28.2.Этилен, пропилен и другие продукты термического крекинга этана, пропана и фракций нефти. Крекинг нефти этилен


При крекинге нефти образуется этилен. Какую простейшую аминокислоту можно из него синтезировать? Составьте уравнения соответствующих... решение задачи

Тема: Глава 11. Амины. Аминокислоты. Азотсодержащие гетероциклические соединения. Задачи к §1; 2; 3Условие задачи полностью выглядит так:
При крекинге нефти образуется этилен. Какую простейшую аминокислоту можно из него синтезировать? Составьте уравнения соответствующих реакций.
Решение задачи:

из этилена можно синтезировать аминоэтановую кислоту (аминоуксусную кислоту, глицин) следующим путем: при присоединении к этилену воды в присутствии кислоты образуется этиловый спирт:этиловый спирт окисляется в присутствии катализатора в уксусную кислоту:при взаимодействии уксусной кислоты с хлором образуется хлоруксусная кислота:при обработке хлоруксусной кислоты аммиаком происходит замещение атома хлора на аминогруппу и образуется аминоуксусная кислота:

Задача из главы Глава 11. Амины. Аминокислоты. Азотсодержащие гетероциклические соединения. Задачи к §1; 2; 3 по предмету Химия из задачника Химия 11, Рудзитис, Фельдман (11 класс)

Если к данной задачи нет решения - не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

davay5.com

Этилен в крекинг-газе - Справочник химика 21

    Олефины, содержащиеся в продуктах крекинга и особенно в крекинг-газах, являются хорошим и легко доступным для производства сырьем. Для увеличения ресурсов олефинового сырья парафины или более тяжелые фракции специально подвергают крекированию (пиролизу). Таким образом, этилен получается в результате крекинга различных газов С2—С4 (этан, пропан, бутан) и жидких фракций (газойль, лигроин и мазут). Пропилен получается при термическом и каталитическом крекинге лигроинов и газойлей, а также из пропана и бутана. [c.577]     Эти олефины содержатся в большом количестве в крекинг-газах находятся они там в качестве побочного продукта. Первоначально эти газы были относительно богаче этиленом. С совершенствованием крекинг-нро-цесса содержание этилена в продуктах крекинга уменьшается и вследствие этого затраты на его извлечение постоянно возрастают. Это вынуждает к поиску иных источников получения этилена и других газообразных олефинов. Таким является прежде всего пиролиз природного газа, содержащего пропан, который нри этом расщепляется на этилен и метан. Затем следует приобретающий первостепенное значение процесс пиролиза этана. При нагреве до высокой температуры этан расщепляется на этилен и водород (термическое дегидрирование). [c.35]

    Этилен из газов крекинга и пиролиза часто выделяют фракционировкой. Эти газы в большинстве случаев содержат водород и метан. Чтобы можно было отделить фракцию Сд от водорода и метана без потерь перегонная колонна долл на иметь метановое орошение. Для достижения этого необходимы давление и низкая темпера- [c.70]

    Современная технология нефтепереработки направлена в основном на максимальное получение бензинов. Поэтому после прямой отгонки бензиновых фракций остаточные продукты подвергаются термической обработке (крекингу) с целью получения дополнительных ресурсов бензина. Наряду с получением целевого продукта — бензина — образуются более легкие продукты расщепления — газообразные углеводороды непредельного характера. К наиболее легким углеводородам принадлежит интересующий нас этилен. Суммарное количество газов и содержание в них этилена зависит от условий термической обработки. При обычном термическом крекинге (400—450° С) количество крекинг-газа от взятого нефтепродукта составляет 7%, а при каталитическом — около 20%. Количество этилена от массы всех газов - 2%. Термическая обработка нефти, протекающая при значительно более высокой температуре (пиролиз, порядка 700 С), дает выход газов до 40%, этилена в них до 19—20%. [c.93]

    Такие установки описаны. Например, фирма Джайро синтезирует этиловый спирт из этилена газов парофазного крекинга в присутствии У5 %-ной серной кислоты. Поело гидролиза и отгонки спирта отработанная кислота становится 80 %-ной. Ее концентрацию доводят до 95 % и с юва пускают в производство (потери кислоты достигают 15%). Во Франции и США превращают этилен коксового газа в этиловый спирт, употребляя 98 %-ную серную кислоту [36]. [c.21]

    Сырьем для производства синтетического спирта служит этилен, содержащийся в крекинг-газах или получающийся пиролизом пропана. [c.452]

    Этилен (табл. 7). Как уже было указано, этилен может быть получен из этилового спирта действием концентрированной серной кислоты (см. выше). В промышленности используют этилен газов крекинга (табл. 8), а также этилен, получаемый дегидрированием этана, входящ,его в состав попутного нефтяного газа. Этилен — бесцветный газ, почти без запаха в воде при 0° С растворяется до 1/4 объема этилена. Он находит применение как исходное веш,е-ство для синтеза этилового спирта (стр. 117), различных галогенпроизводных, окиси этилена (стр. 130), иприта, для получения полиэтилена (стр. 74, 468) и других синтетических высокополимеров. Имеет значение применение этилена для ускорения созревания помидоров, лимонов и других овощей и фруктов. Для этой цели при 18—20°С достаточно добавить к воздуху 0,005—0,1 объемного процента этилена. [c.77]

    В качестве технологического сырья можно применять любой углеводород. При крекинге углеводородного сырья тяжелее метана отношение ацетилен этилен в газах пиролиза можно изменять в пределах от 80 20 до [c.242]

    Алкилирование изобутана этиленом особенно интересно, так как получается неогексан или 2,2-диметилбутан. Неогексан имеет высокое октановое число (около 95) и большую летучесть по сравнению с изооктаном (температура кипения 50° С). Путем смешения изооктана и неогексана можно получать авиационное топливо с очень высоким октановым числом (до 115) и с желаемой кривой разгонки. В полупромышленном процессе этилен получается крекингом газов, содержащих этан, при температурах от 760 до 815° Си низких давлениях, около 15-35 ат. [c.33]

    Непрерывный процесс приготовления хлористого этила этилен и хлористый водород приблизительно при 10° или ниже пропускают над катализатором и алифатическим хлорированным углеводородом при давлении около 1 ат. Из, реакционной зоны жидкость, содержащую образовавшийся хлористый этил, частично удаляют и нагревают прд уменьшенным давлением, хлористый этил при этом испаряется контактную жидкость вновь охлаждают и возвращают в реакционное пространство этим методом можно перерабатывать крекинг-газы, содержащие этилен [c.376]

    На рис. 112 показана схема основных операций фракционированной разгонки крекинг-газа, из которого в чистом виде выделяются этилен и этан. Неочищенные фракции С1 и Сг, полученные после перегонки при давлении, подвергаются повторной перегонке в соответствующих колоннах при низких температурах порядка —78... — [c.292]

    В реакцию полимеризации вступают только ненасыщенные углеводороды этилен, пропилен, бутилены, изобутилен и амилены, если последние содержатся в крекинг-газе. [c.24]

    Обычно получающийся при термическом разложении пропилен находится в смеси с другими газообразными олефинами. Выход пропилена возрастает с повышением температуры до известного предела, выше которого падает, и главной непредельной составной частью крекинг-газа становится этилен. [c.146]

    Так как все ке содержание этиленовых углеводородов в газах крекинга относительно мало, то предварительно газы подвергаются повторному крекингу, при котором расщепляется содержащийся в газах крекинга бутан. Пугем сочетания крекинга бутана с последующей полимеризацией удается превратить более 75общего веса углеводородов исходного крекинг-газа в жидкий бензин, так называемый, полимер-бен-зин, имеющий среднее октановое число 80. Остаток газов содержит, главным образом, метан и этилен. [c.51]

    Использование температур, соответствующих глубокому охлаждению, позволяет разделять газовые смеси путем их частичного или полного сжижения и получать многие технически важные газы, например азот, кислород и другие газы (при разделении воздуха), водород из коксового газа, этилен из газов крекинга нефти и т. д. Эти газы широко используются в различных отраслях промышленности. Так, современная холодильная техника обеспечивает значительную интенсификацию доменных процессов черной металлургии путем широкого внедрения в них кислорода. Весьма перспективно применение дешевого кислорода для интенсификации многих химико-технологических процессов (производство минеральных кислот и др.). [c.646]

    Для получения спирта из отбросов лесозаготовительного дела строится опытный завод. Что касается газов крекинга, то построена опытная установка, выделяющая этилен из газов крекинга и превращающая его в спирт. Этот спирт испытан в лаборатории Опытного завода литера Б и дал нормальные выходы дивинила. [c.448]

    Бутан, водород, метан, пропан, бутилен, пентан, параль-дегид, пропилен, этан, этил-бензол, этилен, крекинг-газ, сырая нефть и др. вредные вещества с ПДК р. з. более 50 мг/м 8 12 8 10 15 10 6 1,2 [c.220]

    На установке такого типа [2] крекинг-газ компримируется до 10 ат двухступенчатыми поршневыми компрессорами, сушится путем пропускания через окись алюминия и затем охлаждается, проходя через серию парциальных конденсаторов, до температуры —110° С. В этих условиях конденсируется около 96% этилена. Далее жидкая фаза отделяется от остаточного газа и подается в деметанизатор, работающий под давлением 7 ат, дефлегматор которого охлаждается жидким метаном до температуры —140° С. Следующая колонна для отгона углеводородов Сд и Сд, работающая под давлением 4 ат, охлаждается этиленом, испаряющимся при этом давлении. Хладоагентом для ректификационной колонны, на которой осуществляется разделение этилена и этана, является жидкий этилен, испаряющийся при атмосферном давлении. Сама колонна работает под давлением, слегка превышающем 1 ат. Колонна, дающая пропан-пропиленовую смесь, охлаждается испаряющимся жидким пропаном, циркулирующим по замкнутому циклу. Конденсация пропана осуществляется в рибойлере деме-танизатора. Установка не предназначена для получения чистого пропилена, и последняя колонна С4/СД работает полностью при температуре выше окружающей. Температура в дефлегматоре поддерживается около - -60° С путем охлаждения его холодной водой. [c.26]

    В предыдущих разделах были рассмотрены газообразные и жидкие углеводороды, образующиеся нри крекинг-нроцессе, и их состав. Теперь необходимо рассмотреть получение низко- и высокомолекулярных олефинов. в процессах, где эти олефины являются не сопутствующим, а целевым конечным продуктом. Крекинг-газы должны подвергаться химической переработке непосредственно на нефтеперегонном заводе или в крайнем случае на близ расположенных химических заводах, так как их транспортировка обходится довольно дорого. С другой стороны, нефтехимическая промышленность, стремится получать олефиновое сырье, и в первую очередь этилен, от пред-нриятий нефтяной промышленности. Способы, которые применяются для получения олефинов, в технологическом отношении отличны от обычного, крекинг-процесса, так как здесь уже не бензин, а газ является целевым продуктом. [c.46]

