислоты и с теми соединениями, которые должны остаться в очищаемом нефтепродукте. [c.223]

    Светлые нефтепродукты. Как уже говорилось выше, обработка крекинг-дистиллятов серной кислотой связана с потерями нефтепродукта. Эти потери вызываются как реакциями между кислотой и углеводородами, так и полимеризацией, в результате которой получаются продукты тяжелее бензина. Последнее обстоятельство вызывает необходимость во вторичной перегонке очищенного дистиллята. Если при очистке работают с охлаждением [c.227]

    В следующем параграфе рассматривается применение хлора в виде гипохлорита для очистки от активной серы. В ходе разработки этого процесса больших трудов стоило найти способы предотвращения прямого хлорирования. Так как качества большинства нефтепродуктов при длительном хранении ухудшаются в результате окисления, то были предприняты попытки очищать нефтепродукты от нестабильных компонентов путем селективного их окисления. Для этой цели были испробованы кислород, озон и даже азотная кислота, но должной селективности окисления не удалось добиться. Реакция формальдегида и серной кислоты с ненасыщенными циклическими углеводородами [75—80, 98], когда-то считалась перспективной, но и она не получила промышленного применения. [c.238]

    Коэффициент расширения уменьшается с очисткой нефтепродуктов так, машинный дистиллят до очистки имел а=0,000609 при 10—20° С и после обработки серной кислотой и обесцвечивания флоридином а=0,000599. [c.62]

    Ценнейший вклад в науку о нефти и методах ее переработки внес выдающийся химик-нефтяник Л. Г. Гурвич. В своей книге Научные основы переработки нефти , выдержавшей четыре издания, переведенной на многие иностранные языки, Л. Г. Гурвич критически сопоставил и обобщил литературные и экспериментальные данные по химии и переработке нефти. Оригинальными являются воззрения Л. Г. Гурвича о действии водяного пара и роли вакуума при перегонке мазута, о роли серной кислоты и щелочи при очистке нефтепродуктов. Он исследовал обесцвечивающую способность отбеливающих глин по отношению к нефтепродуктам, обнаружил при этом помимо адсорбционных свойств каталитическое (полимери-зующее) действие естественных алюмосиликатов и разработал теоретические основы адсорбционной очистки масел. Л. Г. Гурвич установил закономерности, лежащие в основе современной хроматографии и каталитического крекинга на алюмосиликатных катализаторах. [c.12]

    До недавнего времени на нефтеперерабатывающих заводах старались не извлекать и утилизировать сернистые соединения нефтей, а разрушать и возможно полнее удалять их из товарных продуктов в основном с целью предотвращения коррозии аппаратуры и оборудования в процессах переработки нефти и применения нефтепродуктов. Сернистые соединения моторных топлив снижают их химическую стабильность и полноту сгорания, придают неприятный запах и вызывают коррозию двигателей. В бензинах, кроме того, они понижают антидетонационные свойства и приемистость к тетраэтилсвинцу, который добавляется для повышения качества. В настоящее время лучшим способом обессериваниЯ нефтяных фракций и остатков от перегонки нефтей является очистка в присутствии катализаторов и под давлением водорода. При этом сернистые соединения превращаются в сероводород, который затем улавливают и утилизируют с получением серной кислоты и элементарной серы. [c.29]

    Тарельчатые быстроходные центрифуги. Для очистки смазочных и топливных масел, регенерации серной кислоты из кислого гудрона при химической очистке нефтепродуктов, удаления воды из топлив для реактивных двигателей и т. д. применяют тарельчатые быстроходные центрифуги. [c.89]

    Метод облагораживания нефтепродуктов путем очистки серной кислотой был весьма распространен. Однако он имел следующие недостатки большая длительность отстоя кислых гудронов, а также отработанных щелочей и промывных вод в стадии нейтрализации, в связи с чем (а также из-за образования относительно стойких эмульсий) требовалось иметь большие емкости для отстоя коррозия аппаратуры невозможность использования кислого гудрона. Поэтому очистка серной кислотой была заменена другими методами. [c.186]

    Следовательно, при очистке серной кислотой даже худшего вида вакуумного газойля материальный баланс каталитического крекинга улучшается. Кроме того, улучшение соотношения выходов кокса и светлых нефтепродуктов делает такую очистку особенно эффективной на действующих установках, где производительность и глубина каталитического крекинга лимитируются коксовой нагрузкой регенераторов. Установлено, что улучшение материального баланса и качества продуктов крекинга достигается при очистке кислотой концентрацией 95% и расходе 2 объемн. %  [c.191]

