Welcome. Химическое происхождение нефти


Происхождение нефти

Теория неорганического происхождения нефти (Д.И. Менделеев, А. Гумбольдт, М. Бертло, П.Н. Кропоткин и др.) – нефть образуется на больших глубинах при высокой температуре путем взаимодействия воды с карбидами металлов.

Теория органического происхождения нефти (К.Энглер, Н.Д. Зелинский, В.И. Вернадский, И.М. Губкин, А.А. Трофимук и др.) – природные алюмосиликаты (глинистые породы) являются катализатором в химических реакциях нефтеобразования органических веществ осадочных пород.

В пользу «органической» теории происхождения нефти:

- генетическая связь между групповыми компонентами нефти, твердых горючих ископаемых (уголь, торф и другие) и исходных материнских биологических веществ;

- в нефтях обнаружены ряд органических соединений, являющихся как бы «биологическими метками» от исходных материнских веществ – порфирины (структурные фрагменты хлорофилла и гемоглобина животных), изопреноидные углеводороды, например, С20Н42 с одним лишь идентичным природному изомером из 366 000 теоретически возможных изомеров; гоманоиды, характерные сине-зеленым планктонным водорослям; н-парафины С17 и выше с преобладающим нечетным числом атомов углерода над четным; битуминозные вещества с идентичным составом, микроэлементы с идентичным распределением металлов, прежде всего V и Ni, сходным составом сероорганических соединений;

- оптическая активность нефти, которая характерная только для биологических объектов;

- большинство месторождений нефти находится в осадочных породах Земли.

Таким образом, на основании вышеизложенного, нефтеобразование имеет много общего с углеобразованием, является длительным и сложным многостадийным биохимическим, термокаталитическим и геологическим процессом преобразования исходного органического материала в многокомпонентные смеси углеводородов парафинового, нафтенового, ароматического и смешанного строения, но в отличие от генезиса твердых горючих ископаемых нефтеобразование включает дополнительные осадочно-миграционные стадии с накоплением первоначально рассеянной по осадочным породам микронефти в природных резервуарах макронефти. По генетическому признаку в качестве близких «родственников» природных нефтей признают сапропелитовые угли, следовательно, нефть, природный газ, сланцы, сапропелитовые угли и богхеды, исходным материалом для синтеза которых является водная растительность (планктон, водоросли и бентос) и микроорганизмы, генетически взаимосвязаны и образуют группу сапропелитовых каустобиолитов. А торф, бурые и каменные угли и антрацит принадлежат к группе гумусовых каустобиолитов.

В 1932 г. И.М. Губкин сформулировал основные этапы образования нефти и газа из органического материала, позже А.А. Трофимук дополнив и уточнив основополагающие взгляды И.М. Губкина в свете новейших мировых достижений науки о нефти, предложил выделить 5 основных стадий осадконакопления и преобразования органических веществ в нефть.

Первая стадия – осадконакопление: после отмирания остатки растительных и животных организмов выпадают на дно морских или озерных бассейнов и накапливаются в илах,

Вторая стадия – биохимическая: накопленный на дне бассейнов органический осадок преобразуется, уплотняется, частично обезвоживается за счет протекания биохимических процессов в условиях ограниченного доступа кислорода.

Третья стадия – протокатагенез: плат органических осадков медленно опускается на глубину до 1,5-2 км, по мере погружения в пласте повышаются температура до 50-70 0С и давление и биохимические процессы вследствие гибели микроорганизмов полностью затухают.

Четвертая стадия – мезокатагенез: пласт погружается на глубину 3-4 км, температура возрастает до 150 0С и органические вещества подвергаются активной термокаталитической деструкции с образованием значительного количества подвижных битуминозных веществ (нефти и нефтепродуктов), содержащих практически весь набор углеводородов нефтяного ряда. При дальнейшем погружении осадочных пород процесс генерации углеводородов затухает, вследствие израсходования основной части керогена, а скорость их эмиграции возрастает. При эмиграции микронефти из глинистых нефтематеринских пород и прилегающие к ним плиты пористых водонасыщенных песчаников возникает хроматографическое разделение смеси жидких и газообразных углеводородов. В песчаный коллектор выносится смесь нефтяных углеводородов с содержанием 5-10 % асфальто-смолистых веществ – это по-существу, уже есть настоящая нефть.

