Карбонатные коллекторы нефти и газа. Коллектор нефти это


Свойства коллекторов нефти и газа. Типы коллекторов нефти и газа

 

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их при разработке, называются коллекторами. На формирование геометрии порового пространства коллекторов и, следовательно, на их филь­трационные характеристики влияют структура и текстура пород.

Структура осадочных горных пород — размеры и форма слагающих породу минеральных зерен или условных неделимых (биоморфных или детритовых остатков, скелетов организмов, оолитов и т. п.).

Текстура — характер взаимного расположения компонентов породы и их пространственная ориентация. Емкостное пространство включает емкости двух видов: седиментационные и постседиментационные, в кото­рых все изменения протекают с разной интенсивностью, опреде­ляемой в первую очередь типом коллектора.

1 Пустотность (пористость) – наличие в горной породе пустотного пространства. Пустотное пространство определяется размерами, конфигурацией, укладкой частиц, слагающих породу и образующих поры, наличием в порах цементирующих веществ, а также трещин и каверн.

Под пористостью понимают пустотность породы-коллектора.. Для характеристики пористости употребляется коэффициент, который показывает, какую часть от общего объема породы составляют поры.

По размерам все поры делятся на сверхкапиллярные (> 508 мкм), капиллярные (508-0,2 мкм) и субкапиллярные (<0,2 мкм).

В сверхкапиллярных порах движение воды подчинено законам гидравлики. Вода, нефть и газ в них свободно перемещаются под дей­ствием гравитационных сил. В капиллярных порах движение жидкости затруднено вследствие проявления сил молекулярного сцепления. Субкапиллярные поры характерны для глинистых пород, которые являются водо- и нефтегазоупорными. Фильтрация воды по таким породам невозможна.

Различают общую, открытую и эффективную пористость.

Общая (полная, абсолютная) пористость — это объем всех пор в породе. Соот­ветственно коэффициент общей пористости представляет собой отно­шение объема всех пор Vп к объему образца породы Vобр

mп = Vп/ Vобр

При промышленной оценке залежей нефти и газа принимается во внимание открытая пористость – объем только тех пор, которые связаны, сообщаются между собой. Она характеризуется коэффициентом открытой пористости – отношением суммарного объема открытых пор Vо.п. к объему образца породы Vобр:

mо = Vо.п./ Vобр

Эффективная пористость – пористость, которая оп­ределяется наличием таких пор, из которых нефть может быть извлечена при разработке. Неэффективными считаются субкапиллярные и изолированные поры. Коэффициент эффективной пористости неф­тесодержащей породы равен отношению объема пор, через которые возможно движение нефти, воды или газа при определенных температуре и градиентах давления Vэ, к объему образца породы Vобр:

mэ = Vэ/ Vобр

Для характеристики двух- или трёхфазных систем применяется понятие динамической пористости. Коэффициент динамической пористости определяется отношением объема движущейся в породе жидкости Vд к объему образца Vобр:

mд = Vд/ Vобр

Динамическая пористость всегда ниже эффективной, поскольку в эффективный объем пор включается также объем неподвижных жидкостей и газов, удерживаемых поверхностно-молекулярными силами.

2 Кавернозность — наличие в горной породе пустот непра­вильной или округлой формы размером более 1 мм. Она харак­теризуется коэффициентом кавернозности, равным отношению суммарного объема всех каверн Vк к объему образца породы Vобр

mк = Vк/ Vобр

3 Гранулометрический состав горной породы харак­теризует количественное содержание в ней частиц различной ве­личины. Гра­нулометрический состав влияет на особенности эксплуата­ции нефтесодержащнх коллекторов, нефтеотдачу и различные био­химические процессы в продуктивных пластах.

По размеру частиц (мм) породы разделяются на три группы: пески или псаммиты 1—0,1; алевриты 0,1—0,01; пелиты менее 0.01. Породы относятся соответственно к псаммитам, алевритам или пелитам, если содержат по 50- 80 % частиц той или иной группы.

Для определения гранулометрического состава керн породы освобождают от нефти и воды. Для этого его помешают в экст­ратор и обрабатывают определенными растворителями. Гранулометрический состав таких пород, как пески, рыхлые песчаники и другие, легко распадающиеся на составляющие зерна, определяют ситовым анализом. В практике для гранулометриче­ского анализа применяют сита с отверстиями 1.0; 0,5; 0,25: 0,1 мм. реже — 0,04 мм. Еще более мелкие частицы разделяются гидрав­лическими методами.

