Способ ректификации нефти. Колонны ректификации нефти


Перегонка и ректификация. Ректификационные колонны

    На установках первичной перегонки нефти основным аппаратом процесса ректификации является ректификационная колонна — вертикальный аппарат цилиндрической формы. Внутри колонны расположены тарелки—одна над другой. На поверхности тарелок происходит контакт жидкой и паровой фаз. При этом наиболее легкие компоненты жидкого орошения испаряются и вместе с парами устремляются вверх, а наиболее тяжелые компоненты паровой фазы, конденсируясь, остаются в жидкости. В результате в ректификационной колонне непрерывно идут процессы конденсации и испарения. [c.49]     Качество работы установок АТ во многом зависит от схем отдельных технологических узлов, в первую очередь от различных по конструктивному оформлению схем узлов перегонки нефти. Ректификационные колонны атмосферной части при одинаковой мощности имеют разные размеры, разное число тарелок. Режим работы колонн, особенно в случае применения клапанных тарелок, изучен недостаточно. Нужно более тщательно изучить системы орошения колонн, эффективность и количество циркуляционных промежуточных орошений, поскольку наблюдается несоответствие проектного количества циркулирующей флегмы и фактического. Особенно важно установить факторы, влияющие на число тарелок, предназначенных для отдельных фракций, поскольку на установках АВТ это число меняется в широких пределах. Так, по схеме с однократным испарением на каждый отбираемый дистиллят приходится по 7—8 тарелок, а при наличии двух ректификационных колонн—по 11—17. В то же время четкость погоноразделения в основных колоннах по обеим схемам практически одинакова. Ректификация и способы регулирования температурных режимов в колоннах также осуществляются по-разному. В колоннах может быть или одно острое орошение или еще дополнительно промежуточное циркуляционное орошение. [c.232]

    На практике разделение смесей обычно проводят непрерывной фракционной перегонкой, называемой ректификацией, в ректификационных колоннах периодического или непрерывного действия. Широкое применение находят тарельчатые колонны и колонны с насадками. В ректификационных колоннах процессы испарения [c.394]

    В процессах лабораторной перегонки и ректификации нефтепродуктов приходится измерять температуру паров перегоняемого образца и температуру жидкости в кубе (колбе). В некоторых случаях измеряют температуру паров и жидкости на тарелках ректификационной колонны, сырья, поступающего в колонну, температуру компенсирующих теплопотери нагревателей, хладоагента и др. Диапазон значений измеряемых температур колеблется от -20 °С до 500 °С. [c.25]

    На практике разделение смесей проводят непрерывной фракционной перегонкой, называемой ректификацией. Она осуществляется в ректификационных колоннах непрерывного или периодического действия. Широкое применение находят тарельчатые колонны, где осуществляется непрерывный контакт движущегося вверх пара с жидкостью (флегмой), находящейся на тарелках. Ректификационная колонна (рис. 6.13) имеет ряд горизонтальных полок 8 той или иной конструкции, называемых тарелками. Число их зависит от свойств разделяемых компонентов. В работающей установке на каждой тарелке находится кипящая жидкость определенного состава. Уровень жидкости определяется высотой выступа сливной трубы 2. Раствор, подлежащий перегонке, предварительно нагревают до кипения и подают через кран 3 на одну из верхних тарелок. При этом уровень жидкости на данной тарелке превышает высоту сливной трубы и жидкость течет по трубке 2 на следующую тарелку, где температура выше (так как нагреватель находится внизу, в кубовой [c.101]

    Величина Ро называется фактором разделения (степень разделения, фактор фракционирования) в безотборном режиме. Фактор разделения Ро определяет разделительную способность колонны. Чем больше Ро отличается от а, тем больше эффект разделения, достигаемый в ректификационной колонне, по сравнению с эффектом разделения при обычном испарении жидкости. Уравнение (П.50) наглядно отражает многоступенчатость процесса ректификации и большую ее эффективность по отношению к простой перегонке. Так, наприме[c.59]

    Перегонка с ректификацией дает более высокую четкость разделения смесей по сравнению с перегонкой с дефлегмацией. Основой процесса ректификации является многократный двусторонний массообмен между движущимися противотоком парами и жидкостью перегоняемой смеси. Этот процесс осуществляют в ректификационных колоннах. Для обеспечения более тесного соприкосновения между встречными потоками пара и жидкости ректификационные колонны оборудованы контактными устройствами — тарелками или насадкой. От числа таких контактов и от количества флегмы (орошения), стекающей навстречу парам, в основном зависит четкость разделения компонентов смеси. [c.67]

    На современных комбинированных установках АВТ имеются блоки стабилизации, абсорбции-десорбции и вторичной перегонки широкой бензиновой фракции. Во всех этих блоках процесс ректификации, или фракционирования, осуществляется в ректификационных колоннах. Эти технологические блоки на установках АВТ добавляются в зависимости от углеводородного состава перерабатываемой нефти и от назначения их в схеме переработки по заводу в целом. На рис. 26 приводится типовая схема технологической связи между стабилизатором и фракционирующим абсорбером на установках АВТ. [c.53]

    Полное разделение воздуха на кислород и азот возможно достичь лишь при применении процесса ректификации. Коренным отличием ректификации сжиженных газов от ректификации обычных жидкостей является то, что в данном случае процесс проводится при очень низких температурах и, кроме того, продукты ректификации целиком или в большей части получаются в виде газов. Но несмотря на это, закономерности процесса ректификации сжиженных газов в точности соответствуют тем закономерностям, которые были, рассмотрены в главе X, а поэтому и методика расче-танная применительно к .перегонке та ректификационных колонн, разрабо-жидкостей, целиком применима и к ректификации сжиженных газов. [c.668]

    Бензол. В небольших количествах выделяют из фракции сырого бензола коксохимического производства с последующей промывкой серной кислотой, щелочью и перегонкой на ректификационной колонне. Получают каталитическим риформингом бензинов, полученных прямой перегонкой нефти (фракция, кипящая в интервале температур 62—85°С) с последующей экстракцией и ректификацией. [c.180]

    Перегонка в атмосферной колонне. На разделение в основную ректификационную колонну поступает нефть, частично отбензиненная в первой ректификационной колонне. С верха основной ректификационной колонны отбирается широкая бензиновая фракция 85—140 (180)°С. Однако четкость ректификации при этом неудовлетворительная. На одной обследованной установке АВТ наложение между 5 и 95%-ными точками выкипания по ИТК бензина и керосина равно 11 С, керосина и дизельного топлива 26 °С, дизельного топлива и мазута 64°С на другой установке АВТ эти цифры составляют 35, 28 и 43 °С. При увеличенном подводе тепла с сырьем в первую ректификационную колонну отделение дизельного топлива от мазута в основной ректификационной колонне заметно улучшилось. Наложение между 5 и 95%-ными точками выкипания этих продуктов на второй установке сократилось с 43 да 14 °С. [c.123]

    Отличительной особенностью прибора Баджера, принятого в практике США для стандартных разгонок с ректификацией, является тщательное устройство наружного обогрева ректификационной колонны, позволяющее поддерживать снаружи те же температуры, что и внутри ее. Благодаря этому удается производить перегонку нефтей с довольно глубоким отгоном фракций, без явлений захлебывания и переполнения колонны флегмой, нарушающих нормальный ход разгонки. [c.220]

    Математическая модель поиска оптимального режима ректификации нефтей в сложных колоннах основана на уравнениях взаимосвязи показателей качества подучаемых нефтепродуктов с технологическими параметрами режима колонны и на математической модели сложной ректификационной колонны с определением регламентируемых показателей качества прямогонных продуктов первичной перегонки нефти. [c.47]

    Из рассмотрения процесса ясно, что труднолетучий компонент в чистом виде путем фракционной перегонки выделен быть не может. Поэтому в описанном выше виде фракционную перегонку на практике не применяют. В промышленности и в лабораторных условиях обычно используют так называемую ректификацию. Последняя — это сложный неравновесный процесс, в ходе которого происходит непрерывный обмен веществом между находящимися в постоянном контакте друг с другом потоками жидкости и пара. Процесс этот реализуют в аппаратах, называемых ректификационными колоннами (в лаборатории — колонками). В таких колоннах пар от кипящего раствора поднимается вверх и встречает на своем пути стекающую жидкость, образующуюся при конденсации пара (так называемую флегму). Составы и температура кипения вступающих в контакт потоков неравновесны. [c.280]

    Строго говоря, точный механизм массообмена в ректификационной колонне до сих пор не установлен. Поэтому для описания процессов ректификации используют различные приближенные модели, основанные на анализе результатов разделения, получаемых экспериментально. Наиболее часто употребляемой на практике, но отнюдь не самой строгой, является модель, в которой ректификацию уподобляют фракционной перегонке и рассматривают как совокупность последовательных процессов, однократного равновесного испарения. [c.281]

    Технологические схемы блоков разделения (фракционирования) установок алкилирования за последние годы претерпели существенные изменения от параллельно-последовательного соединения ректификационных колонн сейчас переходят к системе сложных колонн со овязанными тепловыми потоками. В этом отношении ус-тановки алкилирования являются одними из первых установок, на которых в настоящее время внедряются или предлагаются к внедрению новые технологические схемы перегонки и ректификации нефтяных смесей. На рис. IV-27 изображены два варианта технологических схем блоков разделения установок сернокислотного ал- [c.237]

