3.3. Химические процессы переработки нефти. Химические реакции с нефтью


3.3. Химические процессы переработки нефти

В результате фракционной разгонки нефти из неё удаётся выделить 5-25 % бензина и до 20 % керосина. Сравнительно малый выход этих продуктов и постоянно возрастающая в них потребность послужили причиной широкого применения химических, так называемых деструктивных методов переработки нефти (крекинга, пиролиза, риформинга), позволяющих расщеплением больших молекул получить из нефтяных фракций дополнительные количества светлых нефтепродуктов с улучшенными свойствами. Количество получаемого из нефти бензина увеличивают, подвергая часть менее необходимых нефтепродуктов (мазут, газойль, соляровое масло, полугудрон и др.) крекингу, - расщеплению их при нагревании до 420-550 0С, часто в присутствии катализаторов. Это позволяет повысить общий выход бензина в несколько раз и довести его до 40-50% и даже до 70%.

Впервые возможность технического использования процесса деструктивного разложения нефти и нефтепродуктов была установлена исследованиями Д.И. Менделеева и А.А. Летнего. В 1890 г. В.Г. Шухов разработал схему процесса и конструкцию основных аппаратов для проведения крекинга под давлением. Применение крекинга началось лишь с 1913 г. в США, а в СССР - в годы первой пятилетки.

3.3.1. Термический крекинг, пиролиз и коксование

Простейшим промышленным методом расщепления тяжёлых углеводородов нефти в лёгкие является термический крекинг - расщепление больших молекул этих углеводородов под действием тепла и образование меньших молекул более лёгких углеводородов. Однако расщепление молекул в процессе крекинга протекает хаотически и не может быть проведено направленно с получением углеводородов заданного строения. Частично это достигается при ведении процесса в присутствии специально подобранных катализаторов, т.е. при каталитическом крекинге. Дальнейшие преобразования строения углеводородов, полученных в результате крекинга, осуществляются в процессах риформинга.

Крекинг является в химическом отношении сложным процессом, так как сырьё представляет смесь многих углеводородов, и они подвергаются превращениям в различных направлениях.

Однако можно установить некоторые закономерности в поведении отдельных классов углеводородов при высоких температурах.

Алканы при высоких температурах в основном подвергаются реакции расщепления с разрывом связи между углеродными атомами. В результате расщепления и одновременно происходящего перемещения атомов водорода образуются новые молекулы предельных и непредельных углеводородов с более низкой молекулярной массой:

У низших алканов наблюдается также дегидрирование и распад с разрывом связи у конца углеродной цепи.

Изоалканы термически менее устойчивы, чем алканы нормального строения:

При крекинге циклоалканов происходят реакции:

  1. деалкилирование (отщепление алкильных боковых цепей):

  1. распад кольца с образованием алкенов и диеновых углеводородов, а также алканов:

  1. дегидрирование шестичленных нафтенов с превращением в арены:

Арены с углеводородными цепями в условиях крекинга деалкилируются. При этом происходит образование простых аренов и алкенов, например, из этилбензола образуются бензол и этилен:

Помимо этого, у аренов протекают реакции конденсации, преимущественно с участием непредельных углеводородов, что постепенно приводит к образованию углеводородов с весьма большим числом бензольных колец и малым содержанием водорода, т. е. к образованию кокса.

Непредельные углеводороды, образующиеся при крекинге, могут в соответствующих условиях полимеризоваться или отщеплять мелкие молекулы более высокой непредельности:

Кроме того, они могут вступать в реакции алкилирования, изомеризации, циклизации как с друг другом, так и с другими углеводородами с образованием углеводородов изостроения, нафтенов и аренов. Повышение температуры снижает прочность углеводородов, причём термическая устойчивость алканов падает при переходе к высшим членам гомологического ряда. Следовательно, при нагревании в первую очередь происходит расщепление углеводородов с длинными цепями.

С повышением температуры место разрыва связи С-С сдвигается к краю цепи с образованием углеводородов с короткими цепями вплоть до метана. Однако и метан при температурах выше 820 0C начинает разлагаться на углерод и водород. Таким образом, повышение температуры увеличивает выход газообразных продуктов. Если сравнить скорости превращений отдельных групп углеводородов, то окажется следующая последовательность их разложения: алканы - циклоалканы - арены. Следовательно, повышение температуры способствует накоплению аренов в продуктах крекинга.

Повышение давления сдвигает равновесие реакций расщепления углеводородов, протекающих с увеличением объёма и образованием газообразных продуктов справа налево. В соответствии с этим, если стремятся увеличить выход жидких продуктов, то процесс проводят под повышенным давлением и, наоборот, если желательно получать больше газов, осуществляют крекинг при пониженном давлении.

Термический крекинг подразделяется на жидкофазный (переработка тяжёлых фракций и остатков от переработки нефти, а также лёгких фракций - лигроина, керосина, газойля при 460-560 0С и давлении 2-7 МПа) и парофазный (переработка гудрона, битума и крекинг-остатков при 550-600 0С и нормальном давлении).

Принципиально технология заключается в том, что сырьё нагревается в трубчатых печах до температуры, при которой крекинг углеводородов протекает с достаточной скоростью, а затем продукты крекинга разделяются ректификацией. В результате термического крекинга получают бензин, газы и крекинг-остаток.

Значение термического крекинга среди других химических методов переработки нефти и нефтепродуктов в настоящее время ниже, чем это было 20-25 лет назад. Тем не менее этот процесс до сих пор применяется для переработки тяжёлых нефтяных остатков. Так, например, при термическом крекинге мазута получают следующий средний выход продуктов (%): крекинг-бензина 30-35; крекинг-газов 10-15; крекинг-остатка 50-55.

Бензины термического крекинга обладают более высокой детонационной стойкостью, чем некоторые бензины прямой гонки, благодаря наличию в них ароматических и разветвлённых углеводородов. Октановое число таких бензинов около 70. Присутствие в крекинг-бензинах реакционно-способных непредельных углеводородов делает их менее стабильными, чем бензины прямой гонки.

Газы термического крекинга - смесь предельных и непредельных углеводородов: этана, этилена, пропана, пропилена, бутанов, бутиленов, пентанов и др. - служат сырьём для химических синтезов. Крекинг-остаток используется главным образом как котельное топливо.

В случае, если целевым продуктом термических процессов должен быть не бензин, а газы и жидкие ароматические углеводороды, используется пиролиз.

В отличие от термического крекинга при пиролизе расщепление углеводородов происходит в паровой фазе при атмосферном давлении и повышенной до 670-720 0С температуре. В результате глубокого распада и вторичных реакций синтеза из керосина или легкого газойля получают до 50 % газа, ароматические углеводороды и смолу. Газы пиролиза отличаются от газов крекинга повышенным содержанием этилена, пропилена, бутадиена. Из жидких продуктов пиролиза получают бензол, толуол, ксилол, зелёное масло (применяется в производстве сажи), нафталиновое масло, из которого выделяется нафталин, и пек-сырьё для получения кокса. Высоковязкие нефтяные остатки используют для переработки коксованием.

Коксование - процесс глубокого разложения нефтяных остатков без доступа воздуха при атмосферном давлении и температуре 450-500 0С. Коксованием мазута, битума, гудрона, смолы, крекинг остатков и других отходов удаётся максимально увеличить выход светлых нефтепродуктов. При этом из высоковязких остатков наряду с беззольным нефтяным коксом, применяемым как топливо и сырьё для производства электродов, получают газ, автомобильный бензин, дизельное и котельное топливо. Однако образующийся при коксовании автомобильный бензин имеет низкое качество и невысокие антидетонационные свойства. Для повышения октанового числа такого бензина его подвергают риформингу.

studfiles.net

1. Происхождение нефти

Истоки современных представлений о происхождении нефти возникли в XVIII — начале XIX века. М. В. Ломоносов заложил гипотезы органического происхождения нефти, объясняя ее образование воздействием «подземного огня» на «окаменелые уголья», в результате чего, по его мнению, образовывались асфальты, нефти и «каменные масла». Идея о минеральном происхождении нефти впервые была высказана А. Гумбольдтом в 1805 году.