4Трещиноватость — наличие в породе трещин. Тре­щины – это разрывы в горной породе (без перемещения блоков породы), характеризующиеся раскрытостью от десятков микрон до миллиметров, преимущественно тектонического происхожде­ния. Раскрытость трещин позволяет приближенно оценить величины трещинной пустотности и трещинной проницаемости.

5 Проницаемость — способность породы пропускать через себя жидкости и газы (при наличии перепада давления). Она ко­личественно характеризует фильтрационные свойства коллектора.

Для оценки абсолютной проницаемости горных пород обычно используют линейный закон фильтрации Дарси:

Согласно этому закону проницаемость kпр – константа пропор­циональности, характеризующая пористую среду, причем в иде­альном случае она не зависит от типа фильтруемой жидкости.

При движении через образец неоднородной жидкости, пред­ставленной несколькими фазами (газ—вода, нефть—вода, газ— нефть, газ—нефть—вода), величины проницаемости, определяе­мые по фильтрации каждой из фаз, будут отличаться от абсолют­ной проницаемости и одна от другой. Различают эффективную (фазовую) проницаемость для данного газа или жидкости при одновременном присутствии в порах другой фазы — жидкой или газообразной. Она изменяется в зависимости от характера фазы, температуры и давления н выражается в относительных еди­ницах.

Отношение величины эффективной проницаемости к абсолют­ной называется относительной проницаемостью породы.

6 Коэффициентом водо-, нефте-, газонасыщенности (kв, kн, kг) называется отношение объема воды, нефти или газа (Vв, Vн, Vг),содержащихся в пустотном пространстве породы, к объему пустот (Vп): kв= Vв / Vп; ka= Vн / Vп; kr= Vг / Vп.

Сумма коэффициентов насыщенности породы нефтью, водой и газом равна единице. Обычно коэффициенты нефте- и газонасыщенности определяют по коэффициенту водонасьаценности Ав, исходя из соотношения kн(г) =1– kв.

7 Удельная поверхность г.п. – суммарная поверхность частиц или поровых каналов содержащихся в ед. объема образца.

SУД=T/V

T – суммарная поверхность частиц, либо поровых каналов в образце [м2]

V – объем образца

8 Механические свойства г.п.:

1) Упругость г.п.

2) Прочность на и разрыв

3) Пластичность г.п.

Упругие свойства г.п. На состояние пласта, режим его работы, существенное влияние могут оказывать упругость коллектора и содержащиеся в нем флюиды. Если пластовое давление падает, то Н и В в пласте расширяются, а поровые каналы сужаются, в следствие того, что внешнее давление на пласт остается постоянным, а внутреннее уменьшается.

Упругую энергию г.п. принято характеризовать коэффициентами сжимаемости.

Коэффициент сжимаемости пласта, коэффициент сжимаемости пор, коэффициент сжимаемости поровой среды.

Пластические свойства г.п. – при упругих деформациях зерна породы и цементирующей материал. При увеличении давления свыше предела упругости (прочности), цементирующий материал разрушается, зерна породы смещаются относительно друг друга, плотность упаковки увеличивается до исчезновения пустот в г.п. (для пород гранулярного типа).

Под прочностью г.п. понимают их сопротивление механическому разрушению. Прочность пород на сжатие во много раз превышает прочность на разрыв.

9 Тепловые свойства г.п.

1) Удельная теплоемкость

2) Коэффициент теплопроводности

3) Коэффициент температуропроводности

4) Коэффициент линейного и объемного расширения

 

Коллекторы классифицируются по целому ряду признаков, поэтому имеется множество различных их классификаций. Наиболее важными классификационными критериями являются:

- тип емкости;

- литологический состав.

- величина пористости;

- величина проницаемости.

 

Классифакация коллекторов по типу емкости:

1 Поровый

2 Трещинновый

3 Каверновый

4 Трещинно-поровый

5 Трещинно-порово-каверновый

6 Каверно-поровый

Классификация коллекторов по литологическому составу:

Наиболее распространенные коллекторы нефти и газа — терригенные и карбонатные породы.

Терригенные породы-коллекторы представлены в основном пе­счаниками и алевролитами. Основные их показатели — грануло­метрический состав, форма и характер поверхности минеральных зерен.

Карбонатные породы-коллекторы представлены известняками и доломитами. Формирование их емкостей определяется как гене­зисом, так и особенностями постседиментацнонных преобразова­ний, в первую очередь трещиноватостью и последующим выщела­чиванием пород. Развитие трещиноватости в карбонатных поро­дах обусловлено литологическими особенностями пород.