    Обеспечение нефтехимического производства разнообразными видами углеводородного сырья требует немалых предварительных трудовых затрат. Так, например, некоторые виды газового углеводородного сырья могут находиться в природном газе в концентрированном виде (метан) и требуется лишь сравнительно небольшая очистка для их использования. Для получения олефиновых углеводородов требуется специальное производство или выделение их из крекинг-газов, где содержание их достигает 25—35%, поэтому выделение олефинов в концентрированном виде (99—99,9%) для нефтехимических предприятий является сложным и дорогостояпщм процессом. Выделение и очистка олефинов составляют около 70% всех затрат при производстве конечных продуктов. В газах, ползгчаемых при крекинге, этилена содержится слишком мало, всего около 2%>, поэтому этилен получают пиролизом углеводородного сырья и выделяют из газов пиролиза, где его концентрация составляет 20—25%- [c.16]

    Избирательная гидрогенизация ацетилена была использована в промышленности в двух направлениях. Во-первых, для превращения ацетилена, содержащегося в некоторых определенных крекинг-газах, в этилен. Этот процесс удобен тем, что газы содержат водород в количестве, достаточном для гидрогеиизации ацетилена. Во-вторых, для превращения более или менее чистого ацетилена в этилен. Последнее применение представляет особый интерес для стран, имеющих недостаточное количество природного газа. В Германии во время второй мировой войны ацетилен превращался в этилен в больших масштабах с выходом этилена около 90%, катализатором служил палладий на силикагеле. В течение 8 месяцев температура катализатора в процессе постеиенно повышалась от 200 до 300 , а затем катализатор регенерировался без выгрузки из реактора (на месте) смесью пара и воздуха при 600°. Катализатор выдерживает три регенерации [112]. [c.240]

    Газ стабилизационной устаиовки крекинг-бензина также вполне пригоден и качестве сырья для парофазного крекирования, хотя он содержит, кроме этана и пропана, еще этилен и пронен (описание установки для парофазного крекинга, где исходным сырьем служат крекинг-газы, см. в гл. III). [c.87]

    Кроме термического крекинга, источником олефинов является также каталитический крекинг, при котором они получаются в больших количествах. Каталитический крекинг получил быстрое и широкое распространение под влиянием потребностей военного времени, поскольку он давал хорошие выходы высокооктанового бензина, являющегося основньш компонентом авиационного топлива с октановым числом 100. Каталитический крекинг заключается в нагревании паров нефтепродукта при умеренной температуре (450°) и низком давлении (1—15 ama) в присутствии естественного или синтетического алюмосиликатного катализатора. Существуют три способа проведения этого процесса. По одному из них пары углеводородов пропускают через неподвижный слой катализатора (процесс Гудри). При втором способе очень тонко измельченный катализатор, будучи взвешен в горячих парах углеводородов, увлекается ими в направлении их движения (процесс с текучим катализатором). По третьему способу катализатор в виде гранул механически передвигается в реакционной зоне противотоком к движению паров углеводородов (процесс термофор). Во всех случаях на катализаторе отлагается кокс, который приходится удалять выжиганием в токе газа, содержащего кислород в процессе Гудри выжигание проводят периодически, в процессах с псевдоожиженным слоем катализатора или с движущимся слоем (процесс термофор) — непрерывно. Полученный крекинг-бензин содержит большое количество сильно разветвленных парафинов, благодаря чему он и обладает высоким октановым числом. Как и следовало ожидать, принимая во внимание мягкие условия крекинга,, этилен присутствует в газах в очень небольшом количестве в основном крекинг-газы состоят из С3- и С4-углеводородов. Бутан-бутиленовую фракцию крекинг-газов в США используют для производства дивинила, необходимого для промышленности синтеаического каучука, а также для получения изооктана (гл. 12, стр. 208 и сл.). [c.110]

    В странах, где проводится крекинг нефтяного сырья, пропилен является наиболее доступным олефином. В противоположность этилену пропилен можно получать в достаточно концентрированном виде из газов большинства крекинг-процессов. Кроме того, выделение пропилена из крекинг-газов не требует глубокого (JXлaждeния. В качестве исходного сы1)ья для производства авиационных бензинов пропилен имеет меньшую ценность, чем бутилены пропилен также не может служить исходным продуктом для синтеза дивинила. [c.126]

    Получение полиэтилена при давлениях 1000 —2000 кг1см (способ I. С. I. и германский способ). Принципиальная схема производства по способу I. С. I. приведена на рис. XII. 7 [29]. Этилен, получаемый путем каталитической дегидратации этанола или из крекинг-газов, весьма тщательно очищенный от примесей [1—3], под давлением 1200—3000 кг/см (в современных установках 1500 кг/см ) нагнетается компрессором 4 в реактор 5, где поддерживается постоянная температура 190—200°. В качестве катализатора служит кислород, вводимый в реактор вместе с этиленом в очень малых количествах, по указаниям патентов 0,05—0,1%. Реакция полимеризации весьма экзотермична, и отвод тепла осуществляется при помощи специальных устройств. Из реакторов полиэтилен и непрореагиро- [c.773]

    Этилен более пригоден для термической полимеризации, чем другие олефины. Полимеризация чистого этилена при 450° С и 50 ат сопровождается значительным выделением тепла, вызывающим в некоторых случаях сильные взрывы. Необходимо указать, однако, что в крекинг-газах содержится небольшое количество этилена (глава 7), так что термическая полимеризация газов крекинга является вполне безопасной операцизй. [c.41]

    Крекинг-газы относятся к искусственному газообразному топливу. Они производятся в больших количествах при крекинге нефтепродуктов. На 1 дм нефти получают при жидкофазном крекинге до 80 газа, а при парофазном крекинге свыше 150 дм газа. Теплотворная способность крекинг-газов очень высокая и достигает в пределе свыше 17 000 ккал1ям . Крекинг-га-зы содержат значительное количество непредельных углеводородов и особенно этилен, пропилен, бутилен и ряд других, которые являются денным сырьем для производств химической промышленности, поэтому применять крекинг-газы в качестве топлива также не рационально. [c.20]

    Smolensky приводит данные, согласно которым, при пиролизе сырой нефти при 600° было получено 15 газообразных олефинов на каждые 100 кг нефти, причем концентрация олефинов в сыром крекинг-газе равнялась 35—37%. При 700° образовавшиеся олефины (главным образом этилен) дали выход в 15 лт на 100 лт нефти (при концентрации их в газе, равной 20—22 %о). [c.141]

    Десорбция газов из насыщеккого керосина производится в две стадии. На первой стадии из керосина десорбируются растворенные этилен и ацетилен при давлении 30 кПа и температуре 2—7 °С в насадочных абсорбционных колоннах 4, в нижнюю часть которых подается часть крекинг-газа из абсорбера в качестве газа-носителя. Газ-носитель и регенерированные газы (зтнлсн, ацетилен) из верхней части десорбера выводятся в газгольдер сырого крекинг-газа. На второй стадии производится десорбция высших ацетиленов из керосина в десорберах 10 колонного насадочного типа при давлении 10—20 кПа и температуре в кубе колонны около 120 °С (температура начала перегонки керосина при атмосферном давлении 195—210 °С, конца 315 С). [c.218]

    Состав крекинг-газа зависит главным образом от температуры крекинга. Жидкофазный крекинг при температуре от 450 до 480° дает газ, содержащий большое количество газообразных парафиновых углеводородов, относительно меньшие количества олефинов и немного водорода. Среди олефинов первое место занимает пропилен, этилена содержится несколько меньше, а диолефины практически отсутствуют. С другой стороны, газ парофазного крекинга относительно-богаг олефинами (до 60%), причем первое место занимает этилен. Кроме того он содержит до 2% диолефинов, главным образом бутадиен, а также парафиновые углеводороды, главным образом метан и этаи и юдород (до 10%). [c.130]

    Blan he разработал способ разделения составных частей крекинг-газа с помощью фракционированной конденсации. Сырой газ после крекинга, отмытый или не отмытый от паров жидких углеводородов, подвергается действию температуры около 5° при давлении в 2—5 ат. При эхом удаляются все нескон-денсировавшиеся пентаны и амилены, кипящие при нормальном давлении около 35°. Оставшиеся газы подвергаются дальнейшему охлаждению до 0° при 10— 20 ат. В результате конденсируются и удаляются бутаны и бутилены. Остаточный газ, в состав которого входят этилен, пропилен, предельные углеводороды и водород, или подвергают дальнейшему охлаждению при более высоких давлениях, чтобы достигнуть сжижения пропилена, или же применяют его- непосредственно для получения смесей производных этилена и пропилена. [c.157]

    Podbielniak предпагает извлекать этилен из сырого крекинга-газа путем введения этого газа под давлением в 180— 230 ат в охлажденную колонку для фракционирования, причем этилен и часть этана удаляются через ее верх, а пропилен и тяжелые углеводороды собираются внизу. Особенно чистый этилен может быть получен промывкой газа крекинга таким растворителем, который поглощал бы этилен, некоторые тяжелые углеводороды и небольшое количество метана. Из такого обсгащенного растворителя путем дестилляции выделяют этилен и газообразные углеводороды. Почти чистый этилен получается из этого дестиллата посредство>м фракционирования под давлением в колонке с охлаждением. [c.160]

    Условия максимального использования этилена в газах коксовых печей для получения спирта были рассмотрены Gluud OM, S hneider oM и Ке11ег ,ом указавшими, что применение в качестве катализатора сернокислого серебра существенно улучшает возможность промышленного получения спирта из этого источника. Однако весьма важным является удаление присутствующих в сыром газе тяжелых газообразных углеводородов и уменьшение количества воды, необходимой для гидролиза этилсерной кислоты. В дальнейшем Герр и Попов " использовали каталитическую активность сернокислого серебра для получения спирта из этилена, содержащегося в крекинг-газах. Газ, содержащий 54% парафиновых углеводородов, 12,2% водорода и 33,8% непредельных углеводородов, проводился над хлористым кальцием, затем над древесным углем (для удаления высших гомологов этилена) и наконец через нагретую до 40° поглотительную трубку, содержащую стеклянные бусы или стеклянную вату в этой трубке этилен поглощался 94%-ной серной кислотой, содержавшей в растворенном состоянии 1% сернокислого серебра. Таким путем из 300 я газа получалось 33,8 г спирта. [c.367]