Развитие химии, эксперименты по неорганическому синтезу углеводородов, проведенные М. Бертло (1866 г.), Г. Биассоном (1871 г.), послужили отправной точкой для развития гипотезы минерального происхождения.

Д. И. Менделеев, придерживавшийся до 1867 года представлений об органическом происхождении нефти, в 1877 году сформулировал известную гипотезу ее минерального происхождения, согласно которой нефть образуется на больших глубинах при высокой температуре вследствие взаимодействия воды с карбидами металлов. За прошедшее столетие накопилось огромное количество химических, геохимических и геологических данных, проливающих свет на проблему происхождения нефти. В настоящее время преобладающая часть ученых — химиков, геохимиков и геологов — считает наиболее обоснованными представления об органическом генезисе нефти, хотя имеются ученые, которые до сих пор отдают предпочтение минеральной гипотезе ее образования.

Все гипотезы минерального происхождения нефти объединяет идея синтеза углеводородов, кислородо-, серо- и азотосодержащих компонентов нефти из простых исходных веществ — С, Н2, СО, СО2, Сh5, Н2О и радикалов при высоких температурах и взаимодействии продуктов синтеза с минеральной частью глубинных пород.

Д. И. Менделеев считал, что основой процесса образования углеводородов является взаимодействие карбидов глубинных металлов с водой, которая проникает по трещинам с поверхности на большую глубину. Схема процесса представлялась следующим образом:

2FeC + ЗН2О = Fe2O3 + С2Н6.

Образовавшиеся в газообразном состоянии углеводороды, по мнению Д. И. Менделеева, поднимались затем в верхнюю холодную часть земной коры, где они конденсировались и накапливались в пористых осадочных породах. Карбиды металлов в то время в глубинных породах еще не были известны. В настоящее время предположение Д. И. Менделеева подтвердилось, в глубинных породах найдены карбиды ряда элементов (Fe3С, TiC, Сr2Сз, WC, SiC). Но крупных скоплений они не образуют; это мельчайшие (доли миллиметра) редко встречающиеся и рассеянные в породах минеральные выделения. Поэтому процесс образования углеводородов в огромных количествах, которые известны в природе, с этих позиций объяснить очень трудно. Не вызывает сомнений сейчас также то, что вода с поверхности по трещинам на большие глубины поступать не может. Но это и не существенно, флюидная фаза глубинных пород в определенных условиях содержит воду, поэтому в принципе ее взаимодействие с карбидами возможно. Вполне вероятно и образование простейших углеводородов, однако вряд ли это возможно в больших количествах.

В 1892 году М. А. Соколовым была выдвинута гипотеза космического происхождения нефти. Суть ее сводится к тому же минеральному синтезу углеводородов из простых веществ, но на первоначальной, космической стадии формирования Земли. Предполагалось, что образовавшиеся углеводороды находились в газовой оболочке, а по мере остывания поглощались породами формировавшейся земной коры. Высвобождаясь затем из остывавших магматических пород, углеводороды поднимались в верхнюю часть земной коры, где образовывали скопления. В основе этой гипотезы были данные о наличии углерода и водорода в хвостах комет и углеводородов в метеоритах.

В первой половине XX века интерес к гипотезе минерального происхождения нефти в основном был потерян. Поиски нефти велись во всем мире, исходя из представлений об ее органическом происхождении.

С 1950 года снова начал возрастать интерес к минеральной гипотезе, причиной чего была, по-видимому, недостаточная ясность в ряде вопросов органической концепции, что и вызвало ее критику. Наибольшую известность получили представления Н. А. Кудрявцева. Они заметно изменялись во времени, но сущность их заключается в том, что нефть и газ образуются в глубинных зонах Земли из смеси Н2СОСО2 и СН4 в результате реакций прямого синтеза углеводорода из СО и Н2:

СО + 3Н2 = СН4 + Н2,

а также полимеризация радикалов = СН, –СН2, Ch4. Предполагалось, что образование углеводородов происходит из реакционной смеси в раздробленных глубинными разломами участках литосферы. Прорыв находящихся под высоким давлением углеводородов вверх, в осадочную толщу, приводит к образованию залежей нефти и газа.

В поисках доказательств абиогенного синтеза нефти некоторые исследователи обращались к промышленным процессам получения синтетических топлив (типа синтеза Фишера-Тропша). Однако по мере углубления знаний о строении нефти отчетливо выявились глубокие различия в составе природных и синтетических углеводородных смесей. Последние практически не содержат широко представленных в нефтях сложнопостроенных углеводородных молекул, насыщенных структурных аналогов компонентов живого вещества — жирных кислот, терпинов, стиролов и т. д.

Ряд аргументов сторонников минерального происхождения нефти основан на термодинамических расчетах. Е. Б. Чикалюк попытался определить температуру нефтеобразования по соотношению между некоторыми изомерными углеводородами, допуская, что высокотемпературный синтез приводит к образованию термодинамически равновесных смесей. Рассчитанная таким образом температура нефтеобразования составила 450–900°С, что соответствует температуре глубинной зоне 100–160 км в пределах верхней мантии Земли.

Однако для тех же нефтей расчет по другим изомерным парам дает другие значения температуры, совершенно нереальные в условиях земной коры и мантии. В настоящее время доказано, что изомерные углеводороды нефтей являются неравновесными системами. С другой стороны, расчеты термодинамических свойств углеводородов в области очень высоких давлений весьма условны из-за необходимости прибегать к сверхдальним экстраполяциям.

В принципе в глубинных условиях Земли при наличии С и h3 синтез Сh5, его гомологов, а может быть, и некоторых более высокомолекулярных соединений, вполне возможно, и происходит. Но пока нет достаточных ни теоретических, ни экспериментальных данных, которые могли бы однозначно доказать возможности минерального синтеза такой сложной и закономерной по составу системы углеводородов, азото-, серо- и кислородосодержащих соединений, какой является природная нефть, которая обладает оптической активностью и весьма сходна по многим признакам на молекулярном и изотопном уровнях с живым веществом организмов и биоорганическим веществом осадочных пород.

Геологические доказательства минеральной гипотезы — наличие следов метана и некоторых нефтяных углеводородов в глубинных кристаллических породах, в газах и магмах, извергающихся из вулканов, проявления нефти и газа по некоторым глубинным разломам и т. п. — являются косвенными и всегда допускают двойную трактовку.

Внедряющиеся в земную кору глубинные породы расплавляют и ассимилируют осадочные породы с имеющимся в них биогенным органическим веществом, жерла вулканов также проходят через осадочные толщи, причем иногда регионально нефтегазоносные, поэтому находимые в них СН4 и некоторые другие нефтяные углеводороды могли образоваться не только в результате минерального синтеза, но и при термической деструкции захваченного биогенного органического вещества осадочных пород или при поступлении нефти в осадочные породы уже после остывания магматических пород. Но главное доказательство состоит в большом сходстве химических и геохимических показателей многих углеводородных и неуглеводородных соединений нефти с аналогичными компонентами живого вещества организмов и биогенного органического вещества современных осадков и древних осадочных пород.

Гениальная догадка М. В. Ломоносова об образовании нефти в результате воздействия повышенной температуры на биогенное органическое вещество осадочных пород начала получать подтверждение в конце XIX — начале XX веков при проведении экспериментальных химических и геологических исследований.

Энглер (1888 г.) при перегонке сельдевого жира получил коричневого цвета масла, горючие газы и воду. В легкой фракции масел содержались углеводороды от C5 до С9, во фракции больше 300°С — парафины, нафтены, олефины и ароматические углеводороды. Возникла гипотеза образования нефти из жиров животного происхождения.

В 1919 году Н. Д. Зелинский подверг перегонке озерный сапропелевый ил, почти нацело состоявший из растительного материала — остатков планктонных водорослей с высоким содержанием липидов. При этом были получены кокс, смолы, газ и пирогенетическая вода. Газ состоял из CН4, СO2, Н2 и h3S. Смола содержала бензин, керосин и тяжелые смолистые вещества. В бензине были обнаружены алканы, нафтены и арены, в керосине преобладали циклические полиметиленовые углеводороды. Полученная смесь углеводородов во многом была сходна с природной нефтью, тяжелые фракции обладали оптической активностью.