Пятая стадия – апокатагенез – протекает на глубине более 4,5 км, где температура 180-250 0С, с ростом глубины осадочных пород нефть становится более легкой с преобладанием доли алканов, обогащенных низкокипящими углеводородами. Залежи нефти постепенно замещаются сначала газовыми конденсатами – смесью легкокипящих нефтяных углеводородов, затем газоконденсаты сменяются природным газом, состоящим преимущественно из метана.

При эмиграции к поверхности земли нефть теряет легкие фракции, окисляется и утяжеляется, она характеризуется повышенной плотностью, низким содержанием бензиновых фракций и высоким содержанием тяжелых высокомолекулярных веществ.

В свете новейших мировых достижений науки о нефти гипотеза И.М. Губкина и А.А. Трофимука о происхождении нефти является наиболее правдоподобной.

Важно отметить, что природные алюмосиликаты (глинистые породы) являются катализатором в химических реакциях нефтеобразования органических веществ осадочных пород.

Химический состав нефти, газоконденсатов и газа

Все горючие ископаемые практически состоят из пяти основных элементов: С, Н, N, O и S, нефть - С и Н. По содержанию водорода нефть занимает промежуточное положение среди горючих ископаемых:

Уголь  нефть  природный газ

Количество углерода и водорода в нефтях находится в сравнительно узких пределах.

Элемент

Содержание, % мас.

Углерод (С)

82-87

Водород (Н)

11-15

Сера (S)

0,1-7,0

Кислород (O)

Азот (N)

меньше 0,5-0,6

Азот и кислород присутствуют в основном в виде высокомолекулярных, конденсированных соединений, сера - в основном в низкомолекулярных соединениях парафинового ряда.

С увеличением возраста нефти содержание O, N, S в ней снижается, а С и Н – повышается. Отщепление гетероэлементов происходит в виде простых соединений – CO2, h3O, h3S, Nh4, S, N2. Среди микроэлементов больше всего в нефтях содержится V и Ni, которых по содержанию в нефти больше, чем в земной коре.

studfiles.net

Происхождение нефти и ее свойства

Происхождение нефти и ее свойства - страница №1/1

Происхождение нефти и ее свойства

Ле Тхи Тху Тхуи, Нгуен Хыу Хау

Национальный исследовательский Томский политехнический университет

Руководитель - Кашкан Г.В., доц. ТПУ

1. Теории происхождения нефти

Происхождение нефти и газа является очень сложной проблемой, поскольку здесь тесно переплетаются вопросы химии, физики, геологии, геохимии и биохимии. Существует множество мнений как об исходных для нефти веществах, так и о причинах и процессах, которое объясняет её образование. В настоящее время выделяют две основные теории происхождения нефти. Это органическое и неорганическое происхождение.

Гипотезы неорганического происхождения нефти

В 1805 г. знаменитый немецкий ученый Гумбольдт высказал предположение, что нефть образуется на больших глубинах в магматических породах.

В 1866 французский химик М. Бертло предположил, что нефть образуется в недрах Земли при взаимодействии углекислоты и щелочных металлов.

В 1871 французский химик Г. Биассон выступил с идеей о происхождении нефти путём взаимодействия воды, CO2 и h3S с раскалённым железом.

Знаменитый химик Д.И.Менделеев создал свою известную «карбидную» теорию происхождения нефти и выступил на заседании Русского химического общества в 1877 г. Его гипотеза была обоснована на большом фактическом материале и сразу же завоевала популярность. Менделеев указал, что открытые к тому времени месторождения нефти сконцентрированы на границах горно-складчатых сооружений, линейно вытянуты и концентрируются в зонах крупных разломов. Через эти разломы вода проникает вглубь Земли, вступает в реакцию с углеродистыми металлами – с карбидами металлов, в результате чего образуется нефть, которая поднимается вверх, образует залежи:

2FeC+3h3O=Fe2O3 + C2H6

Концепции органического происхождения нефти

Впервые об органическом происхождении нефти были сделаны М.В.Ломоносовым в 1759 году в работе «О слоях земных». Он высказал гипотезу о том, что нефть образовалась из каменного угля под воздействием высоких температур. «…Выгоняется подземным жаром из приуготовляющихся каменных углей оная бурая и черная масляная материя и вступает в разные рассолы…».

Первые эксперименты получения нефтеподобных продуктов из органического вещества животного происхождения были проделаны немецким химиком Г.Гефером, который нагревал животные жиры при повышенном давлении до температуры 320-4000.

Современная концепция органического происхождения нефти нашла отражение в монографии И.М.Губкина «Учение о нефти». Он предложил схему образования нефти.