    В Советском Союзе имеются громадные месторождения сульфатов кальция и натрия, которые пока что не используются в производстве серной кислоты, т. е. являются потенциальным сырьем. Необходимо также использовать гипс, который является отходом производства фосфорной кислоты путем воздействия серной кислоты на природные фосфаты кальция. При травлении стали серная кислота превращается в сульфаты железа. При очистке нефтепродуктов остается кислый гудрон, содержащий серную кислоту. В ряде органических производств получается в виде отхода разбавленная серная кислота, сильно загрязненная органическими примесями. Все эти и им подобные отходы производств, содержащие серную кислоту или ее соли, при нагревании в присутствии восстановителей дают диоксид серы, который можно перерабатывать на серную кислоту. [c.118]

    В конце 30-х —начале 40-х годов, когда в промышленную практику начал внедряться процесс сернокислотного алкилирования, стоимость кислоты была низкой, а потребности в алкилате ограниченными кроме того, отработанный катализатор можно было использовать в других процессах, например для очистки бензинов и смазочных масел [1]. Поэтому и не было особой нужды в регенерации катализатора. К тому же в ходе исследований процесса алкилирования было показано, что существовавшие тогда процессы регенерации серной кислоты, используемой для очистки нефтепродуктов, можно проводить и для регенерации катализатора алкилирования с получением свежей серной кислоты любой заданной концентрации. [c.224]

    Ввиду роста ироизводства жидкой безводной фтористоводородной кислоты, применяемой в настоящее время в промышленных условиях для целей алкилировання (наряду с серной и фосфорной кислотами), нельзя исключать вероятности ее использования также и для целей очистки нефтепродуктов от серы. [c.317]

    Как избирательно действующий реагент серная кислота применяется преимущественно нри низких температурах (20—40° С). Доочистку масел, полученных пз остаточных продуктов (гудронов), производят серной кислотой при температуре 60—70° С. Качество очищенных серной кислотой нефтепродуктов и их выходы в сильной степени зависят от температуры процесса. Поэтому выбор оптимальных температур очистки для каждого продукта, как правило, обосновывается опытными данными. [c.116]

    Для очистки светлых нефтепродуктов от непредельных углеводородов применяют крепкую серную кислоту (92—96%). Она реаги- [c.262]

    Наиболее масштабным и самым крупным в истории канадской нефтеперерабатывающей промышленности является проект модернизации завода компании Irving Oil Ltd. в г. Сент-Джон, провинция Новый Брансуик. Нынешняя мощность НПЗ — 12 млн. т/год. На модернизацию завода намечено израсходовать 1 млрд. канадских долл., с тем чтобы удовлетворить растущие экологические требования и выпускать в 2002—2004 гг. бензин с содержанием серы 150 ррт, а в 2005 г. — 30 ррт, а также малосернистое дизельное топливо зимних сортов. Кроме этого целью проекта модернизации является увеличение гибкости технологических процессов, реализация возможности переработки более тяжелых и менее качественных нефтей, плюс общий рост эффективности производства. Суть модернизации в строительстве новых установок прямой перегонки, каталитического крекинга и алкилирования, пяти установок, предназначенных для улучшения экологической ситуации на заводе и повышения качества нефтепродуктов (скрубберы для топливных газов, регенерации серной кислоты, очистки хвостовых газов от серы, аминовой экстракции серы и отпарки кислых стоков). Кроме этого, намечено серьезно улучшить энерге- [c.86]

    Сернокис-лотная очистка свет1ых нефтеп1И)дуктов. При взаимодействии серной кислоты с нефтепродуктом получают очищенный нефтепродукт и отходы — кислый гудрон и сернистый ангидрид. Чаще очищенный продукт называют окисленным или кислым вследствие присутствия в нем мелких капель серной кислоты, а также растворенных соединений серной кислоты. [c.292]

    ОЧИСТКА ТОПЛИВ СЕРНОЙ КИСЛОТОЙ — очистка, шэиме-няемая для удаления из бензинов, лигроинов, керосинов и дизельных топлив кислородных, сернистых и азотистых соединений, а также части непредельных углеводородов. Чем больше к-ты взято для очистки и чем выше крепость серной к-ты, тем лучше очистка и тем полнее извлекаются из нефтепродуктов непредельные углеводороды и сернистые соединения. [c.439]