Классификация коллекторов по величине пористости:

Класс коллектора   Эффективная пористость, % Емкость коллектора
А > 20 Большая
Б 20-15 Большая
С 15-10 Средняя
D 10-5 Средняя
Е < 5 Малая

 

Классификация коллекторов по величине проницаемости:

 

Класс Коллекторы Коэффициент проницаемости, мкм2
I Очень хорошо проницаемые более 1
II Хорошо проницаемые 0,1-1
III Среднепроницаемые 0,01-0,1
IV Слабопроницаемые 0,001-0,01
V Непроницаемые менее 0,001

 

Похожие статьи:

poznayka.org

Нефтегазовый коллектор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Нефтегазовый коллектор

Cтраница 1

Нефтегазовые коллекторы слагаются в основном частицами, размер которых составляет десятые доли миллиметра. Гранулометрический состав позволяет судить о некоторых условиях генезиса пород в период их возникновения.  [1]

Нефтегазовым коллектором называется горная порода, обладающая физическими ( структурными) свойствами, позволяющими аккумулировать в ней жидкие и газообразные углеводороды, а также фильтровать, отдавать их при наличии перепада давления. Основные критерии коллектора нефти и газа - его емкостная и фильтрационная характеристики, определяемые литолого-петрографическим ( вещественным) составом, пористостью и проницаемостью, а в более общем виде - типом коллектора.  [2]

Нахождение эффективных упругих свойств песчаных нефтегазовых коллекторов и, в частности, скоростей продольных и поперечных волн, определение связи между скоростями и структурными параметрами скелета и перового пространства, свойствами флюида является весьма актуальной задачей для сейсморазведки. Закономерности распространения звука в сухих грунтах и горных породах необходимо знать при регистрации силы землетрясений или взрывов. Эти и многие другие примеры показывают значимость решения данной задачи для многих прикладных, а в некоторых случаях и теоретических, проблем механики дисперсных систем.  [3]

Для геологических условий этого объединения, где ранее сероводород в нефтегазовых коллекторах не был обнаружен, количество опрессовок превенторов вполне нормальное.  [4]

С макетными образцами спектрометра диаметром 48 мм получены положительные результаты по выделению нефтегазовых коллекторов и оценке характера насыщенности в нефтедобывающих регионах Башкортостана, Татарстана, Оренбургской области, Западной Сибири и Казахстана.  [5]

Продукция замеряемой скважины поступает через гидроциклонную головку в сепарационную камеру, где выделившийся газ уходит в нефтегазовый коллектор, а жидкость через колено и трехходовой переключающий клапан поступает в мерную емкость. По мере заполнения жидкостью вес ее возрастает.  [7]

Продукция от скважины поступает через гидроциклонную головку в сепарационную камеру, где выделившийся газ проходит в нефтегазовый коллектор 11, а жидкость через трубу 4 и трехходовый переключающий клапан поступает в измерительную емкость, вес которой возрастает по мере ее наполнения. Нуль-орган 15 срабатывает и подает сигнал на управляющий блок 14 исполнительного устройства, который через релейный блок 12 управляет трехходовым переключающим клапаном 7 и счетчиком 13 числа наполнений измерительной камеры. Клапан переключается на слив, жидкость из измерительной камеры сливается, а из скважины - накапливается в сепарационной камере.  [8]

При отказе аппаратуры автоматики или переключающего клапана, а также при отключении электроэнергии продукция скважины переливается из мерной емкости и свободно проходит через регулятор перепада давления РПД в нефтегазовый коллектор, не нарушая технологического режима скважины.  [9]

Так до настоящего времеяя отсутствует единый системный подход в оценке и классификации гидравлических условий вскрытия продуктивных отложений в зависимости от определяющих факторов, нет показателя качества захай - чивания скважин, В этой связи следует отметить работу [ 3], где авторами впервые сделана попытке классифицировать коллекторы по условюш их вскрытия на следупцих принципах: предотвращения ка - бухания - я разрушения глинистых включений в продуктивной части при контакте с фильтратами буровых растворов, предупреждения кольматадии пласта твердой фазой бурового раотвора, предотвращения ухудшения шштрахщонной характеристики призабойной аоны нефтегазовых коллекторов при Пластовых давлениях ниже гидростатического. В результате авторы вриходят к не вполне корректному выводу о невозможности качественного вскрытия продуктивных горизонтов и любых типом коллектора на глншютюс буровых растворах.  [10]

