Экология природных ресурсов. Метановые углеводороды нефти


Метановые углеводороды - это... Что такое Метановые углеводороды?

Эта статья — о химических соединениях. Статью о канадской алюминиевой компании Alcan см. ациклические углеводороды линейного или разветвлённого строения, содержащие только простые связи и образующие гомологический ряд с общей формулой Cnh3n+2.

Алканы являются насыщенными соединениями и содержат максимально возможное число атомов водорода. Каждый атом углерода в молекулах алканов находится в состоянии sp³ гибридизации. Простейшим представителем класса является метан (Ch5).

Номенклатура

Химическая структура метана, простейшего алкана

Рациональная

Выбирается один из атомов углеродной цепи, он считается замещённым метаном и относительно него строится название алкил1алкил2алкил3алкил4метан, например:

а- н-бутил-втор-бутил-изобутилметан б- триизопропилметан в- триэтил-пропилметан

Систематическая ИЮПАК

По номенклатуре ИЮПАК названия алканов образуются при помощи суффикса -ан путём добавления к соответствующему корню от названия углеводорода. Выбирается наиболее длинная неразветвлённая углеводородная цепь так, чтобы у наибольшего числа заместителей был минимальный номер в цепи. В названии соединения цифрой указывают номер углеродного атома, при котором находится замещающий радикал, затем название радикала и название главной цепи. Если радикалы повторяются, то перечисляют цифры, указывающие их положение, а число одинаковых радикалов указывают приставками ди-, три-, тетра-. Если радикалы не одинаковые, то их названия перечисляются в алфавитном порядке. Например:

2,6,6-триметил-3-этилгептан

Гомологический ряд и изомерия

Изомерия предельных углеводородов обусловлена простейшим видом структурной изомерии — изомерией углеродного скелета. Алканы, число атомов углерода в которых больше трёх, имеют изомеры. Число этих изомеров возрастает с огромной скоростью по мере увеличения числа атомов углерода. Для алканов с n = 1..12 число изомеров равно 1, 1, 1, 2, 3, 5, 9, 18, 35, 75, 159, 355

Физические свойства

  • Температура плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи
  • При нормальных условиях алканы с Ch5 до C4h20 — газы; с C5h22 до C17h46 — жидкости. И после C18h48 — твёрдые тела.
  • Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным. Так например, при нормальних условиях н-пентан жидкость, а неопентан — газ.
Физические свойства нормальных алканов
n Название Ткип Тпл Плотность Показатель преломления
1 Метан −164 −182,48 0,466 (-452324) -
2 Этан −88,63 −183,3 0,546 -
3 Пропан −42,1 −189,7 0,5853 (-45) -
4 Бутан −0,5 −138,35 0,5788 1,3326
Изобутан −11,73 −159,60 0,5510 1,3508
5 Пентан 36,1 −130 0,626 1,3575
6 Гексан 68,7 −95 0,659 1,3749
7 Гептан 98,4 −91 0,684 1,3876
8 Октан 125,7 −57 0,703 1,3974
9 Нонан 150,8 −54 0,718 1,4054
10 Декан 174,1 −30 0,730 1,4119
11 Ундекан 195,9 −25,6
12 Додекан 216,3 −9,7
13 Тридекан 235,5 −6,0
14 Тетрадекан 253,6 5,5
15 Пентадекан 270,7 10
16 Гексадекан 287,1 18,1
17 Гептадекан 302,6 22
18 Октадекан 317,4 28
19 Нонадекан 331,6 32
20 Эйкозан 345,1 36,4
21 Генэйкозан 215 (15 мм рт ст) 40,4
22 Докозан 224,5 (15 мм рт ст) 44,4
23 Трикозан 234 (15 мм рт ст) 47,4
24 Тетракозан 243 (15 мм рт ст) 51,1
25 Пентакозан 259 (15 мм рт ст) 53,3
26 Гексакозан 262 (15 мм рт ст) 57
27 Гептакозан 270 (15 мм рт ст) 60
28 Октакозан 280 (15 мм рт ст) 61,1
29 Нонакозан 286 (15 мм рт ст) 64
30 Триаконтан 304 (15 мм рт ст) 66
40 Тетраконтан  — 81,4
50 Пентаконтан 421 92,1
60 Гексаконтан  — 98,9
70 Гептаконтан  — 105,3
100 Гектан  — 115,2

Спектральные свойства

ИК-спектроскопия

В ИК-спектрах алканов четко проявляются частоты валентных колебаний связи С-Н в области 2850-3000 см-1. Частоты валентных колебаний связи С-С переменны и часто малоинтенсивны. Характеристические деформационные колебания в связи С-Н в метильной и метиленовой группах обычно лежат в интервале 1400—1470 см-1, однако метильная группа дает в спектрах слабую полосу при 1380 см-1.

УФ-спектроскопия

Чистые алканы не поглощают в ультрафиолетовой области выше 2000 Å и по этой причине часто оказываются отличными растворителями для снятия УФ-спектров других соединений.

ЯМР-спектроскопия

Масс-спектрометрия

Химические свойства

Алканы имеют низкую химическую активность. Это объясняется тем, что единичные C-H и C-C связи относительно прочны и их сложно разрушить.

Горение

Основным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример:

Ch5 + 2O2 → CO2 + 2h3O + Q

В случае нехватки кислорода вместо углекислого газа получается угарный газ или уголь(в зависимости от нехватки кислорода)

В общем случае уравнение реакции горения для любого углеводорода CxHy, можно записать в следующем виде:

CxHy + (x + 0,25y)O2 → xCO2 + 0,5yh3O

Галогенирование

Галогенирование алканов протекает по радикальному механизму. Для инициирования реакции необходимо смесь алкана и галогена облучить УФ-светом или нагреть. Хлорирование метана не останавливается на стадии получения метилхлорида (если взяты эквимолярные количества хлора и метана), а приводит к образованию всех возможных продуктов замещения, от метилхлорида до тетрахлоруглерода. Хлорирование других алканов приводит к смеси продуктов замещения водорода у разных атомов углерода. Соотношение продуктов хлорирования зависит от температуры. Скорость хлорирования первичных, вторичных и третичных атомов зависит от температуры, при низкой температуре скорость убывает в ряду: третичный, вторичный, первичный. При повышении температуры разница между скоростями уменьшается до тех пор, пока не становится одинаковой. Кроме кинетического фактора на распределение продуктов хлорирования оказывает влияние статистический фактор: вероятность атаки хлором третичного атома углерода в 3 раза меньше, чем первичного и в два раза меньше чем вторичного. Таким образом хлорирование алканов является нестереоселективной реакцией, исключая случаи, когда возможен только один продукт монохлорирования.