Оптическая активность — одно из фундаментальных свойств, общих для живого вещества, продуктов его преобразования и природных нефтей. При минеральном синтезе углеводородов возникают рацемические смеси, не обладающие оптической активностью, поскольку они не содержат равное количество лево- и правовращающихся молекул, что выгодно с позиций термодинамики (такая смесь характеризуется максимумом энтропии).

Для живой природы, напротив, характерна зеркальная асимметрия: все биогенные аминокислоты — левые, сахара — правые зеркальные изомеры. Оптическая асимметрия органических молекул — достаточное основание для утверждения о наличии живого вещества или продуктов его посмертного преобразования. С этих позиций оптически активная нефть может быть только продуктом биосферы, а не минерального синтеза. Оптическая активность нефтей связана главным образом с углеводородами типа тритерпанов и стеранов.

Получение оптически активных нефтеподобных продуктов при перегонке органического вещества планктонных водорослей послужило основой для гипотезы происхождения нефти из растительного материала. Этому способствовали и геологические исследования. При поисках и разведке нефтяных месторождений геологи уже в XIX веке стали отмечать частую приуроченность нефтяных залежей к древним морским отложениям, обогащенным сапропелевым органическим веществом, которые были названы нефтематеринскими.

Начиная с работ А. Д. Архангельского (1927 г.) и П. Д. Траска (1926–1932 гг.) развернулись исследования органического вещества современных осадков и древних осадочных пород. Значительное влияние на направление исследований оказал И. М. Губкин. Он подчеркивал, что широкое региональное распространение месторождений нефти в осадочных толщах заставляет отбросить любые возможные экзотические источники для образования нефти и считать, что источником нефти может быть только широко распространенное в осадочных породах рассеянное органическое вещество смешанного растительно-животного происхождения.

Детальные исследования выявили все большие черты сходства между углеводородами рассеянного органического вещества осадочных пород, названных Н. Б. Вассоевичем микронефтью, и нефтями из ее месторождений. Особое значение имело открытие в нефтях, унаследованных от животного вещества, биомолекул («химических ископаемых», по аналогии с палеонтологическими).

Важными «биогенными метками» являются свойственные живому веществу многие изопреноидные углеводороды, возникновение которых связывают с фитолом — периферическим структурным элементом молекулы хлорофилла. Благодаря большому сходству в молекулярной структуре между стероидами и стеранами, тритерпеноидами и тритерпанами живого вещества и нефтей их присутствие является надежным показателем органического генезиса нефти.

По стереохимическим особенностям нефтяные стераны и тритерпаны все-таки несколько отличаются от исходных биологических соединений, что связано с изменениями при термическом превращении пространственного строения одного или нескольких хиральных центров биомолекул. Пентоциклические тритерпены встречаются в основном в наземных растениях. В органическом веществе морских осадочных пород и в нефтях распространены тетрациклические углеводороды-стераны, свойственные сине-зеленым планктонным водорослям, которые явились одним их основных биопродуцентов при накоплении сапропелевого органического вещества в морских осадках в течение всего геологического времени.

К унаследованным биогенным структурам относятся и нормальные алканы. Содержание их в нефтях достигает 10–15, а иногда и 30%. Свидетельством образования н-алканов из биогенных жирных кислот являются случаи преобладания в малопреобразованных нефтях н-алканов с нечетным числом атомов углеводородов над «четными». Для живого вещества и образованного из него органического вещества осадков всегда характерно преобладание жирных кислот с четным числом атомов углерода.

Постепенное сглаживание этих первичных генетических признаков до примерно одинаковой концентрации «четных» и «нечетных» н-алканов и в органическом веществе нефти материнских пород и нефтезалежей происходит по мере нарастания глубины и температуры в недрах вследствие вторичных реакций.

Таким образом, по многим признакам на молекулярном уровне и наличию «биомаркеров» прослеживается связь между живым веществом организмов, органическим веществом осадочных нефтематеринских пород и нефтями в залежах. Суммарное количество унаследованных от живого вещества биогенных молекулярных структур иногда достигает в нефтях 30% от их массы.

Детальное изучение состава и распределения «биомаркеров» в органическом веществе осадочных пород и в нефтях позволяет не только утверждать органическое происхождение нефти, но даже определять для конкретных залежей, из каких именно отложений в них поступали нефтяные углеводороды при формировании месторождений.

Известно, что нефть распределена в осадочных толщах неравномерно, и это также понятно с позиций органической концепции ее образования. Исходное для нефти органическое вещество накапливалось в осадках в течение геологического времени неравномерно. Максимумам его накопления в девонских, юрско-меловых и третичных отложениях соответствуют максимальные массы образовавшихся рассеянных нефтяных углеводородов в нефтематеринских отложениях этого возраста и максимумы запасов нефти в открытых месторождениях.

Таким образом, все химические, геохимические и геологические данные с несомненностью свидетельствуют об органическом происхождении нефти.

Известно, что при нагревании сапропелевых сланцев до 150–170°С начинается слабое термическое разложение термического вещества, приводящее к повышению выхода экстрактивных веществ; при 200°С их образуется заметно больше, а при 370–400°С после нагревания в течение 1 часа уже до 60–80% органического вещества сланцы переходят в растворимое состояние. Образуется много асфальтово-смолистых веществ, содержащих все основные классы нефтяных углеводородов, а также газы (СO2, СН4, h3S) и пирогенетическая вода.

В принципе тот же самый процесс термического (или термокаталитического) разложения происходит и в природных условиях при погружении содержащих сапропелевое органическое вещество отложений под накапливающиеся над ними более молодыми осадками. Только в природных условиях он протекает крайне медленно, со скоростью погружения осадков обычно от 50–100 до 300 м/млн лет. Опускание на глубину 2–3 км, характеризующуюся большей частью залежей образовавшейся нефти и температурой до 150–160°С, осуществляется за время от 10 до 60 млн лет. Такой очень медленный природный «технологический» процесс термического превращения органического вещества с подъемом температуры на один градус Цельсия за 60–400 тыс. лет трудно себе представить, однако проведенные исследования подтверждают, что в природных условиях он действительно реализуется очень широко во многих впадинах, заполненных мощными толщами накопленных осадков. Детальные геолого-геохимические исследования позволили ученым проследить последовательные стадии этого процесса.

Балансовые расчеты термического превращения сапропелевого органического вещества и процессов эмиграции нефтяных углеводородов по полученным экспериментальным данным позволили создать теоретическую количественную модель образования нефти. Главная фаза нефтеобразования характеризуется максимальной скоростью генерации нефтяных углеводородов, обычно в глубинном диапазоне 2–3 км при температуре от 80–90 до 150–160°С. При низком геотермическом градиенте, медленном нарастании температуры с глубиной главной фазы нефтеобразования реализуется в более глубокой зоне, примерно до 6–8 км. Общее количество образующихся битуминозных веществ и нефтяных углеводородов превышает 30%, а количество эмигрировавшей в пористые пласты-коллекторы нефти достигает 20% от исходной массы сапропелевого органического вещества.

Всплывание нефти, вынесенной из глинистых нефтематеринских пород в водонасыщенные пористые пласты, приводит постепенно к образованию ее скоплений (залежей) в наиболее приподнятых участках пластов (на антиклинальных структурах). Процесс нефтеобразования и формирования ее залежей на этом заканчивается.

studfiles.net

Способ инициирования химических реакций в процессе переработки нефти и нефтепродуктов и устройство для его осуществления

 

Изобретение может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Сущность изобретения: способ включает в себя введение потока сырья в реакторную зону и облучение его электронами или протопами с одновременным дополнительным активированием процесса гамма-квантами. Устройство содержит ускоритель заряженных частиц и рабочую камеру с встроенным в нее устройством ввода пучка этих частиц и входным и выходным патрубками. В камере напротив устройства ввода установлена вольфрамовая мишень для получения вторичного гамма-излучения. Мишень выполнена в виде перегородки, разделяющей рабочую камеры на реакторную зону и зону активирования. Изобретение позволяет повысить эффективность процесса переработки и получать узкофракционные продукты высокого качества. 2 с. и 5 з.п.ф-лы, 2 ил.