    Повсеместно применяется обработка смазочных масел вязкостью от 100 до 300 единиц по Сейболту при 38° дымящей серной кислотой для получения медицинских масел. В качестве побочных продуктов получаются сульфокислоты или их нейтральные натриевые, кальциевые или бариевые соли. Нефтяные сульфокислоты, получаемые таким образом, в промышленности называются зелеными водорастворимыми кислотами и махогэни кислотами, растворимыми в нефтепродуктах [1]. Первые получаются главным образом из масел низкой вязкости и имеют более низкие молекулярные веса, чем махогэни кислоты, молекулярные веса которых составляют 400—525. Они, по-видимому, получаются из компонентов смазочного масла, содержащих ароматическое кольцо. Выход сульфокислот колеблется в пределах 5 —10% в зависимости от условий очистки, но потери масла на кислоту могут составлять и от 30 до 45%. Со времени появления смазочных масел, получаемых методом очистки при помощи избирательно действующих растворителей, парафиновые рафинаты дают гораздо более высокие выходы белых масел до 80—90%, а экстракты дают более высокие выходы сульфокислот, чем исходные смазочные масла. Соли нефтяных сульфоновых кислот ( махогэни ) также растворимы в нефтепродуктах и являются эффективными ингибиторами коррозии в маслах и петролатумах. [c.99]

    Позднее были разработаны другие методы обеспечения антиокислительной стабильности, которые, будучи вполне приемлемыми с практической точки зрения, в то же время не сопровождались потерями нефтепродукта. Как уже говорилось выше, очистка при помош и селективных растворителей вытеснила сернокислотную очистку в производстве смазочных масел. Появились также методы получения товарных керосинов из высокоароматизиров ан-ных фракций, что не всегда удавалось при сернокислотном методе очистки. Обработка серной кислотой сохранилась как метод очистки для высококипяш,их фракций крекинг-бензинов, для керосинов парафинистого основания, для дешевых разновидностей смазочных масел и для получения специальных видов нефтепродуктов, таких как инсектицидные лигроины, медицинские белые масла и электроизоляционные масла. Важное значение имеет также производство сульфокислот из масляных дистиллятов. В то же время в связи с распространением каталитического гидрирования серная кислота, но-видимому, утратит свое значение реагента сероочистки. [c.223]

    Разбавленная серная кислота, например 75%-ной концентрации, заполимеризует диолефины и удалит вещества, портящие цвет нефтепродукта, но не сможет обеспечить очистки дистиллята от серы [12, 40—45]. Удаление олефинов из бензина вызывает уменьшение октанового числа, в то время как очистка от сернистых соединений улучшает приемистость бензина к тетраэтилсвинцу. Таким образом, суммарный эффект очистки в отношении октанового числа может оказаться равным нулю [46]. В нефтезаводской практике наблюдались случаи, когда в результате сернокислотной-очистки у крекинг-дистиллята, полученного из парафинового сырья, октановое число снижалось, а у крекинг-дистил-лята, полученного из ароматизированного газойля, октановое число повышалось. [c.229]

    Кислый гудрон, образующийся при сернокислотной очистке нефтепродуктов, имеет очень сложную природу, даже когда очистке подвергается бензин или керосин. В кислом гудроне содержатся эфиры и спирты, которые образуются при взаимодействии кислоты с олефинами сульфокислоты, которые образуются прп сульфировании ароматики, нафтенов и фенолов соли, которые образуются при реакции кислоты с азотистыми основаниями нафтеновые кислоты, сернистые соединения и асфальтены, для которых серная кислота является селективным растворителелк К этому перечню соединений следует еще добавить продукты окислительно-восстановительных реакций, т. е. смолы и растворимые в кислоте углеводороды, а также воду и свободную серную кислоту. Гурвич [66] считает, что в кислом гудроне присутствует много непрочных соединений кислоты с углеводородами эти соединения легко разлагаются при хранении кислого гудрона или при разбавлении его водой. Очевидно, что соотношение между перечисленными компонентами кислого гудрона будет различным в различных конкретных случаях и зависит как от природы очищаемого нефтепродукта, так и от технологического режима очистки и от крепости применяемой кислоты. [c.236]