    Taveau предложил проводить смесь олефинов (например крекинг-газ) через серию поглотительных сосудов, содержащих серную кислоту в возрастающих концентрациях. Первые два сосуда поддерживаются при температуре 30°, в них поглощаются пропилен и бутилен. В последнем сосуде поглощается этилен 98%-ной кислотой. Приблизительно при 100°. [c.371]

    Исследования Davis и Murrey, как касающиеся получения изопропилового спирта, описываются в гл. 14. Согласно с описанием этого процесса, дан ны.м в этой главе, первоначально фракционированием крекинг-газа получают три фракции. Обработка 1-й фракции, содержащей этилен и пропилен, уже описывалась. Здесь же будет описана обработка фракций 2-й и 3-й, т. е. фракций, содержащих бутилены и амилены (пентены). [c.420]

    Систематического исследо1вания действия хлорноватистой кислоты на пропилен до сих пор не произведено, хотя в то же время разработаны методы получения смесей этилен- пропиленхлоргидринов из крекинг-газов, взаимодействием их с разбавленными растворами хлорноватистой кислоты. [c.542]

chem21.info

ПРОИЗВОДСТВО ЭТИЛЕНА

Переработка Нефти

То жарко, то холодно, ничто не вечно Джордж Петти «Маленький дворец»

Химическим производством, наиболее тесно связан­ным с переработкой нефти, является производство этиле­на. Именно поэтому компании, которые занимаются и хи­мическим производством, и нефтепереработкой, часто строят установки по производству этилена — они переки­дывают мостик от одного к другому. Производство этилена правильнее называть производством олефинов', кроме того, встречаются названия «крекинг этилена» (что неправиль­но) , «крекинг водяного пара» (так как сырье смешивают с водяным паром), а также «крекинг...» с добавлением на­звания одного из видов сырья (например, этана).

Установки по производству олефинов сконструирова­ны так, чтобы производить крекинг разных видов сырья, а именно:

Этана,

Этан-пропановой смеси,

Пропана,

Бутана,

Нафты,

Газойля.

Сначала эти установки должны были производить эти­лен для того, чтобы удовлетворить растущие аппетиты химической промышленности, для которой этилен — важнейший строительный блок. Производить пропилен было несколько менее интересно, так как большие запа­сы этого углеводорода всегда имелись на установке алки - лирования, откуда его можно было стащить, если возни­кала такая необходимость. Таким образом, на ранних ста­диях развития большинство установок по производству олефинов были рассчитаны на крекинг этана или этан- пропановой смеси, так как этан превращается в этилен с высоким выходом (см. таблицу, приведенную ниже).

Развитие техники в последующие годы привело к ис­пользованию более тяжелого сырья, так как это сырье более доступно, а также потому, что нафта или газойль превращаются на этой установке в высокооктановые ком­поненты бензина. В настоящее время некоторое количе­ство крупных олефиновых производств, размером со сред­ний нефтеперерабатывающий завод, включены в систе­му нефтепереработки и производят значительные коли­чества бензина.

Выход, фунт на фунт сырья

Сырье

Этан

Пропан

Бутан

Нафта

Газойль

Этилен

0,77

0,40

0,36

0,23

0,18

Пропилен

0,01

0,18

0,20

0,13

0,14

Бутилен

0,01

0,02

0,05

0,15

0,06

Бутадиен

0,01

0,01

0,03

0,04

0,04

Топливный

Газ

0,20

0,38

0,31

0,26

0,18

Бензин

0,01

0,05

0,18

0,18

Газойль

0,01

0,12

Жидкое топливо

0,10

Взаимосвязь между операциями

Олефиновая установка вбирает в себя некоторое ко­личество бросовых потоков нефтеперерабатывающего за­вода. Например, газы с установки каталитического кре­кинга часто направляют в топливную систему, хотя они содержат этан, этилен, а также некоторое количество пропана и пропилена. Однако при наличии олефиновой установки эти компоненты можно разделить и использо­вать более эффективно.

Некоторые виды нафты имеют низкие октановые чис­ла и поэтому представляют небольшую ценность как ком-

Рециркулят этана

Рециркулят пропана

Рис. 18.1. Производство олефинов. Крекинг этан-пропановой фракции.

Поненты бензина. Примером является рафинат бензола. Эти потоки могут служить хорошим сырьем для произ­водства олефинов, не только потому, что они больше никуда не годятся, но и потому, что в качестве побочных продуктов производства этилена при этом получаются высокооктановые компоненты бензина.

В то же время, некоторые установки нефтеперераба­тывающего завода служат дополнением для установки производства этилена. Например, бутилены и более тя­желые побочные продукты с этой установки находят при­менение в процессах переработки нефти. Нигде, кроме нефтеперерабатывающего завода, эти продукты товарной ценности не представляют.

Технологический процесс

Установки, в которых осуществляется крекинг этана или пропана, представляют гобой простейший вариант, но они позволяют изучить основы процесса. Этан и про­пан по отдельности либо в виде смеси поступают в печь крекинга, где они пребывают короткое время при высо - н н н н

I I I I

С=с-с=с

I I

Н н

Рис. 18.3. Бутадиен.

Кой температуре, а затем происходит быстрое охлажде­ние; в результате образуется большое количество этилена (рис. Что касается режима работы и сырья, установ­

Ка по производству олефинов — это фактически обычная установка термического крекинга.

Этан и пропан не расходуются полностью за один проход через печи крекинга. Поэтому в ректификацион­ной колонне эти газы отделяются и снова направляются в процесс. Обычно этан рециркулирует до уничтожения, а пропан частично выходит вместе с пропиленом. Суще­ствует три торговых марки пропилена, в зависимости от содержания примеси пропана: пропилен для полимери­зации (97—99% основного вещества), химически чистый пропилен (92—95%) и нефтяной пропилен (50—65%).

На установке, предназначенной для крекинга более тя­желого сырья (нафты или газойля), образуется этан. По­этому такие установки также содержат печь для перера­ботки возвращенного этана (см. рис. 18.2). Выходы обычно указывают с учетом рециркуляции, а не за один проход.

Поток, который остается на олефиновом заводе, а не уходит в секцию переработки нефти, состоит из бутадие­на (рис. 18.3). Бутадиен является диеновым углеводоро­дом, его формула и молекула содержит две двой­ных связи. Благодаря двум двойным связям, это вещество очень реакционноспособно и используется для произ­водства каучуков и пластмасс.

УПРАЖНЕНИЯ

Сколько сырья (бар/сут) потребуется для работы ти­пичной установки по производству олефинов, произ­водящей 1 млрд. фунтов этилена в год. В качестве сырья установка использует следующие продукты:

Этан (3,2 фунт/гал), пропан (4,24 фунт/гал), нафта (6,4 фунт/гал), газойль (7,3 фунт/гал).

Имеется установка крекинга этан-пропанового сырья с производительностью 500 млн. фунтов этилена в год. В настоящее время сырьем является смесь, состоящая из 70% этана (по объему) и 30% пропана, при этом установка работает с полной производительностью. Внезапно возникли трудности на рынке пропилена, и компания решила производить пропилен только в ко­личестве 20 млн. фунтов в год. Сколько сырья перера­батывалось на установке до сих пор, сколько при этом получалось пропилена, и сколько этана теперь следует использовать вместо пропана, чтобы соотношение продуктов изменилось нужным образом?

Если вы хотя бы раз в своей жизни анализировали варианты топлива для автономной системы газоснабжения, то наверняка встречались с такой разновидностью, как пропан-бутановая смесь. У пытливого ума тут же возникает …

Если Вам слишком жарко, уходите из кухни Гарри С Трумэн Многие экономические соображения, влияющие на производство различных нефтепродуктов, связаны с ко­личеством теплоты, которое выделяется при их сжига­нии. Действительно, чтобы выбрать, …

Уильям Д. Леффлер Начало—самая важная часть работы Платон «Республика» Если Вы открыли эту книгу, Вам уже не требуется введение в ее предмет — Вы и так им занимаетесь. Вряд ли …

msd.com.ua

Термический крекинг этилена - Справочник химика 21

    Циклопентан относительно термически стабилен он не подвергается дегидрированию нри нормальных температурах крекинга, а при более жестких условиях углерод-углеродная связь расщепляется с разрывом кольца [50—53]. Циклогексан начинает разлагаться при 490—510° С, образуя большие количества водорода, этилена, бутадиена [54], бензола [55] пропилен не получается [56]. Циклогексен, по-видимому, является промежуточным продуктом, из которого затем образуются бензол и водород или бутадиен и этилен [55]. Последний вариант реакции протекает почти количественно при 800° С [56] в продуктах реакции почти нацело отсутствует циклогексадиен [57]. Нет доказательств и в пользу предположения о возможности изомеризации циклогексана в метилциклопентан при термическом крекинге [56]. [c.301]     Газообразные алкены (этилен, пропилен, бутилены) выделяют из газов нефтепереработки (получающихся при термическом крекинге). Крекинг парафинов, содержащихся в нефти, является промышленным способом получения этиленовых углеводородов, используемых для производства полимеров. [c.65]

    Очень вероятно, что термический крекинг м-пропилбензола заключается в свободнорадикальном отщеплении атома водорода от метильной группы, с последующим бета -распадом на бензиловой радикал и этилен. Далее происходит развитие цепи за счет взаимодействия бензила с исходной структурой с образованием толуола и нового радикала. Попутно заметим, что термический крекинг ароматических углеводородов весьма сходен энергетически с крекингом некоторых алифатических углеводородов, если бензил рассматривается как энергетический аналог аллило-вого радикала в следующей структуре (используются данные из [39]). [c.131]

    Пиролизом называют процесс, аналогичный термическому крекингу, но проводимый при более высокой температуре (670— 1200 °С) и невысоком давлении (0,2—0,5 МПа). Пиролизом углеводородных газов (пропана или бутана) или бензиновых фракций получают ряд необходимых для нефтехимического синтеза и производства пластмасс веществ, таких, как этилен, пропилен, бутадиен, ацетилен. Этилен, в свою очередь, служит сырьем для производства этилового спирта, стирола, полиэтилена и оксида этилена. [c.265]