На блочных автоматизированных замерных установках отделение газа от нефти осуществляется только с целью раздельного измерения дебита скважин по жидкости и газу. После измерения нефть и газ снова смешиваются и подаются в общий нефтегазовый коллектор.  [11]

По данным некоторых объединений около 66 % ремонтов приходится на аварии подземного оборудования, 15 % - на технологические отказы, 6 % - на геолого-технические мероприятия ( ГТМ) и исследовательские работы, 1 % - на аварии наземного оборудования и 12 % - на прочие. Последние связаны с ремонтом коммуникаций, в частности, выкидных линий скважин и нефтегазового коллектора.  [12]

Кроме указанных выше основных функций, которые выполняют сепараторы-делители потока, необходимо упомянуть еще одну дополнительную функцию, имеющую большое значение для обеспечения устойчивой работы подогревателей-деэмульсаторов или печей. Как известно, при однотрубной системе сбора нефти и газа, особенно, когда нефтегазовые коллекторы прокладываются в сильно пересеченной местности, заметное влияние на устойчивость работы всей технологической схемы обезвоживания оказывают пульсации нефтегазовой смеси в нефтегазосборных коллекторах. Эти пульсации появляются в связи с тем, что на пониженных местах трубопроводов скапливается жидкость, а на повышенных - газ. При перекрытии сечения трубы жидкостью газ проталкивает эту жидкость в виде пробки, и в сепаратор первой ступени поступает порция жидкости значительного объема, а затем порция газа. В сепараторах, таким образом, также наблюдаются явления пульсации.  [13]

Тепловым скольжением называют движение пристеночного газа вдоль неравномерно нагретого капилляра в направлении, противоположном потоку теплоты. Этот вид диффузионного переноса заметен, главным образом, в разреженных газах и, видимо, не реализуется в нефтегазовых коллекторах.  [14]

Разработан и опробован в нефтегазодобывающих регионах Башкортостана, Западной Сибири ( Уренгой) и Казахстана аппаратурно-методический комплекс СНГК-СГК, обеспечивающий выделение нефтегазовых коллекторов, оценку характера насыщения, коэффициента пористости, эквивалентного содержания хлора в пластовой воде с достоверностью, не уступающей ИННК ( ИНГК) и углеродно-кислородному каротажу. Рекомендации, выданные по данным СНГК-К позволяют уточнить характер насыщения пласта, выделить пропущенные интервалы. Подтверждением этому может служить то, что в апреле месяце текущего года на одной из скважин Уренгоя нами по данным СНГК выданы рекомендации на проведение испытания пласта, не рекомендуемого другими интепретаторами по данным стандартного комплекса. Кроме того комплексирование СНГК и СГК с волновым акустическим каротажом обеспечивает эффективное выделение коллекторов трещинного типа в карбонатных разрезах.  [15]

Страницы:      1    2

www.ngpedia.ru

Карбонатные коллекторы нефти и газа

Карбонатные коллекторы содержат 42% разведанных запасов нефти и 23% запасов газа. Они представлены рядом пород: известняки – доломитистые известняки – доломиты. В них пустотное пространство относится к каверновому и трещинному типу, поэтому причинами формирования пористости являются вторичные процессы: 1) выщелачивание, 2) перекристаллизация, 3) доломитизация известняков, 4) тектонические нагрузки [29, 55].

Пористость карбонатных пород ниже чем у терригенных (у промышленных коллекторов - до 3% и менее), но проницаемость, при прочих равных условиях, может быть и выше. Среди карбонатных пород, ракушечники близки по коллекторским свойствам песчаникам.

Хемогенные породы-коллекторы – это осадочные образования, сложенные в основном хемогенными и биохемогенными осадками. Они состоят из минерального вещества, выпавшего из раствора на месте их формирования и не подвергшегося переносу, подобно обломочным зернам, хотя материал, из которого состоят эти зерна, может тоже первоначально отлагаться в виде хемогенного осадка и уже после этого в результате переработки преобразовываться в обломочные частицы. Наиболее распространены хемогенные коллекторы – известняки и доломиты.

Хемогенные карбонатные коллекторы обычно представлены кристаллическими известняками и доломитами, но иногда они могут состоять из мергеля и мела.

Кристаллическая структура – мелко-, средне-, крупнокристаллическая.

С увеличением содержания в карбонатах кремнистых компонентов образуются песчанистые, кремнистые или глинистые известняки и доломиты.

Карбонатное вещество … почти полностью представлено кальцитом (CaCO3) и доломитом [CaMg(CO3)2], а в отдельных породах – только одним из этих минералов.