Бромирование алканов отличается от хлорирования более высокой стереоселективностью из-за большей разницы в скоростях бромирования третичных, вторичных и первичных атомов углерода при низких температурах.

Иодирование алканов иодом не происходит, получение иодидов прямым иодированием осуществить нельзя.

С фтором реакция протекает со взрывом (как правило, фтор разбавляют азотом или растворителем).

Нитрование

Алканы реагируют с азотной кислотой или N2O4 в газовой фазе с образованием нитропроизводных: RH + HNO3 = RNO2 + h3O Все имеющиеся данные указывают на свободнорадикальный механизм. В результате реакции образуются смеси продуктов.

Крекинг

При нагревании выше 500 °C алканы подвергаются пиролитическому разложению с образованием сложной смеси продуктов, состав и соотношение которых зависят от температуры и времени реакции. При пиролизе происходит расщепление углерод-углеродных связей с образованием алкильных радикалов. В 1930—1950 гг. пиролиз высших алканов использовался в промышленности для получения сложной смеси алканов и алкенов, содержащих от пяти до десяти атомов углерода. Он получил название «термический крекинг». С помощью термического крекинга удавалось увеличить количество бензиновой фракции за счёт расщепления алканов, содержащихся в керосиновой фракции (10-15 атомов С в углеродном скелете) и фракции солярового масла (12-20 атомов С). Однако октановое число бензина, полученного при термическом крекинге, не превышает 65, что не удовлетворяет требованиям условий эксплуатации современных двигателей внутреннего сгорания. В настоящее время термический крекинг полностью вытеснен в промышленности каталитическим крекингом, который проводят в газовой фазе при более низких температурах — 400—450°С и низком давлении — 10-15 атм на алюмосиликатном катализаторе, который непрерывно регенерируется сжиганием образующегося на нём кокса в токе воздуха. При каталитическом крекинге в полученном бензине резко возрастает содержание алканов с разветвлённой структурой.

Для метана: Ch5→С+2h3 — при 1000 °C

Частичный крекинг: 2Ch5→C2h3+3h3 (Ацетилен) — при 1500 °C

Получение

Главным источником алканов (а также других углеводородов) является нефть и природный газ, которые обычно встречаются совместно.

Восстановление спиртов

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С. Так, например, проходит реакция восстановления бутанола (C4H9OH), проходящую в присутствии LiAlh5. При этом выделяется вода.

h4C−Ch3−Ch3−Ch3OH→h4C−Ch3−Ch3−Ch4

Восстановление карбонильных соединений

Гидрирование непредельных углеводородов

Cnh3n+h3→Cnh3n+2

Cnh3n-2+2h3→Cnh3n+2

Синтез Кольбе

При электролизе солей карбоновых кислот, анион кислоты — RCOO- перемещается к аноду, и там, отдавая электрон превращается в неустойчивый радикал RCOO•, который сразу декарбоксилируется. Радикал R• стабилизируется путем сдваивания с подобным радикалом, и образуется R-R. Например:

2Ch4COO- — 2e → 2[Ch4COO•] → 2Ch4• → C2H6

2C3H7COOK →{электролиз}→ C6h24

Газификация твердого топлива

Проходит при повышенной температуре и давлении. Катализатор Ni:

C+2h3→Ch5

Реакция Вюрца

2R-Br + 2Na = R-R + 2NaBrреакция идёт в ТГФ при температуре −80 °C.при взаимодействии R и R` возможно образование смеси продуктов (R-R, R`-R`, R-R`)

Синтез Фишера-Тропша

nCO + (2n+1)h3→Cnh3n+2 + h3O

Биологическое действие

Обладают наркотическим действием, которое возрастает с увеличением числа атомов углерода. При хроническом действии нарушают работу нервной системы, что проявляется в виде бессонницы, брадикардии, повышенной утомляемости и функциональных неврозов.

Литература

  • Общая токсикология / под ред. А. О. Лойта. Спб.: ЭЛБИ-СПб., 2006

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Метановые углеводороды | Экология природных ресурсов

Метановые углеводороды (алканы, твердые парафины) составляют большую часть легкой фракции, их содержание колеблется от 30 до 50 %.

Алканы — эмпирическая формула Сn Н2n+2. Агрегатное состояние С1-4 газы (метан, этан, пропан, бутан), С5- 15 жидкости (пентан, гексан, гептан, октан и т.д.), свыше С15 — твердые вещества. Слабо растворимы в воде и физиологических растворах, отличаются большой стойкостью и малой химической активностью.

Воздействие на человека алканов C5-C8 проявляется в умеренном раздражающем действии на дыхательные пути, что связано с сильным наркотическим действием. Высшие члены ряда более опасны при воздействии на кожные покровы, чем при ингаляции паров.

Острые отравления низшими алканами при нормальном давлении и высоких концентрациях связаны с понижением содержания кислорода во вдыхаемом воздухе и развитием гипоксии. Хроническое отравление не сопровождается тяжелыми органическими изменениями. У работающих, как правило, развиваются вегетативные расстройства. Характерны гипотония, брадикардия, повышенная утомляемость, бессонница, понижение тонуса капилляров, функциональные неврозы с преобладанием тонуса парасимпатической нервной системы.

Низшие алканы практически не метаболизируются и выделяются в основном в неизменном виде. Высшие — подвергаются биотрансформации — окислению в печени до карбоновых кислот с последующим выведением из организма или расщеплением до конечных продуктов обмена — углекислого газа и воды.