    Реакции гидрирования применяют при доочистке отходящих газов с установки производства серы. В процессе Скот все сероорганические и кислородсодержащие соединения гидрируются с образованием сероводорода и воды. Затем сероводород извлекается из отходящего газа. Обратная реакция дегидрирования получила широкое применение в производстве непредельных углеводородов. Этилен, пропилен, бутилен, дивинил, бутадиен в природе не существуют. Эти углеводороды получают дегидрированием, за счет воздействия высоких температур происходит отделение водорода из предельных углеводородов. Эти процессы называются -гидроочистка, каталитический и термический крекинг. [c.47]

    Для сопоставления с приводимыми в качестве примера каталитическими реакциями перечислим некоторые важные органические соединения, которые получаются без применения катализаторов уксусная и другие кислоты, синтезируемые окислением углеводородов ацетилен, этилен и другие олефины, получаемые термическим крекингом хлоропарафины, этаноламины, нитропарафины окись этилена и пропилена, синтезируемые хлоргидри-новым методом фенол, получаемый сульфированием и из монохлорбензола мочевина.  [c.324]

    Пример II-2. При термическом крекинге пропана в определенных условиях могут быть получены или пропилен п водород, или этилен и метан. Предположим, что пропан подвергается крекингу при пропускании через трубку, которая обогревается снаружи большим количеством горячих газов, имеющих температуру 780° С. Для проектирования промышленной установки требуется определить  [c.63]

    Современная технология нефтепереработки направлена в основном на максимальное получение бензинов. Поэтому после прямой отгонки бензиновых фракций остаточные продукты подвергаются термической обработке (крекингу) с целью получения дополнительных ресурсов бензина. Наряду с получением целевого продукта — бензина — образуются более легкие продукты расщепления — газообразные углеводороды непредельного характера. К наиболее легким углеводородам принадлежит интересующий нас этилен. Суммарное количество газов и содержание в них этилена зависит от условий термической обработки. При обычном термическом крекинге (400—450° С) количество крекинг-газа от взятого нефтепродукта составляет 7%, а при каталитическом — около 20%. Количество этилена от массы всех газов - 2%. Термическая обработка нефти, протекающая при значительно более высокой температуре (пиролиз, порядка 700 С), дает выход газов до 40%, этилена в них до 19—20%. [c.93]

    Результаты вычислений (табл. 47) показывают, что в реакциях замещения Н и СНз-радикалов с непредельными углеводородами (кроме реакции СНз с этиленом) равновесие при температурах термического крекинга сдвинуто в сторону продуктов реакции. Таким образом, в условиях крекинга реакции замещения простейших радикалов более сложными, т. е. реакции образования (синтеза) сложных радикалов, являются термодинамически преимущественными. [c.256]

    Так как свободные радикалы не способны быстро изомеризоваться, то радикалы, которые образуются в результате бета-расщепления, обычно остаются первичными при бета-расщеплении таких первичных свободных радикалов получаются этилен и новые первичные свободные радикалы меньшего молекулярного веса. Поэтому этилен является основным продуктом термического крекинга нормальных парафинов. [c.237]

    Расчеты показывают, что в районах нефтепереработки Средне-Волжского экономического района, где применяется много процессов потребляющих этилен (производство полиэтилена, этилового спирта), целесообразно в качестве пиролизного сырья использовать этан-этиленовую фракцию. При пиролизе этана выход этилена за один проход составит 54 /о, а с учетом рецикла до 80%. Не исключена возможность непосредственного извлечения этилена из жирного газа термического крекинга. Зарубежный опыт показывает возможность и целесообразность совместной переработки пиро-газа и жирного газа термического крекинга на одной газоразделительной системе с высоким отбором этилена от потенциала. [c.258]

    Газообразные продукты каталитического крекинга состоят из углеводородов Сз и I—С4 (пропилен, пропаи, изобутилеи, изо-бутан), в то время как в газообразных продуктах термического крекинга преобладают метан, этан и этилен. [c.132]

    Установки крекинга, на которых перерабатывали облегченное сырье при низком давлении (установки парофазного крекинга), имели низкую производительность и, следовательно, были нерентабельными, поэтому их широкое внедрение в нефтеперерабатывающую промышленность затормозилось. Однако для такой разновидности термического крекинга, как пиролиз, где низкое давление оправдано большим выходом газообразных целевых продуктов (этилен, пропилен), а также для так называемых термоконтактных процессов низкое давление может являться положительным фактором, так как оно способствует реакциям распада и быстрому удалению из реакционной зоны продуктов первичного разложения исходного сырья. [c.71]

    Процесс дегидрирования основан на эндотермических реакциях, причем равновесные реакции смещаются в сторону алкенов с повышением температуры. Наиболее неблагоприятна термодинамика для этана. Заметные выходы этилена, скажем, степень конверсии 15—20%, достигается при 600 °С. Дальнейшее углубление превращения приводит к развитию реакций термического крекинга. Оттого и выгоднее получать этилен пирогенетическим разложением, а не при помощи каталитического процесса. [c.109]

    При каталитическом крекинге алкилароматических углеводородов, в отличие от термического крекинга, алкильная цепь не разрывается, а происходит деалкилирование с образованием соответствующего ароматического углеводорода и олефина. Так, из н-пропилбензола при каталитическом крекинге образуются бензол и пропилен, а при термическом - толуол и этилен. [c.52]

    Другие процессы переработки нефти, щапример коксование, крекинг водяным паром, легкий крекинг, гидрокрекинг, каталитический риформинг, хотя и направлены на минимальное образование газоообразных продуктов, также ведут к обрайованию некоторого количества метана. Это обусловлено в больщинстве случаев локальным перегревом, недостаточным перемешиванием продуктов или неудовлетворительным регулированием технологического Процесса. Исключение составляет крекинг водяным паром, при котором лигроин и газойль конвертируются в этилен в процессе термического крекинга. Ясно, что в таких условиях, даже если выход этилена доведен до максимума, все равно образуется метан [3]. [c.97]

    Этилен, пропилен и другие продукты термического крекинга этана, пропана и фракций нефти [c.2241]

    В промышленности пропилен получают путем выделения его иэ газообразных продуктов каталитического или термического крекинга нефти, S также вместе с этиленом при пиролизе керосина, низкооктановых фракций бензина или природного газа. Ниже приведены свойства пропилена  [c.43]

    Объемное содержание непредельных соединений в газах жидкофазного термического крекинга (470—520 °С 2—5 МПа) составляет примерно 10%, в газах пиролиза (670—900 °С 0,1 МПа) 30—50 %. Как следует из данных, приведенных в табл. 10.1, среди алкенов термических процессов преобладают этилен и пропилен в меньшем количестве присутствуют бутены и бутадиен. Алкены, содержащиеся в газах каталитического крекинга, состоят в основном из пропилена и бутенов. [c.261]

    В первом реакционном узле системы при термическом крекинге газойля в качестве товарных продуктов из системы отводятся бензин, метан и бутан + + высшие образовавшиеся в процессе крекинга этан и пропан направляются на дегидрогенизацию, этилен и пропилен — на алкилирование бензола, крекинг-остаток направляется на процесс деструктивной гидрогенизации, а флегма возвращается обратно на крекинг. [c.167]

    Низшие алкены (этилен, пропилен) в условиях термического крекинга и пиролиза подвергаются следующим превращениям. [c.309]

    Выделение этилена из его смеси с водородом и метаном (извлечение этиленовой фракции из газообразных продуктов термического крекинга углеводородов). Выделяют этилен из его смеси с водородом, метаном и другими газами на установке, которая может быть или подобна изображенной на рис. 129, или типовой (см. рис. 116, стр. 267) и отличаться от последней лишь отсутствием отбора промежуточной фракции. [c.297]

    Пиролизом называется наиболее жесткая форма термического крекинга нефтяного и газового сырья, осуществляемая при температурах от 650 до 1200°С с целью получения газообразных углеводородов с высоким содержанием непредельных соединений. Целевым продуктом пиролиза является газ, богатый непредельными углеводородами, главным из которых является этилен, используемый для нефтехимического синтеза. [c.261]

    По теории термического разложения предполагается, что частицы углерода образуются из таких продуктов, как ацетилен, получаемых при термическом крекинге больших углеводородных молекул в зоне пламени. Опытами по пиролизу метана и этана было показано, что время контакта, необходимое для образовав ПИЯ сажи, имеет примерно тот же порядок, что и время нахождения углеводородов в предпламенной зоне. Продукты пиролиза метана и этана содержали ацетилен и этилен. Пиролиз метана при 1000° С дополнительно дал небольшое количество бензола, а также следы нафталина, антрацена, фенантрена и пирена, по-видимому, за счет конденсации более мелких молекул. [c.204]

    В газах термического крекинга, как видно из табл. 8, содержатся пропилены и бутилены, в газе пиролиза — этилен. [c.185]

    Этилен в промышленности полл чают термическим крекингом нефтепрод>тггов прн температуре 4 0-550 С и давлении в несколько десятков атмосфер. Сколько кубометров этилена образуется при термическом крекинге 1.35 т мазута, если выход этилена составляет 2 % ( по вес )  [c.43]

    С установок АГФУ блока разделения непредельных газов уходят сухой газ, пропан-пропиленовая и бутан-бутиленовая фракции. В типичных заводских газах из непредельных углеводородов присутствуют только олефины этилен, пропилен, бутилены. Углеводороды более высокой непредельности — ацетилен, бутадиен —содержатся лишь в газах пиролиза, а в газах термического крекинга появляются только при значительном ужесточении режима. [c.284]

    Основным источником олефинов для полимеризации их наиболее высокомолекулярных представителей является, как и в случае сульфатирования и гидроформилироваиия, процесс термического крекинга высокомолекулярных парафиновых углеводородов, как, нанример, парафиновый гач и парафин из бурых углей. Как указывалось выше, при этом образуются олефины с двойной связью у концевого атома углерода. Низкомоле] уляр-ные олефипы (этилен и пропилеп) особого интереса не представляют, так как опи лишены способности образовывать изомеры. [c.708]

    Наиболее часто как основы для загущения применяются олигомеры а-олефинов и эфиры двухосновных кислот или полиолов. Поли-а-олефины получают сополимеризацией а-олефинов (например, этилена с пропиленом), часто в присутствии водорода, или термическим крекингом этилен-пропиленового синтетического каучука (СКЭП). Для получения моторного масла продукт крекинга СКЭП подвергают карбамидной депарафинизации, а затем гидрированию. Масло состоит преимущественно из изопарафиновых углеводородов и имеет следующие показатели [47]  [c.27]