    Перегонка нефти с ректификацией. Дальнейшим развитием дефлегматоров являются ректификационные колонны. Фракционная перегонка смесей при помощи ректификационных колонн носит название ректификации. При ректификации происходит наиболее тесное и непрерывное взаимодействие пара с флегмой. Флегма образуется от частичной конденсации пара. [c.34]

    Образование нефтяных эмульсий крайне затрудняет переработку нефтей. Испарение эмульсионной воды требует значительного расхода топлива, понижает полезную производительность перегонных установок. Водяные пары, образующиеся в больших количествах при перегонке обводненных нефтей, нарушают процесс ректификации, повышая скорости движения паров в ректификационных колоннах, что приводит к ухудшению качества продуктов перегонки. [c.56]

    Вакуумные установки для перегонки мазута (фиг. 47). Установки предназначены для получения дестиллатных и остаточного смазочных масел или для получения широкой газойле-соляровой фракции — сырья для крекинга. Мазут сырьевым насосом/// прокачивают через теплообменники Т1, Т2, ТЗ, где используется тепло боковых дестиллатов колонны и тепло остатка — гудрона или полу-гудрона. Горячий мазут поступает в трубчатую печь П1, разделяясь перед входом на два потока — левый и правый. Каждый поток проходит два ряда радиантно-конвекционных труб (в низу печи) и боковой экран в верхней камере сгорания. Перед входом в трубы потолочного экрана потоки сливаются. Из печи мазут поступает в ректификационную колонну К1. Последняя имеет небольшое число тарелок, например семь, для ректификации паров и три тарелки в отгонной суженной части для отпаривания и ректификации жидкости обе части отделены друг от друга отбойником — решетчатой зигзагообразной перегородкой. [c.116]

    Б. содержится в коксовом газе и частично в коксовой смоле, а также в нек-рых нефтях, нанр. майкопских и восточных районов СССР и др. Из коксового газа Б, извлекают растворителями (высококи-пящими фракциями каменноугольной смолы или нефти) после удаления смолы и аммиака. Перегонкой в ректификац, колоннах растворителя, насыщенного Б,, иолучают сырой Б,, который очищают обработкой серной к-той и щелочью и многократной перегонкой в ректификационных колоннах. Из коксового газа Б, улавливают также адсорбцией на активном угле или др, сорбентах и далее выделяют из адсорбента перегонкой с водяным паром. Значительные количества Б, получают также каталитической циклизацией алифатич, углеводородов нефти (см. Коксохимическое производство. Ароматизация нефтепродуктов). [c.206]

    Сущность экстракционной перегонки заключается в том, что весьма близкая к единице величина коэффициента относительной летучести компонентов системы, характеризующая в данном случае особую трудность их разделения, претерпевает, в присутствии надлежащим образом подобранного растворителя, серьезное изменение, заметным образом отклоняясь от единицы и тем самым, создавая сравнительно более благоприятные условия для разделения исходной системы на ее практически чистые составляющие. Так, например, на установках каталитической дегидрогенизации н-бутана с целью получения бутенов, фракция продуктов реакции в основном состоит из неразложившегося н-бутана, бутена-1 и высоко- и низкокипящего изомеров бутена-2. При этом отделение бутенов-2, особенно же низкокипящего их изомера, от н-бутана методами обычной ректификации практически неосуществимо. Если же в колонну ввести специальный высококипящий растворитель, например, фурфурол, фенол или ацетон, то разделение этих же компонентов оказывается вполне возможным. Объясняется это тем, что в обычных условиях летучесть н-бутана (4ип = — 0,5° С), отнесенная к летучести низкокипящего изомера бутена-2 (4ип = 0,9° С) составляет К = 1,0125. Если же рассмотреть коэффициент относительной летучести этих же веществ в присутствии растворителя—фурфурола, то оказывается, что он доходит до АГ= 1,7, т. е. значительно возрастает и тем самым значительно облегчается разделение этих веществ в ректификационной колонне. Разница в летучестях н-бутана и бутенов в условиях экстракционной перегонки объясняется различной растворимостью алканоз и алкенов в растворителях типа фурфурола, фенола или ацетона. [c.154]

    Основной способ производства моторных топлив из газового ко1щенсата состоит в его прямой перегонке ректификационных колоннах с целью получения отдельных фракций-(бензиновых, керосиновых, дизельных). Соответствие качества этих фракций требованиям ГОСТа на товарные топлива зависит от исходного состава перерабатываемого конденсата. Если прямогонные фракции удовлетворяют этим требованиям, реализуется простейшая схема —одно-, двухколонная ректификация в против- [c.213]

    Галиаскаров Ф.М. Способы итерационного определения составов конечных продуктов разделения при расчете на ЭВМ простых и сложных ректификационных колонн., Перегонка и ректификация сернистых нефтей и нефтепродуктов, Труды БашНИИНП. Вып. XIV, 1975г., с.209-216. [c.101]

    Схема процесса непрерывной ректификации является развитием (по разрешающей способности) схемы непрерывной перегонки и поясняется рис. 1.16,а. Действительно, если при непрерывной перегонке (однократном испарении) паровая и жидкая фазы сразу же после разделения выводятся на конденсацию и охлаждение, то при непрерывной ректификации на каждом из этих потоков до их вьгаода в приемные устройства устансюлены укрепляющая 6 и отгонная 7 ректификационные колонны. Назначение первой, как и при периодической ректификации, - сконцентрировать в парах наиболее летучие компоненты и получить дистиллят заданного состава. Назначение второй - отогнать и направить в 6 оставшиеся в жидкой фазе ОИ пегколетучие компоненты, которые должны входить в дистиллят и одновременно сконцентрировать в флегме 2 менее летучие компоненты, чтобы получить остаток заданного состава. Процесс непрерывной ректификации протекает при постоянных, установившихся во времени параметрах определенной строго постоянной подаче сырья, отборе дистиллята и остатка. Температура вверху и внизу колонны остается постоянной. [c.22]

    На период с 1900 по 1920 г. приходятся многочисленные изобретения, применяемые и сегодня, например колонна Янцена (см. рис. 76), насадочные кольца Ращига (1916 г.) и насадочные кольца Прим (1919 г.). Был усовершенствован обогрев аппаратов и создан регулятор давления для вакуумной перегонки. На рис. 16а показана установка для вакуумной ректификации, которой пользовался известный специалист по перегонке Рехенберг [3 в период с 1900 по 1920 г. Эта установка, как и ректификационная колонна Эльснерса (рис. 166), демонстрирует уровень развития техники перегонки в 1920 г. [c.27]

    Эфиры, выходящие с низа эфирнзатора 7, дросселируют и подвергают вакуум-перегонке при остаточном давлении 133 гПа. Вначале в испарителе 8 отгоняют смесь эфиров от менее летучих смолистых примесей. Легкий погон из ректификационной. колонны 10 представляет собой метил-л-толуилат. Он конденсируется в конденсаторе-дефлегматоре 11. Часть его идет на орощение колонны, а остальное количество стекает в сборник 13, откуда направляется на окисление. Эфиры дикарбоновых кислот из куба колонны 10 поступает на вакуум-ректификацию в насадочную колонну 12, где более летучий диметилтерефталат отгоняется от днметиловых эфиров изомерных дикарбоновых кислот ( изофталаты ). В конденсаторе-дефлегматоре 14 эфир конденсируется часть его возвращается на орошение колонны, а остальной продукт стекает в сборник 15. Кубовый остаток из колонны 12 еще содержит значительное количество диметилтерефталата. Его направляют на кристаллизацию из метанольных растворов, на схеме не показанную. Изофталаты лучше растворяются в метаноле, и диметилтерефталат отделяют от них в виде кристаллов, возвращая его на рек-тифика дию. [c.401]

    Органический слой с верха сепаратора 12 подают последовательно в две ректификационные колонны. В первой (13) отгоняют образе вавшийся при разложении диоксана изобутилен, который возврз1цают на первую стадию синтеза. Затем в колонне 14 отделяют изопрен от более высококипящего остатка (непревращенный диоксан и побочные продукты). Для окончательной очистки изопрен громывают водой, осушают азеотропной перегонкой и прово- 1ят заключительную ректификацию. На этих стадиях к нему во из-Г)еж .11ие полимеризации добавляют ингибитор. [c.559]

    В настоящее время нефть и мазут перегоняются на так называемых трубчатых установках, где протекают последовательно следующие процессы предварительный нагрев сырья за счет отнятия теплоты (рекуперации) от продуктов перегонки в теплообменниках, основной нагрев сырья в трубчатых печах, отделение от обра-зовавщихся паров от жидкого остатка и их ректификация в ректификационных колоннах, конденсация и охлаждение продуктов перегонки в теплообменниках, которые служат подогревателями сырья. [c.60]