Исходное вещество для образования нефти – органическое вещество морских илов, состоящее из животных и растительных организмов. Погруженный на глубины до 50 м ил перерабатывается микробами. Далее он погружается в глубокие недра горных пород, содержащие РОВ (рассеянное органическое вещество) попадают в область давлений 15-45 МПа и температур 60 - 150°. Такие условия находятся на глубинах 1,5 – 6 км. Под действием возрастающего давления нефть вытесняется в проницаемые породы (коллекторы), по которым она мигрирует к месту образования будущих залежей.

Запасы нефти в мире

На  конец  2012  года  доказанные  мировые  запасы  нефти  составляли  1668,9  млрд.  баррелей (1 баррель – это …….).  За  последние  20  лет  этот  показатель  стремительно  вырос,  увеличившись  примерно  на  600  млрд.  баррелей. 

По  состоянию  на  1  января  2013  года  чуть  меньше  80  %  доказанных  запасов  нефти  приходится  на  восемь  стран.  Из  них  шесть  стран  входят  в  состав  ОПЕК  и  лишь  только  две  (Канада  и  Россия)  не  являются  членами  ОПЕК.  На  12  государств,  входящих  в  ОПЕК,  приходится  72,6  %  всех  доказанных  запасов  нефти.  Абсолютным  лидером  по  доказанным  запасам  нефти  является  Ближний  Восток  —  на  его  долю  приходится  около  48,4  %  от  общего  объема.  Уже  более  полувека  мировая  карта  нефти  концентрировалась  вокруг  этого  региона.  При  этом  около  15,9  %  мировых  запасов  приходится  на  Саудовскую  Аравию.  Однако  мировым  лидером  по  доказанным  запасам  нефти  по  итогам  2012  года  являлась  Венесуэла  с  долей  17,8  %.  На  Россию  приходится  же  5,2  %  всех  запасов . Мировые  запасы  нефти  по  странам  приводятся  в  таблице 1.

Таблица  1.

Мировые  запасы  нефти  по  странам  по  состоянию  на  01.01.2013

Страна Запасы  нефти,  млрд.  баррелей %  от  мировых  запасов
Венесуэла 297,6 17,8
Саудовская  Аравия 265,9 15,9
Канада 173,9 10,4
Иран 157,0 9,4
Ирак 150,0 9,0
Кувейт 101,5 6,1
ОАЭ 97,8 5,9
Россия 87,2 5,2
Ливия 48,0 2,9
Нигерия 37,2 2,2
США 35,0 2,1
Казахстан 30,0 1,8
Катар 23,9 1,4
Бразилия 15,3 0,9
Китай 17,3 1,0
Все  остальные 131,3 8,0
 Источник:  BP  Statistical  Review  of  World  Energy  June  2013 Страны с наибольшими запасами нефти

2. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТИ

Нефть - это смесь около 1000 индивидуальных веществ. 80—90 % (по массе)- жидкие углеводороды и 4—5 % (по массе) - гетероатомные органические соединения.

Среди них:

Сернистые около 250 веществ
Азотистые > 30 веществ
Кислородные около 85 веществ
Металлоорганические соединения в основном ванадиевые и никелевые
Растворённые углеводородные газы C1-C4 до4 %
Вода до 10 %
Минеральные соли хлориды, 0,1—4000 мг/л
Растворы солей органических кислот

Элементный состав:

C 82-87 %
H 11-14,5 %
S 0,01-6 %
N 0,001-1,8 %
O 0,005—0,35 %
Другие элементы ( более 45 элементов)

В основном в нефти представлены парафиновые (от30 до 50 % по объёму) и нафтеновые (25—75 %). В меньшей степени — соединения ароматического ряда (от 10 до 35 %) и смешанного строения: парафинонафтеновые, нафтеноароматические и др. Наряду с углеводородами в состав нефти входят вещества, которые содержатся в малых количествах. Это серосодержащие соединения - h3S, меркаптаны (RSH, где R - углеводородный радикал, дисульфиды, тиофены и тиофаны, а также полициклические и т. п. 70—90 % этих соединений концентрируется в остаточных продуктах - мазуте и гудроне. Азотсодержащиесоединения - этогомологи пиридина (C5H5N) , хинолина (C9H7N), индола (C8H7N) , карбазола (C12H9N) , пиррола (C4H5N) , а также порфирины, которые в основном концентрируются в тяжёлых фракциях и остатках). Кислородсодержащие соединения - нафтеновые кислоты, фенолы (C6H5OH), смолисто-асфальтеновые и др. вещества сосредоточены обычно в высококипящих фракциях.