Биохемогенные карбонаты наряду с обычным химически осажденным материалом содержат значительные количества органических остатков. Особенно активно биохимическое карбонатообразование происходило в местах формирования органогенных рифов (биогермов, биостромов), роль которых как коллекторов УВ все время возрастает.

Главными биохимическими агентами карбонатообразования являются водоросли, бактерии, фораминиферы, кораллы, мшанки, брахиоподы, моллюски. Наиболее важные породообразующие организмы – водоросли; по мнению ряда геологов, их следует рассматривать вообще как самый главный агент выделения и отложения извести. Карбонатное вещество, выделяемое живыми организмами, представлено в основном CaCO3 [96, 97].

К группе пород-коллекторов смешанного происхождения относятся изверженные и метаморфические породы, а также различные их ассоциации. Они интересны в геологическом отношении, но довольно редко имеют значение как промышленные коллекторы нефти и газа. В тех случаях, когда из изверженных или метаморфических пород получают промышленные притоки УВ, природный резервуар располагается вверх по восстанию от трансгрессивно перекрывающих или подстилающих его осадочных образований, из которых, как предполагаются, мигрируют в него УВ. Путями миграции УВ служат, очевидно, поверхности напластования или несогласия, а местами их скоплений (резервуарами) - трещины и зоны трещиноватости в хрупких породах фундамента.

Осадочные породы-коллекторы могут быть подразделены на образования морского и неморского (континентального) происхождения. Между этими классами наблюдается большое количество переходных и смешанных разностей [23, 29, 39].

 

Похожие статьи:

poznayka.org

Нефтеносный коллектор - Большая Энциклопедия Нефти и Газа, статья, страница 1

Нефтеносный коллектор

Cтраница 1

Нефтеносный коллектор неоднороден по разрезу. Нефть в турнейских отложениях вязкая, сернистая, парафинистая.  [2]

Для нефтеносных коллекторов по керну устанавливается остаточная нефтенасы-щенность, а затем по водной вытяжке определяется количество хлоридов в образце, по которому находится минерализация смеси Ссм в поровом пространстве; объем последнего вычисляется как разность между открытой пористостью и объемом нефти при пластовых условиях. В водоносных породах объем воды, заполняющей поры, приравнивается к величине пористости.  [3]

Если заводнение нефтеносного коллектора пластовой водой легко установить по значительному снижению его удельного сопротивления, то при заводнении нефтеносного пласта нагнетаемой пресной водой эта задача по кривым удельного сопротивления не может быть решена однозначно.  [4]

Все образцы нефтеносных коллекторов, извлеченные на поверхность до разработки месторождения и подвергнутые анализу, показали содержание некоторого количества воды в жидкости, полученной из керна, и, очевидно, присущей породе коллектора. Количество этой воды, обычно называемой погребенной или связанной, составляет от 2 до 50 % порового пространства нефтяных коллекторов.  [5]

Физические константы нефтеносных коллекторов Бугуруслана и Сызрани.  [6]

Все образцы нефтеносных коллекторов, извлеченные на поверхность до разработки месторождения и подвергнутые анализу, показали содержание некоторого количества воды в жидкости, полученной из керна, и, очевидно, присущей породе коллектора. Количество этой воды, обычно называемой погребенной или связанной, составляет от 2 до 50 % порового пространства нефтяных коллекторов.  [7]

Зоны развития нефтеносных коллекторов в плане в основном совпадают.  [9]

Проведено изучение нефтеносного коллектора Торчлайт Тенслип в Уайоминге. Это месторождение работает по существу полностью при водонапорном режиме, так что практически весь объем отбора пластовой жидкости замещается притоком краевой воды, за исключением небольшой доли, компенсируемой расширением жидкости.  [11]

В карбонатных отложениях выделение нефтеносных коллекторов с помощью данного метода осуществляется менее уверенно вследствие сложного строения их порового пространства и неравномерного распределения нефти в коллекторе по пористым, трещиноватым, кавернозным участкам. Такой характер распределения нефти в породе может привести к отсутствию признаков нефти в образцах, отобранных из плотных участков продуктивного пласта. В этих случаях достоверность оценки насыщенности пласта повышается при увеличении частоты отбора образцов, так как увеличивается вероятность их отбора из нефтесодержащих участков.  [12]

Газосодержащие зоны, залегающие выше нефтеносных коллекторов, обычно имеют водонасыщенность в тех же пределах, что и нефтеносные породы.  [13]