Воздействие на окружающую среду

Метановые УВ находясь в почвах, водной или воздушной средах, оказывают наркотическое и токсическое действие на живые организмы. Особенно быстро действуют нормальные алканы с короткой углеводородной цепью. Они лучше растворимы в воде, легко проникают в клетки организмов через мембраны, дезорганизуют цитоплазменные мембраны организма. Большинством микроорганизмов нормальные алканы, содержащие в цепочке менее 9 атомов C, не ассимилируются, хотя и могут быть окислены.

Вследствие летучести и более высокой растворимости низкомолекулярных алканов их действие обычно не бывает долговременным. В соленой воде нормальные алканы с короткими цепями растворяются лучше и, следовательно, более ядовиты.

Многие исследователи отмечают сильное токсическое действие легкой фракции на микробные сообщества и почвенных животных. Легкая фракция мигрирует по почвенному профилю и водоносным горизонтам, значительно расширяя ареал первичного загрязнения. С уменьшением содержания легкой фракции токсичность нефти снижается, но возрастает токсичность ароматических соединений, относительное содержание которых растет. Путем испарения из почвы удаляется от 20 до 40 % легких фракций.

Метановые УВ с температурой кипения выше 200 °С практически нерастворимы в воде. Их токсичность выражена гораздо слабее, чем у углеводородов с более низкомолекулярной структурой.

Содержание твердых метановых УВ (парафинов) в нефти — важная характеристика при изучении нефтяных разливов на почвах. Парафины не токсичны для живых организмов и в условиях земной поверхности переходят в твердое состояние, лишая нефть подвижности.

Алканы ассимилируются многими микроорганизмами (дрожжи, грибы, бактерии). Легкие нефтепродукты типа дизельного топлива при первоначальной концентрации в почве 0.5% за 1.5 месяца деградируют на 10-80% от исходного количества в зависимости от содержания летучих УВ. Более полная деградация происходит при рН 7.4 (64.3-90%), в кислой среде (рН 4.5) деградируют лишь до 18.8% .

Твердый парафин очень трудно разрушается, с трудом окисляется на воздухе. Он надолго может «запечатать» все поры почвенного покрова, лишив почву возможности свободного влагообмена и дыхания. Это, в свою очередь, приводит к полной деградации биоценоза.

Полициклические ароматические углеводороды >Основной состав нефти и газа >

oblasti-ekologii.ru

Метановые углеводороды нефти - Справочник химика 21

    Газообразные метановые углеводороды нефти [c.50]

    Метановые углеводороды нефти [c.16]

    Характеризуя метановые углеводороды нефтей Средней Азии, отметим также, что такие закономерности, установленные А. Ф. До-брянским (1948, 1961), как связь повьппенного содержания парафина с высоким выходом бензиновых фракций, низким содержанием гете-ро томов и меньшей оптической активностью нефтей, имеют немало исключений. Например, метановые и нафтеновые нефти Челекена мало отличаются по выходу бензиновых фракций, в сернистых пара-. финовых нефтях Таджикской впадины много азота и смолистых веществ, оптическая активность их повышена и др. [c.167]

    Метановые углеводороды, в том числе и газообразные, обычно растворены в основной массе жидких углеводородов нефти, откуда их можно извлечь тем или иным способом. [c.78]

    Газы тем более растворены в нефти, чем больше давление, под которым нефть находится в недрах земли. Явление фонтанов по суш,еству есть естественное выделение газов благодаря искусственному понижению давления в пласте, когда высвобождаю-ш иеся газы увлекают с собой и самую нефть. Но в уже добытой нефти остаюш,неся в ней растворенные газы легко выделяются с повышением температуры нефти. В противоположность им жидкие метановые углеводороды (парафины) с высокой температурой кристаллизации извлекаются из нефти или из содержаш,их парафин дестиллатов лишь при понижении температуры, при которой наступает кристаллизация парафинов из раствора жидких углеводородов. [c.78]

    Легкие бензиновые фракции из бахметьевской и жирнов-ской нефтей тульского горизонта имеют высокие октановые числа (83 — 75 единиц, а с 1,5 мл ЭЖ 97 — 86 единиц), так как в них содержание изопарафиновых углеводородов с двумя — тремя метильными группами высоко. Наименьшее октановое число у бензиновых фракций коробковской и жирновской девонской нефтей, так как в них преобладают метановые углеводороды. [c.85]

    С увеличением возраста и глубины залегания вмещающих отложений нефти обогащаются метановыми углеводородами и облегчаются по фракционному составу одновременно среди СС нарастает доля алифатических компонентов, главным образом низкокипящих. [c.76]

    В бензиновых фракциях указанных нефтей преобладают метановые углеводороды нормального строения, общее содержание которых изменяется от 53 до 73%, что обусловливает низкую де- [c.10]

    В табл. 6 приводятся данные по содержанию метановых углеводородов в некоторых грозненских нефтях. [c.43]

    I — церезины и парафины из фракций бориславского озокерита 2 — н-метановые углеводороды церезины и парафины из фракций нефтей з—бориславской, 4—грозненской, [c.92]

    Начиная с 80-х годов, исследования состава нефтей стали широко производиться как в России, так и в США. В России в этих исследованиях участвовали выдающиеся ученые того времени — Д. И. Менделеев, В. В. Марковников, М. И. Коновалов и другие. Д. И. Менделеев в 1883 г. установил присутствие пентана в легкой фракции бакинской нефти и его идентичность с пентаном американской нефти. В. В. Марковников и В. Оглоблин установили присутствие в бакинских нефтях нового класса углеводородов, названных ими нафтенами. Дальнейшие исследования показали, что в составе нефтей присутствует много различных углеводородов, и содержание углеводородов разных классов неодинаково в разных нефтях. Оказалось, что в бакинской нефти много нафтенов, а пенсильванская нефть США более богата метановыми углеводородами. Все эти исследования состава нефтей проводились с помощью перегонки, химических реакций и определения плотности. [c.218]