    Растворимости инсектицидов, содержащих хлор, часто способствует некоторая доза вспомогательного растворителя, богатого метилнафталпнами. Углеводородный растворитель, используемый в бытовых инсектицидах, представляет собой лигроин с высокой температурой вспышки (65° С) и пределами кипения 190— 250° С. Этот лигроин должен быть подвергнут глубокой очистке концентрированной серной кислотой. Нефтепродукты, предназначенные для распыливания в быту и в животноводстве, выпускаются также для распыливания из аэрозольных контейнеров, [c.568]

    При активировании глины серной кислотой не обязательно применять свежую кислоту. Для этой цели пригодна регенерированная кислота от про-н,ессов очистки нефтепродуктов, содержащая не более 1—2 % углерода, считая на серную кислоту (моногидрат). Для обеспечения достаточной механической прочности таблетки активированной глины должны подвергаться сжатию под высоким давлением, порядка 20—40 МПа. 1 ежим теплового активирования определяется условиями процессов ката.титического крекинга и регенерации отработанной активированной глины, причем, как правило, после промывок глина переносится па полотняные фильтры и сушится при комнатной температуре до воздушно-сухого состояния, ( ушку можно ускорить, выдерживая отжатую на фильтре глину в сушильном шкафу при температуре 100 °С, по при этом глину нужно предварительно таблети-ровать. [c.94]

    Серная кислота — один из важнейших продуктов химической промышленности. В СССР ежегодно производят миллионы тонн Н2804. Серная кислота используется в производстве фосфорных удобрений, для очистки нефтепродуктов (от сернистых соединений, которые сульфируются легче углеводородов), в органическом син-. тезе (нитрование смесью Н1Ч0з + Н2504, сульфирование и другие процессы), Е гидрометаллургии  [c.455]

    Технологичаское оформление процесса очистки. Длительное время легкие нефтепродукты при очистке последовательно обрабатывали серной кислотой, щелочью и промывали водой в периодически действующих мешалках. По мере развития процесса очистки мешалки были заменены системой отстойников со смесительными устройствами. Кислотнощелочную очистку парафинов до 1965 г. проводили в периодических мешалках, реагенты перемешивали сжатым воздухом, а кислый гудрон отделяли отстоем или на центрифугах. [c.218]

    Серная кислота широко применяется в производстве цветных и редких металлов. В металлообрабатывающей промышленности серную кислоту или ее соли применяют для травления стальных изделий перед их окраской, лужением, никелированием, хромированием и т. п. Значительные количества серной кислоты затрачиваются на очистку нефтепродуктов. Получение ряда красителей (для тканей), лаков и красок (для зданий и м ашин), лекарственных веществ и некоторых пластических масс также связано с применением серной кислоты [c.114]

    Щелочная очистка (защелачивание) предназначена для удаления из нефтепродуктов кислых н сернистых соедииений. В дистиллятах могут содержаться следуюидие кислые соединения 1) нафтеновые и жирные кислоты, а так процессах вторичной переработки 2) кислоты, появиЕШиеся в продукте после его сернокислотной очистки, а именно а) свободная серная кислота, взвешенная в дистилляте, 6) кислые эфиры серной кислоты, [c.318]

    Часть солей задерживается в нефтепродукте, для их удаления обработанный щелочью дистиллят промывается водой. Водную промывку также проводят перед защслачиваиием дистиллята, прошедшего сернокислотную очистку, чтобы удалить остатки серной кислоты и кислых эфиров. [c.318]

    Первый и основной способ — очистка топлив серной кислотой. Преимуи],ество этого способа состоит в его простоте. Аппаратура и технологические приемы сернокислотной очистки нефтепродуктов широко освоены. Однако в практике производства дизельных топлив этот способ очистки от сернистых соединений ъ ирокого применения не получил из-за недостаточной его эффективности. Для понижения содержания серы в топливе с 1,0 до 0,2% потребуется расход серной кислоты не менее 20—25% от количества топлива. При расходе серной кислоты 10—14% содержание серы в топливе можно понизить до 0,5—0,6%. [c.141]

    Прием и хранение щелочи (рис. VIII.8). Щелочь на НПЗ применяется для удаления сероводорода и низших меркаптанов из сжиженных газов, бензиновых и керосиновых дистиллятов, для подщелачивания нефти, удаления из нефтепродуктов следов серной кислоты и кислых продуктов реакции после сернокислотной очистки, а также для нейтрализации кислых стоков. [c.232]