    Кроме термического крекинга, источником олефинов является также каталитический крекинг, при котором они получаются в больших количествах. Каталитический крекинг получил быстрое и широкое распространение под влиянием потребностей военного времени, поскольку он давал хорошие выходы высокооктанового бензина, являющегося основньш компонентом авиационного топлива с октановым числом 100. Каталитический крекинг заключается в нагревании паров нефтепродукта при умеренной температуре (450°) и низком давлении (1—15 ama) в присутствии естественного или синтетического алюмосиликатного катализатора. Существуют три способа проведения этого процесса. По одному из них пары углеводородов пропускают через неподвижный слой катализатора (процесс Гудри). При втором способе очень тонко измельченный катализатор, будучи взвешен в горячих парах углеводородов, увлекается ими в направлении их движения (процесс с текучим катализатором). По третьему способу катализатор в виде гранул механически передвигается в реакционной зоне противотоком к движению паров углеводородов (процесс термофор). Во всех случаях на катализаторе отлагается кокс, который приходится удалять выжиганием в токе газа, содержащего кислород в процессе Гудри выжигание проводят периодически, в процессах с псевдоожиженным слоем катализатора или с движущимся слоем (процесс термофор) — непрерывно. Полученный крекинг-бензин содержит большое количество сильно разветвленных парафинов, благодаря чему он и обладает высоким октановым числом. Как и следовало ожидать, принимая во внимание мягкие условия крекинга,, этилен присутствует в газах в очень небольшом количестве в основном крекинг-газы состоят из С3- и С4-углеводородов. Бутан-бутиленовую фракцию крекинг-газов в США используют для производства дивинила, необходимого для промышленности синтеаического каучука, а также для получения изооктана (гл. 12, стр. 208 и сл.). [c.110]

    В состав типичных заводских газов входят непредельные углеводороды только типа олефинов этилен, пропилен, бутилены 1 азообразные углеводороды более высокой степени непредельно сти—ацетилен, бутадиен —содержа1ся лишь в газах пиролизл н появляются в газах термического крекинга только при значительном ужесточении режима. [c.320]

    Пиролиз алканов, особенно когда речь идет о нефти, известен под названием крекинга. При термическом крекинге алканы пропускают через колонку, нагретую до высокой температуры. Алканы с высоким молекулярным весом превращаются в алканы с меньшим молекулярным весом, алкены и водород. В результате этого процесса образуется в основном этилен (С2Н4) наряду с другими небольшими молекулами, В случае крекинга с водяным паром углеводороды разбавляют паром, нагревают до 700—900 °С и быстро охлаждают. Процесс кр екинга с водяным паром приобрел большое значение для производства углеводородов, применяемых как реагенты, например этилена, пропилена, бутадиена, изопрена и циклопентадиена. Другим источником углеводородов с небольшим молекулярным весом является гидрокрекинг, проГ Одимый в присутствии водорода под высоким давлением и при значительно более низких температурах (250—450 °С). [c.137]

    В настояш,ее время нефтехимический потенциал промышленно развитых государств определяется объемами производства низших олефинов. Мировое производство этилена и пропилена (без учета социалистических стран) составило в 1984г. соответственно 35,4 и 18,6 млн. т, согласно прогнозам, в 1989 г. производство этилена достигнет 40—42 млн. т [1]. Практически весь этилен получают в процессе термического пиролиза. Этот процесс представляет собой модификацию термического крекинга нефтепродуктов, развитие которого с применением трубчатых печей началось в 10—20-х гг. на нефте-перерабатываюш,их заводах США. Первые промышленные син- [c.3]

    Этилен СНа = СНа — бесцветный газ со слабым эфирным запахом, т. кип. -103,8 °С, т. пл. —169,5 °С, плотность при 20 °С равна 1,26 кг/м , довольно хорошо растворим в воде. В промышленности этилен получают пиролизом газоа (этана, пропана, бутана) или жидких нефтепродуктов, а таю е термическим крекингом нефтепродуктов. [c.74]

    Бензиновый дистиллят, получаемый на установках термического крекинга, физически и химически нестабилен. Он содержит в растворенном состоянии летучие в обычных условиях углеводороды— этилен, этан, пропан, пропилен и бутан-бутилеиы. Хранение такого бензина в резервуарах приводит к потерям летучих компонентов, а вместе с ними и более высококипящих фракций. Поэтому нестабильный бензин подвергается физической стабилизации, т. е. удалению из него летучих фракций ректификацией под давлением около 10 аг. [c.146]

    Нефтезаводские (нефтяные) газы образуются как побочный продукт технологических процессов прямой перегонки, термического крекинга, пиролиза и др. Газ прямой перегонки содержит 7—10% пропана и 13—30% бутана. Газ термокрекинга богат метаном, этаном и этиленом. Газ каталитического крекинга богат бутаном, изобутиленом и пропиленом. Многие из перечисленных газов являются ценным сырьем для химической промышленности. Для искусственных нефтезаводских газов, полученных из сернистого сырья, характерно значительное содержание сернистых соединений и, в частности, сероводорода. Присутсгвие сероводорода в нефтяном газе крайне нежелательно, так как он вызывает интенсивную коррозию и очень токсичен. Поэтому на многих заводах заводские газы подвергают мокрой очистке растворами этаноламинов, фенолятов, соды и др. [c.40]

    Среди полиолефинов наилучший комплекс свойств проявляют олигомеры альфа-олефинов С0-С д, полученные в присутствии катализаторов стереоспецифической полимеризации. Однако вопрос об оптимальной каталитической системе и условиях олигомеризации окончательно не решен. Известные трудности вызывает и обеспеченность исходным сырьем крупномасштабного, производства полиолефиновых масел. В связи с зт15м представляется перспективным синтез соолигоме-ров различных олефинов, например альфа-олефинов со стиролом, этилена с пропиленом и т.д. Необходимо отметить актуальность работ по крекингу этилен-пропиленовых каучуков с последующим гидрированием крекинг-дистиллятов, в результате чего получены масляные основы, превосходящие по термической стабильности, индексу вязкости и температуре застывания минеральные масла. [c.40]

chem21.info

28.2.Этилен, пропилен и другие продукты термического крекинга этана, пропана и фракций нефти

Этилен прочно занимает первое место по общему объему произ­водства среди всех других продуктов нефтехимического синтеза. Мировое производство этилена в 1990 году превышало 50 млн. тонн в год, из них в США - 17,5 млн. тонн, а в Великобритании 1,5 млн. тонн. Этилен получают в результате термического крекинга этана, пропана, а также фракций нафты и газойля. В странах, богатых природным газом или импортирующим его в большом количестве, для крекинга пред­почитают использовать в качестве сырья этан, пропан и в меньшей степени нафту. Такая технология производства получила развитие в СССР и США. В странах Западной Европы и в Японии этилен и пропилен получают, главным образом, в результате крекинга фракции нафты.

Принципиальная схема термического крекинга очень проста: смесь нагретых газообразных углеводородов и перегретого водяного пара пропускают через стальной трубчатый реактор с большим количеством стальных труб, нагретых до 750-900оС с такой скоростью, чтобы время контакта паров с нагретой поверхностью было в диапазоне 0,2-0,8 сек. Далее продукты крекинга резко охлаждают для того, чтобы избежать дальнейшей деструкции. Охлаждение газообразных продуктов крекинга достигается пропусканием газовой струи через трубы, орошаемые водой. Это позволяет сократить энергетические затраты для получения пере­гретого водяного пара. В таблице 28.3 приведено распределение продук­тов промышленного термического крекинга этана, пропана, а также фракций нафты и газойля.

Таблица 28.3

Типовое распределение продуктов (в %) термического крекинга этана, пропана, нафты и газойля

Продукты крекинга

Сырье

Этан

Пропан

Нафта

Газойль

h3

3,6

1,3

0,8

0,6

СН4

4,2

24,7

15,3

10,6

HCºСН

0,4

0,6

1,8

1,4

СН2=Ch3

48,2

34,5

29,4

24,0

СН3-Ch4

40,0

4,4

3,8

3,2

Ch4CH=Ch3

0,7

14,0

14,1

14,5

Ch4Ch3Ch4

0,4

10,0

0,?

0,4

Ch3=CHCH=Ch3

0,1

0,5

4,8

4,7

Ch4Ch3CH=Ch3 и

Ch4CH=CHCh4

1,1

2,9

4,2

4,5

Ch4Ch3Ch3Ch4

0,4

0,3

0,3

0,2

бензин

0,9

5,9

21,0

18,4

топливная нефть

-

0,9

3,8

17,5

В основе термического крекинга лежат цепные радикальные реакции. При нагревании до 600° и выше углерод-углеродная связь в этане рас­щепляется с образованием двух метильных радикалов.

Далее метильный радикал отщепляет атом водорода от этана, продукта­ми этого превращения оказываются метан и этильный радикал.

В алкильных радикалах связь С-Н, расположенная в b-положении по от­ношению к неспаренному электрону, является наиболее слабой, и для свободных алкильных радикалов наиболее типичными являются реакции b-распада, в результате которых всегда получаются алкен и более короткий свободный радикал. b-Распад этил-радикала приводит к эти­лену и атому водорода.

Атом водорода вновь отщепляет водород от этана.

Стадии (1) и (2) представляют собой типичные реакции роста цепи в цепном радикальном процессе крекинга этана. Любая рекомбинация радикалов приводит к обрыву цепи.

Продукты крекинга этана, содержащие более двух атомов углерода, получаются только из продуктов обрыва цепи.

Крекинг пропана осуществляется по принципиально аналогичной схеме.

Развитие цепи происходит в результате отщепления атома водорода от пропана при взаимодействии с метильным радикалом или атомом водорода. В отличие от этана из пропана при этом получаются два радикала: н-пропил СН3СН2СН2. и вторичный изо-пропил-радикал (СН3)2СН.. Изопропил-радикал стабилизируется в результате отщепления атома водорода, который далее принимает участие в росте цепи.

Первичный н-пропил-радикал подвергается b-распаду с образованием этилена и метил-радикала, который продолжает цепной процесс крекин­га пропана.

Термический крекинг нафты и газойля принципиально ничем не отличается от расщепления пропана, различие заключается лишь в том, что процесс-b-распада с расщеплением углерод-углеродной связи происходит многократно, например:

Рост цепи в этом случае связан не с гомолизом С-С связи в алкане, а с отщеплением атома водорода от алкана с помощью радикалов .Ch4, .Ch3Ch4 и в редких случаях под действием атома водорода. Отщепление атома водорода от алкана с длинной цепью атомов угле­рода обычно приводит к вторичному радикалу, например:

Расщепление углерод-углеродной связи в таком радикале при b-распаде приводит к алкену и более короткому первичному радикалу.