Физические свойства: Различия в физических свойствах обуславливаются химическим свойством нефтей, их внутренним строением. 

Агрегатное состояние: жидкость. Цвет: от светло-коричневого до тёмно-бурого цвета (иногда изумрудно-зелёной нефти).

Средняя молекулярная масса 220—400 г/моль (редко 450—470). 

Плотность 0,65—1,05 (обычно 0,82—0,95) г/см³; По плотности нефть делится на

  • Лёгкую (
  • Среднюю (0,831—0,860)
  • Тяжёлую ( выше 0,860)
Плотность нефти сильно зависит от температуры и давления.

Нефть содержит большое число разных органических веществ и поэтому характеризуется не температурой кипения, а температурой начала кипения жидких углеводородов может быть от 28°C, до или ≥100 °C в случае тяжёлой нефти и фракционным составом. Фракционный состав — выход отдельных фракций, перегоняющихся сначала при атмосферном давлении, а затем под вакуумом в температурных пределах до 450—500°C (выкипает ~ 80 % объёма пробы), реже 560—580°C (90—95 %).

Температура кристаллизации от −60 до + 30 °C; зависит преимущественно от содержания в нефти парафина (чем его больше, тем температура кристаллизации выше) и лёгких фракций (чем их больше, тем эта температура ниже).

Вязкость изменяется в широких пределах от 1,98 до 265,90 мм²/с для различных нефтей, добываемых в России, Вязкость определяется фракционным составом нефти и её температурой. Чем она выше и больше количество лёгких фракций, тем ниже вязкость, а также содержанием смолисто-асфальтеновых веществ. Чем их больше, тем вязкость выше.

Удельная теплоёмкость 1,7—2,1 кДж/(кг∙К).

Удельная теплота сгорания (низшая) 43,7—46,2 МДж/кг.

Диэлектрическая проницаемость 2,0—2,5.

Электрическая проводимость [удельная] от 2∙10−10 до 0,3∙10−18 Ом−1∙см−1.

Нефть — легковоспламеняющаяся жидкость; температура вспышки от -35 до +121 °C, которая зависит от фракционного состава и содержания в ней растворённых газов.

Нефть растворима в органических растворителях, в обычных условиях не растворима в воде, но может образовывать с ней стойкие эмульсии.

Химические свойства нефти соответствуют свойствам тех углеводородов, которые ее составляют. Нефть окисляется кислородом при высокой температуре, хлорируется и расщепляется (крекируется) при высоких температурах и давлении. При низкотемпературном окислении нефтей происходит образование оксида и диоксида углерода. Нефть нерастворима в воде, но легко растворяется в бензине, бензоле, хлороформе и ряде других органических растворителей. Обычно нефть сопровождается газом и водой, представляющей собой раствор галоидных и углекислых растворимых солей, иногда в воде содержатся сероводород и растворимые сульфиды. Обводнение изменяет химические свойства нефти, повышая ее плотность, вязкость и содержание высокомолекулярных компонентов, способствующих кристаллообразованию. Представляя собой смесь органических веществ, нефть способна гореть, выделяя при этом до 50 000 джоулей на килограмм. Нефть практически не содержит химически активных веществ типа кетонов, спиртов и подобных соединений, хотя в некоторых случаях имеет кислотный характер вследствие некоторого содержания кислот.

Все химические свойства нефти показывают, что нефть никогда не подвергалась действию высоких температур и поэтому для нее нехарактерны обычные компоненты, свойственные различным продуктам перегонки углей, торфа и других естественных горючих материалов.