Изобретение относится к способам получения продуктов переработки нефти и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Известен способ переработки нефти и ее фракций, включающий процесс очистки и разложения, при котором происходит отбор различных фракций, в том числе: бензина (авиационный или автомобильный), реактивное топливо, осветительный керосин, дизельное топливо, мазут и т.д. [И.П.Мухленов и др. Общая химическая технология: Учеб. для химико-техн.спец.вузов. Т.2. Важнейшие химические производства - М.: Высш. шк. 1984. с.55-71]. К недостаткам описанного способа следует отнести невысокий выход целевых продуктов за счет малой эффективности технологического процесса. Известны способы переработки углеводородного сырья с использованием различных видов излучений, например способ последовательного извлечения фракций из углеводородного материала с использованием электромагнитной энергии частотой 300 МГц-300 ГГц, которую подают в дефлектор. Направленная на углеводородный материал энергия способствует процессу переработки. Контроль температуры процесса и регулировка ее осуществляется путем изменения положения дефлектора. Углеводороды и другие продукты переработки последовательно разделяются на фракции и удаляются [2.Патент США N 5055180, МКИ C 10 G 1/00, НКИ 208-402, опубл. 08.10.91.] Недостатком способа является необходимость постоянного регулирования электромагнитной энергии в процессе крекирования продуктов реакции. Известен способ сжижения и экстракции ископаемого твердого топлива с применением гамма-излучения и растворителя, который включает гидрогенизацию твердого топлива, смешением его с растворителем-донором водорода, облучение смеси ионизирующем излучением, а затем экстрагирование углеводородов из реакционной смеси. Облучение активирует донор водорода и облегчает его взаимодействие с молекулярной структурой углеводородного компонента, в результате чего образуются углеводороды меньшей молекулярной массы, что увеличивает выход целевых продуктов при переработке горючего сланца, битуминизированных песков и каменного угля [3.Патент США N 4772379, МКИ C 10 G 1/00, НКИ 208-402, опубл.1988.] К недостаткам способа следует отнести то, что способ пригоден только для твердого топлива, при этом полученные углеводородные компоненты обладают недостаточно высоким качеством ввиду присутствия в них сернистых, смолистых и кислородсодержащих соединений. Известен также способ регулирования режима работы реактора каталитического крекинга с использованием ионизирующего излучения, при котором излучение ,,- частиц или поток нейтронов, направленный через зону перемещающегося продукта, позволяет измерить детектором его среднюю плотность, регулировать режим работы реактора и контролировать расход продуктов [4. Заявка Франции N 2655053, C 10 G 11/18, опубл. 31.05.91.] Однако в предлагаемом способе ионизирующее излучение используется только для измерения плотности и не влияет на протекание самих реакций. Наиболее близким аналогом заявляемому способу является способ инициирования химических реакций энергией возбуждения плазмы СВЧ-разряда при проведении крекинга углеводорода; включающий введение в реакционную зону потока жидкого углеводорода, при этом зону подвергают облучению СВЧ-энергией для непрерывного поддержания внутри реакционной зоны плазмы СВЧ-разряда с малой плотностью потока энергии [5. Патент США N 5015349, МKИ C 10 G 15/00; 11/02, НКИ 204-166, опубл. 14.05.91.] Недостатком этого способа является сложность удержания стабильности плазмы и соответственно обеспечения постоянства свойств получаемых продуктов и их высокого качества. Известна также принятая за прототип установка для облучения жидкости ускоренными электронами, содержащая электронный ускоритель с вертикально установленным раструбом, рабочую камеру в виде желоба с камерой охлаждения, патрубков для подвода и отвода облучаемой жидкости, патрубок для подвода хладагента в камеру охлаждения и выходной патрубок. На стенке камеры охлаждения расположен вибратор [6. Авторское свидетельство СССР N 1365135, M.кл. G 21 K 5/04, опубл. 07.01.88.] Недостатком установки является ее невысокая эффективность, т.к. жидкость обрабатывается только электронами, вырабатываемыми ускорителем, отсутствует процесс дополнительной активации. Предлагаемые способ и устройство инициирования химических реакций в процессе переработки нефти и нефтепродуктов решают задачу обеспечения высокого качества и постоянства свойств получаемых продуктов и повышения эффективности процессов переработки. Поставленная задача решена путем введения облучения обрабатываемого сырья электронами или протонами, а также дополнительной активации процесса путем вторичного облучения сырья гамма-квантами. Для этого в заявляемое устройство, содержащее ускоритель заряженных частиц, рабочую камеру с входным и выходным патрубками, камеру охлаждения и защитный радиационный экран вводят вольфрамовую перегородку, которая установлена напротив устройства ввода пучка заряженных частиц ускорителя, вмонтированного в стенку камеры. Указанная мишень выполнена в виде перегородки и разделяет рабочую камеру на реакторную зону и зону активирования. В устройство введена вторая перегородка, причем обе перегородки образуют окна для прохода потока обрабатываемого сырья, которые расположены у противолежащих стенок камеры так, что поток "змейкой" омывает обе перегородки. Кроме того, в зону активирования может быть введен катализатор. На фиг. 1 изображено устройство для инициирования химических реакций при переработке нефти и нефтепродуктов, на фиг. 2 - установка для пряной перегонки нефти. Устройство для инициирования включает ускоритель 1 заряженных частиц, устройство 2 ввода пучка заряженных частиц, представляющее берилловое окно, встроенное в стенку рабочей камеры 3, входной и выходной патрубки 4 и 5 для подвода и отвода обрабатываемого сырья, вольфрамовую мишень 6 с камерой охлаждения, размещенной во внутренней полости 7 мишени, перегородку 8 и защитный радиационный экран 9. Вольфрамовая мишень 6 выполнена в виде перегородки, установленной в рабочей камере 3 напротив устройства 2 ввода пучка заряженных частиц. Вольфрамовая мишень 6 и перегородка 8 контактируют каждая с тремя стенками рабочей камеры, образуя с четвертой стенкой камеры окна 10 и 11 для прохода потока обрабатываемого сырья. Окна 10 и 11 расположены у противолежащих стенок камеры, так что проходящий поток сырья омывает мишень и перегородку, которые разделяют рабочую камеру на три зоны: реакторную зону I, зону активирования II и выходную зону III. Камера зоны активирования II выполнена в виде лабиринтного устройства, обеспечивающего многократное прохождения потока в зоне воздействия гамма-квантов. В зоне активирования II между вольфрамовой мишенью 6 и перегородкой 8 при необходимости размещают гранулированный или порошковый катализатор, например, цеолитосодержащий. В этом случае рабочую камеру снабжают дополнительными патрубками для загрузки и выгрузки катализатора (на чертеже не показано). Внутренняя полость 7 вольфрамовой мишени 6 снабжена каналами для подвода и отвода хладагента, (например воды). Описанное устройство инициации 12 подключают к любым установкам переработки нефти и нефтепродуктов, например к установке прямой перегонки нефти (фиг. 2), при этом выходной патрубок 5 рабочей камеры соединяют с нижней частью ректификационной колонны 13. Способ инициирования осуществляют следующим образом. Поток подготовленной к переработке нефти или нефтепродуктов подводят через входной патрубок 4 и пропускают через устройство инициирования. При этом в реакторной зоне I поток сырья подвергают воздействию потока электронов иди протонов, проходящего в камеру от устройства 2 ввода пучка. При этом нефть или нефтепродукты разогреваются и начинается процесс их разложения. Далее поток сырья с ингредиентами - разложения через окно 10 попадает в зону активирования II, где происходит дополнительное активирование продуктов разложения как за счет воздействия гамма-квантов, выбиваемых из вольфрамовой мишени потоком электронов или протонов, так и за счет активационной способности катализатора. Далее поток нефти и продуктов разложения поступает на следующую технологическую операцию для дальнейшей переработки. Выходную мощность ускорителя заряженных частиц выбирают обычно в пределах от 1,5 до 10 МэВ, исходя из условий производительности и свойств сырьевого нефтепродукта. При воздействии потока электронов, протонов и гамма-квантов в потоке обрабатываемого сырья происходят химические реакции. Причем первичные реакции расщепления содержащихся в сырье углеводородов идут в условиях высоких температур (450-900oC) для известного способа. В предлагаемом способе парафиновые углеводороды расщепляются на более легкие при пониженных температурах (400-430oC). Заявляемые способ и устройство могут быть использованы на любой стадии переработки и при любом процессе, например: при прямой перегонке, крекинге, риформинге, гидроочистке и перед любым из этих процессов. Устройство может быть установлено на самоходное шасси, перемещаться к любому оборудованию и для его включения в работу достаточно подключить входной и выходной патрубки в технологическую линию и включить ускоритель. Пример 1. Исходное сырье (очищенная и обессоленная нефть) по входному патрубку 4 направляют в реакторную зону I, где оно контактирует с потоком электронов при мощности поглощенной дозы 65 кГр/с, нагреваясь до 400-420oC и частично разлагаясь, а затем поток нефти с продуктами разложения поступает в зону активирования II, проходя через поток гамма-квантов и слой порошкового цеолитосодержащего катализатора, продукты крекинга дополнительно разлагаются. Затем весь поток направляют через выходную зону III и патрубок 5 в зону кипящего слоя реактора-сепаратора, и далее в зону десорбции, где осуществляют отдувку продуктов крекинга с поверхности катализатора водяным паром. При этом отпадает необходимость в разогреве, а глубина разложения увеличивается, что обеспечивает повышение выхода светлых нефтепродуктов. Пример 2. Предварительно обессоленную и обезвоженную нефть пропускают через устройство, нагревая ее в I зоне электронами при мощности поглощенной дозы 45 кГр/с до температуры 340oC, облучают гамма-квантами во второй зоне, а затем производят атмосферно-вакуумную перегонку отдельных углеводородных групп. В результате глубоких химических деструктивных превращений элементов сырья под воздействием электронов и гамма-квантов обеспечивается снижение в 1,2 раза остаточного содержания непредельных углеводородов и повышения выхода легких и бензиновых фракций в 1,4 раза. Пример 3. Нефть насосом последовательно прокачивают через теплообменник 14 (фиг. 2), установки прямой перегонки нефти, где она отнимает теплоту от дистиллятов, подогреваясь до 170-175oC, и поступает в устройство инициирования 12 под избыточным давлением, которое создается насосом (на чертеже не показано). Из устройства 12 нефть при 300-350oC в парожидкостном состоянии подается в нижнюю часть ректификационной колонны 13, где давление снижается, происходит испарение фракций и отделение их от жидкого остатка-мазута. Пример 4. Нефть, идущую из скважины, подвергают воздействию пучка электронов, нагревают ее до 45-90oC, обрабатывают гамма-квантами до интегральной дозы 5103 Гр и осуществляют одновременно аэрацию. Использование предлагаемого технического решения улучшает качество нефти и снижает скорость коррозии нефтепроводов и резервуаров хранения, благодаря уменьшению образования сероводорода в добытой нефти. Таким образом, предлагаемое техническое решение обеспечивает увеличение глубины разложения нефтепродуктов с безусловным обеспечением постоянства и стабильности эффекта, гарантирующего стандартизацию качества получаемых узкофракционных продуктов с высокой степенью повторяемости. Все это в полной мере можно отнести к получению высококачественных моторных топлив, смазочных материалов и непредельных углеводородных соединений для химической промышленности.