Атом водорода или небольшие радикалы, такие как СН3. и СН3СН2., участвуют в дальнейшем развитии цепного крекинга алканов.

Количество этилена, образующегося при крекинге разветвленных алканов, должно быть значительно ниже, чем при расщеплении н-алканов. Это легко проследить на примере термического крекинга 4-этил-гептана, одного из изомерных нонанов. Наибольший выход этилена при термическом крекинге н-алканов достигается при максимально повторяющихся процессах b-распада. Но с реакциями b-распада конкурируют процессы обрыва цепи и переноса цепи, когда радикал отщепляет атом водорода от исходного алкана. Так как оба конкурирующих процесса, обрыва и переноса цепи, бимолекулярны, их скорость относительно мономолекулярного b-распада можно понизить, если уменьшить давление, при котором осущест­вляется крекинг. Технологически это легче всего достигается прове­дением крекинга в присутствии перегретого водяного пара., что позво­ляет снизить парциальное давление самих алканов. Энергия активации для b-распада значительно выше, чем для процессов обрыва и пере­носа цепи. Для того, чтобы b-распад стал доминирующим процессом разложения свободных радикалов, термический крекинг следует прово­дить при возможно более высокой температуре порядка 750-900оС. Это способствует возрастанию доли этилена и пропилена в продуктах крекинга.

Выход этилена из циклоалканов гораздо ниже, чем из этана, про­пана и н-алканов. Это становится ясно из следующих реакций b-распада при термическом крекинге циклогексана как модельно­го соединения.

Разумеется, здесь были перечислены только основные типы реакций, протекающих при термическом крекинге. В результате вторичных про­цессов деструкции выход алкенов снижается, и в продуктах крекинга появляется ацетилен, диены и кокс. Для того, чтобы избежать вторичных реакций, крекинг проводят на глубину не более 50%, а непро­реагировавшие алканы повторно подвергают крекингу.

studfiles.net

28.2.Этилен, пропилен и другие продукты термического крекинга этана, пропана и фракций нефти

Этилен прочно занимает первое место по общему объему произ­водства среди всех других продуктов нефтехимического синтеза. Мировое производство этилена в 1990 году превышало 50 млн. тонн в год, из них в США - 17,5 млн. тонн, а в Великобритании 1,5 млн. тонн. Этилен получают в результате термического крекинга этана, пропана, а также фракций нафты и газойля. В странах, богатых природным газом или импортирующим его в большом количестве, для крекинга пред­почитают использовать в качестве сырья этан, пропан и в меньшей степени нафту. Такая технология производства получила развитие в СССР и США. В странах Западной Европы и в Японии этилен и пропилен получают, главным образом, в результате крекинга фракции нафты.

Принципиальная схема термического крекинга очень проста: смесь нагретых газообразных углеводородов и перегретого водяного пара пропускают через стальной трубчатый реактор с большим количеством стальных труб, нагретых до 750-900оС с такой скоростью, чтобы время контакта паров с нагретой поверхностью было в диапазоне 0,2-0,8 сек. Далее продукты крекинга резко охлаждают для того, чтобы избежать дальнейшей деструкции. Охлаждение газообразных продуктов крекинга достигается пропусканием газовой струи через трубы, орошаемые водой. Это позволяет сократить энергетические затраты для получения пере­гретого водяного пара. В таблице 28.3 приведено распределение продук­тов промышленного термического крекинга этана, пропана, а также фракций нафты и газойля.

Таблица 28.3

Типовое распределение продуктов (в %) термического крекинга этана, пропана, нафты и газойля

Продукты крекинга

Сырье

Этан

Пропан

Нафта

Газойль

h3

3,6

1,3

0,8

0,6

СН4

4,2

24,7

15,3

10,6

HCºСН

0,4

0,6

1,8

1,4

СН2=Ch3

48,2

34,5

29,4

24,0

СН3-Ch4

40,0

4,4

3,8

3,2

Ch4CH=Ch3

0,7

14,0

14,1

14,5

Ch4Ch3Ch4

0,4

10,0

0,?

0,4

Ch3=CHCH=Ch3

0,1

0,5

4,8

4,7

Ch4Ch3CH=Ch3 и

Ch4CH=CHCh4

1,1

2,9

4,2

4,5

Ch4Ch3Ch3Ch4

0,4

0,3

0,3

0,2

бензин

0,9

5,9

21,0

18,4

топливная нефть

-

0,9

3,8

17,5

В основе термического крекинга лежат цепные радикальные реакции. При нагревании до 600° и выше углерод-углеродная связь в этане рас­щепляется с образованием двух метильных радикалов.

Далее метильный радикал отщепляет атом водорода от этана, продукта­ми этого превращения оказываются метан и этильный радикал.

В алкильных радикалах связь С-Н, расположенная в b-положении по от­ношению к неспаренному электрону, является наиболее слабой, и для свободных алкильных радикалов наиболее типичными являются реакции b-распада, в результате которых всегда получаются алкен и более короткий свободный радикал. b-Распад этил-радикала приводит к эти­лену и атому водорода.

Атом водорода вновь отщепляет водород от этана.

Стадии (1) и (2) представляют собой типичные реакции роста цепи в цепном радикальном процессе крекинга этана. Любая рекомбинация радикалов приводит к обрыву цепи.

Продукты крекинга этана, содержащие более двух атомов углерода, получаются только из продуктов обрыва цепи.

Крекинг пропана осуществляется по принципиально аналогичной схеме.

Развитие цепи происходит в результате отщепления атома водорода от пропана при взаимодействии с метильным радикалом или атомом водорода. В отличие от этана из пропана при этом получаются два радикала: н-пропил СН3СН2СН2. и вторичный изо-пропил-радикал (СН3)2СН.. Изопропил-радикал стабилизируется в результате отщепления атома водорода, который далее принимает участие в росте цепи.

Первичный н-пропил-радикал подвергается b-распаду с образованием этилена и метил-радикала, который продолжает цепной процесс крекин­га пропана.

Термический крекинг нафты и газойля принципиально ничем не отличается от расщепления пропана, различие заключается лишь в том, что процесс-b-распада с расщеплением углерод-углеродной связи происходит многократно, например:

Рост цепи в этом случае связан не с гомолизом С-С связи в алкане, а с отщеплением атома водорода от алкана с помощью радикалов .Ch4, .Ch3Ch4 и в редких случаях под действием атома водорода. Отщепление атома водорода от алкана с длинной цепью атомов угле­рода обычно приводит к вторичному радикалу, например:

Расщепление углерод-углеродной связи в таком радикале при b-распаде приводит к алкену и более короткому первичному радикалу.

Атом водорода или небольшие радикалы, такие как СН3. и СН3СН2., участвуют в дальнейшем развитии цепного крекинга алканов.

Количество этилена, образующегося при крекинге разветвленных алканов, должно быть значительно ниже, чем при расщеплении н-алканов. Это легко проследить на примере термического крекинга 4-этил-гептана, одного из изомерных нонанов. Наибольший выход этилена при термическом крекинге н-алканов достигается при максимально повторяющихся процессах b-распада. Но с реакциями b-распада конкурируют процессы обрыва цепи и переноса цепи, когда радикал отщепляет атом водорода от исходного алкана. Так как оба конкурирующих процесса, обрыва и переноса цепи, бимолекулярны, их скорость относительно мономолекулярного b-распада можно понизить, если уменьшить давление, при котором осущест­вляется крекинг. Технологически это легче всего достигается прове­дением крекинга в присутствии перегретого водяного пара., что позво­ляет снизить парциальное давление самих алканов. Энергия активации для b-распада значительно выше, чем для процессов обрыва и пере­носа цепи. Для того, чтобы b-распад стал доминирующим процессом разложения свободных радикалов, термический крекинг следует прово­дить при возможно более высокой температуре порядка 750-900оС. Это способствует возрастанию доли этилена и пропилена в продуктах крекинга.

Выход этилена из циклоалканов гораздо ниже, чем из этана, про­пана и н-алканов. Это становится ясно из следующих реакций b-распада при термическом крекинге циклогексана как модельно­го соединения.

Разумеется, здесь были перечислены только основные типы реакций, протекающих при термическом крекинге. В результате вторичных про­цессов деструкции выход алкенов снижается, и в продуктах крекинга появляется ацетилен, диены и кокс. Для того, чтобы избежать вторичных реакций, крекинг проводят на глубину не более 50%, а непро­реагировавшие алканы повторно подвергают крекингу.

studfiles.net

Крекинг нефти, получение газообразных - Справочник химика 21

    Для иллюстрации различных возможностей получения газообразных углеводородов—сырья для нефтехимической промышленности — Б табл. 4 и 5 приведены составы газов крекинга, полученных различными методами деструктивной переработки нефти. [c.49]

    ТЕРМИЧЕСКАЯ ПЕРЕРАБОТКА ТОПЛИВА — переработка различных видов топлива нагреванием без доступа воздуха до высоких температур (500— 1000 С) с целью образования кокса, полукокса, дополнительного количества бензина, древесного угля и дегтя, ароматических углеводородов, сырья для получения органического синтеза, газообразного топлива и др. Т. п. т. основана на свойствах органических веществ, которые являются главной составной частью любого топлива, разлагаться при нагревании. К термическим методам переработки топлива относят коксование и полукоксование твердого топлива, пиролиз твердого и жидкого топлива, газификацию твердого топлива, сжижение твердого топлива, крекинг нефти и нефтепродуктов, деструктивную гидрогенизацию и др. На выход и качество получаемых продуктов при Т. п. т. влияет температура и продолжительность ее действия, применение катализаторов и метод переработки топлива. [c.247]

    Нефтяные газы — смесь различных газообразных углеводородов, растворенных в нефти они выделяются в процессе добычи и перегонки (это так называемые попутные газы, главным образом состоят из пропана и бутанов). К Н. г. также относят газы крекинга нефти, состоящие из предельных и непредельных (этилена, ацетилена) углеводородов. Н. г. применяют как топливо и для получения различных химических веществ. Из Н. г. путем химической переработки получают пропилен, бутилены, бутадиен и др., которые используют в производстве пластмасс и каучуков. [c.89]

    В настоящее время процесс пиролиза для получения ароматических углеводородов не имеет большого значения, так как разработаны и применяются новые каталитические процессы, дающие высокие выходы ароматических углеводородов. В основном процесс пиролиза служит для получения газообразных непредельных углеводородов, в частности этилена, который является ценным сырьем для производства этилового спирта, каучука и других органических соединений. В этих целях пиролизу подвергают пропан-пропиленовую фракцию, керосин термического крекинга, соляровые фракции из нефтей парафинового основания. Кроме того, разрабатываются процессы пиролиза тяжелых нефтяных остатков крекинг-остатка, гудрона. [c.159]