    Кроме описанных, нефти и нефтепродукты могут содержать сернистые соединения, появляющиеся в результате очистки нефтяных дистиллятов. К пим относятся кислые и средние эфиры серной кислоты, а также сульфокислоты. Кислые эфиры, образующиеся но нигкеследующей схеме, представляют собой лсильными кислотными свойствами, весьма нестойкие к термическому воздействию  [c.382]

    В качестве сульфирующего агента при очистке нефтепродуктов используется не только сама серная кислота, но и смеси ее разного состава [13]. Выбору необходимой концентрации кислоты уделяется особое внимание. Обычно для очистки применяют 92—96%-ную кислоту. Если необходимо получить бесцветные масла (медицинские, парфюмерные), то применяют дымящую серную кислоту. При действии на асфальтены серной кислоты образуются соедв ния, не растворяющиеся в бензоле и хлороформе и растворяшщиеся в пиридине. Маркуссон относил последние к оксониевьпи соединениям. [c.116]

    Кислотно-щелочная очистка, заключающаяся в обработке нефтепродукта серной кислотой и последующей нейтрализации раствором щелочи. При этом происходит удаление непредельщлх углеводородов, смол и некоторых других нежелательных примесей. [c.261]

    Весьма перспективным является второй путь повышения содержания ссры в коксе, позволяющий вовлекать в кокс кислые гудроны, отработанную кислоту и получать ВОС с 8—10% серы. Создание безотходной технологии в неф тепере-рабатывающей и нефтехимической промышленности, широко использующей процессы и методы очистки нефтепродуктов, основанные на применении в качестве катализатора и реагег7та серной кислоты, является важной народнохозяйственной проблемой. Утилизация сернокислотных отходов (около 7з ресурсов отработанной кислоты и зд кислых гудронов) важна не только с точки зрения рационального использования сырья, содержащего серу,— особенно большое значение имеет ликвидация сбросов стоков, содержащих серу, в открытые водоемы. [c.231]

chem21.info

Химическая очистка нефтепродуктов - Справочник химика 21

    Тарельчатые быстроходные центрифуги. Для очистки смазочных и топливных масел, регенерации серной кислоты из кислого гудрона при химической очистке нефтепродуктов, удаления воды из топлив для реактивных двигателей и т. д. применяют тарельчатые быстроходные центрифуги. [c.89]

    Для очистки применяются как химические, так и физико-химические методы. При химической очистке нефтепродукт обрабатывают реагентом, взаимодействующим с удаляемой примесью, которая при этом разрушается или уплотняется (зачастую до полного осмоления). Реагент в таких случаях обычно теряется. Физико-химические методы очистки основаны на том, что реагент, не смешивающийся с очищаемым продуктом, растворяет или сорбирует примеси, которые таким образом удаляются из нефтепродукта. При последующей регенерации очистного реагента поглощенная им примесь выделяется в неизменном виде или разрушается. Если применяемый очистной агент обладает каталитическим действием, вызывающим уплотнение или другие изменения примесей, облегчающие их удаление, очистка называется каталитической. [c.52]

    В качестве реагентов для химической очистки нефтепродуктов был испробован целый ряд веществ, но лишь немногие из них выдержали испытание временем и нефтезаводской практикой. Наиболее прочно утвердились лишь серная кислота (предложенная для очистки нефтепродуктов еще в 1855 г. [1]), водные растворы щелочей и еще несколько веществ, применяемых для нейтрализации активных сернистых соединений. За последние годы в производстве смазочных масел сернокислотная очистка все больше вытесняется селективной и контактной очисткой. Для очистки более глубокой, чем та, которая достигается нри сернокислотном методе, был применен безводный хлористый алюминий. Гидрогенизационный метод очистки от серы и улучшения качества нефтепродуктов был разработан еще в 1930 г., однако широкое внедрение этого метода в промышленную практику началось примерно в 1955 г., когда появился доступный и дешевый водород с установок каталитического риформинга. [c.222]

    В сборнике помещены статьи, в которых освещены расчетно-теоретические, экспериментальные и методические исследования в области ректификации, химической очистки нефтепродуктов и улучшения их свойств синтезы новых препаратов, поверхностно-активных веществ и их испытаний, применение некоторых катализаторов, ресурсы нефтехимического сырья и меры по сокращению их потерь и другие. [c.2]