Нефть представляет собой чрезвычайно сложную смесь переменного состава и говорить о константах нефти невозможно, потому что состав и свойства нефти могут существенно изменятся. Но тем не менее для характеристики нефти определение ряда физико-химических свойств имеет весьма важное значение в отношении ее состава и товарных качеств. Плотность принадлежит к числу наиболее распространенных показателей при исследовании нефти. Особое значение этот показатель имеет при расчёте нефтей, занимающих данный объём или определения объема нефтей. Это важно как для расчетно-конструктивных исследований, так и для практической работы на местах производства, транспортировки и потребления нефтей. Величины плотности у нефти весьма различны, они колеблются в пределах 0,77-2,0, хотя в большинстве случаев они укладываются в более узкие пределы 0,83-0,96. Вязкостью или внутренним трением называется свойство, проявляющееся в сопротивлении, которое нефть оказывает при перемещении одной ее части относительно другой под влиянием действия внешней силы. Различают Динамическую и кинематическую связь нефтей. Значение вязкости при характеристике нефтей чрезвычайно велико. Наибольшее значение вязкость имеет при расчете нефтепроводов, при расчетах, связанных с подачей топлива и т. д. Нефть характеризуется не температурами кипения, температурными пределами начала и конца кипения и выходом отдельных фракций, перегоняющихся в определенных температурных интервалах. По результатам перегонки судят офракционном составе. Определение температурных пределов кипения отдельных фракций нефти, а также определение процентного содержания этих фракций в составе нефти имеет большое значение для определения характеристик этой нефти. Температура вспышки – это температура, при которой нефть, нагреваемая при определенных условиях, выделяет такой количество паров, которое образует с воздухом смесь, вспыхивающую при поднесении к ней пламени. Температурой воспламенения называется та температура, при которой нагреваемый при определенных условиях нефтепродукт загорается и горит не менее 5 секунд. При понижении температуры часть компонентов нефти становятся более вязкими и малоподвижными, растворенные углеводороды могут выделятся в виде кристаллов. Это весьма осложняет товарно-транспортные операции и эксплуатацию нефти при низких температурах. Эту температуру называют температурой застывания. Литература: материалы Большой энциклопедии нефти и газа, источники из интернета.

polpoz.ru

Происхождение нефти - Химия - Рефераты - Каталог статей

 Вопросы об исходном веществе, из которого образовалась нефть, о процессах нефтеобразования и формирования нефти в концентрированную залежь, а отдельных залежей в месторождения до сего времени ещё не являются окончательно решёнными. Существует ряд мнений как об исходных для нефти веществах, так и о причинах и процессах, обусловливающих её образование. В последние годы благодаря трудам главным образом советских геологов, химиков, биологов, физиков и исследователей других специальностей  удалось выяснить основные закономерности в процессах нефтеобразования. В настоящее время установили, что нефть органического происхождения, т.е. она, как и уголь, возникла в результате преобразования органических веществ.

 Ранее выдвигались и другие теории образования нефти.

 В конце XIX в., когда в астрономии и физике получило развитие применение спектральных методов исследования и в спектрах различных космических тел были обнаружены не только углерод и водород, но и углеводороды, русский геолог Н. А. Соколов выдвинул космическую гипотезу образования нефти. Он предполагал, что когда земля была в огненно-жидком состоянии, то углеводороды из газовой оболочки проникли в массу земного шара, а впоследствии при остывании выделились на его поверхности. Эта гипотеза не объясняет ни географического, ни геологического распределения нефтяных месторождений…

 В конце XIX в. Д. И. Менделеевым, обратившим внимание на приуроченность известных тогда месторождений нефти к краевым частям гор, была выдвинута теория неорганического происхождения нефти. Предполагалось, что углеводороды, образующиеся при действии воды на раскалённые карбиды металлов, проходили по  трещинам из глубоких слоёв в зону осадочной оболочки земного шара, где путём их конденсации и гидрогенизации образовались нефтяные месторождения.

 Эта теория образования нефти не получила признания среди геологов и химиков. Трудно представить себе образование нефти путём действия на карбиды металлов воды океанов, просочившейся в глубину земли по  трещинам земной коры, так как эти трещины не могут идти так глубоко.

 Кроме того, наличие в земной коре больших залежей карбидов железа, до которых может проникнуть вода океанов, очень сомнительно.

 Количество металлического железа (а не его окислов), которое может попасть из очень глубоких зон на поверхность твёрдой коры, ничтожно. Окислы железа содержать карбиды металлов не могут. Вероятность же наличия карбидов металлов в самом металлическом железе также крайне незначительна.

 Все приведённые выше соображения говорят о том, что в наружной оболочке космического типа при наличии окислительной обстановки не приходится ожидать образования и сохранения карбидов железа и других металлов в сколько-нибудь значительных количествах…

 М. В. Ломоносов первый указал на связь между горючими полезными ископаемыми - углём и нефтью и выдвинул впервые в мире в середине XVIII в. гипотезу о происхождении нефти из растительных остатков.

 Академик В. И. Вернадский обратил внимание на наличие в нефти азотистых соединений, встречающихся в органическом мире.

 Предшественники академика И. М. Губкина, русские геологи Андрусов и Михайловский также считали, что на Кавказе нефть образовалась из органического материала. По  мнению И. М. Губкина, родина нефти находится в области древних мелководных морей, лагун и заливов. Он считал, что уголь и нефть – члены одного и того же генетического ряда горючих ископаемых.