    Очистку сырого газа, полученного при высокотемпературном крекинге нефти с водяным паром, от ацетиленов и диенов ведут в присутствии сульфидных никелевых, а также никель-кобальт-хромовых контактов при 120—300° С и 3—30 бар, скорости подачи газа 300—1000 При работе катализатора на его поверхности происходит отложение полимерных образований, что снижает активность. Для очистки контакта от полимеров проводят регенерацию его водяным паром и воздухом (или воздухом и азотом). Для очистки непредельных газообразных углеводородов от циклопентадиена, стирола, индена и прочих примесей применяются нанесенные никелевые катализаторы. [c.67]

    За рубежом созданы многочисленные опытные установки по термокрекингу НБП с целью получения синтетической нефти и газообразных продуктов. При крекинге нефтеносных песков выход синтетической нефти в среднем составляет до 70 %, а остаток-30 %, который используется в качестве котельных топлив. Крекинг ведут в присутствии катализатора (-содержащей руды). Этот способ исключает стадию образования кокса и позволяет существенно уменьшить размеры установки, снизить расход топлива, а также увеличивает продолжительность крекирования нефтеносных песков в несколько раз. [c.22]

    Этан, как и метан, входит в состав природных газов, образуется при крекинге нефти (стр. 46) в смеси с другими газообразными углеводородами, используют его для получения хлорпроизводных. [c.43]

    Исходным сырьем для получения химических продуктов (мономеров), превращаемых по реакции полимеризации в полимеры (смолы), служат главным образом ненасыщенные углеводороды, содержащиеся в коксовом газе, в газообразных продуктах крекинга нефти и в природных газах. [c.151]

    Если как говорилось выще, простая перегонка нефти дает не более 20/О бензина, то в случае применения каталитического крекинга его количество может достигать 80%. Первоначально процесс крекинга разрабатывался и осуществлялся для получения ароматических углеводородов бензола, толуола, ксилола, необходимых для производства взрывчатых и разнообразных химических продуктов. Одно из важнейших назначений крекинга помимо получения высокооктанового бензина — получение газообразного непредельного сырья (этилен, пропилен, бутилены, изобутилен) для химической переработки. Сырьем для крекинга теперь служат не только нефтяные фракции, но и природные газы, так как в условиях крекинга может происходить не только разрыв связей С — С, но и образование новых. [c.128]

    Этот способ имеет огромное техническое значение, так как позволяет использовать газообразные продукты крекинга нефти для получения ценного химического сырья. Так, например, из пропилена при действии хлористого водорода получается (по правилу Марковникова) хлористый изопропил  [c.75]

    Пиролиз — наиболее жесткая форма термического крекинга углеводородов, осуществляемого в зависимости от сырья при температурах от 670 до 1200 °С с целью получения газообразных непредельных углеводородов. В качестве побочных продуктов образуются ароматические углеводороды бензол, толуол, ксилол, нафталин, антрацен и др. До разработки промышленного процесса каталитического риформинга пиролиз был единственным методом получения ароматических углеводородов из нефти.. Исходным сырьем процесса являются этан, пропан, бутан, их смеси, природные и попутные газы, низкооктановые бензины, газоконденсаты, керосино-газойлевые фракции, нефтяные остатки и даже сырая нефть [5]. Использование нефтяных остатков как сырья пиролиза ограничивается большими отложениями кокса, свойственными глубокому превращению смолистых веществ-нефти. [c.30]

    В технике могут быть использованы и другие источники получения газообразных исходных веществ для производства этилена парофазным,крекингом. Так, например, для этой цели можно также исходить непосредственно из газов переработки нефти. От них отделяют водород и метан, которые применяют в качестве топлива, а смесь углеводородов разделяют на фракции Сг и Сз. Последняя содержит небольшой процент углеводородов С4, наряду с незначительным количеством более высококинящих углеводородов. Фракцию С2 разделяют на этан и этилен. Этан и фракцию Сз подвергают пиролизу в разных трубчатках, поскольку условия их пиролиза несколько различны. Газы, вышедшие из пиролизной трубчатки, и газы, образовавшиеся при крекинге углеводородов, проведенном с целью получения бензина, перерабатывают совместно. [c.88]

    Это наиболее распространенный способ проведения термического крекинга. Кроме того, можно также рециркулировать остаток в системе, возвращая все продукты, кипящие выше, чем бензин, в крекинг-печь и получая из нефти только крекинг-бензин, газообразные углеводороды и нефтяной кокс. В этом случае реакционную камеру конструируют так, чтобы кокс мог в ней собираться и но мере надобности из нее удаляться. В качестве сырья для этого метода предпочитают использовать продукты, легко образующие нефтяной кокс, вследствие чего их можно только с большим трудом подвергать крекингу с выводом остатка из системы. Таким сырьем являются в первую очередь высококипящие остатки от перегонки нефти, имеющие ароматическую природу, на что указывает их высокий удельный вес. Ниже приводится зависимость между удельным весом исходного сырья, подвергаемого термическому крекингу с получением кокса, и выходом последнего [47]  [c.247]

    Источники и способы получения. Этен и низшие его гомологи в небольшом количестве встречаются в природных газах и в растворенном состоянии в некоторых нефтях, например в канадской. Главным источником алкенов является крекинг и пиролиз нефти. Небольшие количества их получают при сухой перегонке дерева и каменного угля. При разгонке газообразных продуктов крекинга нефти выделяют этен, пропен, бутен и пентен, а из коксовых газов — этен и пропен. [c.93]

    Источниками получения парафиновых углеводородов являются природные горючие газы, попутные нефтяные газы и газы крекинга нефти, газообразные продукты гидрирования углей, бензин, лигроины и керосины, получаемые прямой гонкой метановых нефтей, парафин, синтин, коксовый газ. [c.356]

    Огромные количества газов образуются и нри крекинге нефти, осуществляемом для получения бензина. Выход газообразных продуктов в зависимости от условий крекинга может доходить до 38—40% от количества взятой нефти. Наиболее ценными составными частями газов при этом являются этилен, пропилен, бутилен и бутан. [c.123]

    В качестве жидкого топлива применяют мазуты прямой перегонки (основа котельного топлива), крекинг-остатки, гудроны, различные смолистые вещества — остатки от очистки масляных дистиллятов, ловушечные нефтепродукты и др. К числу газообразных топлив относятся естественные или природные газы, нефтяные (попутные) газы, промышленные сухие газы, получаемые в процессах нефтепереработки. Нефтяные остатки и углеводородные газы обладают высокой теплотой сгорания — порядка 1000— 11 500 ккал/кг (или ккал/м ) при нормальных условиях. Для атмосферной перегонки нефти с целью получения бензина, керосина и [c.200]

    Важным источником получения этилена и его гомологов служат газообразные и жидкие продукты крекинга углеводородов нефти. Крекингом называют нроцесс расщепления углеводородов с длинными цепями на молекулы меньшей длины, происходящий в присутствии катализаторов (каталитический крекинг) или при нагревании предельных углеводородов до 500—700 С под [c.471]

    В настоящее время промышленность органического синтеза использует следующие основные виды сырья природные и попутные газы газообразные и жидкие углеводороды, получаемые при перегонке нефти, крекинге и пиролизе нефтепродуктов твердые парафиновые углеводороды и тяжелые нефтяные остатки коксовый и сланцевый газы смолу коксования, а также сланцевую и древесную смолу и торфяной деготь. Наша страна располагает громадными запасами нефти, природного и попутного нефтяного газа, представляющих собой наиболее экономичные виды сырья для химического синтеза. Использование нефтяного сырья для получения разнообразных продуктов представлено на рис. 63. Кроме того, для органического синтеза в больших количествах используются и неорганические соединения кислоты, щелочи, сода, хлор и т. п., без которых невозможно осуществление многих процессов. Как правило, любое сырье необходимо предварительно очистить от влаги, механических примесей, сернистых соединений и других п])имесей и разделить, выделив индивидуальные углеводороды. Таким образом получают очищенное сырье, из которого дальнейшей переработкой можно получить те или иные полупродукты и целевые продукты. [c.161]

    Основными процессами термической переработки нефти являются термический крекинг и пиролиз. Несмотря на то, что общая мощность установок термического крекинга в мире составляет около 100 м.гн.т в год, термический крекинг является уже устаревшим процессом. Прогрессивными являются процессы пиролиза. Пиролиз отличается от крекинга тем, что он протекает при пониженном давлении 1 кгс см и прп более высоких темнература.х 700—800° и выше. Сырьем для процессов пиролиза служит низкооктановый бензин, керосин или газообразные углеводороды. Цель пиролиза — получение непредельных и ароматических углеводородов. [c.117]

    Для получения различных нефтехимических продуктов — полимеров, синтетических волокон и других — потребовались в качестве исходного сырья индивидуальные газообразные и жидкие углеводороды как предельные, так и непредельные. Предельные газообразные углеводороды могут быть получены из природных газов, а непредельные — из газов крекинга и пиролиза нефти. Кроме того, непредельные углеводороды — этилен, пропилен и другие — получают путем пиролиза этана и других предельных газообразных углеводородов. [c.294]

    Из данных табл. 40 видно, что при пиролизе смеси тяжелых фракций получены более низкие выходы контактного газа по сравнению с пиролизом прямогонных фракций нефти, выкипающих в аналогичных температурных интервалах. Это объясняется тем, что в составе смеси тяжелых фракций содержится 40% тяжелого керосина термического крекинга мазута, содержащего более 50% тяжелых конденсированных ароматических систем и непредельных углеводородов, которые при пиролизе превращаются, главным образом, в кокс. Поэтому выходы кокса по сырью значительны и составляют 5—6,2% по массе при температуре 750° С. Так как коксование тяжелых углеводородных систем при пиролизе протекает с одновременным выделением значительных количеств метана, то в составе газов (рис. 33) концентрация метана достигает при 750° С 40—41 % по объему, что превышает более чем на 10% (абсолютных) концентрацию метана в составе газов пиролиза более легких дистиллятов, полученных при той же температуре. В связи с образованием большого количества метана концентрации этилена и других газообразных олефинов существенно ниже и не превышают 28—29% по объему этилена, 7—8 — пропилена и 2—4 — бутиленов и дивинила. Добавление к сырью водяного пара до 50% по массе не приводит к существенному снижению образования кокса и увеличению выхода газа пиролиза. [c.119]