    В нефтях присутствует множество метановых, нафтеновых и ароматических углеводородов. Все метановые углеводороды, начиная с С5 и до С15, жидкие при комнатной температуре. Нормальные углеводороды С в и более тяжелые являются твердыми, но некоторые изомеры углеводородов С в — С20 остаются еще жидкими при комнатной температуре. К числу твердых углеводородов относятся парафины, которые содержатся в растворенном виде в нефти. Содержание твердых парафинов в некоторых нефтях доходит до 5-10%. [c.239]

    Примером может служить следующая таблица, показывающая содержание метановых углеводородов во фракциях типичных нефтей Бакинского и Грозненского месторождений (табл. 4). [c.9]

    Температурные пределы выкипания фракций в °С Содержание метановых углеводородов во фракциях нефтей в /о  [c.10]

    Данные этой таблицы также показывают, что с повышением температуры кипения фракций нефти содержание метановых углеводородов падает. [c.10]

    Строение метановых углеводородов нефти очень многообразно. Наряду с нормальными выделены также изо-углеводороды и тре1яч Еые. Это какнбудто говорит против животного происхождения нефти, так [c.7]

    В составе алканов (метановых углеводородов) нефти наиболее широко представлены соединения нормального строения и монометилзамещенные с различным положением метильной группы в цепи. Значительно меньше ди-, три- и тетраметилалка-нов, а также углеводородов изопреноидного строения и некоторых других. [c.36]

    Если бы метановые углеводороды нефти возникали только лишь путем разрушения полиметиленовых циклов, следовало бы ожидать, что сильно превращенные метановые нефти должны содержать- мало полиметиленовых углеводородов. Менеду тем во всех метановых нефтях содержание полиметиленов достаточно высоко. Можно даже рассчитать, что количество простейших полиметиленов в бензиновых фракциях нафтеновых и метановых нефтей, в расчете на нефть, примерно одинаковое, несмотря на то, что метановые нефти содержат гораздо больше бензиновых фракций. Метанизация нефти не является, следовательно, результатом одного только исчезновения полиметиленовых углеводородов. Без сомнения, часть полиметиленов превращается в метановые углеводороды, но при этом протекают реакции, компенсирующие эту убыль. В то Яie время метановые углеводороды могут возникать и другими путями. Лабораторные исследования и термодинамические расчеты показывают, что при термокатализе полиметилены не могут возникать например из парафина, зато очень много простейших полиметиленов ряда СпН2 образуются при термокатализе самых высоких фракций нефти, предварительно освобожденных от ароматических углеводородов. В последнем случае очевиден процесс образования полиметиленов из гибридных углеводородов. [c.98]

    Например, в нефти Анастасиевско-Троицкого месторождения (категория Б) при общем содержании изопреноидов на нефть 2,5 % пристан и фитан составляли только 5,6 %, а 94,5 % приходилось на долю 2,6,10-триметилалканов. Таким образом, повышение температуры кипения фракции приводит к уменьшению содержания в ней метановых углеводородов (нефти категории А и Б), увеличению в их составе углеводородов разветвленной структуры и появлению в значительных количествах изопреноидов. В дизельной фракции находятся в растворенном состоянии твердые парафины С16-С20 (гексадекан-эйкозаи). [c.682]

    В составе алканов (метановых углеводородов) нефти наиболее широко представлены соединения нормального строения и монометилзамещенные с различным положением метальной группы в цепи. Значительно меньше ди-, три- и тетраметилалканов. [c.14]

    Нефти Западного Кум-Дага имеют бело-желтоватое свечение бумажной хроматограммы в ультрафиолетовых лучах, очень низкие значения плотности (0,820—0,840 г/см ) и количества смолистых веществ (3—4%), в бензиново-керосиновых фракциях (122—250° С) преобладают метановые углеводороды. Нефти Восточного Кум-Дага значительно более тяжелые (плотность 0,865—0,880 г/см ), бедные бензиновыми компонентами, имеют коричневое с желтым оттенком люминесцентное свечение, во фракциях 122—250° С преобладают нафтеновые углеводороды. [c.18]

    О действии серной ] и( лоты на углеводороды нефти ...Мак-Ки (1912 г.) опубликовал интересно наблюдение, по которому при очень сильном размешивании (мешалкой, делающей 900 об/мип) парафиновые углеводороды уже нри комнатной температуре и с обыкновенной крепкой Нз304 реагиру.эт с образованием сульфокислот... По опытам Зентке в лаборатории Энглера метановые углеводороды, начиная с пентана и выше, при сильном встряхивании заметно растворяются уже в крепкой НдЗО даже без нагревания постоингкю выделение ЗОз указывает па то, что мы имеем дело не с простым растворением, а с химической реакцией. Мне представляется вероятным, что реагирование предельных углеводородов с кислотой при энергичном встряхивании обусловливается тем, что от углеводородов при этом отрываются чрезвычайно мелкие каили и 1то нри очень малых размерах капель способность ясидкости к химическому реагированию возрастает так же, как и растворимост . и испаряемость... [13]. [c.29]

    После каждой перегонки интересно измерять уд. вес фракций и наносить на кривую. Исследование уд. веса постоянно кипящих 2°-ных фракций позволяет решить вопрос о типе нефти, потому что уд веса метановых углеводородов в обпщх чертах известны до иидивидов о большим числом углеродных атомов, и если та или иная из исследуемых фра кций нм)еет более высокий уд. вес, то это надо рассматривать, как результат примеси неметанового, чаще всего нафтенового углеводорода. [c.53]

    Подробное изучение состава различных нефтей, произведенное Сахановым и Вирабьян (432) показывает, что содержание ароматических углеводородов во всех без исключения нефтях растет вместе с повышением температуры кипения фракции. В среднем это содержание составляет 15—25%. Что касается нафтеновых углеводородов, содержание их не позволяет провести какую-либо закономерность и оно изменяется от фракции к фракции, часто достигая высоких величин. Во многих нефтях содержание метановых углеводородов падает при переходе от бензина к керосину. Некоторые данные, взятые из т азанной работы, приведены в таблице 45 на стр. 205. [c.206]