Формула изобретения

1. Способ инициирования химических реакций в процессе переработки нефти и нефтепродуктов, включающий введение потока сырья в реакционную зону и его облучение, отличающийся тем, что облучение проводят электронами или протонами с одновременным активированием процесса гамма-квантами. 2. Устройство для инициирования химических реакций в процессе переработки нефти и нефтепродуктов, содержащее ускоритель заряженных частиц, рабочую камеру с входным и выходным патрубками, камеру охлаждения и защитный радиационный экран, отличающееся тем, что устройство ввода пучка заряженных частиц встроено в стенку камеры, а камера снабжена вольфрамовой мишенью, установленной напротив устройства ввода пучка заряженных частиц и выполненной в виде перегородки, разделяющей рабочую камеру на реакторную зону и зону активирования. 3. Устройство по п.2, отличающееся тем, что в рабочей камере перед выходным патрубком установлена дополнительная перегородка. 4. Устройство по пп.2 и 3, отличающееся тем, что вольфрамовая мишень и дополнительная перегородка соединены каждая с тремя стенками камеры и образуют окна для прохода потока обрабатываемого сырья. 5. Устройство по п.3, отличающееся тем, что камера охлаждения размещена во внутренней полости вольфрамовой мишени. 6. Устройство по п.2, отличающееся тем, что рабочая камера изготовлена в виде лабиринтного устройства и направляющих перегородок. 7. Устройство по п.2, отличающееся тем, что в рабочей камере между перегородками размещен катализатор.

РИСУНКИ

Рисунок 1, Рисунок 2

www.findpatent.ru

Физико-химические свойства нефти - страница 2

Соединения сырой нефти – это сложные вещества, состоящие из пяти элементов – C,

H, S, O и N, причем содержание этих элементов колеблется в пределах 82–87%

углерода, 11–15% водорода, 2,5–3% серы, 0,1–2% кислорода и 0,01–3% азота.

Углеводороды – основные компоненты нефти и природного газа. Простейший из них –

метан Ch5 – является основным компонентом природного газа. Все

углеводороды могут быть подразделены на алифатические (с открытой молекулярной

цепью) и циклические, а по степени ненасыщенности углеродных связей – на

парафины и циклопарафины, олефины, ацетилены и ароматические углеводороды.

Парафиновые углеводороды (общей формулы Cnh3n + 2)

относительно стабильны и неспособны к химическим взаимодействиям.

Соответствующие олефины (Cnh3n) и ацетилены (Cn

h3n – 2) обладают высокой химической активностью: минеральные

кислоты, хлор и кислород реагируют с ними и разрывают двойные и тройные связи

между атомами углерода и переводят их в простые одинарные; возможно, благодаря

их высокой реакционной способности такие углеводороды отсутствуют в природной

нефти. Соединения с двойными и тройными связями образуются в крекинг-процессе

при удалении водорода из парафиновых углеводородов во время деструкции

последних при высоких температурах. Циклопарафины составляют важную часть

большинства нефти.

Они имеют то же относительное количество атомов углерода и водорода, что и

олефины. Циклопарафины (называемые также нафтенами) менее реакционноспособны,

чем олефины, но более чем парафины с открытой углеродной цепью. Часто они

представляют собой главную составную часть низкокипящих дистиллятов, таких,

как бензин, керосин и лигроин, полученных из сырой нефти.

                              Классификация нефти.                             

Классификации нефти строятся на различной основе. Как правило, это генетические

и технологические классификации. Первые из них учитывают состав исходного

материала и условия его преобразования, а вторые характеризуют нефть как сырьё

для производства тех или иных нефтепродуктов. Генетическая классификация делит

нефти на гумитосапропелитовые, сапропелитовые и сапропелито-гумитовые типы по

соотношению остатков высших и низших растений в их составе. Типы подразделяются

далее на классы и группы по степени преобразования компонентов в анаэробной

среде. Принятая в России технологическая классификация делит их на три класса

по содержанию серы (I<II<III), три типа по выходу фракций, перегоняющихся

до 350лнС (Т1>Т2>Т3), четыре группы по потенциальному содержанию базовых

масел (М1>М2>М3>М4), две подгруппы по индексу вязкости (И1>И2) и

три вида по содержанию твердого парафина (П1<П2<П3). В целом нефть

характеризуется шифром, составляемым последовательно из обозначения класса,

типа, группы, подгруппы и вида, которым соответствует данная нефть.

Классификация, имеющая признаки и научной, и технологической, была построена

на основе группового состава нефти. В соответствии с ней нефти делятся на

шесть классов: парафиновые, парафинонафтеновые, нафтеновые, парафино-нафтено-

ароматические, нафтеноароматические, ароматические. Каждый класс включает

нефти с преобладанием одного - двух компонентов группового состава или с их

примерно равным содержанием

Промышленнно-генетическая классификация нефти, аналогичная разработанной к

настоящему времени для углей, пока отсутствует. Вероятно, это связано с тем,

что разнообразие жидких горючих ископаемых намного меньше, чем ТГИ, а их

свойства легче стандартизуются по сравнительно просто определяемым кривым ИТК

и групповому составу. Принятые в разных странах национальные системы

классификаций можно достаточно успешно применять в международной торговле

нефтью и нефтепродуктами и с их помощью планировать направления переработки

нефти конкретного месторождения.