    Газообразные алкены (этилен, пропилен, бутилены) выделяют из газов нефтепереработки (получающихся при термическом крекинге). Крекинг парафинов, содержащихся в нефти, является промышленным способом получения этиленовых углеводородов, используемых для производства полимеров. [c.65]

    Современная технология нефтепереработки направлена в основном на максимальное получение бензинов. Поэтому после прямой отгонки бензиновых фракций остаточные продукты подвергаются термической обработке (крекингу) с целью получения дополнительных ресурсов бензина. Наряду с получением целевого продукта — бензина — образуются более легкие продукты расщепления — газообразные углеводороды непредельного характера. К наиболее легким углеводородам принадлежит интересующий нас этилен. Суммарное количество газов и содержание в них этилена зависит от условий термической обработки. При обычном термическом крекинге (400—450° С) количество крекинг-газа от взятого нефтепродукта составляет 7%, а при каталитическом — около 20%. Количество этилена от массы всех газов - 2%. Термическая обработка нефти, протекающая при значительно более высокой температуре (пиролиз, порядка 700 С), дает выход газов до 40%, этилена в них до 19—20%. [c.93]

    Исследовались газообразные и жидкие продукты односуточпого крекинга нефтей. В табл. 2—10 приведены материальный баланс одноступенчатого каталитического крекинга нефтей и характеристика полученных продуктов. Необходимо отметить, что выход бензиновых фракций указывается с добавлением пептан-амиленовых и высших углеводородов, содернсащихся в газе. [c.234]

    Высокотемпературный термический крекинг нефтяного сырья— пиролиз осуществляется обычно с целью получения газообразных олефинов, в первую очередь этилена, а также пропилена и бута-диеыов. Наиболее распространенпой формой промышленного процесса является пиролиз в трубчатых печах. Наиболее освоенное сырье — газообразные продельные углеводороды (этан, пропан, к-бутан) и низкооктановые бензиновые фракции прямой перегонки нефти, рафинаты риформинга, легкие фракции газоконденсатов дают наибольшие выходы целевых олефинов при ограниченном кок-сообразовании (закоксовывании труб печи). Наилучшие результаты достигаются при сочетании высокой температуры и малой длительности контактирования. Это объясняется более эффективным действием температуры на скорость реакций разложения, чем на скорость реакций уплотнения (энергия активации последних значительно ниже). [c.143]

    Непредельные газообразные углеводороды, полученные при высокотемпературном крекинге нефти с водяным паром и предназначенные для синтезов, содержат высококонденсированные ароматические и высоконенасыщенные соединения. Большая часть этого остатка выкипает в пределах, характерных для моторного топлива, и имеет очень хорошие антидетонационные свойства. Однако ненасыщенные углеводороды полимеризуются при хранении, переноске и использовании, причем образующиеся полимеры отлагаются в контейнерах и нефтепроводах. Такие ненасьш1енные остатки необходимо гидрировать селективно, не затрагивая ароматических углеводородов и не изменяя антидетонационных свойств. Ненасьпценными веществами являются циклопентадиен и его димеры, стирол, инден и т.п. [c.208]

    Выделение чистых индивидуальных олефинов из продуктов крекинга нефти и особенно из крекинг-бензинов представляет большие трудности. Еще труднее выделить олефины тина додецена и гексадецена из продуктов крекирования нефти, в которых они содержатся в очень небольших количествах. Выделить эти углеводороды в производственных условиях с такой степенью чистоты, какая необходима для того, чтобы они могли служить сырьем для промышленности органического синтеза, нока не удалось. Поэтому необходимо разработать методы, позволяющие производить высокомолекулярные олефины в качестве продуктов целевого назначения. Источники получения жидких олефинов, как и в случае газообразных олефинов, можно разделить на две части 1) производства, где жидкие олефины образуются в качестве нобочн]11Х продуктов, и 2) производства, где олефины являются целевыми продуктами. [c.41]

    Из данных табл. 2 следует, что наибольший выход синтетической нефти наблюдается по месторождению Шиликты, а выход газа и кокса — по месторождению Мортук. Состав газообразных продуктов, полученных из нефтебитумных пород, представлен в табл,3, Из данных табл. 3 видно, что в составе газов крекинга преобладают метан, этан, пропан, изопентан. Полученные газы, очищенные от соединений серы, могут использоваться в качестве дополнительного источника углеводородного сырья и в химической промышленности. Синтетическая нефть и газообразные компоненты иа процесса термокаталитичео-кого крекирования НБП, являются ценными продуктами для нефтехимического синтеза. [c.6]

    Другие газообразные и яшдкие продукты, получасАше в результате крекинга нефтей с получением олефинов, легко могут находить выгодное применение. Некоторые из этих продуктов могут возвращаться в процесс для увеличения общего выхода на единицу исходного жидкого сырья. [c.431]

    Впервые она была предложена в 1865 г. для повышения выхода осветительного керосина, в то время являвшегося самым ценным нефтепродуктом. После появления осветительного газа и электричества попытки осуществить крекинг нефти снова прекратились. Только с развитием автомобильной промышленности, вызвавшим непрерывный рост потребления бензина, началось быстрое развитие крекинг-процесса. При создании новых конструкций автомобилей со все более мощными двигателями степень сжатия горючего непрерывно увеличивалась и требования к антидетонационным свойствам бензинов все более повышались. Этим требованиям удовлетворял крекинг-бензин. Начиная с 1936 г., стали применять также термический и каталитический крекинг газообразных низкомолекулярных углеводородов для получения непредельных углеводородов, используемых в качестве исходного сырья при получении так называемых полимеризационных бензинов и изопарафинов. В дальнейше . крекинг стали применять также для получения низковязках масел и снижения температуры их застывания. [c.140]

    Аллен в качестве примеси обнаружен в газообразных продуктах крекинга фракций нефти, в газообразных продуктах дегидрогенизации изопентана, получения дивинила, окислительного превращения метана п в реакционных газах производства нитрила акриловой кислоты. Радикальные процессы, протекающие при высокотемпературном крекинге, могут в определенных условиях приводить к получению аллена из моноолефино в Сз—С4. Термический распад пропилена и изобутилена протекает в интервале 700—1000 °С, давая наряду с алленом метан, метилацетилен и высокомолекулярные соединения [11]. Выход и состав продуктов крекинга пропилена зависят от условий проведения процесса. При высокой температуре и пониженном давлении образуется преимущественно аллен и метилацетилен, при низких температурах и высоком давлегаии — полимерные продукты. Пиролиз шропилена протекает через стадию образования аллильного радикала  [c.5]

    Этилен может быть получен гидрированием ацетилена либо дегидратацией этанола. В некоторых странах этиаен полз ают при крекинге нефти. В этом процессе насыщенные углеводороды, такие, как этан, пропан, претерпевают каталитическую деструкцию и дегидрогенизацию, образуя этилен. При нормальных условиях этилен находится в газообразном состоянии, его температура кипения составляет —104 °С. [c.170]

    Страны, не располагающие собственными источниками нефти и газа, имеют в настоящее время возможность получать этилен, являющийся основой нефтехимической промышленности, из легкотранспортируемых продуктов, например из определенных фракций нефти. Эта задача решается в первую очередь пиролизом нефтяных фракций в присутствии водяного пара при 600 — 700°. Водяной пар служит одновременно разбавляющей средой и теплоносителем и уменьшает коксообразование. Процесс во многом подобен паро-фазпому крекинг-процессу. При этих процессах до 30% всего вводимого сырья превращается в газообразные продукты, в большинстве с высоким содержаниел олефинов, которые в недавнем прошлом считались нежелательными. Целевым продуктом являлся бензин. Процесс пиролиза, имеющий целью получение олефинов, о котором здесь идет речь, должен проводиться таким образом, чтобы обеспечить максимальный выход олефинсодержащих газов и минимальный — жидких продуктов, кипящих в интервале температуры кипения бензина. Выход последних может быть различным в зависимости от состава сырья и условий пиролиза. [c.54]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    Жидкие и газообразные продукты, полученные нри умеренных режимах коксования, близки ио своим свойствам к соответствующим продуктам термического крекинга нод давлением. Коксование в условиях жесткого режима (при большой глубине иревращения) сопровождается увеличепием содержаиня непредельных в газе и ароматизацией дистиллятов. Так, в результате коксования при 600° С гудрона ромашкинской нефти, выкипающего выше 500° С, получается газ с содержанием непредельных углеводородов порядка бО - ) [c.115]

    В связи с внедрением в промышленность процесса гидрокрекинга последний может быть введен в поточную схему завода для переработки газойлей прямой перегонки нефти, каталитического крекинга и коксования или же остатков. Один из возможных вариантов такой схемы применительно к высокосериистой иефти представлен на рис. 117. По этой схеме гидрокрекингу подвергается вакуумный газойль сырьем каталитического крекинга служит смесь тяжелого дистиллята гидрокрекинга, гидроочищенного газойля коксования и тяжелого рафината с установки экстракции. Поточная схема, изображенная на рис. 117, отличается от предыдущей большим разнообразием процессов для повышения октанового числа бензина использована установка изомеризации легкой головки бензина, предусмотрено разделение ароматических углеводородов на индивидуальные компоненты, в том числе на изомеры ксилола. С целью увеличения ресурсов ароматических углеводородов в схему введены установки каталитического гидродеалкилирования —для производства бензола из меиее ценного толуола и для производства нафталина из легкого газойля каталитического крекинга. На установке карбамидной депарафинизации вырабатывают зимние сорта дизельного топлива с этой же установки получают жидкий парафин —сырье для производства Луирыых кислот и других химических продуктов. Для увеличения ресурсов газообразных олефинов имеется установка пиролиза этана и бутана. В схеме широко используются процессы гидроочистки и экстракции. Большая часть гудрона идет иа получение кокса. Остальной гудрон идет иа п )оизводство битума, а часть [c.357]

    В целях увеличения ресурсов сырья для риформинга можно использовать бензины, полученные при вторичных процессах переработки нефти. Такие бензины нуждаются в очистке, так как содержат довольно много серы (0,3—1,6%), азота (до 0,005%) и непредельных углеводородов (до 60%). Данные [70] о подготовке бензинов прямой перегонки и термического крекинга к каталитиче-скому риформингу приведены в табл. 15. Опыты проводили на установке при повышенном давлении с рециркуляцией газообразных продуктов реакций. При гидроочистке использовали алюмоко-бальтмолибденовый катализатор, а при каталитическом риформинге— алюмоплатиновый. Подобранные условия гидроочистки (380°С, 5 МПа, циркуляция 500 л водородсодержащего газа на [c.120]

chem21.info