    Алканы (метановые углеводороды) представляют собой газо-о(1/эазные, жидкие или твердые вещества. Газообразные соедине-пия содержат в цепи от 1 до 4 атомов углерода ( i—С4) и входят в состав попутных и природных газов (мэтап, этан, пропан, бутан, пзобутан). Соединения, содержащие от 5 до 15 атомов углерода (С,5— ia), представляют собой жидкие вещества. Начиная с гексадекана ( ie), нормальные алканы являются твердыми веществами, которые при обычной температуре могут находиться в растворенном или кристаллическом состоянии в нефти и в высококипящих фракциях. [c.99]

    В нефтяной практике парафинами обычно называют тпердые углеиодо-роды, содериХимическая природа этих углеводородов еще не вполне выяснена, хотя сейчас большинство исследователей склоняется к тому, что они относятся к классу метановых углеводородов, к которым л большей или меньшей степени примешаны углеводороды гибридного, илп смешанного, строения, содержащие в молекуле иолимети-леновые и ароматические кольца [133, 134]. [c.367]

    Эти углеводороды составляют основную часть пефти. Обычно содержание метановых углеводородов в нефтях колеблется от 20% до 50%. Некоторые нефти, так называемые слабопарафинистые или безпарафинистые, содержат не более 1—2% этих углеводородов, другие могут содержать до 80% метановых углеводородов, и ом>] угосят название парафинистых нефтей. [c.7]

    Метановые углеводороды представлены в нефти как нормальным-i. так и разветвленными структурами, причем относительное содержание обенх форм зависит от гг,на нефти. Соотношение содержания разветвленных парафиновых углеводородов и углеводородов нормального строения в различных фракциях различно. Изо-парафипы в нефтях представлены с.1аборазветвленнымп структурами, особенно в высших фракциях. [c.43]

    Жидкие метановые углеводороды содержатся в бензиновых н керосиновых фракциях нефтей. Подробно исследованы метановые углеводороды лишь бензинов, выкипающих до 150° (сюда относятся метановые углеводороды 5—Сд). Фракции, выкипающие выше, исследованы хуже. Это объясняется тем, что с поБЯ1шеннем температуры кипения резко возрастает число изомеров. Так у октана — 18 изомеров, у нонана 35 изомеров. Число изомеров примерно удваивается при переходе от одного гомолога к следующему. У до-Декана С12Н26 (/кш1 = 216,2°) — 335 изомеров. [c.53]

    В нефтях найдены все изомеры пентана, гексана, гептана. Из 18 изомерных октанов выделено 17. Из 35 изомерных нонанов в нефтях найдено 24 изомера. В нефтях найдены и выделены все метановые углеводороды нормального строения вплоть до Сзе (гек-сатриаконтан). [c.53]

    Недавно в американских и некоторых советских нефтях в керосиновых фракциях были обнарулсены разветвленные метановые углеводороды изопреноидного типа, у которых заместители расположены в положениях 2, 6, 10, 14. Нанример, фитан (2, б, 10, 14 — тетраметилгексадекан). Эти углеводороды могли образовываться в нефтях из фитола — ненасыщенного алифатического спир- [c.53]

    Жидкие метановые углеводороды могут быть выделены вместе с нафтеновыми углеводородами из бензиновых и керосиновых фра чций нефти методом жидкостно-адсорбционной хроматогра- [c.56]

    Выделенные в чистом виде н-парафины или изопарафнны могут быть идентифицированы с помощью газо-жидкостной хро.матогра-фии для окончательной идентификации необходимо получить в чистом виде индивидуальные парафиновые углеводороды с помощью препаративной хроматографии, либо четкой ректификации. Индивидуальные углеводороды анализируются определяются их простые и комбинированные константы, проводится элементны анализ, иногда спектральный анализ если это необходимо, проводят хи.мическую идентификацию. Классические примеры химической идентификации можно найти в работах В. В. Марковникова но исследованию кавказских нефтей. Так пз фракции 80—82° бакинской нефти Марковников выделил химическим путем метановый углеводород, общей формулы СтН , константы которого были близки к константам триметилпропилметана (/кип 78,5—79 "). Этот углеводород был идентифицирован следующим образом. [c.57]

    Ароматические углеводороды являются ценным сырьем для нефтехимического синтеза. Наибольшее значение имеют бензол, толуол, ксилолы, нафталин. Бензол является исходным продуктом для получения алкилбензолов, фенола, галоидбензолов и т, д. Нефти содержат 1 ало этих углеводородов, поэтому их выделение из бензиновых фракций,полученных перегонкой нефти, экономически пе-выгодио. Для повышения содержаиия ароматических углеводородов в бензиновых фракциях служат процессы риформинга. При риформинге бензиновых ( )ракцип в присутствии различны.х катализаторов нафтеновые углеводороды и частично. метановые углеводороды превращаются в ароматические углеводороды, которые извлекают различными методами. Ароматические углеводороды являются желательными компонентами карбюраторных топлив, так как обладают хорошими октановыми числами (бензол — 108 голуол -- 103 этилбензол — 98).  [c.76]

chem21.info

Метановые углеводороды - Справочник химика 21

    Детонационные свойства метановых углеводородов нормального строения возрастают вместе с увеличением молекулярного веса.. [c.140]

    Метановые углеводороды, в том числе и газообразные, обычно растворены в основной массе жидких углеводородов нефти, откуда их можно извлечь тем или иным способом. [c.78]

    Более всего восприимчивы к действию этиловой жидкости бензины прямой гонки, содержаш ие метановые углеводороды. Напротив, крекинг-бензины, содержащие много непредельных углеводородов, а также ароматические углеводороды менее восприимчивы к добавлению этиловой жидкости. [c.207]

    Парафиновые (метановые) углеводороды имеют общую формулу ,ih3n+2. Углеводороды i—С4 (метан, этан, пропан, бутан) при нормальных условиях — газы, С5— ie при температуре 20 °С — жидкости, Сп и высшие при обычных условиях находятся в твердом состоянии. В пластовых флюидах газоконденсатных месторождений количество атомов углерода в нормальных парафинах доходит до = 33 и даже больше, обычно же /г = 22—25. [c.20]