    Окисление проводится в реакторе 1 из нержавеющей стали в интервале температур 160—190 °С и при давлении 4,8 МПа без катализатора или в присутствии солей кобальта, меди, магния, ванадия. Воздух подается в нижнюю часть реактора в таком количестве, чтобы содержание кислорода в отдувочном газе составляло не более 4% (об.). Пары продуктов реакции и непрореагировавшие углеводороды поступают совместно с отработанным воздухом в конденсационную систему 2—4, приспособленную для утилизации теплоты. Отсюда жидкий конденсат возвращается в зону реакции. Отработанный воздух поступает в турбодетандер 5, где охлаждается до —60 °С. Полученный холод используют на установке. Оксидат из реактора поступает в ректификационную колонну 7, в которой отделяются нейтральные кислородсодержащие продукты, возвращаемые на доокис-ление в реактор 1. На колонне 8 происходит отделение воды и кислот С —С4, а тяжелый кубовый остаток, пройдя блок выделения янтарной кислоты 9, поступает на повторное окисление. Вода от кислот отгоняется с помощью азеотропной перегонки (блок 10). Товарные муравьиная, уксусная и пропионовая кислоты выделяются с применением азеотропной и обычной ректификации (блоки 11—13). Суммарный выход кислот С —С и янтарной кислоты в расчете на превращенный бензин находится на уровне 100—110%, причем выход уксусной кислоты составляет 60—75% от товарной продукции и зависит от технологии проведения процесса и используемого для окисления сырья. [c.178]

    Заканчивая анализ работы топливных АВТ, следует отметить, что основной проект АВТ 1946 г. и последующие его изменения 1947 н 1952 гг. не обеспечили выпуска запроектированных продуктов. П. ) основным аппаратам, особенно по ректификационным колоннам, проект выполнен неудовлетворительно. В связи с этим возникла не обходимостъ широкую бензиновую фракцию подвергать повторной ректификации, что потребовало дополнительного строительства установок вторичной перегонки, а это, как известно, сопровождается не только новыми капитальными затратами, но и последующими постоянными расходами на электроэнергию, пар, воду, на дополнительную заработную плату, ремонтные работы и т. д., что в конечном итоге приводит к повышению себестоимости продукции и снижению производительности труда. [c.31]

    Заканчивая рассмотрение данных по работе атмосферно-ваку-умных установок восточных заводов, работающих по топливной и масляной схемам, следует указать, что реконструкция и особенно отступления от запроектированного технологического режима на масляных АВТ проекта 1952 г. и АВТ производительностью 1 млн. т1год не всегда были достаточно обоснованными. Если на заводах и была положительно решена задача по значительному увеличению производительности, то вопросу глубины извлечения нефтепродуктов, качеству получаемых продуктов и особенно ассортименту не было уделено серьезного внимания, что привело к дополнительному и н црл данному строительству отдельных установок вторичной перегонки и сооружению на топливных АВТ вторичных колонн вместо замены действующих испарителей. Неотработан-ность технологического режима и нарушение основного принципа ректификации на масляных АВТ проекта 1952 г. и АВТ производительностью 1 млн. т1год усложнили работу проектных организаций по совершенствованию технологических схем АВТ для нефтепере-рабатываюйхих заводов, намеченных к строительству. Кроме того, при наличии вполне удовлетворительного проекта по атмосферной части АВТ производительностью 1 млн. т/год первые ректификационные колонны работают с неудовлетворительной погоноразделительной способностью, несмотря на имеющуюся их избыточную [c.58]

    Ректификационные колонны крскинг-устаиовок отличаются от колонн прямой перегонки нефти отсутствием отпарной секции, т. е. наличием тарелок только выше ввода питания, иредназначенных для ректификации паров. Отсутствие отпарной секции и повышенное (от 3 до 10—12 ат) даЕление в колоннах обусловливают плохую ректификацию остатка колонпы. [c.65]

    Поэтому, несмотря на то, что коксохимический бензол подвергается ректификации трижды (при отборе сероуглеродной фракции, перегонке очищенной фракции БТК — получение бензола для нитрации — и окончательном выделении бензола после дополнительной очистки — получение бензола высших марок), обеспечить низкое содержание насыщенных углеводородов, в частности, н-гептана и метилциклогексана, весьма сложно. Как показали йсссле-дования [71], с повышением четкости ректификации можно сосредоточить метилциклогексан в донном продукте и получать бензол с хорошим выходом и достаточно низким содержанием метилциклогексана. Ректификация при этом должна проводиться на колонне эффективностью 40 т. т. при рефлюксном отношении не ниже (5- (5) 1. н-Гептан даже при таких условиях отделяется весьма неудовлетворительно. В системе из двух эффективных ректификационных колонн бензол получается с достаточно высокой температурой кристаллизации, но содержание в нем н-гептана остается значительным [72]. [c.233]

    Трехкратное испарение осуществляется по двум вариантам. В основе первого них лежит атмосферно-вакуумная перегонка и ректификация сырья с предварительным его испарением в отдельном испарителе или ректификационной колонне. Основой второго варианта является атмосферно-вакуумная перегонка с доиснарением остатка (полугудрона илп гудрона) па самостоятельной трубчатой установке или в доиспарительной ректификационной колонне с более глубоким вакуумом, чем в осное-1юй колонне. [c.358]

    Установки состоят из одной печи для нагрева и одной ректификационной колонны 1 для испарения и ректификации. В зависи мости от природы исходного сырья продуктами перегонки являются все дестиллаты от бензина до цилиндрового включительно, а остатком — асфальтовый гудроп или масляный полугудроп (концентрат). [c.358]

    Дифференциальная перегонка и тем более однократное испарение не могут дать полного разделения смеси. Правда, в первом случае можно получить почти чистый компонент, однако количество его будет ничтожным. Тонкое разделение осушествляется путем ректификации, представляющей сочетание последовательных испарений и конденсаций (рис. 103). Этот процесс проводится в ректификационных колоннах, схема действия которых показана на том же чертеже. Принцип процесса ректификации сводится к следующему. Если жидкость состава Ь и пар состава V, поступающие на данную тарелку, не находятся в равновесии, то между ними происходит тепло- и массообмен. Результатом этих процессов будет 1) смещение состава пара и состава жидкости в направлениях, указанных стрелками 2) охлаждение пара, приводящее к частичной его конденсации (точка Я ), и нагревание жидкости, вызывающее частичное ее испарение (точка Р"). Таким образом, восходящий поток пара, теряя в результате контакта с жидкостью высококипящип компонент и приобретая легкокипящий компонент, обогащается им жидкость же, стекающая по мере накопления ее на тарелках по переливным трубкам вниз, постепенно обогащается высококипящим компонентом. При достаточном количестве тарелок, число которых рассчитывается на определенную полноту разделения, можно получить пар с минимальным содержанием труднолетучего компонента. При необходимости получения смеси определенного состава пар (жидкость) отбирается на определенной высоте колонны. [c.294]

    Можно, однако, соединить многочисленные операции в один непрерывно протекающий процесс испарения — конденсации. Такая непрерывная автоматизированная дробная перегонка назьшается ректификацией. а аппарат, в котором она производится, — ректификационной колонной. Пар, образующийся в кипятильнике колонны, последовательно проходит через ряд специальных устройств — тарелок . На каждой тарелке А (рис. 64) пар пробулькивает через слой жидкости и несколько охлаждается. При этом часть менее летучего компонента конденсируется, а часть более летучего компонента переходит из жидкости в пар (смещения состава пара и жидкости показаны на диаграмме (рис. 64) стрелками I — температура, устанавливающаяся на тарелке Л). В результате пар попадает на следующую, верхнюю тарелку обогащенным более летучим компонентом. Жидкость, обогащенная менее летучим компонентом (флегма), последовательно минует нижние та- [c.191]

chem21.info

Способ автоматического регулирования процесса ректификации нефти в сложной колонне

 

Использование: нефтеперерабатывающая, нефтехимическая и химическая отрасли промышленности. Сущность изобретения: способ включает регулирование температуры в зоне бокового погона изменением расхода циркуляционного орошения, которые осуществляют предварительно охлажденным мазутом, подаваемым в колонну над зоной питания ниже нижнего бокового погона. Перепад температур между зоной питания и кубом регулируют изменением расхода водяного пара в зависимости от изменения перепада давления на прямом вертикальном участке трубопровода подачи нефти из печи в колонну и перепада давления между зоной питания и кубом. 1 ил.

Изобретение относится к способам автоматического регулирования сложных ректификационных колонн и может быть использовано в нефтеперерабатывающей, нефтехимической и химической отраслях промышленности.