 Уголь образуется в болотах и пресноводных водоёмах, как правило, из высших растений. Нефть получается главным образом из низших растений и животных, но в других условиях.

 Нефть постепенно образовывалась в толще различных по  возрасту осадочных пород, начиная от наиболее древних осадочных пород – кембрийских, возникших 600 млн. лет назад, до сравнительно молодых – третичных слоёв, сложившихся 50 млн. лет назад.

 Накопление органического материала для будущего образования нефти происходило в прибрежной полосе, в зоне борьбы между сушей и морем…

 По  вопросу об исходном материале существовали разные мнения. Некоторые учёные полагали, что нефть возникла из жиров погибших животных (рыбы, планктон и др.), другие считали, что главную роль играли белки, третьи придавали большое значение углеводам. Теперь доказано, что нефть может образоваться из жиров, белков и углеводов, т.е. из всей суммы органических веществ.

 И. М. Губкин дал критический анализ проблемы происхождения нефти и разделил органические теории на три группы: теории, где преобладающая роль в образовании нефти отводится погибшим животным; теории, где преобладающая роль отводится погибшим растениям, и, наконец, теории смешанного животно-растительного происхождения нефти.

 Последняя теория, детально разработанная И. М. Губкиным, носит название сапропелитовой от слова "сапропель” – глинистый ил – и является господствующей. В природе широко распространены различные виды сапропелитов.

Различие в исходном органическом веществе является одной из причин существующего разнообразия нефтей. Другими причинами являются различие температурных условий вмещающих пород, присутствие катализаторов и др., а также последующие преобразования пород, в которых заключена нефть…

 В СССР были проведены исследования, в результате которых удалось установить роль микроорганизмов в образовании нефти. Т. Л. Гинзбург-Карагичева, открывшая присутствие в нефти разнообразнейших микроорганизмов, привела в своих исследованиях много новых, интересных сведений.

 Она установила, что в нефтях, ранее считавшихся ядом для бактерий, на больших глубинах идёт кипучая жизнь, не прекращавшаяся миллионы лет подряд.

 Целый ряд бактерий живёт в нефти и питается ею, меняя, таким образом, химический состав нефти. Академик И. М. Губкин в своей теории нефтеобразования придавал этому открытию большое значение. Гинзбург-Карагичевой установлено, что бактерии нефтяных пластов превращают различные органические продукты в битуминозные.

 Под действием ряда бактерий происходит разложение органических веществ и выделяется водород, необходимый для превращения органического материала в нефть…

 Академиком Н. Д. Зелинским, профессором В. А. Соколовым и рядом других исследователей большое значение в процессе нефтеобразования придавалось радиоактивным элементам. Действительно, доказано, что органические вещества под действием альфа-лучей распадаются быстрее и при этом образуются метан и ряд нефтяных углеводородов.

 Академик Н. Д. Зелинский и его ученики установили, что большую роль в процессе нефтеобразования играют катализаторы.

 В более поздних работах академик Зелинский доказал, что входящие в состав животных и растительных остатков пальмитовая, стеариновая и другие кислоты при воздействии хлористого алюминия в условиях сравнительно невысоких температур (150-400о) образуют продукты, по  химическому составу, физическим свойствам и внешнему виду похожие на нефть. Профессор А. В. Фрост установил, что вместо хлористого алюминия – катализатора, отсутствующего в природе, - его роль в процессе нефтеобразования играют обыкновенные глины, глинистые известняки и другие породы, содержащие глинистые минералы.

 

                     Переработка нефти

                           Перегонка нефти

 Как только вода в чайнике закипит, из чайника со свистом начнёт вылетать пар. Если теперь подставить чайник к окну, то пар тотчас же начнёт конденсироваться на стекле и со стекла станут падать капли дистиллированной, или перегнанной воды. Перегонка нефти основана на том же принципе – сначала нефть испаряется, а затем пары её конденсируют с разделением на погоны – бензиновые, керосиновые и т.д.

 Секрет получения светлых продуктов из чёрной нефти человек разгадал очень давно. Ещё при Петре Первом пользовались очищенной нефтью.

 

 Первый завод для очистки нефти был построен в России на Ухтинском нефтяном промысле. Это было в 1745г., в период царствования Елизаветы Петровны. В Петербурге и в Москве тогда для освещения пользовались свечами, а в малых городах и деревнях – лучинами. Но уже и тогда во многих церквях горели "неугасимые” лампады. В лампады наливалось гарное масло, которое было не чем иным, как смесью очищенной нефти с растительным маслом.