    Газы тем более растворены в нефти, чем больше давление, под которым нефть находится в недрах земли. Явление фонтанов по суш,еству есть естественное выделение газов благодаря искусственному понижению давления в пласте, когда высвобождаю-ш иеся газы увлекают с собой и самую нефть. Но в уже добытой нефти остаюш,неся в ней растворенные газы легко выделяются с повышением температуры нефти. В противоположность им жидкие метановые углеводороды (парафины) с высокой температурой кристаллизации извлекаются из нефти или из содержаш,их парафин дестиллатов лишь при понижении температуры, при которой наступает кристаллизация парафинов из раствора жидких углеводородов. [c.78]

    Удельная рефракция нафтеновых углеводородов (одноядерных) почти сохраняет свою величину для всех представителей — 0,5429. Для метановых углеводородов она падает с увеличением числа углеродных атомов в молекуле (для Об—0,5605, но для Сю— уя№ [c.60]

    По углеводородному составу бензиновые фракции характеризуются высоким содержанием метановых углеводородов, количество которых в зависимости от фракционного состава колеблется от 65,8 до 74,3%. Ароматические углеводороды присутствуют в количестве от 3,3 до 16,6%, нафтеновые — от 17,6 до 22,4%. [c.158]

    На основании полученных данных химизм превраш,ений метановых углеводородов на примере додекана можно иллюстрировать следующими реакциями. [c.441]

    В бензиновых фракциях преобладают метановые углеводороды (58—73%), ароматических углеводородов содержится 8— 12%, нафтеновых—16 — 21 %. Такой углеводородный состав в [c.75]

    Легкие бензиновые фракции из бахметьевской и жирнов-ской нефтей тульского горизонта имеют высокие октановые числа (83 — 75 единиц, а с 1,5 мл ЭЖ 97 — 86 единиц), так как в них содержание изопарафиновых углеводородов с двумя — тремя метильными группами высоко. Наименьшее октановое число у бензиновых фракций коробковской и жирновской девонской нефтей, так как в них преобладают метановые углеводороды. [c.85]

    С увеличением возраста и глубины залегания вмещающих отложений нефти обогащаются метановыми углеводородами и облегчаются по фракционному составу одновременно среди СС нарастает доля алифатических компонентов, главным образом низкокипящих. [c.76]

    Серная кислота. Действие серной кислоты на метановые углеводороды б дет рассмотрено подробно в главе об очистке. Здесь мы ограничимся лишь некоторыми общимп выводами. [c.23]

    Скорость распада заметно увеличивается с увеличением молекулярного веса. Наличие пзоолефинов и изопарафинов в продуктах крекинга нормальных парафиновых углеводородов, вероятно, является следствием вторичных реакций превращения образовавшихся олефинов, так как неносредственной изомеризации метановых углеводородов, как отмечается в литературе, в присутствии алюмосиликатных катализаторов не происходит. К вторичным реакциям следует также отнести и образование ароматических углеводородов, содержание которых повышается по мере увеличения молекулярного веса исходного углеводорода и углубления процесса. [c.47]

    Из топлив, применяемых в авиационных двигателях, наибольшую детонацию вызывают топлива, состоящие в основном из метановых углеводородов нормального строения, и наименьшую топлива, содержащие метановые углеводороды с сильно разветвленными молекулами и ароматические углеводороды. Детонационная стойкость олефиновых углеводородов также зависит от строения их молекул, однако она ниже, чем у метановых углеводородов с сильно разветвленными молекулами. Поэтому, чтобы избежать детонации, необходи.м правильный подбор топлива по углеводородному составу. [c.173]

    При риформинге происходит изменение химического состава исходного сырья. В результате образования углеводородов с более низким молекулярным весом получающийся продукт обогащен низкокипящими фракциями сравнительно с исходным сырьем. Значительное количество метановых углеводородов исходной фракции превращается в олефины, а нафтены дегидрируются до ароматических углеводородов. Такое изменение химического состава имеет большое значение и во многом обусловливает высокие октановые числа риформинг-бензинов. Кроме этого, термический риформинг дает значительные выходы пропан-нропиленовой и бутан-бутиленовой фракции. Из последних можно полимеризацией получить высокооктановый полимерный бензин, который является отличной добавкой для улучшения качества других бензинов. [c.45]

    Обшдми методами приготовления метановых углеводородов, а именно восстановлением хлорис-Toroi метила и разложением водой маг-Hnit-бром-метила. Этими х пособами можно получить особенно чистый метан.  [c.24]

    Водород. Мы уже видели, говоря о методах приготоЬления метановых углеводородов, что этиленовые углеводороды могут присоединять одород как в паровой, так п в жидкой фазе в присутствии катализаторов. [c.29]

    В США ежедневно добывается 1,5 биллиона природньго газа, состав которого взсьма сильно меняется от почти чистого метана до газа с содержанием этана, пропана и высших углеводородов в 50%. Цифровой материал по продукции метановых углеводородов в прилюдных газах различных стран приведен в сборниках Природные [c.254]

    Прп весьма высокой температуре имеет место значительное образование метана, этана п водорода. Те же реакщш дает и медь. Тиде и Ненич (см. выше), перерабатывая ацетилен под действием высокой температуры в присутствии желеаа, получили смолу и га-ч, состоящий из метановых углеводородов и водорода. [c.335]

    О действии серной ] и( лоты на углеводороды нефти ...Мак-Ки (1912 г.) опубликовал интересно наблюдение, по которому при очень сильном размешивании (мешалкой, делающей 900 об/мип) парафиновые углеводороды уже нри комнатной температуре и с обыкновенной крепкой Нз304 реагиру.эт с образованием сульфокислот... По опытам Зентке в лаборатории Энглера метановые углеводороды, начиная с пентана и выше, при сильном встряхивании заметно растворяются уже в крепкой НдЗО даже без нагревания постоингкю выделение ЗОз указывает па то, что мы имеем дело не с простым растворением, а с химической реакцией. Мне представляется вероятным, что реагирование предельных углеводородов с кислотой при энергичном встряхивании обусловливается тем, что от углеводородов при этом отрываются чрезвычайно мелкие каили и 1то нри очень малых размерах капель способность ясидкости к химическому реагированию возрастает так же, как и растворимост . и испаряемость... [13]. [c.29]