Известен способ автоматического регулирования сложной ректификационной колонны путем регулирования расхода орошения по температуре верха простой колонны, входящей в состав сложной колонны, с корректировкой по плотности смежных боковых погонов и разности их плотностей (см. а. с. СССР N 1487921, кл. B 01 D 3/42, заявл. 8.10.87). Экономический эффект достигается за счет повышения четкости отбора и качества целевых продуктов и экономии энергозатрат. Недостатком является регулирование только верха колонны, что не обеспечивает увеличение отбора светлых нефтепродуктов. Известен способ управления процессом первичной переработки нефти в сложной ректификационной колонне с выводом боковых погонов нефтепродуктов, в котором по текущим значениям концентраций легких и тяжелых компонентов нефтепродуктов, используя динамическую модель процесса, определяют концентрации легкого компонента в отбираемом выше погоне нефтепродукта и концентрацию тяжелого компонента в отбираемом ниже нефтепродукте и в зависимости от их значений дополнительно корректируют расходы циркуляционных и острого орошений, расход перегретого пара в низ сложной колонны и величины отборов боковых нефтепродуктов (см. а. с. N 1526725, кл. B 01 D 3/42, заявл. 09.01.87). Способ позволяет уменьшить концентрации нежелательных примесей в боковых погонах нефтепродуктов, например, уменьшить вынос дизельного топлива в мазут и, следовательно, увеличить отбор светлых нефтепродуктов на 0,8% Однако, данный способ может быть использован только при наличии анализаторов качества, которые имеют низкую надежность и значительное время запаздывания. Наиболее близким техническим решением является способ автоматического регулирования в сложной атмосферной колонне процесса ректификации частично отбензиненной нефти с предварительным натровом ее в печи, подачей в колонну циркуляционного орошения для съема тепла и в низ колонны водяного пара, отбором бензина, боковых погонов и мазута из куба колонны, включающий регулирование температуры поступающей в колонну нефти изменением расхода топлива в печь и регулирование температуры в зоне орошения изменением его расхода (см. В.Г.Дианов. Автоматизация процессов в нефтеперерабатывающей и нефтехимической промышленности. М. "Химия", 1968, с. 296 297, 299 300). Способ является достаточно простым и до настоящего времени находит применение в практике. Однако, при изменении состава исходной нефти или при нестабильной работе колонны отбензинивания данный способ не обеспечит при ректификации максимальный отбор светлых нефтепродуктов и четкость их отделения от фракций мазута. Авторами предложен способ автоматического регулирования процесса ректификации нефти в сложной колонне с предварительным нагревом ее в печи, подачей в колонну циркуляционного орошения и водяного пара в низ колонны, отбором бензина, боковых погонов и мазута из куба колонны, который включает регулирование температуры нефти, поступающей в зону питания, и регулирование температуры в зоне бокового погона изменением расхода циркуляционного орошения, которое осуществляют предварительно охлажденным мазутом, подаваемым в колонну над зоной питания ниже нижнего бокового погона, а между зоной питания и кубом регулируют перепад температур изменением расхода водяного пара в зависимости от изменения перепада давления в зоне питания и кубе и перепада давления на прямом вертикальном участке трубопровода подачи нефти из печи в колонну. Новым в способе является то, что циркуляционное орошение осуществляют предварительно охлажденным мазутом, который подают в колонну над зоной питания ниже нижнего бокового погона. Расход мазута на орошение регулируют в зависимости от температуры в зоне бокового погона для поддержания необходимого перепада температур между зоной питания и нижним боковым погоном. Расход мазута, возвращаемого на орошение с температурой не выше 100oC ( 90oC), составляет 1 2% от общей производительности колонны. Т.к. мазут практически не испаряется, то не возрастает нагрузка в колонне по парам, обеспечивается качество нижнего бокового погона за счет уменьшения в нем содержания нежелательного компонента мазута. Другим новым признаком является регулирование перепада температур между зоной питания и кубом колонны, изменением расхода водяного пара в зависимости от изменения перепада давления в зоне питания и кубе и перепада давления на прямом вертикальном участке трубопровода подачи нефти из печи в колонну. Этот прием позволяет при изменении состава исходного сырья регулировать температурный режим низа колонны таким образом, чтобы расход водяного пара был оптимальным позволяя отпарить максимально возможное количество светлых нефтепродуктов, находящихся в поступающей в колонну нефти и обеспечить четкость разделения за счет максимального удаления светлых нефтепродуктов из мазута. На чертеже представлена принципиальная схема осуществления способа автоматического регулирования процесса ректификации нефти в сложной колонне. Нефть, пройдя колонну отбензинивания (на схеме не указана), поступает в печь 1 для подогрева и частичного испарения. На выходе из печи 1 на прямом вертикальном участке трубопровода установлен датчик перепада давления 2, который измеряет плотность потока, что фактически отражает соотношение газовой и жидкой фаз в нагретой нефти. Сигнал от датчика 2 поступает на регулятор 3, выход которого соединен с контуром регулирования расхода топлива в печь, содержащим расходомер 4, регулятор 5, исполнительный механизм 6. Данной каскадной схемой 2, 3, 4, 5, 6 поддерживают оптимальное соотношение газовой и жидкой фаз на выходе из печи. Нагретая и частично испарившаяся нефть поступает в зону питания сложной ректификационной колонны 7. Колонна работает с использованием водяного пара без подогрева куба колонны. Для поддержания необходимого перепада температур между зоной питания и нижним боковым отбором продукта подают для орошения в колонну ниже нижнего бокового погона мазут с низа колонны, охлажденный в холодильнике 8. Датчиками температуры 9, 10 измеряют температуру в зоне питания и кубе колонны. Эти две температуры алгебраически суммируются в сумматоре 11 и этот параметр в качестве переменной подают на регулятор перепада температур 12. Датчиком давления 13 измеряют давления в зоне питания, датчиком 14 в кубе колонны. Оба эти параметра суммируют в сумматоре 15 и подают в качестве задания на регулятор 12. Выход с регулятора 12 соединен с заданием регулятора 16, который регулирует подачу пара в колонну исполнительным механизмом 17, Переменной для регулятора 16 служит сигнал от расходомера пара 18. В зоне нижнего бокового погона измеряют температуру датчиком 19 и давление датчиком 20. Сигнал от датчика температуры 19 в качестве переменной, а от датчика давления 20 в качестве задания поступают на регулятор 21, выход которого соединен с камерой задания регулятора 22, управляющего исполнительным механизмом 23, расположенным на линии подачи циркуляционного орошения мазутом, расход которого измеряют расходомером 24. Выход датчика перепада давления 2 и выходы датчиков давления 13 в зоне питания и 14 в кубе колонны соединены с сумматором 15, который формирует задание для регулятора перепада температур 12. Регулирование процессом ректификации осуществляют следующим образом. Нефть после колонны отбензинивания содержит, например, 50% светлых нефтепродуктов (газовая фаза) и 50% темных нефтепродуктов (жидкая фаза). На выходе из печи 1 каскадная схема регулирования 2, 3, 4, 5, 6 поддерживает постоянный оптимальный фазовый состав 40% газовой фазы, т.е. в колонне при ректификации возможно отогнать еще до 10% светлых нефтепродуктов. При изменении состава нефти, поступающей в печь, например, при уменьшении содержания светлых до 48% изменится фазовый состав нефти в трубопроводе после печи до содержания газовой фазы менее 40% При этом изменится сигнал датчика перепада давления 2, который через контур регулирования расхода топлива в печь 2, 3, 4, 5, 6 даст сигнал исполнительному механизму 5, увеличивая его открытие, чтобы увеличить расход топлива, повысить температуру в печи и восстановить прежний заданный состав газовой фазы. Но при этом повысится температура нефти, поступающей в зону питания и перепад температур между зоной питания и кубом увеличится. Сигналы с датчиков температур 9 и 10 поступят через сумматор 11 на регулятор 12. Произойдет рассогласование текущего значения перепада температур и заданного на регуляторе 12, который даст команду на исполнительный механизм 17 через регулятор 16 изменить (уменьшить) расход пара, т.к. необходимо отпарить в данном случае только 8% светлых нефтепродуктов. При изменении (увеличении) температуры поступающей в зону питания нефти изменится также тепловой поток между зоной питания и зоной нижнего бокового погона. Температура в зоне нижнего бокового погона увеличится и сигнал от датчика температуры 19 поступит на регулятор 21 в качестве переменной и через регулятор 22 на исполнительный механизм 23 подачи охлажденного мазута для увеличения расхода орошения. Изменение положения исполнительного механизма 23 будет продолжаться до наступления равновесия в регуляторе 21, т.е. до достижения заданной давлением температуры на тарелке нижнего бокового погона. При увеличении содержания светлых нефтепродуктов в отбензиненной нефти до 52% для поддержания заданного фазового состава нефти после печи (40% газовой фазы) контур регулирования 2, 3, 4, 5, 6 должен выдать сигнал исполнительному механизму 5, уменьшая его открытие, чтобы снизить расход топлива, температуру в печи и, следовательно, температуру в зоне питания. При этом уменьшится перепад температур между зоной питания и кубом, и регулятор 12 даст команду исполнительному механизму 17 на увеличение расхода пара, которое необходимо для обеспечения максимально возможной глубины отпарки светлых нефтепродуктов, которых поступило в колонну 12% Кроме того, при снижении температуры в зоне питания уменьшится температура в зоне нижнего бокового погона, и регулятор 21 выдаст команду исполнительному механизму 23 на уменьшение расхода мазута на орошение. Предлагаемый способ регулирования расхода пара и мазута на орошение в зависимости от изменения состава исходной нефти позволяет за счет четкости разделения уменьшить содержание светлых нефтепродуктов в кубовом остатке до 1 2%

Формула изобретения

Способ автоматического регулирования процесса ректификации нефти в сложной колонне, с предварительным ее нагревом в печи, подачей в колонну циркуляционного орошения и водяного пара в низ колонны, отбором бензина, боковых погонов и мазута, включающий регулирование температуры нефти, поступающей в зону питания, и температуры в зоне бокового погона изменением расхода циркуляционного орошения, отличающийся тем, что циркуляционное орошение осуществляют предварительно охлажденным мазутом, который возвращают в колонну над зоной питания ниже нижнего бокового погона, а между зоной питания и кубом регулируют перепад температур изменением расхода водяного пара в зависимости от изменения перепада давления на прямом вертикальном участке трубопровода подачи нефти из печи в колонну и перепада давления между зоной питания и кубом.