    Эти компоненты удаляются обработкой разнообразными реагентами серной кислотой и щелочью, хлоридами металлов, растворами гипохлорита натрия, водородом под давлением и т. д. Процесс носит название химической очистки нефтепродуктов. Часто применяются физические методы очистки отбеливающими глинами и селективными растворителями. [c.243]

    Но узкие рамки этой темы не могли удовлетворить пытливый ум исследователя. От частного вопроса улучшения нефтяных компонентов гарного масла он переходит к общей проблеме переработки и очистки нефти. В 1911 г. его внимание сосредоточивается на отходах химической очистки продуктов первичной переработки нефти. Цель этой очистки заключалась в удалении из нефтепродуктов примесей, из-за которых продукты приобретали неприятный запах, темный цвет, становились нестойкими к действию кислорода воздуха. Старейшим методом химической очистки нефтепродуктов, применяемым с момента возникновения нефтяной промышленности, была обработка серной кислотой с последующей нейтрализацией остатка серной кислоты щелочью. Такая очистка была, пожалуй, наиболее слабым местом всего нефтеперерабатывающего производства. Требовалась тщательная очистка от образующихся на этой стадии отходов в виде сульфокислот (органические вещества, содержащие группу ЗОзН), так как даже небольшая примесь их вызывала осмоление готовых продуктов. Кроме того, при щелочном промывании готового продукта суль- [c.21]

    Способ химической очистки нефтепродуктов серной кислотой был изобретен братьями Дубиниными в двадцатых годах XIX столетия и впервые применялся в России. [c.19]

chem21.info

Прочие химические методы очистки нефтепродуктов

из "Технология переработки нефти"