Газосодержащие зоны, залегающие выше нефтеносных коллекторов, обычно имеют водонасыщен-иость ( в тех же пределах, что и нефтеносные породы.  [14]

Многообразие всех пород, слагающих нефтеносные коллекторы, может быть охарактеризовано тремя наиболее представительными горными породами: известняком, доломитом и песчаниками. Наиболее распространенными сопутствующими породами являются мергели, глины, аргиллиты и алевролиты.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Разработка методики определения коэффициента продуктивности карбонатных коллекторов 

Нефть в современном мире является главным и важнейшим из всех полезных ископаемых, которые сегодня добываются. И это не удивительно! Ведь нефть – это основной компонент горючего для различных транспортных средств, товаров народного потребления, лекарственных препаратов и много другого. О существование нефти люди знали еще в далекие древние времена. Изначально она не использовалась в качестве горючего материала, а применялась в большей степени как вяжущее вещество, например, во время строительства. И только в средневековье люди заинтересовались нефтью благодаря ее горючим свойствам.

Она является горючей маслянистой смесью светло-коричневого или темно-бурого цвета. Нефть бывает легкая, средняя и тяжелая в зависимости от своей плотности. Залегает, как правило, на глубинах от нескольких десятков метров до 5-6 километров. Образование залежей нефти происходит в соответствующих породах, которые имеют для этого наиболее благоприятные условия. Таким образом, самое лучшее место для накопления нефти представляют собой пористые породы, в которых также происходит скопление и природного газа. Такие породы называют еще коллекторами. Особенностью коллекторов является способность накапливать углеводороды, одновременно фильтруя пластовые флюиды, что и способствует накоплению в них нефти и газа.

Коллекторы классифицируются по определенным свойствам. Тип коллектора зависит от его полезной емкости, проницаемости, глубин залегания, состава флюида. Таким образом, различают следующие коллекторы:

  • поровые;
  • биопустатные;
  • кавернозные;
  • трещинные;
  • смешанные.

Самыми популярными коллекторами выступают терригенные и карбонатные. Именно они являются местом залегания основной массы углеводородных запасов. Кроме этого, местом нефтяного образования могут служить глинисто-кремнисто-битуминозные, вулканогенные, магматические и другие коллекторы. Однако, такие коллекторы встречаются значительно реже.

Характеристики и назначение

Карбонатные коллекторыДанные коллекторы в зависимости от характера и объема делятся на: поровые, каверновые, трещинные, а также смешанные. Как правило, строение карбонатных коллекторов представляет собой достаточно сложную систему. Они состоит из макро- и микротрещин, которые вертикально располагаются в слоях. Макротрещины, имеющие вертикальное положение, могут распространяться несколько сотен метров в длину. Они располагаются друг возле друга на расстоянии от 2 до 10 см. Также не является постоянной и их раскрытость – ее изменения находятся в диапазоне 1-100 микрометров. Стоит сказать, что трещины могут пропускать количество флюидов, которое соответствует самому маленькому значению раскрытости трещин в тех местах, где они сужаются. Точно так же каверзно-пористые коллекторы имеют проницаемость, которая напрямую связана с диаметром фильтрующих пор.

Карбонатные коллекторы – это колоссальное количество пластов с залежами нефти, отличающихся своим разнообразием. Именно в этих коллекторах накапливается достаточно весомая часть от всеобщих мировых нефтяных залежей, которые только известны на сегодняшний день – от 30% до 50 %.

Карбонатные коллекторы состоят из рифов, обломочных известняков, хемо-генных известняков и доломитов. Однако, чаще всего, в их структуру входят известняки и доломиты. Их отличительной особенностью являются фильтрационно-емкостная система, имеющая сложную структуру, а также содержащиеся в них залежи полезных ископаемых, которые с поверхностью породы-коллектора взаимодействуют очень специфическим образом.

Карбонатный и терригенный коллектор

Терригенный и карбонатный коллеторыКарбонатные коллекторы имеют отличительные особенности от терригенных коллекторов. Одной из таких отличительных характеристик является то, что фильтрационные и емкостные свойства карбонатных коллекторов могут существенно улучшаться, если повлиять на них растворами соляной кислоты, карбонизированной водой или иными способами, которые используют химическую активность кальцита и доломита. Напомним, что данные минералы являются основой карбонатных пород.