РИСУНКИ

Рисунок 1

www.findpatent.ru

Способ ректификации нефти

 

Изобретение относится к нефтеперерабатывающей, хмической и нефтехимической промышленности, конкретно к способам ректификации нефти. Изобретение решает задачу увеличения производительности и отбора целевых продуктов. Для решения поставленной задачи в способе ректификации нефти, включающем нагрев нефти в теплообменниках, а затем в печи и ввод в сложную ректификационную колонну, оборудованную боковыми отпарными секциями, с отбором с верха колонны бензиновой, в виде боковых погонов через отпарные секции керосиновой и дизельных фракций и в качестве остатка перегонки - мазута при подаче в низ колонны и отпарных секций испаряющего агента, согласно изобретению потоки ненагретой и нагретой в теплообменниках нефти подают в сечение колонны между выводом дизельных фракций и вводом нагретого в печи потока нефти. 1 табл., 1 ил.

Изобретение относится к нефтеперерабатывающей, химической и нефтехимической промышленности, конкретно к способам переработки нефти.

Известен способ ректификации нефти, включающий ввод нагретой нефти в колонну частичного отбензинивания с выделением с верха колонны легкой бензиновой фракции, нагрев остатка колонны в печи и ввод в сложную атмосферную колонну с выделением в ней тяжелой бензиновой, керосиновой и дизельных фракций и с низа колонны - мазута [1]. Прототипом предлагаемого изобретения является способ ректификации нефти, включающий нагрев нефти и теплообменниках, а затем в печи и ввод в сложную ректификационную колонну, оборудованную боковыми отпарными секциями, с отбором с верха колонны бензиновой, в виде боковых погонов через отпарные секции керосиновой и дизельных фракций и в качестве остатка перегонки - мазута при подаче в низ колонны и отпарных секций испаряющего агента [2]. При этом наблюдается недостаточно высокие производительность и отбор целевых продуктов вследствие нагрева всего потока сырья в теплообменниках и печи и последующего ввода в зону питания колонны. Целью изобретения является увеличение производительности и отбора целевых продуктов. Поставленная цель достигается тем, что в способе ректификации нефти, включающем нагрев нефти в теплообменниках, а затем в печи и ввод в сложную ректификационную колонну, оборудованную боковыми отпарными секциями, с отбором с верха колонны бензиновой, в виде боковых погонов через отпарные секции керосиновой и дизельных фракций и в качестве остатка перегонки - мазута при подаче в низ колонны и отпарных секций испаряющего агента, потоки нагретой и не нагретой в теплообменниках нефти подают в сечение колонны между выводом дизельных фракций и вводом нагретого в печи потока нефти. Отличием предлагаемого изобретения является подача не нагретой и нагретой в теплообменниках нефти в сечение колонны между выводом дизельных фракций и вводом нагретого в печи потока нефти. Предлагаемый способ в отличие от известных в науке и технике обеспечивает высокую производительность и отборы целевых продуктов. На чертеже представлена схема, иллюстрирующая способ ректификации нефти. Нефть по линии 1 подают в теплообменник 2, затем нагревают в печи 3 и по линии 4 вводят в сложную ректификационную колонну 5. С верха колонны 5 по линии 6 выводят пар и конденсируют в конденсаторе 7. Конденсат по линии 8 возвращают на верх колонны 5 в качестве орошения и по линии 9 выводят из системы разделения в качестве бензиновой фракции. Из колонны 5 по линии 10 выводят верхний боковой погон и подают на верх отпарной секции 11. В низ отпарной секции по линии 12 подают испаряющий агент. С верха отпарной секции 11 по линии 13 выводят пар и подают в колонну 5. С низа отпарной секции 11 по линии 14 выводят керосиновую фракцию. Нижний боковой погон колонны 5 по линии 15 подают на верх отпарной секции 16. В низ отпарной секции 16 по линии 17 подают испаряющий агент. С верха отпарной секции 16 по линии 18 выводят пар и подают в колонну 5. С низа отпарной секции 16 по линии 19 выводят дизельные фракции. В низ колонны 5 по линии 20 подают испаряющий агент. С низа колонны 5 по линии 21 выводят мазут. Потоки не нагретой и нагретой в теплообменниках нефти соответственно по линиям 22 и 23 подают в сечение колонны 5 между выводом дизельных фракций и вводом нагретого в печи потока нефти. Изобретение иллюстрируется следующими примерами. Были проведены расчеты сложной атмосферной колонны по предлагаемому способу и прототипу. Диаметр сложной атмосферной колонны - 1,5 м, отпарных секций - 0,425 м. В сложной колонне установлено 30 односливных клапанных тарелок, в отпарных секциях засыпаны кольца Палля, эквивалентные 7 теоретическим тарелкам, в каждой из секций. Давление верха сложной колонны принято равным 0,19 МПа, перепад давления на тарелку 0,0007 МПа, в паровых трубопроводах 0,02 МПа. Массо- и теплообменный коэффициент полезного действия тарелок укрепляющей секции принят равным 0,55, отгонной - 0,45, что соответствует КПП относительно теоретической тарелки 0,4 и 0,3. Пример 1 (по предлагаемому способу). Нефть в количестве 28 т/ч нагревают в теплообменниках керосиновой, дизельной фракцией и мазутом до 196oC. Затем 25,9 т/ч нефти нагревают в печи и с температурой 355oC вводят между 25 и 26 тарелками (счет с верха) сложной атмосферной колонны. Боковой погон керосиновой фракции выводят в отпарную секцию с 13 тарелки. Пары с верха отпарной секции возвращают под 11 тарелку колонны. Боковой погон дизельных фракций выводят в отпарную секцию с 18 тарелки. Пары с верха отпарной секции возвращают под 16 тарелку колонны. Пары с верха колонны конденсируют в конденсаторе. Конденсат возвращают на верх колонны в качестве орошения, балансовый избыток выводят из системы разделения в качестве бензиновой фракции. В низ отпарных секций и колонны подают испаряющий агент. С низа колонны выводят мазут. Часть не нагретой в теплообменниках нефти в количестве 1 т/ч с температурой 25oC и нагретой в теплообменниках нефти в количестве 2,1 т/ч с температурой 196oC подают в сечение колонны между выводом дизельных фракций и вводом нагретого в печи потока нефти (на 21 счет с верха тарелку колонны). Основные режимные параметры работы колонны приведены в таблице. Пример 2 (по прототипу). Процесс проводят в условиях примера 1, за исключением подачи потоков не нагретой и нагретой в теплообменниках нефти в сечении колонны между выводом дизельных фракций и вводом нагретого в печи потока нефти. Основные режимные параметры работы колонны приведены в таблице. Из представленных данных следует, что пример 1 по сравнению с примером 2 позволяет увеличить производительность установки с 25 до 29 т/ч, то есть в 1,16 раза, отбор бензиновой фракции с 3,40 до 3,94 т/ч, керосиновой - с 6,54 до 7,58 т/ч, дизельных фракций - с 6,38 до 7,41 т/ч, мазута - с 8,68 до 10,07 т/ч. При этом энергозатраты и качество продуктов разделения мало изменяется, а максимальная линейная скорость пара в колонне снижается с 1,0 до 0,93 м/с. То есть при увеличении энергозатрат колонна позволит увеличить производительность установки до 31,2 т/ч или в 1,25 раза по сравнению с прототипом. Увеличение производительности и отбора целевых продуктов делают целесообразным использование заявляемого изобретения "Способ ректификации нефти" при фракционировании нефти. Например, реализация предлагаемого способа на одной установке позволит увеличить производительность установки с 200 до 232 тыс. т/гол, отбор бензиновой фракции с 27,2 до 31,52 тыс. т/год, керосиновой - с 52,32 до 60,64 тыс. т/год, дизельных фракций - с 51,04 до 59,28 тыс. т/год, мазута - с 69,44 до 80,56 тыс. т/год. Источники информации 1. Александров И. А. Перегонка и ректификация в нефтепереработке. М.: Химия, 1981, с. 157. 2. Багиров И.Т. Современные установки первичной переработки нефти. М.: Химия, 1974, с.28.

Формула изобретения

Способ ректификации нефти, включающий нагрев нефти в теплообменниках, а затем в печи и ввод в сложную ректификационную колонну, оборудованную боковыми отпарными секциями, с отбором с верха колонны бензиновой, в виде боковых порогов через отпарные секции керосиновой и дизельных фракций и в качестве остатка перегонки - мазута, при подаче в низ колонны и отпарных секций испаряющего агента, отличающийся тем, что потоки ненагретой и нагретой в теплообменниках нефти подают в сечение колонны между выводом дизельных фракций и вводом нагретого в печи потока нефти.