    Строение метановых углеводородов нефти очень многообразно. Наряду с нормальными выделены также изо-углеводороды и тре1яч Еые. Это какнбудто говорит против животного происхождения нефти, так [c.7]

    После каждой перегонки интересно измерять уд. вес фракций и наносить на кривую. Исследование уд. веса постоянно кипящих 2°-ных фракций позволяет решить вопрос о типе нефти, потому что уд веса метановых углеводородов в обпщх чертах известны до иидивидов о большим числом углеродных атомов, и если та или иная из исследуемых фра кций нм)еет более высокий уд. вес, то это надо рассматривать, как результат примеси неметанового, чаще всего нафтенового углеводорода. [c.53]

    Введение в молекулу метанового углеводорода метильных групп в виде боковой цепи уменьшает детонацию, причем для соответственных изомеров, изосоединения имеют более высокую анти-детопациоппую характеристику, чем нормальные углеводороды. [c.140]

    Химическое исследование бензинов не в силах решить вопрос относительно детонационной характеристики бензина. Однако, ввиду, положительного эффекта повышения содержания нафтеновых н ароматических углеводородов, а равно и метановых углеводородов изостроения, определение содержания этих представителей даст известную ориентировку в характеристике бензина. Так напр,, заведомо нафтеновые бакинские бензины лучше гроздедаких, а крэкинг-бензины, особенно парофазные, лучше бензиЕОв прямой гонки. К сожалению, существующие методы химического кнагаза бензинов еще не могут дать точных сведений по этому вбпросу. [c.141]

    Определение удельного веса узглх фракций бензина, при условии удаления ароматических углеводородов, позволяет грубо определить содержание нафтеновых и метановых углеводородов, потому что уд. вес первых гораздо выше чем у вторых. Приблизительные уд. веса десятиградусных фракций приведены в таблице 31. [c.148]

    Если теперь точно отметить эту температуру и другую порцию обработать серной кислотой для удаления ароматических углеводородов, и снова определять критическую температуру растворения анилина в тех же условиях, что и раньше, то в силу отсутствия углеводородов, легко растворяющих анилин, температура полного растворения окажется выше. Для большинства метановых углеводородов бензина она лежит около 70°. Разность температур растворения аяи-лина до и после удаления ароматических углеводородов по(чтв пропорциональна содержанию ароматических углеводородов. 1Ср яче-ская температура растворения анилина называется сокращешо анилиновой точкой . На величину критической температуры вл ряд факторов, которые все должны быть учтены. [c.151]

    Имеется очень мало данных об изменении объема смесей нафтеновых и метановых углеводородов (см. Саханов и Тиличеев, 633), но все же этих данных достаточно, чтобы оценить максимальное расширение при смешивании в 0,8% для легчайших фракций и не свыше 0,3—0,4 для средних фракций бензина. Это примерно в 10 раз меньшая величина чем, в случае смесей ароматических углеводородов с метаново-нафтеновым бензином и для технических целей этой поправкой на расширение можно пренебречь, пользуясь обычной формулой [c.161]

    Подробное изучение состава различных нефтей, произведенное Сахановым и Вирабьян (432) показывает, что содержание ароматических углеводородов во всех без исключения нефтях растет вместе с повышением температуры кипения фракции. В среднем это содержание составляет 15—25%. Что касается нафтеновых углеводородов, содержание их не позволяет провести какую-либо закономерность и оно изменяется от фракции к фракции, часто достигая высоких величин. Во многих нефтях содержание метановых углеводородов падает при переходе от бензина к керосину. Некоторые данные, взятые из т азанной работы, приведены в таблице 45 на стр. 205. [c.206]

    Масла, продолжительное время подвергавшиеся действию тепла и воздуха, содержат значительные количества асфальтовых веществ, осаждаемых бензтгом. Кроме того в шгх появляются серьезные количества кислородных соединений, особенно кислот. Последние образуются даже нз метановых углеводородов в присутствии металлов [Кельбр (221)], особенно при продувании стшозь масло горячего воздуха [Грюн, Ульрих (222)]. Вообще процессы изменения масел происходят более интенсивно в присутствии щелочей и некоторых металлов и их окислов, особенно при распределении масел тонким слоем. Поэтом - масла легко дают лакообразные пленки в картерах двигателей внутреннего сгорания, на открытых горячих частях машин и т. д. Особенно легко изменяются смешанные масла. Много- [c.294]

    Тяжелые углеводороды. Под этим термином понимаются прежде всего все непредельные углеводороды, затем бензол и его гомологи, отчасти пары жидких метановых углеводородов. Во всяг ом случае, только с некоторым приблия-гением можно понимать их как химически определенную группу. Для удаления их из газовой смеси пользуются связыванием их дымящей серной кислотой или бромной водой Первая растворяет непредельные углеводороды и ароматические. вторая связывает в ввде жидких бромидов, причем наблюдается постепенное обесцвечивание бромной воды (чтобы реактив не терял своей способности связывать непредельные соединения, в пипетке всегда должен быть свободный бром 2—4 г). На свету бром отчасти замещает водород в метановых углеводородах с другой сто-)оны, серная кислота растворяет отчасти и метановые углеводороды. Лоэтому при работе ио обоим методам, вообще говоря, не может быть строгого совпадения. Разница (несколько процентов) зависит от различных внешних, условий. Всегда надо указывать, какик реактивом произведено отделение тяжелых углеводородов. [c.384]

    Кинг (418) указывает, что при 280° окись меди восстанавливается водородом, и что при этом ни СН4, ни СО не сгорают, а потому предлагает пользоваться этим веществом для разделения метаиа и водо рода. Как себя ведут высшие метановые углеводороды — еще неиз-, вестпо, а потому способ Кинга может иметь толькр ограиичешюв значение. г [c.385]

    Газы деструктивной переработки (продукты термического распада нефтяного сырья), помимо метановых углеводородов и н больп[ого количества СО2, обычно содержат непредельные [c.14]