 Купец Набатов был единственным поставщиком очищенной нефти для соборов и монастырей.

 В конце XVIII столетия была изобретена лампа.

 С появлением ламп увеличился спрос на керосин.

 Когда братья Дубины построили в Моздоке нефтеперегонный завод, свой керосин, называющийся тогда фотогеном, они отправляли в Россию.

 И первый, и второй, и все последующие нефтеперегонные заводы получали бензин, керосин и другие продукты выпариванием нефти.

 Завод Дубининых был очень прост. Котёл в печке, из котла идёт труба через бочку с водой в пустую бочку. Бочка с водой – холодильник, пустая бочка – приёмник для керосина.

 На современном заводе вместо котла устраивается ложная трубчатая печь. Вместо трубки для конденсации и разделения паров сооружаются огромные ректификационные колонны. А для приёма продуктов перегонки выстраиваются целые городки резервуаров.

 Нефть состоит из смеси различных веществ (главным образом углеводородов) и потому не имеет определённой точки кипения. На трубчатках нефть подогревают до 300-325о. При такой температуре более летучие вещества нефти превращаются в пар.

 Печи на нефтеперегонных заводах особые. С виду они похожи на дома без окон. Выкладываются печи из лучшего огнеупорного кирпича. Внутри, вдоль и поперёк, тянутся трубы. Длина труб в печах достигает километра.

 Когда завод работает, по  этим трубам с большой скоростью – до двух метров в секунду – движется нефть. В это время из мощной форсунки в печь устремляется пламя. Длина языков пламени достигает нескольких метров.

 При температуре 300-325о нефть перегоняется не полностью. Если температуру перегонки увеличить, углеводороды начинают разлагаться.

 Нефтяники нашли способ перегонки нефти без разложения углеводородов.

 Вода кипит при 100о тогда, когда давление равно атмосфере, или 760 мм. рт. ст. Но она может кипеть, например, и при 60о. Для этого надо лишь понизить давление. При давлении в 150 мм термометр покажет всего 60о.

 Чем меньше давление, тем скорее закипает вода. То же самое происходит с нефтью. Многие углеводороды в условиях атмосферного давления кипят только при 500о. Следовательно, при 325о эти углеводороды не кипят.

 А если снизить давление, то они закипят и при более низкой температуре.

 На этом законе основана перегонка в вакууме, т. е. при пониженном давлении. На современных заводах нефть перегоняется или под атмосферным давлением, или под вакуумом, чаще всего заводы состоят из двух частей – атмосферной и вакуумной. Такие заводы так и называются атмосферно-вакуумные. На этих заводах получаются одновременно все продукты: бензин, лигроин, керосин, газойль, смазочные масла и нефтяной битум. Неиспарившихся частей при такой перегонки остаётся гораздо меньше, чем при атмосферной.

 Дружнее происходит испарение нефти, когда в установку вводится пар.

 Сложна и интересна работа ректификационной колонны. В этой колонне происходит не только разделение веществ по  их температурам кипения, но одновременно производится дополнительное многократное кипячение конденсирующейся жидкости.

 Колонны делаются очень высокими – до 40 м. Внутри они разделяются горизонтальными перегородками – тарелками – с отверстиями. Над отверстиями устанавливаются колпачки.

 Смесь углеводородных паров из печи поступает в нижнюю часть колонны.

 Навстречу неиспарившемуся остатку нефти снизу колонны подаётся перегретый пар. Этот пар прогревает неиспарившийся остаток и увлекает с собой все лёгкие углеводороды вверх колонны. В нижнюю часть колонны стекает освобождённый от лёгких углеводородов тяжёлый остаток – мазут, а пары одолевают тарелку за тарелкой, стремясь к верху колонны.

 Сначала превращаются в жидкость пары с высокими температурами кипения. Это будет соляровая фракция, которая кипит при температуре выше 300о. Жидкий соляр заливает тарелку до отверстий. Парам, идущим из печи, теперь приходится пробулькивать через слой соляра.

 Температура паров выше температуры соляра, и соляр снова кипит.

  Углеводороды, кипящие при температуре ниже 300о, отрываются от него и летят вверх колонны, на секцию керосиновых тарелок.

 В соляре, выходящем из колонны, поэтому нет бензина или керосина.