РИСУНКИ

Рисунок 1, Рисунок 2

www.findpatent.ru

Процесс ректификации и ректификационные колонны

из "Переработка нефти по топливному варианту"

Разделение нефти на фракции путем перегонки (дистилляции) основано на различии температур кипения ее компонентов. При нагревании компоненты с более низкой температурой кипения переходят в пары, а компоненты с высокой температурой кипения остаются в жидкости. Пары после конденсации образуют дистиллят, неиспарившаяся жидкость — остаток. Такой процесс назьшается простой перегонкой. [c.26] При простой перегонке в дистиллят увлекается значительное количество высококипящих компонентов, а в остатке накапливаются легкокипящие компоненты. Для четкого разделения сложной смеси, каковой является нефть, применяют перегонку с ректификацией. Процесс ректификации проводится в ректификационных колоннах и заключается в следующем. [c.27] Горячие пары, поднимаясь по колонне контактируют с более холодной жидкостью, стекающей вниз. Происходит охлаждение паров, конденсация и переход в жидкость наиболее высококипящих компонентов. Одновременно жидкость нагревается, низкокипящие компоненты испаряются. Иначе говоря, между парами и жидкостью происходит тепломассообмен. Эффективность контакта обеспечивается ректификационными тарелками или насадками. [c.27] Схема работы ректификационной колонны приведена на рис. 7. [c.27] На определенном уровне в колонну подается сырье в виде пара, жидкости или парожидкостной смеси. Эта зона называется эвапорационной. Вьцце ввода сырья находится концентрационная зона колонны, а ниже - отгонная зона. [c.27] Для работы ректификационной колонны необходимо, чтобы с тарелки на тарелку непрерывно стекала орошающая жидкость - флегма. Она образуется за счет возвращения в колонну части готового продукта, называемого орошением. При помощи подаваемого наверх колонны холодного или острого орошения регулируется температура верха колонны. Тем самым определяется качество дистиллята по температуре конца кипения, по содержанию в нем высококипящих компонентов. [c.28] В сложных колоннах в отличие от простых помимо ректификата в качестве боковых погонов с определенных тарелок отбирают целевые фракции (в виде жидкости). Сложную колонну можно рассматривать как совмещение нескольких простых колонн. [c.28] В сложных колоннах, как правило, острого орошения бывает недостаточно для создания флегмы по всей высоте колонны, поэтому используют циркуляционные орошения. Флегму с определенной тарелки забирают насосом, прокачивают через теплообменник, в котором тепло отдается исходному сырью, и охлажденную возвращают в колонну на лежащую выше тарелку (рис. 8). [c.28] Отгонные части сложных колонн вьщеляют в самостоятельный аппарат и называют отпарными колоннами (или стрипингами). [c.28] Экономичность процесса ректификации достигается при использовании различных приемов понижения температуры кипения различных продуктов, например, за счет снижения давления в системе (перегонка в вакууме) и перегонки с водяным паром. [c.28] При невысокой температуре давление паров нефти, будучи ниже атмосферного, недостаточно для кипения и перегонки. Если к давлению паров нефти прибавляется давление водяного пара, то этого бывает достаточно для преодоле1шя давления в колонне и для кипения и перегонки нефти. Водяной пар вводят в отпарную зону колонны. [c.28] Ректификационные тарелки предназначены дпя создания тесного контакта между парами и жидкостью в процессе ректификации. Применяют в основном желобчатые, колпачковые, 8о6разные и клапанные тарелки, реже - ситчатые и некоторые другие виды тарелок. [c.29] Основные элементы тарелок - основания с контактными устройствами, приемный и сливной карманы. [c.29] Конструкция тарелки, помимо тесного контакта между паром и жидкостью, должна обеспечивать достаточную производительность колонны, иметь низкое гидравлическое сопротивление потоку пара. Большое значение имеет металлоемкость конструкций, легкость сборки и чистки. [c.29] В практических условиях теплообмена между парами и жидкостью на тарелке не достигается состояние равновесия, поэтому введено понятие коэффициента полезного действия тарелки (к. п. д.). Он зависит от конструкции и условий эксплуатации и обычно колеблется в пределах 0,4-0,8. [c.29] Нарушением нормальной работы тарелки может быть захлебывание , когда жидкость не успевает перетекать на нижележащую тарелку в этом случае необходимо расширить сечение сливного клапана. [c.30] Эксплуатащ1Я колонных аппаратов. Основными параметрами при эксплуатации колонных аппаратов являются температурный режим, давление, расход потоков. [c.30] Температура верха ректификационной колонны определяет качество дистиллята и автоматически поддерживается подачей верхнего (острого) орошения. Температура низа определяет полноту отпаривания от легкокипящих фракций и поддерживается за счет подвода тепла из трубчатой печи (горячая струя), устройства внутреннего или внешнего подогревателя-кипятильника и др. [c.30] Подачу орошения в верхнюю часть колонны изменяют хшавно, чтобы не вызвать переполнения тарелок флегмой или, наоборот, снижения уровня жидкости на них ( оголение тарелки). При недостаточной подаче орошения повышается температура верха колонны, значительно снижается температура кипения дистиллята. При избытке орошения температура верха колонны снижается, температура конца кипения дистиллята уменьшается, его высококипящие компоненты переходят в остаток. Увеличение количества орошения при соответствующем подьеме температуры низа колонны улучшает четкость ректификации, однако при этом увеличивается расход топлива, воды и электроэнергии. Кроме того, в колонне возрастает давление за счет увеличения объема паров. [c.30] Аппараты, работающие под давлением вьппе 0,07 МПа, находятся под контролем органов Госгортехнадзора СССР. Они оборудованы предохранительными клапанами, которые сбрасывают избыток паров в факельную линию при повышении давления в аварийных случаях. К выбору и регулированию давления в колонном аппарате следует подходить особенно тщательно. Повьпиенное давление позволяет конденсировать пары при более высоких температурах, нежели при атмосферном давлении. Поэтому для охлаждения паров, например при ректификации газов, можно применять воду вместо специальных дорогостоящих хладагентов, а также уменьшить поверхность конденсатора-холодильника. [c.30]

Вернуться к основной статье

chem21.info

Процесс ректификации и ректификационные колонны

    Ректификационные колонны должны быть снабжены автоматическими регуляторами температуры и давления, контрольно-измерительными приборами, автоблокировочными устройствами, а также предохранительными клапанами или противовзрывными мембранами с отводными линиями в атмосферу или в факельную систему. На отводных линиях устанавливают огнепреградители. На рис. 36 показана простейшая схема автоматизации процесса ректификации, позволяющая вести процесс строго по регламенту и тем самым предотвращать аварийные ситуации. [c.148]     На установках первичной перегонки нефти основным аппаратом процесса ректификации является ректификационная колонна — вертикальный аппарат цилиндрической формы. Внутри колонны расположены тарелки—одна над другой. На поверхности тарелок происходит контакт жидкой и паровой фаз. При этом наиболее легкие компоненты жидкого орошения испаряются и вместе с парами устремляются вверх, а наиболее тяжелые компоненты паровой фазы, конденсируясь, остаются в жидкости. В результате в ректификационной колонне непрерывно идут процессы конденсации и испарения. [c.49]

    Тарелки ректификационных колонн предназначены для обеспечения контакта между поднимающимися вверх по колонне парами со стекающей вниз жидкостью и, следовательно, процесса ректификации. В колоннах воздухоразделительных установок применяют ситчатые кольцевые тарелки. Пар в них поступает через мелкие отверстия, расположенные по всей поверхности, а жидкость попадает на тарелку и затем стекает с нее через специальные переливные устройства. [c.184]

    Управление процессом ректификации представляет собой сложную задачу из-за большого числа взаимосвязанных факторов и переменных, влияюших на качество продуктов, а также из-за значительной емкости и инерционности ректификационных установок как объектов регулирования. Известно большое число вариантов схем регулирования, обзор котррых не всегда представляет интерес. Поэтому рассмотрим лишь наиболее часто применяемые решения, а также некоторые новые схемы регулирования с анализом обших принципов построения систем автоматизации простых ректификационных колонн. [c.334]

    Анализ ректификационных систем проводят с целью определения оптимальных параметров процесса ректификации и конструктивных размеров аппаратов. Оптимальными параметрами процесса ректификации в полной колонне являются в первую очередь давление, флегмовое число или коэффициент избытка флегмы и температура питания. [c.125]

    Каждый массообменный аппарат носит наименование конкретного, целенаправленного массообменного процесса. Например, ректификационная колонна — это аппарат, в котором происходит процесс ректификации, т. е. массообмен между жидкой и паровой фазами для четкого разделения компонентов адсорбер — аппарат, в котором протекае т процесс адсорбции, т. е. массообмен между твердой и газообразной фазами для извлечения из смеси нужных компонентов экстрактор — аппарат,-в котором осуществляется процесс экстракции, т. е. массообмен между двумя жидкими фазами для удаления из смеси нежелательных компонентов или извлечения целевых, и т. д. [c.110]

    В настоящей работе рассматривается подход к моделированию нестационарного процесса в ректификационной колонне, основанный на уравнении материального баланса колонны в целом и некоторой эмпирической закономерности распределения компонентов по высоте колонны в переходном режиме. Этот подход иллюстрируется на примере бинарной ректификации. [c.148]

    Наиболее полное разделение при меньшей затрате тепла достигается в том случае, если привести во взаимодействие фуг с другом пар, идущий из перегонного куба, с конденсатом, образовавшимся при частичной конденсации ранее выделившегося пара. Такой процесс взаимодействия пара и конденсата носит название ректификации, а аппараты, в которых протекает этот процесс, называются ректификационными колоннами. [c.333]

    При работе в информационном режиме ЭВМ осуществляет сбор, преобразование и регистрацию информации о течении процесса ректификации в колонне. Для этого на каждой из 8 тарелок лабораторной ректификационной колонны в жидкость, находящуюся на тарелке, погружен датчик, представляющий собой полупроводниковый термометр сопротивления с резко выраженной зависимостью сопротивления от температуры. Так как электрические сигналы, поступающие от датчиков, очень слабы, то перед вводом в ЭВМ их необходимо усилить, для чего служит специальный Блок усиления , который обеспечивает ввод в ЭВМ значений температур в виде напряжений постоянного тока в пределах от —5 до 5 В с визуальным контролем этих напряжений на пульте. Измерение температур жидкости на тарелках производится с ошибкой не более 0,2 °С. [c.145]