                        Физико-химические свойства нефти.                       

Нефть представляет собой чрезвычайно сложную смесь переменного состава и

говорить о константах нефти невозможно, потому что состав и свойства нефти

могут существенно изменятся. Но тем не менее для характеристики нефти

определение ряда физико-химических свойств имеет весьма важное значение в

отношении ее состава и товарных качеств.

     Плотность принадлежит к числу наиболее распространенных показателей при

исследовании нефти. Особое значение этот показатель имеет при расчёте нефтей,

занимающих данный объём или определения объема нефтей. Это важно как для

расчетно-конструктивных исследований, так и для практической работы на местах

производства, транспортировки и потребления нефтей. Величины плотности у нефти

весьма различны, они колеблются в пределах 0,77-2,0, хотя в большинстве случаев

они укладываются в более узкие пределы 0,83-0,96.

     Вязкостью или внутренним трением называется свойство,

проявляющееся в сопротивлении, которое нефть оказывает при перемещении одной ее

части относительно другой под влиянием действия внешней силы. Различают

Динамическую и кинематическую связь нефтей. Значение вязкости при

характеристике нефтей чрезвычайно велико. Наибольшее значение вязкость имеет

при расчете нефтепроводов, при расчетах, связанных с подачей топлива и т. д.

Нефть характеризуется не температурами кипения, температурными пределами

начала и конца кипения и выходом отдельных фракций, перегоняющихся в

определенных температурных интервалах. По результатам перегонки судят о

фракционном составе. Определение температурных пределов кипения отдельных

фракций нефти, а также определение процентного содержания этих фракций в

составе нефти имеет большое значение для определения характеристик этой нефти.

     Температура вспышки – это температура, при которой нефть, нагреваемая при

определенных условиях, выделяет такой количество паров, которое образует с

воздухом смесь, вспыхивающую при поднесении к ней пламени.

     Температурой воспламенения называется та температура, при которой

нагреваемый при определенных условиях нефтепродукт загорается и горит не менее

5 секунд.

При понижении температуры часть компонентов нефти становятся более вязкими и

малоподвижными, растворенные углеводороды могут выделятся в виде кристаллов.

Это весьма осложняет товарно-транспортные операции и эксплуатацию нефти при

низких температурах. Эту температуру называют температурой застывания.

                              Происхождение нефти.                             

История науки знает много случаев, когда вокруг какой-нибудь проблемы

разгораются жаркие споры. Такие споры идут вокруг проблемы происхождения

нефти.

     1 этап - с древнейших времён по 1760 . В этот период представления о

происхождении нефти, так или иначе, были связаны с различными представлениями о

"флогистоне ", происхождение Земли и др. Первая теория была сформулирована в

950 годы арабским учёным Их - Ван - эс-Сафа. "Вода и воздух - писал он -

созревают действием огня и образуют огненную серу и водяную ртуть. Эти два

вторичных элемента смешиваются с разным количеством земли и в зависимости от

температуры образуют минералы, находящиеся в земле, включая битуминозную

субстанцию, такие, как нефть. Поэтому они имеют "высокий" воздух и нефть,

сжимается и огнеопасны. " В конце 17  века (1697)итальянский учёный П. С.

Бекконе, ссылаясь на мнение англ. учёного В. Чарметона, считая, что янтарь и

битумы имеют одинаковое происхождение и нефть образуется "вулканическими силами

из земли и серного начала", В качестве доказательства он приводил пример

землетрясения 1683 года, которое повлияло на интенсивность нефтепроявлений в

Сицилии. Судя по работе французского учёного Н. Лемери, в конце 17 века

существовало представление об образовании нефти в результате перегонки янтаря;

каменный уголь является остатком этой перегонки. Однако сам Лемери считал, что

нефть образуется в результате перегонки   битума. Пожалуй, самое интересное

предположение высказал в начале 18 века немецкий учёный П. Ф. Генкель. По его

мнению, нефть образуется из остатков животных и растений. Существование к 1739

году представления о нефти были обобщены русским академиком И. Вейбрехтом,

который, разделяя мнение о нефти как о смеси "огненной", водной и земляной

субстанций, в то же время считал, что нефть либо образовалась под влиянием

тепла Земли, либо находилась в её недрах изначально. На основании нахождения

нефти в теплых странах вблизи морей с соленой водой и длительности ее притоков

снизу. Вейбрехт считал, что нефть-" это преобразованная, огненная сущность

солей, оставляемая морской водой. При чрезмерном накоплении горючих веществ в

одном месте при их воспламенении происходят землетрясения и оседания почвы".

Любопытен вывод этого исследования о том, что "масляные части растений близки по

своим свойствам к нефтяным маслам". На этом основании делалось предположение:

«быть может, огненные и масляные части всех растений происходят от нефти,

которую растения вытягивают из земли. «Эти представления завоевывали все

большее и большее признание. В 1750 немецкий ученый Шпильман писал, что нефть

образуется из растений, преимущественно из ели. Член французской академии наук,

химик по специальности П.Ж. Макер в 1758 высказал мнение о том, что битумы

образуются в результате взаимодействия "растительных масел " и "кислот".

     2 этап (1761-1859).Этот этап продолжался почти 100 лет. Он начался с

работы М.В.Ломоносова. В середине 18 века в своем трактате "О слоях земных"

великий русский ученый писал: " Выгоняется подземным жаром из приготовляющихся

каменных углей бурая и черная масляная материя... и сие есть рождение жидких

разного сорта горючих и сухих затверделых материй, каковы суть каменного масла,

жидковская смола, нефть. Которые хотя чистотой разнятся. Однако из одного

начала происходят" Таким образом, более 200 лет назад была высказана мысль об

органическом происхождении нефти из каменного угля. Исходное вещество было

одно: органический материал, преобразованный сначала в уголь, а потом в нефть и

газ. Родилась органическая гипотеза.      М.В.Ломоносов был не единственный,

кто высказался по интересующему нас вопросу в 18 веке. Правда, другие гипотезы

того времени носили курьёзный характер. Так, один варшавский каноник утверждал,

что Земля в райский период была настолько плодотворна, что на большую глубину

содержала жировые примеси. После грехопадения этот жир частично испарился, а

частично погрузился в землю , смешиваясь с различными веществами. Всемирный

потоп содействовал превращению его в нефть. Также известна ещё одна гипотеза.

Авторитетный немецкий геолог-нефтяник Г.Гефер рассказывает об одном

американском нефтепромышленнике конца прошлого века, считавшим, что нефть

возникла из мочи китов на дне полярных морей. По подземным каналам она проникла

в Пенсильванию. Немецкий химик К. Райхенбах в 1834 привел перегонку каменного

угля с водой и получил 0,0003% масла, очень похожего  на скипидар и на нефть

Италии. На основании этого он предположил, что нефть "представляет собой

скипидар доисторических пиний (итальянских сосен), находилась в углях в готовом

виде и выделялась из них под действием теплоты Земли" В 19 веке среди учёных

были распространены идеи, близкие к представлениям Ломоносова. Споры велись

главным образом вокруг исходного материала :животные или растения?"

     3 этап - (1860-1905).