Терригенный коллектор, не смотря на то, что в карбонатном коллекторе происходит накопление значительной доли от всех общих известных на сегодня запасов нефти, все же является основным. В нем скапливается 78% природного газа и 58% всех нефтяных запасов, разведанных на сегодняшний день по всему миру. По своим характеристикам терригенные коллекторы имеют достаточно разнообразные емкостно-фильтрационные свойства. Средняя пористость терригенных нефтеносных коллекторов оценивается в 20%, в то время, как их проницаемость составляет десятые, сотые доли миллиметров квадратных. Стоит сказать, что данному виду коллекторов принадлежит лидирующая позиция по своему качеству и количеству залежей полезных ископаемых, оставив на втором месте карбонатные коллекторы.

В настоящее время разработан ряд технологий, позволяющих определить удельную продуктивность пластов терригенного вида. Эти технологии способны прогнозировать образование новых скважин.

Толща карбонатных и терригенных коллекторов представляется месторождениями пермских отложений. Именно они создают природные резервуары. Однако, тут есть отличительная особенность, которая заключается в том, что природные резервуары в карбонатных коллекторах располагаются на больших площадях, тогда как в терригенных они занимают участки локально.

Терригенные и карбонатные породы

Процесс накопления и сохранности нефти и природного газа в терригенных и карбонатных породах коллектора основывается на трех главных принципах. К ним относятся: существование самого коллектора, покрышки и ловушки. Стоит отметить, что образование углеводородов в терригенных и карбонатных коллекторах при разделении нефтяных образований по классам соответственно с типами ловушек, природных резервуаров и некоторыми другими признаками, рассматриваются в качестве залежей одного ряда.

Не смотря на то, что карбонатные и терригенные коллекторы, проницаемость которых характеризуется как низкая, имеют принципиально разную структуру перового пространства, между ними все же существует внешнее сходство, которое только кажется сходством на первый взгляд.

Таким образом, нефть и природный могут скапливаться в таких породах коллекторах, поры, пустоты и трещины которых могут служить хранилищем для данных полезных ископаемых. Как правило, такими породами являются пески, песчаники, конгломераты, трещиноватые и кавернозные известняки и доломиты и многие другие.

Наиболее распространенными являются терригенные и карбонатные породы коллекторы, так как именно в них скапливается наибольшее процентное содержание нефти от всех общих известных на сегодня запасов.

Однако, ежедневно, параллельно с процессом добычи нефти, люди пытаются найти продукты, которые могли бы ее заменить. Это связано с тем, что образование нефти является достаточно длительным процессом, и ее запасы добываются и расходуются значительно быстрее, чем она успевает вновь накопиться в недрах Земли. Но пока, несмотря на все нанотехнологии, нефть является незаменимым продуктом во многих сферах жизнедеятельности человека. 

news-mining.ru

нефтяной коллектор - это... Что такое нефтяной коллектор?

 нефтяной коллектор

Тематики

  • нефтегазовая промышленность

EN

  • oil pay
  • oil-reservoir rock

Справочник технического переводчика. – Интент. 2009-2013.

  • нефтяной кокс
  • нефтяной насос

Смотреть что такое "нефтяной коллектор" в других словарях:

  • Коллектор — (Collector) Определение коллектора, виды коллекторов, примененеие Информация об определении коллектора, виды коллекторов, примененеие Содержание Содержание Определение В технике Финансовое Прочее канализационный Коллектор (электротехника)… …   Энциклопедия инвестора

  • коллектор нефти — нефтяной пласт — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность Синонимы нефтяной пласт EN petroleum reservoir …   Справочник технического переводчика

  • нефтяной пласт-коллектор — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN oil source bed …   Справочник технического переводчика

  • природный нефтяной резервуар — нефтяной коллектор — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность Синонимы нефтяной коллектор EN oil reservoir …   Справочник технического переводчика

  • СБОРНЫЙ КОЛЛЕКТОР — нефтяной трубопровод повыш. диаметра, к рый собирает и транспортирует на промысловый сборный пункт продукцию с разл. участков нефтепромысла. По способу транспортирования различают С. к. самотёчный и напорный. Первый используется на промыслах с… …   Большой энциклопедический политехнический словарь

  • ГОСТ Р 53554-2009: Поиск, разведка и разработка месторождений углеводородного сырья. Термины и определения — Терминология ГОСТ Р 53554 2009: Поиск, разведка и разработка месторождений углеводородного сырья. Термины и определения оригинал документа: 16 ловушка углеводородов Примечание Рассматриваются залежи, по количеству, качеству и условиям залегания… …   Словарь-справочник терминов нормативно-технической документации