    Проследим, как распределяются эти элементы при ректификации и какое влияние оказывает присутствие каждого из них на процесс в ректификационной колонне. Определяющей величиной с этой точки. зрения является температура кипения каждого из ожиженных газов. Из табл. 34 и иллюстрирующего ее рис. 211 видно, что по отношению к основным составным частям воздуха — азоту и кислороду инертные газы можно разбить на три группы. [c.326]

    С целью более полного разделения нефти на фракции с довольно узкими пределами температур кипения осуществляют ее многократное испарение и конденсацию. Такое разделение нефти на несколько фракций путем многократного испарения и конденсации называется ректификацией и осуществляется в специальных ректификационных колоннах, являющихся основной частью установок по первичной переработке нефти (рис. 17). Нефть поступает в трубчатую печь 1, где нагревается до температуры 350-360° С. При этом значительная часть углеводородов испаряется и эти пары вместе с жидким тяжелым остатком поступают в ректификационную колонну 2. Температура в нижней части колонны поддерживается на уровне 350° С, а выше она постепенно уменьшается до 100—180° С. Жидкая часть нефти с температурой кипения выше 350° С составляет фракцию мазута и она остается в нижней части колонны. Пары нефти поднимаются вверх по колонне и по мере понижения температуры конденсируются соответствующие углеводороды. Технологический процесс рассчитан таким образом, что в самой верхней части колонны конденсируется бензиновая фракция, ниже — керосиновая и еще ниже — фракция дизельного топлива. Фракции, соответствующие бензину, керосину и дизельному топливу, отбираются из колонны. Для улучшения процесса ректификации внутри колонны располагаются тарелки, на которых и происходит процесс ректификации. Часть отобранного бензина после холодильника 3 поступает в верхнюю часть колонны в виде орошения. Тарелки устроены так (рис. 18), что на каждой из них происходит контакт жидкости, [c.86]

    Однократное испарение широко применяется в настоящее время в промышленности. Например, разделение нефти осуществляется методом однократного испарения ее с последующей ректификацией паровой и жидкой фаз при этом нагрев нефти проводится в трубчатых печах, а разделение на фазы — в секции питания ректификационной колонны. Процесс однократного испарения широко [c.54]

    В самом деле, процесс ректификации в колонном аппарате протекает в условиях тесного контактирования паровых и жидких потоков и приводит к сложной картине взаимодействия фаз, обменивающихся энергией и веществом. Качественная картина этого сложного явления в первом приближении представляется как двусторонний массо- и энергообмен, количественно оцениваемый па основе гипотезы идеального контакта. Попытки более глубокого исследования кинетической природы процессов обмена веидеством и энергией на контактной ступени не привели еще к установлению достаточно обоснованных и надежных зависимостей, позволяющих заменить метод теоретической тарелки, основанный на статическом представлении процесса, кинетическими зависимостями, описывающими протекание процесса во времени. Поэтому при проектировании ректификационной колонны следует сочетать данные теории с опытными показателями, полученными при лабораторных испытаниях или снятыми с действующих установок и обобщающими практический опыт работы передовиков-новаторов. [c.5]

    Значительно труднее осуществляется такой процесс при хлорировании высокомолекулярных углеводородов, например додекана или гексадекана. При таком размере молекулы температуры кипения исходного углеводорода и продукта его хлорирования различаются незначительно, вследствие че го для фракционирования требуются ректификационные колонны с высокой четкостью погоноразделения. Ректификацию следует проводить под возможно низким давлением, так как всегда существует опасность, что в результате отщепления хлористого водорода хлорированный продукт превратится в олефин. [c.197]

    При эволюционном синтезе технологической схемы процесса (рис. П-26, а) последнюю удобно представлять в виде направленного графа, или бинарного дерева (рис. П-26, б), в котором разделительные аппараты изображаются операторами а,- для обычной и Рг для азеотропной или экстрактивной ректификации [44]. На рис. П-26,а индексы и аз обозначают, что разделение данной смеси осуществляется в обычных ректификационных колоннах с номерами =1 и =2 соответственно аналогичным образом используются индексы Рз и 4 для колонн азеотропной и экстрактивной ректификации с номерами =3 и =4. [c.135]

    На современных комбинированных установках АВТ имеются блоки стабилизации, абсорбции-десорбции и вторичной перегонки широкой бензиновой фракции. Во всех этих блоках процесс ректификации, или фракционирования, осуществляется в ректификационных колоннах. Эти технологические блоки на установках АВТ добавляются в зависимости от углеводородного состава перерабатываемой нефти и от назначения их в схеме переработки по заводу в целом. На рис. 26 приводится типовая схема технологической связи между стабилизатором и фракционирующим абсорбером на установках АВТ. [c.53]

    Ректификация бинарных систем является процессом разделения растворов на один или два практически чистых компонента путем осуществляемого в ректификационной колонне многократного двустороннего массообмена между движущимися противотоком парами и жидкостью. [c.121]

    При непрерывном процессе ректификации в установившемся состоянии величины паровых и жидких потоков, их составы, температуры и давления постоянны в каждой точке по высоте колонны и независимы от времени. На рис. П1.3 приведена принципиальная схема работы так называемой полной ректификационной колонны, сверху которой отводится практически чистый низко-кипящий компонент, а снизу — высококинящий. Паровые потоки внутри колонны обозначаются через О, а жидкие — через g. Нижние индексы указывают контактную ступень (тарелку), с которой данный поток отводится. [c.124]

    С точки зрения теоретического обобщения условий протекания процесса ректификации, речь идет об определении соотношений ряда переменных величин, которыми, с одной стороны, являются веса и составы контактирующих потоков на различных ступенях процесса, а с другой,—тепловые свойства, температура и теплосодержания этих потоков паров и флегмы на различных уровнях по высоте колонны. Эти соотношения в общем виде выводятся аналитическим путем и наиболее просто и удобно представляются графически на рассмотренной ранее тепловой диаграмме, дающей теплосодержания единицы веса насыщенных фаз в функции их составов. На той же диаграмме путем проведения семейства конод или путем ее сопоставления с изобарными равновесными кривыми кипения и конденсации оказывается возможным представлять графически условия равновесного сосуществования паровых и жидких фаз, и это обстоятельство делает их применение к анализу работы ректификационной колонны особенно эффективным. [c.69]

    Результаты обследований действующих установок АТ и АВТ показали на удовлетворительную работу многих ректификационных колонн. Большая их часть имеет различные показатели по отбору дистиллятов, четкости ректификации число ректификационных колонн, входящих в схему, также неодинаково. Первые ректификационные колонны на установках двухкратного испарения из-за низкой температуры подогрева нефти (150—190 °С) работают с небольшими паровыми и жидкостными нагрузками тарелок в укрепляющей секции. В отгонных секциях наблюдаются недопустимо высокие нагрузки по жидкости при очень низкой работе обычных желобчатых тарелок. Низкая кратность орошения в сочетании с низкими нагрузками создает неблагоприятные условия, для процессов ректификации на тарелках, в результате чего имеется большое налегание температур конца кипения бензина и начала кипения отбензиненной нефти. [c.233]

    Жидкость из куба кодгонны 8 поступает в ректификационную колонну 9, в которой разделяется на три отдельные фракции С,4 накапливается в кубе, Сз отводится из средней части, С2Н4 gHe — из верхней части. Процесс ректификации в колонне 9 происходит под давлением 10—15 ати. Холодильным агентом в дефлегматоре служит аммиак, кипящий при t = —28°С. Теплоносителем для жидкости куба является водяной пар. [c.455]

    Все это позволило нарастить мощности на существующем оборудовании в 1,5 раза. При сохранении неизменным реакторного узла была выполнена по проекту Гипрокаучука реконструкция колонн выделения углеводородов и стабилизации. Дальнейшей интенсификации процесса и увеличению производительности установок способствовали комбинирование установки изомеризации с ЦГФУ, что позволило, не расширяя узла ректификации, увеличить производительность по изопентану на 26% реконструкция ректификационных колонн по разделению изопентана и н-пентана, что увеличило чистоту выделенных продуктов использование каталитического изопентана как растворителя без дополнительной очистки. [c.137]

    Вследствие того что процессам ректификации уделяется в литературе особое внимание (это является отражением их важной роли в химической промышленности), они заслуживают специального рассмотрения. Расчет ректификационных колонн 2 — одна из первых областей химической техники, где были применены цифровые вычислительные машины они продолжают пользоваться здесь популярностью . Сочетание большой сложности и широкого выбора возможных рабочих условий делает, в частности, эту область весьма подходящей для применения машинных методов расчета. [c.174]

    Глава 2 Расчёт процесса ректификации нефтяных смесей в простых и сложных ректификационных колоннах с одним вводом сырья [c.24]