Немецкие учёные Г. Гефер и К. Энглер в 1888 поставили опыты, доказавшие

возможность получения нефти из животных организмов. Позднее, в 1919

академиком Н.Д.Зелинским был осуществлен опыт, исходным материалом которого

был органогенный ил преимущественно растительного происхождения из озера

Балхаш. При его перегонке были получены: сырая смола -63,2%,

кокс-16% , газы (метан, окись углерода, водород, сероводород.)-20,8%. При

последующей переработке смолы из нее извлекли бензин, керосин и тяжелые

масла. Итак, опытным путём было доказано, что нефть - производные при

разложении органики либо животного, либо растительного происхождения, либо их

смеси. Таковой была органическая гипотеза. Но также существовала и

неорганическая гипотеза, выдвинутая Д. И. Менделеевым, и получившая название

карбидной. Ученый считал, что во время горообразовательных процессов по

трещинам, рассекающим земную кору, поверхностная вода  просачивалась вглубь

Земли к металлическим массам. Взаимодействие ее с карбидами железа приводило

к образованию окислов металла и углеводорода. У.В. по тем же трещинам

поднимались в верхние слои земной коры и насыщали пористые породы, образуя

месторождения. Однажды, побывав в г. Баку, Менделеев от русского учёного Г.

В. Абиха узнал, что часто месторождения нефти территориально приурочены к

сбросам - особого типа трещинам земной коры. В этом Менделеев видел

неоспоримые докозательства своих воззрений. Таким образом, к концу прошлого

столетия четко обособились 2 полярных взгляда   на проблему происхождения

нефти: органическая и неорганическая.

     4 этап- (1932-1950).

Выход в свет в 1932 книги академика И. М. Губкина "Учение о нефти " положил

конец колебаниям между указанными группами представлений, и в течение

последующего этапа господствовала гипотеза образования нефти из рассеянного

органического вещества, накапливавшегося в значительных количествах в осадках

морских бассейнов.

     5 этап - (1951 - настоящее время).

Этот этап можно смело назвать этапом становления теории органического

происхождения нефти, или, как ее правильно назвал Н.Б. Вассоевич, теории

осадочно-миграционного происхождения нефти и углеводородных газов. Начало

данного этапа следует считать 1950 год потому, что именно этот год почти

одновременно с советскими и американскими учёными были обнаружены У.В. в

современных осадках. Американские исследователи под руководством П.В.Смита

открыли углеводороды в современных осадках Мексиканского залива,

прикалифорнийской части Тихого океана, а также некоторых пресноводных

бассейнов. И хотя дальнейшие исследования показали, что углеводороды,

содержащиеся в современных осадках, существенно отличаются от нефти, значение

указанных открытий  трудно переоценить. Они показали, во-первых, что

углеводороды образуются в осадках из остатков растительных и животных

организмов. Тем самым был положен конец продолжавшейся в течение более двух

столетий дискуссии о том, какое органическое вещество может быть исходным для

образования нефти. Во-вторых, оказалось, что процессы нефтегазообразования

могут  развиваться почти в любых субаквальных осадках и что для этого не

требуется каких-то особых экстраординарных условий.

                             Основные месторождения.                            

Мировой запас нефти оценивается в 840 млрд. тонн условного топлива, из них

10% — достоверные и 90% —вероятные запасы.

Основной поставщик нефти на мировой рынок — страны Ближнего и Среднего

Востока. Они располагают 66 % мировых запасов нефти, Северная Америка — 4 %,

Россия — 8-10 %. Отсутствуют месторождения нефти в Японии, ФРГ, Франции и

многих других развитых странах. К 2000 г. объем ввоза нефти в США будет в два

раза превышать уровень ее добычи. Экспорт из России предполагается к 2000 г.

до 7,0 млн. баррелей в сутки. Прогнозируется рост спроса на нефть — 1,5 % в

год.

                       РОССИЙСКАЯ ФЕДЕРАЦИЯ.                       

                                                                          

                             Западная Сибирь                            

Это наша богатейшая кладовая и одна из величайших нефтегазоносных провинций в

мире (так называют территории, где располагаются сразу несколько десятков, а

то и сотен месторождений). Здесь их открыто уже более двухсот. Они таят в

себе около 4 млрд. тонн нефти. В 60-е года 20-го века в Среднем Приобье,

прямо посередине этой огромной заболоченной равнины, обнаружили целую

«россыпь» нефтяных месторождений. Среди них Самотрол – один из 4-х нефтяных

гигантов (2,6 млрд.т.), который разрабатывается с 1969 года. Он имеет 10

залежей нефти, одна из которых с газовой шапкой. Нефть находится в песчаниках

нижнего мела и верхней юры на глубине 1610-2350м.

Среди других нефтяных месторождений Западной Сибири. Выделяется Федоровское

(400 млн. т.), Варьеганское (200 млн. т.) Усть-Балыкское (170 млн. т.)

                          Волго-Уральский район                          

Волго-Уральский район – второй по значимости в России. Здесь разведано

несколько миллиардов тонн нефти. Открыто с выше 100 нефтяных месторождений,

содержащих более 1400 залежей нефти; 2/3 запасов нефти уже добыто.

В 1948 году в этом районе было открыто крупное Ромашкинское месторождение (3

млрд. т.). Оно расположено в Татарии, в 70 км. К западу от города

Альметьевска, в пределах крупного пологого поднятия осадочных пород.

Разрабатывается с 1952 года. Здесь уже добыли 1,4 млрд. т. нефти.

                           Северный Прикаспий.                          

Эта нефтегазоносная провинция охватывает Южное Поволжье и прилегающие с юго-

востока районы, в основном в пределах прикаспийской низменности: частью в

Росси частью в Казахстане. Это огромная чаша, заполненная рыхлыми осадками

огромной мощности в 17-20 км. В них выделяются две нефтегазовые толщи,

разделённые мощным пластом соли.

                         Тимано-Печёрский район.                        

Тимано-Печёрский район занимает северо-восток европейской части России. Здесь

нефть есть во всех палеозойских и ниже – в мезозойских отложениях, а они

располагаются на большой площади. В начале 60-х годов XX века открыто крупное

месторождение – Усинское нефтяное. Оно разрабатывается с 1973 года.

                    Восточная Сибирь и Дальний Восток.                   

Здесь открыты Енисейско-Анабарское нефтегазоносная, Ленно-Тунгусское

нефтегазоносная, Ленно-Вилюская нефтегазоносная, Охотская нефтегазоносная

провинции.

Одним из старейших районов нефтедобычи в России является остров Сахалин,

Первые нефтяные месторождения – Охинское и Катанглинское – открыты здесь в

1923-1926 годах. К настоящему времени на острове их несколько десятков. Здесь

нефтегазоносны молодые неогеновые отложения. В последние годы нефть получают

из недр сахалинского шельфа.

                         Томская область.                        

Впервые нефть была получена у города Колпашево в 1953 .16 августа 1962было

открыто второе месторождение в Александровском районе в деревне Соснино.

Позднее были открыты Советское, Стрежевское, Малореченское, Северное,

Лугинское и т. д. Глубина залегающих нефтяных пластов от 1500 до 2000 метров.

                             Нефтяная промышленность                            

Нефтедобыча - отрасль нефтяной промышленности, осуществляющая извлечение

нефти и сопровождающего ее газа из недр с помощью буровых скважин или, в

отдельных случаях, шахт и других выработок. Задачами нефтедобычи являются:

рациональная разработка нефтяных залежей наиболее совершенными способами,

обеспечивающими извлечение подземных запасов нефти в заданные сроки, с

минимальными затратами энергии и труда; организация сбора и предварительной

обработки (очистки) добытой продукции с наименьшими потерями нефти и газа.

Почти вся добываемая в мире нефть извлекается из нефтяных скважин, проходимых

бурением с земной поверхности или со дна морских водоемов. Лишь весьма

незначительная часть нефти добывается через мелкие скважины , закладываемые в

подземных горных выработках. Применительно к неглубоким истощенным залежам,

эксплуатация которых с помощью скважин малоэффективна, начинает в единичных

случаях использоваться способ открытой разработки нефтяных месторождений. По

размерам нефтедобычи Россия находится на одном из первых мест в мире.

                            Крекинг.                            

Крекинг изобрёл русский инженер Шухов в 1891 г. В 1913 г. изобретение Шухова

начали применять в Америке. В настоящее время в США 65% всех бензинов

получается на крекинг-заводах.

Аппаратура крекинг-заводов в основном та же, что и заводов для перегонки

нефти. Это – печи, колонны. Но режим переработки другой. Другое и сырьё.

Слово “крекинг” означает расщепление. На крекинг-заводах углеводороды не

перегоняются, а расщепляются. Процесс ведётся при более высоких температурах

(до 600о), часто при повышенном давлении. При таких температурах

крупные молекулы углеводородов раздробляются на более мелкие.