 В колоннах бывает 30-40 тарелок, разделённых на секции. Через все тарелки проходят пары, на каждой они пробулькивают через слой сконденсировавшихся паров и в промежутках между ними встречают падающие с верхней тарелки капли лишнего, не убравшегося на верхнюю тарелку конденсата.

 В колонне непрерывно  идёт сложная, кропотливая работа. Углеводороды собираются в секциях по  температурам кипения. Для каждой группы углеводородов в колонне имеются свои секции и свой выход.

 Углеводороды сгруппируются в своей секции только тогда, когда в них не будет углеводородов других температур кипения.

Когда они соберутся вместе, они из колонны выходят в холодильник, а из холодильника – в приёмник.

Из самых верхних секций колонны идёт не бензин, а пары бензина, так как температура вверху колонны выше температуры легко кипящих частей бензина. Пары бензина идут сначала в конденсатор.

 Здесь они превращаются в бензин, который направляется также в холодильник, а затем в приёмник.

                                        Крекинг

 Крекинг изобрёл русский инженер Шухов в 1891 г. В 1913 г. изобретение Шухова начали применять в Америке. В настоящее время в США 65% всех бензинов получается на крекинг-заводах.

 Наши нефтяники часто рассказывают о судебной тяжбе двух американских фирм.

 Около двадцати пяти лет назад американская фирма Кросса обратилась в суд с жалобой на то, что фирма Даббса присвоила её изобретение – крекинг. Фирма Кросса требовала с фирмы Даббса большую сумму денег за "незаконное” использование изобретения.

 Суд встал на сторону Кросса. Даббсу приходилось совсем плохо.

 Выручил Даббса адвокат. На суде адвокат заявил:

-         Крекинг изобретён не Кроссом, а русским инженером Шуховым.

Шухов тогда был жив. Приехали к нему в Москву американцы и спрашивают:

-         Чем вы докажете, что крекинг изобретён вами?

Шухов вынул из стола документы и предъявил американцам. Из документов было ясно, что Шухов свой крекинг запатентовал за тридцать лет до тяжбы Кросса с Даббсом.

 Аппаратура крекинг-заводов в основном та же, что и заводов для перегонки нефти. Это – печи, колонны. Но режим переработки другой. Другое и сырё.

 Слово "крекинг” означает расщепление. На крекинг-заводах углеводороды не перегоняются, а расщепляются. Процесс ведётся при более высоких температурах (до 600о), часто при повышенном давлении.

 При таких температурах крупные молекулы углеводородов раздробляются на более мелкие.

 Мазут густ и тяжёл, его удельный вес близок к единице. Это потому, что он состоит из сложных и крупных молекул углеводородов.

 Когда  мазут подвергается крекингу, часть составляющих его углеводородов раздробляется на более мелкие. А из мелких углеводородов как раз и составляются лёгкие нефтяные продукты - бензин, керосин.

 Мазут – остаток первичной перегонки. На крекинг-заводе он снова подвергается переработке, и из него, так же как из нефти на заводе первичной перегонки, получают бензин, лигроин керосин.

 При первичной перегонки нефть подвергается только физическим изменениям. От неё отгоняются лёгкие фракции, т. е. отбираются части её, кипящие при низких температурах и состоящие из разных по  величине углеводородов. Сами углеводороды остаются при этом неизменёнными.

 При крекинге нефть подвергается химическим изменениям. Меняется строение углеводородов. В аппаратах крекинг-заводов происходят сложные химические реакции. Эти реакции усиливаются, когда в аппаратуру вводят катализаторы.

 Одним из таких катализаторов является специально обработанная глина. Эта глина в мелком раздробленном состоянии – в виде пыли – вводится в аппаратуру завода. Углеводороды, находящиеся в парообразном и газообразном состоянии, соединяются с пылинками глины и раздробляются на их поверхности. Такой крекинг называется крекингом с пылевидным катализатором. Этот вид крекинга теперь широко распространяется.

 Катализатор потом отделяется от углеводородов. Углеводороды идут своим путём на ректификацию и в холодильники, а катализатор – в свои резервуары, где его свойства восстанавливаются.

 Катализаторы – крупнейшее достижение нефтепереработки.

 На крекинг-установках всех систем получают бензин, лигроин, керосин, соляр и мазут.

 Главное внимание уделяют бензину. Его стараются получить больше и обязательно лучшего качества. Каталитический крекинг появился именно в результате долголетней, упорной борьбы нефтяников за повышение качества бензина.

t4k.do.am