  • Нефть —         Нефть (через тур. neft, от перс. нефт) горючая маслянистая жидкость со специфическим запахом, распространённая в осадочной оболочке Земли, являющаяся важнейшим полезным ископаемым. Образуется вместе с газообразными углеводородами (см.… …   Большая советская энциклопедия

  • ГОСТ Р 53713-2009: Месторождения нефтяные и газонефтяные. Правила разработки — Терминология ГОСТ Р 53713 2009: Месторождения нефтяные и газонефтяные. Правила разработки оригинал документа: (попутный) нефтяной газ; ПНГ: Смесь углеводородных и неуглеводородных газов и паров, находящихся как в свободном, так и в растворенном… …   Словарь-справочник терминов нормативно-технической документации

  • НЕФТЬ И ГАЗ — См. также ХИМИЯ И МЕТОДЫ ПЕРЕРАБОТКИ НЕФТИ; НЕФТЕХИМИЧЕСКИЕ ПРОДУКТЫ. НЕФТЬ Сырая нефть природная легко воспламеняющаяся жидкость, которая находится в глубоких осадочных отложениях и хорошо известна благодаря ее использованию в качестве топлива и …   Энциклопедия Кольера

  • Ишимбай — Запрос «Ишимбай» перенаправляется сюда; см. также другие значения. Город Ишимбай башк. Ишембай …   Википедия

technical_translator_dictionary.academic.ru

нефтяной коллектор - это... Что такое нефтяной коллектор?


  • нефтяной кокс
  • нефтяной король

Смотреть что такое "нефтяной коллектор" в других словарях:

  • нефтяной коллектор — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN oil payoil reservoir rock …   Справочник технического переводчика

  • Коллектор — (Collector) Определение коллектора, виды коллекторов, примененеие Информация об определении коллектора, виды коллекторов, примененеие Содержание Содержание Определение В технике Финансовое Прочее канализационный Коллектор (электротехника)… …   Энциклопедия инвестора

  • коллектор нефти — нефтяной пласт — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность Синонимы нефтяной пласт EN petroleum reservoir …   Справочник технического переводчика

  • нефтяной пласт-коллектор — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN oil source bed …   Справочник технического переводчика

  • природный нефтяной резервуар — нефтяной коллектор — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность Синонимы нефтяной коллектор EN oil reservoir …   Справочник технического переводчика

  • СБОРНЫЙ КОЛЛЕКТОР — нефтяной трубопровод повыш. диаметра, к рый собирает и транспортирует на промысловый сборный пункт продукцию с разл. участков нефтепромысла. По способу транспортирования различают С. к. самотёчный и напорный. Первый используется на промыслах с… …   Большой энциклопедический политехнический словарь

  • ГОСТ Р 53554-2009: Поиск, разведка и разработка месторождений углеводородного сырья. Термины и определения — Терминология ГОСТ Р 53554 2009: Поиск, разведка и разработка месторождений углеводородного сырья. Термины и определения оригинал документа: 16 ловушка углеводородов Примечание Рассматриваются залежи, по количеству, качеству и условиям залегания… …   Словарь-справочник терминов нормативно-технической документации

  • Нефть —         Нефть (через тур. neft, от перс. нефт) горючая маслянистая жидкость со специфическим запахом, распространённая в осадочной оболочке Земли, являющаяся важнейшим полезным ископаемым. Образуется вместе с газообразными углеводородами (см.… …   Большая советская энциклопедия

  • ГОСТ Р 53713-2009: Месторождения нефтяные и газонефтяные. Правила разработки — Терминология ГОСТ Р 53713 2009: Месторождения нефтяные и газонефтяные. Правила разработки оригинал документа: (попутный) нефтяной газ; ПНГ: Смесь углеводородных и неуглеводородных газов и паров, находящихся как в свободном, так и в растворенном… …   Словарь-справочник терминов нормативно-технической документации

  • НЕФТЬ И ГАЗ — См. также ХИМИЯ И МЕТОДЫ ПЕРЕРАБОТКИ НЕФТИ; НЕФТЕХИМИЧЕСКИЕ ПРОДУКТЫ. НЕФТЬ Сырая нефть природная легко воспламеняющаяся жидкость, которая находится в глубоких осадочных отложениях и хорошо известна благодаря ее использованию в качестве топлива и …   Энциклопедия Кольера

  • Ишимбай — Запрос «Ишимбай» перенаправляется сюда; см. также другие значения. Город Ишимбай башк. Ишембай …   Википедия

dic.academic.ru