Мазут густ и тяжёл, его удельный вес близок к единице. Это потому, что он

состоит из сложных и крупных молекул углеводородов. Когда  мазут подвергается

крекингу, часть составляющих его углеводородов раздробляется на более мелкие.

А из мелких углеводородов как раз и составляются лёгкие нефтяные продукты -

бензин, керосин. Мазут – остаток первичной перегонки. На крекинг-заводе он

снова подвергается переработке, и из него, так же как из нефти на заводе

первичной перегонки, получают бензин, лигроин керосин.

При первичной перегонки нефть подвергается только физическим изменениям. От

неё отгоняются лёгкие фракции, т. е. отбираются части её, кипящие при низких

температурах и состоящие из разных по  величине углеводородов. Сами

углеводороды остаются при этом неизменёнными. При крекинге нефть подвергается

химическим изменениям. Меняется строение углеводородов. В аппаратах крекинг-

заводов происходят сложные химические реакции. Эти реакции усиливаются, когда

в аппаратуру вводят катализаторы. Одним из таких катализаторов является

специально обработанная глина. Эта глина в мелком раздробленном состоянии – в

виде пыли – вводится в аппаратуру завода. Углеводороды, находящиеся в

парообразном и газообразном состоянии, соединяются с пылинками глины и

раздробляются на их поверхности. Такой крекинг называется крекингом с

пылевидным катализатором. Этот вид крекинга теперь широко распространяется.

Катализатор потом отделяется от углеводородов. Углеводороды идут своим путём

на ректификацию и в холодильники, а катализатор – в свои резервуары, где его

свойства восстанавливаются. Катализаторы – крупнейшее достижение

нефтепереработки.

На крекинг-установках всех систем получают бензин, лигроин, керосин, соляр и

мазут.

Главное внимание уделяют бензину. Его стараются получить больше и обязательно

лучшего качества. Каталитический крекинг появился именно в результате

долголетней, упорной борьбы нефтяников за повышение качества бензина.

                               Переработка нефти.                              

Основным способом первичной обработки нефти является фракционная перегонка

сырой нефти. Это приводит к ее разделению на фракции , кипящие в широком

температурном интервале ,а именно:

·        углеводородный газ (пропан, бутан)

·        бензиновая фракция (температура кипения до 200 градусов)

·        керосин (температура кипения 220-275 градусов)

·        газойль или дизельное топливо (температура кипения 200-400 градусов)

·        смазочные масла (температура кипения выше 300 градусов)

·        остаток (мазут)

В состав бензиновой фракции обычно входят петролейный эфир (температура

кипения 20-60градусов) и так называемый экстракционный

бензин (температура кипения 60-120 градусов). Фракция, кипящая при

температурах от 40- 200 градусов, называется бензином и относится к наиболее

ценным нефтепродуктам, поскольку служит топливом для двигателей внутреннего

сгорания. В бензине преимущественно содержатся

углеводороды С6--С9 . Керосин, содержащий углеводороды С9--С16 , применяется

в небольших отопительных установках, а также  служит топливом  для турбинных

двигателей; пиролизуется до низших углеводородов. Газойл, или дизельное

топливо, имеет подобное применение, но главным образом, используется, как

топливо для дизельных двигателей. Смазочные масла, содержащие углеводороды

С20--С50 , очищаются  и применяются в качестве смазочных материалов. Это

такие масла, как: цилиндровое, подшипниковое, низкозастывающее, турбинное,

компрессорное, автомобильное, авиационное, изоляционное. Применение этих

масел связано с их названием. Остаток после перегонки мазут, используется,

как топливо

или подвергается вакуумной перегонке, в результате которой получают следующую

высококипящую углеводородную фракцию. Остатком является асфальт, служащий для

покрытия мостовых и как изоляционный, влагозащитный материал. Точно такое же

применение находит природный асфальт, добываемый на о. Тринидад. Основными

способами переработки высококипящих  фракций нефтепродуктов, полученных  при

перегонке парафинистой и нафтеновой нефти, являются крекинг и ароматизация.

Крекинг  заключается в том, что высшие алканы нагреваются до высоких

температур без доступа  кислорода. При этом происходит их расщепление на

низшие алканы и алкены. При обычной перегонки нефти удаётся получить не

больше 15-20% бензина. Крекинг позволяет повысить кол-во этого топлива в

несколько раз. В технике используется 2 вида крекинга - термический и

каталитический. Термический крекинг - нагревание нефтепродуктов под давлением

при температуре до 400--600 градусов;

этот процесс имеет радикальный механизм; так крекинг мазута и гудрона при

400--500 градусах дает примерно 15% бензина, керосина, солярового масла,

крекинг солярового масла и газойля при 500--600 градусах дает до 50% бензина.

При термическом крекинге образуется довольно много непредельных соединений,

плохо выдерживающих хранение. Поэтому крекинг - бензины часто подвергают

дополнительной химической обработке - процессам  гидрирования. Помимо

термического крекинга в промышленности широко используется каталитический

крекинг, то есть нагревание нефтепродуктов до 300-500 в присутствии

катализатора(AlCl3)

     и  алюминий силикаты). Этот вид крекинга идет по ионному механизму. При

каталическом крекинге получается гораздо меньшее кол-во

непредельных углеводородов, а среди предельных преобладают углеводороды с

разветвленным углеродным скелетом молекул. Такие соединения обычно обладают

более низкими температурами кипения и являются более ценным топливом для

двигателей внутреннего сгорания. Другим способом переработки нефтепродуктов,

полученных при перегонке парафинистой и нафтеновой нефти, служат процесс

ароматизацией. Большое значение как топливо и химическое сырье имеют попутные

газы и газы крекинга нефти. Попутные газы  состоят из пропана и бутанов и

выделяются из нефти. Попутные газы и газы крекинга обычно подвергают

перегонке, выделяя из них индивидуальные У.В.Пропан - бутановая фракция

используется в виде сжиженного газа, как топливо и служит ценным хим. сырьем.

Кроме того, пропан и бутан подвергают хлорированию, окислению и др. хим.

превращениями, что дает разнообразные хим. реактивы и растворители.

                         На это стоит обратить внимание.                         

В начале человек не задумывался, что таит в себе интенсивная добыча нефти и

газа. Главным было выкачать их как можно больше. Но вот в начале 40-х гг.

прошлого столетия появились первые настораживающие симптомы.

В 1939 г. Жители городов Лос-Анджелес и Лонг-Бич почувствовали довольно

сильные сотрясения земной поверхности – началось проседание грунта под

месторождением. В сороковые годы интенсивность этого процесса усилилась. В

период с1949 до1961 год было зарегистрировано 5 крупных землетрясений.

Напуганные этими событиями власти Лонг-Бич прекратили разработку до

разрешения возникшей проблемы.

К 1954 году было доказано, что наиболее эффективным средством борьбы с

проседанием является закачка в пласт воды. Это сулило увеличение нефтедобычи.

Первый этап работ по заводнению был начат в 1958 году, когда на южном крыле

структуры стали закачивать в продуктивный пласт без малого 60 тыс. м3

воды в сутки. Через 10 лет интенсивность закачки возросла в два раза и составила

122 тыс. м3/сутки. Проседание практически прекратилось.

Месторождение вновь вступило в эксплуатацию, при этом на каждую тонну нефти

приходилось 1600 литров воды.

                                   Заключение.                                  

Природное полезное ископаемое - нефть - представляет лишь исходный материал,

из которого на заводах и фабриках получают разнообразные вещества,

необходимые для развития областей природного хозяйства, а также веществ,

применяемых в домашнем обиходе. Нефть ценна не только, как источник энергии,

но и в большей степени, как сырье для производства пластических масс,

синтетических волокон, каучуков и др.

Список используемой литературы.

1."Химический энциклопедический словарь" 1983г.

2. Справочник школьника "Химия"

3."Пособие по химии для поступающих в ВУЗы". Москва:1974г.-382с.

4. "Органическая химия " Й. Пацак, изд-во "Мир"; Москва;1986-366с

coolreferat.com