    При экстракции, проводимой по принципу противотока, движущей силой процесса массообмена является разность концентраций (аналогично при теплообмене движущей силой является разность температур). Так же как при теплообмене требуется возмохсно большая поверхность контакта (о теплообмене см. стр. 363 и сл,), при экстракции и абсорбции решающее значение имеет величина поверхности соприкосновения взаимодействующих сред. Отсюда ясно, что при проведении этих процессов надо стремиться к возхюжно более тесному соприкосновению твердого вещества и жидкости или газа и жидкости и тонкому распределению их друг в друге. Это может быть достигнуто применением насадки, перемешиванием, распылением (образование жидкостной завесы), а также образованием тонких пленок на вращающихся поверхностях 3 сепараторах (см. стр. 265). Колпачковые ректификационные колонны (стр. 127) являются идеальными устройствами для промывания газов жидкостями. Любой процесс ректификации в колонне основан на вымывай и и высококипящах компонентов конденсатом и получаемой флегмой по принципу противотока. Аналогичное значение имеет циркуляция при гидрогенизации и многих каталитических процессах, напри.мер в реакциях с участием ацетилена. При проведении реакций между твердыми веществами и жидкостями, как, например, при гидролизе древесины или при экстракции дубильной коры, нарезанной свеклы, лекарственного сырья и т. д., процесс ведут в одной колонне, заполненной твердым веществом, с послойным движением через него растворителя (принцип п е р к о л я ц и и) или в группе аппаратов с меняющейся последовательностью их включения (экстракционная, или диффузионная, батареи). [c.75]

    Ректификация — разделение жидкой, парэжидкостной или паровой смеси на практически чистые компоненты или их смеси, обогащенные легко- или тяжелолетучими компонентами. Процесс осуществляется в результате контакта неравновесных потоков пара и жидкости, формирующихся из вводимой в колонну смеси (питания). Формирование парового и жидкого потока основано на различии в температурах кигения разных компонентов и поддержании определенных темпе)атур вверху и внизу разделительной (ректификационной) колонны. [c.50]

    Схемы управления сложными системами ректификации со связанными материальными и тепловыми потоками проиллюстрируем на примере двух ректификационных колонн для разделения смеси пропилен — пропан и метанол — вода (рис. У1-35) [28]. Особенности технологических схем этих процессов состоят в том, что питание в обе колонны разделяется П риме,рно поровну и кубовый продукт второй колонны подогревается в дефлегматоре первой колонны, которая работает при большем давлении, чем втррая. Вторая схема отличается от первой установкой дополнительных конденсатора и кипятильника. Составы верхних цродуктов колонн высокого и низкого давлений используются в качестве корректирующего сигнала для. регулирования расходов орошения и дистиллята состав нижнего продукта колонны высокого (а) или низкого (б) давлений используется для коррекции расхода тепла в колонну. [c.342]

    Тогда рект/ р составляет очень малую конечную величину. В этом случае очень быстрой некаталитической реакции во всёй системе в любом сечении- ректификационной колонны будет присутствовать практически чистый компонент С и ректификация ничего не изменит, т. е. поле концентраций определяется наиболее быстрым процессом. [c.189]

    Гипотеза теоретической тарелки не воспроизводит в точности действительной картины явления, нротекаюш его в контактной ступени, ибо основана на статическом представлении процесса. Тем не менее эта концепция позволяет осуществить анализ и расчет процесса разделения псходной смеси в ректификационной колонне и получить достаточно близкую к действительности картину реального процесса, несмотря на наше неумение вполне компетентно и всесторонне исследовать сложные явления массопередачи, происходящие на практической ступени контакта. Другим обоснованием целесообразности разработки термо-динамической теории ректификации является установившийся, по-видимому, окончательно взгляд, согласно которому ис- I следование и определение эф-фективности практических ступеней разделения оказывается, как правило, задачей менее трудной, чем непосредственное изучение диффузионной картины процесса ректификации в реальной колонне. Таким образодЕ, термодинамическая теория ректификации является пока первой ступенью общей теории ректификации. Для суяедения о направленности самопроизвольных процессов энергообмена и массообмена в отдельно взятой контактной ступени следует рассмотреть ее работу на основе метода теоретической тарелки. [c.123]

    В другом способе отделения разделительного агента от нижнего продукта используется жидкостная экстракция смеси специально подобранным растворителем, извлекающим обычно разделительный агент. Так, в процессе разделения алканоаромати-ческих смесей экстрактивной ректификацией в качестве разделительного агента используется гликоль, уходящий снизу колонны с ароматикой. Обработка этой смеси водой позволяет отделить растворимый в воде гликоль от ароматики, а в следующей ректификационной колонне гликоль легко отделяется от воды и возвращается обратно в колонну экстрактивной ректификации. [c.343]

    Процесс разделения осуществляется в аппаратах, называемых ректификационными колоннами, путем многократного контакта неравновесных потоков пара и жидкости. Отличие процесса ректификации от рассмотренных массообменных процессов состоит в том, что массообменивающиеся неравновесные потоки пара и жидкости не независимы, а формируются из питания в самом процессе, Это формирование обусловлено разными температурами кипения (испарения) разделяемых компонентов и изменением температуры по высоте колонны. [c.103]

    Из тех же соображений, что и в случае постепенного и однократного испарения гетерогенной жидкой системы, разделенной на два слоя, ее ввод в ректификационную колонну в двухфазном жидком или трехфазном парожидком состоянии лишен всякого практического смысла, ибо при неизменных температурах и составах фаз ни о каком их обогащении тем или иным компонентом не может быть и речи. Поэтому напрашивается решение разделить в отстойнике оба слоя и их ректификацию проводить отдельно в различных колонных аппаратах, ибо каждый слой, перегоняемый отдельно, характеризуется уже двумя степенями свободы. В ходе его испарения меняются и температура, и составы фаз, и поэтому вполне возможен процесс обогащения фаз в ходе их контактирования, сопровождаемого теплообменом и взаимодиффузией. Это напрашивающееся решениедля рассматриваемого случая является к тому же и достаточным и дает установку в вопросе выбора технологической схемы оформления процесса. [c.70]

    Другой способ разделения бинарной гомоазеотропной смеси состоит в добавлении к системе надлежаще подобранного третьего компононта, так называемого отмывателя, обладающего свойством либо разбивать азеотроп, либо образовывать новые азеот-ропные смеси с одним или обоими компонентами сырья. Здесь мы подходим к процессу, именуемому азеотропной ректификацией ои применяется для разделения бинарных систем, которые либо трудно поддаются, либо даже вовсе пе поддаются разделению в обычной ректификационной колонне. [c.294]

    Диффузионная и кинетическая картина процесса многокомпонентной ректификации выяснена пока недостаточно, поэтому создание обоснованного во всех деталях, теоретически строгого метода расчета сложной колонны оказыиается весьма трудной задачей. Экспериментальные исследования рабочего процесса действующих колонн не дали пока таких существенных результатов, которые исчерпывающим образом объяснили бы все особенности развития и протекания как процесса в целом, так и отдельных его ступеней. Этим объясняется широкое использование в анализе работы ректификационных колонн термодинамического метода исследования, покоятцегося на гипотезе теоретической тарелки. [c.301]

    Разновидностью схемы НТК является процесс низкотемпературной ректификации (НТР), особенность которого заключается в отсутствии предварительной сепарации сконденсировавшихся углеводородов и в подаче двухфазного охлажденного потока в середину ректификационной колони1з1. Таким образом, весь поток подвергается деметаш зации в ректификационной колонне. В этой схеме температура в верхней части деметанизатора должна быть ниже, чем в схеме НТК, для заданной степени извлечения этана. [c.159]

    Нефтепродукты, подлежащие разделению, относятся к к.п ассу многокомпонентных смесей. При разделении многокомпонентных смесей методами ректификации в промышленности часто применякзт сложные ректификационные колонны (с несколькими вводами сырья, с отборами одного или нескольких боковых погонов, с промежуточиым по ,водом или отводом тепла, с боковыми отпарными секциями и т.д.) и 1 истемы колонн с взаимосвязанными потоками. Применение таких ксаюнн дает возможность существенно повысить эффективность процесса, за счет сокращения количества тарелок в колоннах и уменьшения самих ко юнн, а также улучшить энергетические показатели процесса. В связи с этим проблема разработки надежного метода расчета процесса в таких аппа])атах имеет большое практическое значение. [c.7]

    Для получения целевых продуктов из нефти н нефтяных фракций в промышленности часто используются сложные ректификационные колонны с боковыми отпарными секциями, с рециклами потоков и системы колонн. Расчет процесса ректификации нефтяных смесей в сложных разделительных системах с многообразными связями паровых и кил ких гютоков весьма сложная вычислительная задача. [c.9]

    Рассмотрим число степеней свободы процесса ректификации в простых и сложных ректификационнь- колоннах с одни вводом сырья при закрепленных отборах продуктов разделения. Параметрами процесса являются (в скобках указано количество параметров)  [c.28]

    Ректификационные установки служат для разделения жидких однородных смесей на составляющие вещества или группы составляющих веществ в результате противоточного тепло- и массообме-на жидкой смеси и ларо1а этой смеси. Процесс ректификации можно осуществить в том случае, когда кипящая смесь выделяет пары, содержащие те же компоненты, но в другой пропорции обычно в ларах процент содержания компонентов, кипящих прн данном давлении при более низкой температуре (легкоктящие компоненты), больше, чем в жидкой смеси. Ректификация может осуществляться в ректификационных колоннах периодического я непрерывного действия. Типы и конструкции колонных аппаратов приводят ся в главе третьей. [c.29]

chem21.info