Со времени существования нефтеперерабатывающей промышленности множество химических веществ подвергалось испытанию на предмет их пригодности для очистки нефтепродуктов. В этом отношении наиболее интересны те химические соединения, которые активно реагируют с нестабильными углеводородами, подлежащими удалению из нефтепродукта. В большинстве случаев испытывавшиеся вещества оказывались непригодными для применения, так как они не обнаруживали достаточной селективности и реагировали также и с ценными компонентами очищаемого нефтепродукта. [c.238] В следующем параграфе рассматривается применение хлора в виде гипохлорита для очистки от активной серы. В ходе разработки этого процесса больших трудов стоило найти способы предотвращения прямого хлорирования. Так как качества большинства нефтепродуктов при длительном хранении ухудшаются в результате окисления, то были предприняты попытки очищать нефтепродукты от нестабильных компонентов путем селективного их окисления. Для этой цели были испробованы кислород, озон и даже азотная кислота, но должной селективности окисления не удалось добиться. Реакция формальдегида и серной кислоты с ненасыщенными циклическими углеводородами [75—80, 98], когда-то считалась перспективной, но и она не получила промышленного применения. [c.238] Крафтса, например хлорид цинка [82], трехфтористый бор [83 и безводный треххлористый алюминий. Последний селективно поли-меризует реакционноспособные олефины и одновременно переводит сернистые соединения в легко удаляемые комплексы химизм превращений, которым при этом подвергаются сернистые соединения, очень сложен, так как одновременно протекает целая серия первичных и вторичных реакций. Подвергалась изучению глубина сероочистки хлористым алюминием для различных типов сернистых соединений [84]. В общем случае 1 г хлористого алюминия на 100 мл сильно разбавленного раствора сернистых соединений в лигроине (нафте) удаляет от одной трети до половины сернистых соединений. Для некоторых сульфидов очистка идет еще глубже. Катализат подвергается затем вторичной перегонке, при которой содержание сернистых соединений еще больше снижается, так как большая часть исходных сернистых соединений превратилась в высококипящие комплексы. Хлористый алюминий применяется в промышленном масштабе для глубокой очистки специальных сортов смазочных масел. [c.239] При окислении меркаптанов каждый получающийся дисульфид по температуре кипеппя тяжелее исходного меркаптана, однако низшие дисульфиды попадают в пределы кипения бензина. Освободиться от дисульфидов путем ректификации невозможно и, за исключением нескольких особых случаев, очищенный продукт содержит столько же серы, сколько он содержал до очистки. По сравнению с меркаптанами алкилдисульфиды менее неприятны, но и они небезвредны. Исследования показали, что алкилдисульфиды (особенно н-пропилдисульфид) вместе с элементарной серой вызывают помутнение и порчу цвета бензина на свету [97]. Ингибитором, замедляющим помутнение и порчу цвета этилированного бензина, является лецитин. [c.240] Расход едкого натра составляет 12,5 г NaOH на 100 мл раствора. Очищаемый дистиллят перемешивается с докторским раствором в присутствии небольшого количества элементарной серы. При этом образуется черный осадок сульфида свинца. Неприятный занах бензина нри очистке исчезает, и он становится нейтральным [85, 99, 100]. Хотя о том, что индивидуальные меркаптаны в щелочной среде окисляются серой при комнатной температуре, было известно уже давно [102], прошло много лет, пока механизм докторской очистки стал окончательно ясен [47, 103]. [c.240] В заводской практике бензины перед докторской очисткой подвергают обычному защелачиванию, чтобы полностью удалить сероводород, а также часть низкомолекулярных меркаптанов. В результате предварительного защелачивания снижается потребный расход плюмбитного раствора. [c.240] После добавления серы в количестве, потребном для протекания вышеприведенной реакции, бензпн становится нейтральным , т. е. не содержащим активной серы. Практически приходится подавать небольшой избыток серы по сравнению с теоретически необходимым количеством, так как часть серы расходуется на образование комплексных соединений свинца [105, 106]. Сульфид свинца образуется в виде мелкодисперсной суспензии, и для ее осаждения требуется время от нескольких часов до суток. [c.240] Можно уменьшить стабильность суспензии и сократить необходимое время отстоя, если добавить к бензину некоторый избыток элементарной серы. Практически этот избыток количественно расположен между тем минимумом, который достаточен для быстрого осаждения суспензии, и тем максимумом, за которым бензин начнет проявлять положительную пробу при испытании на медной пластинке. [c.241] Рис IV-5. Влияние количества элементарной серы, добавляемой при докторской очистке, на приемистость бензина к ингибитору. [c.243] При докторской очистке (включая регенерацию) потери свинца очень незначительны. Основными статьями расхода являются щелочь и сера. [c.244] В последнее время докторскую очистку стали комбинировать с очисткой сульфидом свинца, основанной на косвенном окислении последнего кислородом воздуха. Ниже излагается сущность процесса. [c.244] При очистке бензинов с высоким содержанием меркаптанов приходится нагнетать очень больп1ие количества воздуха, что в свою очередь связано с интенсивным образованием плюмбита и серы. В таких случаях в раствор одновременно вводят строго дозируемое количество водного раствора сульфида натрия, который конвертирует избыточный плюмбит обратно в сульфид свинца. Образование избыточной элементарной серы — явление нежелательное, поэтому рекомендуется тщательно регулировать расход воздуха на окисление. Сульфид свинца в этом процессе по существу играет роль катализатора, так как химически поглощается только кислород. Практически все же имеют место некоторые потери щелочи, которая превращается в сульфат и тиосульфат натрия. [c.245] Очистка хлоридом меди. В этом процессе для превращения меркаптанов в дисульфиды используется окислительная способность, свойственная медным солям. Меркаптаны непосредственно окисляются в дисульфиды, минуя промежуточные стадии. Поэтому очистка обходится без введения в систему элементарной серы извне, и полисульфиды не образуются. В промышленной практике работают с хлоридом меди в концентрированном солевом растворе. Последний приготавливается посредством растворения сульфата меди в водном растворе хлористого натра [88, 117 — 120]. [c.245] Хлорид меди растворим в солевом растворе, и выпадеиик осадка не происходит. Практически некоторое количество меди теряется с очищенным бензином, вероятно, в виде меркаптидов меди или в виде комплексных соединений хлорида меди с олефинами. Для удаления меди очищенный бензин промывают водным раствором сульфида натрия. Иногда бывает необходимой добавка к бензину дезактиваторов меди ими обычно служат циклизующие (келатирующие) агенты [122—125]. Как видно из приведенных выше уравнений реакций, продувка раствора воздухом регенерирует хлорид одновалентной меди в исходный хлорид двувалентной меди. [c.245] Очистка с помощью ингибиторов. Кислые дистилляты, содержащие менее 0,02% вес. активной серы, могут быть успешно очищены от нее так называемым методом ингибирования. [c.245]

Вернуться к основной статье

chem21.info