    II практически состоят из смеси м-бутана и изобутана. При кре-чинге ia алюмосиликатном катализаторе получаются газы, также богатые метановыми углеводородами, в основном пропаном и оутанами, но олефинов содержится в них около 30 объемн. %. 1Эти галы заметно отличаются по составу от получаемых в примерно таких же термических условиях газов низкотемпературного крекинга под давлением, среди цредельных углеводородов которых преобладают метан и атан. [c.16]

    Гагы деструктивной гидрогенизации нефтяного сырья на TOSO объэмн. % состоят из водорода. Остальное составляют метановые углеводороды. Газы каталитической дегидрогенизации парафинов и олефинов, а также каталитической циклизации представляют собой водород с примесью метана, этана, этилена и неугле-водорс дных компонентов. Газы каталитической дегидрогенизации нафтенов состоят почти целиком из водорода. [c.16]

    Длд идентификации шестичленных нафтеновых уг.пе1шдородов исследуемую фракцию углеводородов нужно предварительно освободить от ненасыщенных и ароматических углеводородов методом сульфирования (см. стр. 227) она должна содержать только нафтеновые и метановые углеводороды. [c.240]

chem21.info

Метановые углеводород - Большая Энциклопедия Нефти и Газа, статья, страница 2

Метановые углеводород

Cтраница 2

Слаборазветвленные метановые углеводороды являются желательными компонентами этих топлив.  [16]

Высокоразветвленные метановые углеводороды присутствуют в нефтях в малых количествах. Но их количество заметно выше в бензинах нефтей второго типа, чем в бензинах, богатых метановыми углеводородами. В нефтях и главным образом в их бензиновых фракциях высокоразветвленные метановые углеводороды чаще сопутствуют нафтеновым углеводородам, чем метановым, с нормальным строением.  [17]

Метановые углеводороды нормального строения от Ci7 до Cat могут существовать в нескольких кристаллических формах. Устойчивой формой при температурах, не далеких от плавления углеводорода, является гексагональная. Незадолго до температуры плавления ( 2 - 15) происходит перекристаллизация, и кристаллы приобретают орторомбический и может быть моноклинный характер. При перекристаллизации метановых углеводородов при низких температурах появляются орторомбические кристаллы.  [19]

Метановые углеводороды легкой фракции, присутствующие в загрязненных почвах, водной и воздушной сферах, оказывают наркотическое и токсическое действие на живые организмы. Особенно быстро действуют нормальные алканы с короткой углеродной цепью, которые лучше растворимы в воде, легко проникают в клетки организмов через мембраны, дезорганизуют цитоплазмен-ные мембраны организмов. Большинство микроорганизмов не ассимилируют нормальные алканы, содержащие в цепочке менее 9 атомов углерода, хотя могут их окислить.  [20]

Кремниевые производные метановых углеводородов обладают небольшой устойчивостью к электронному удару, однако наличие атома кремния в молекуле несколько стабилизирует ее по сравнению с соответствующим углеводородом. Для слаборазветвленных структур метилэтилпропил-гидридсилана и метилди-этилгидридсилана замена третичного углеродного атома на атом Si вызывает увеличение стабильности в 2 - 3 раза.  [21]

Все метановые углеводороды, начиная с бутана, при низких температурах порядка 100 имеют положительный запас свободной энергии и поэтому неустойчивы в термодинамическом понимании и склонны к превращениям в более низкомолекулярные углеводороды. Поэтому термодинамически невозможно образование высших метановых углеводородов из низших. С этой точки зрения понятно возникновение больших количеств легкокипящих метановых углеводородов из парафина. Превращение поли-метиленовых углеводородов в изометановые теоретически возможно, потому что такой переход связан с уменьшением запаса свободной энергии, при условии поступления водорода извне, например, вследствие реакций конденсации ароматических углеводородов в полиароматические соединения или вследствие диспропорционирования водорода.  [22]

Для метановых углеводородов с увеличением молекулярной массы % Н уменьшается, для моноциклк-ческих нафтенов % Н остается постоянным вне зависимости от молекулярной массы. Для полициклических нафтенов % Н увеличивается с увеличением молекулярной пассы, причем, чем больше ядер в молекуле, тем сильней выражена эта зависимость.  [23]

Кроме метановых углеводородов, в нефтяных природных газах присутствуют углекислота, иногда в значительных количествах ( до 20 %), азот и сероводород, а также в газах некоторых месторождений в крайне незначительных количествах - благородные газы, в частности, гелий и аргон. Эти низкомолекулярные жидкие углеводороды отделяются от газов на специальных установках с целью получения газового бензина. Природные газы с большим содержанием метана и малым содержанием жидких углеводородов ( до 100 г на 1 м3 газа) называются сухими или бедными газами, и, наоборот, газы, содержащие, наряду с метаном, значительное количество его ближайших гомологов, в том числе и жидких ( более 100 г бензина на 1 м3 газа), называются жирными, или богатыми газами.  [24]

Способность метановых углеводородов к окислению молекулярным кислородом зависит от длины и строения их углеродной цепи. Для нормальных парафинов скорость реакции при прочих равных условиях растет с удлинением цепи. Так, в отсутствие катализаторов и при атмосферном давлении метан начинает окисляться только при 420, этан - при 285, пропан - при 270, а твердый парафин - при 140 - 150 С. С повышением давления начальная температура окисления снижается, например метан при 100 ат окисляется воздухом уже при 330 С. Гомогенные инициаторы ( окислы азота, бромистый водород) и гомогенные катализаторы жидкофазных реакций ( соли марганца или кобальта), а также гетерогенные контакты позволяют ускорить процесс и провести его при более низкой температуре.  [25]

Дегидрогенизация метановых углеводородов при высоких температурах протекает таким образом, что водород отщепляется у первого и второго углеродного атома нормальных изомеров. Для изометановых углеводородов процесс протекает сложнее.  [26]

Термокатализ метановых углеводородов с алюмосиликатами, начинается уже при температурах порядка 250 и даже ниже в случае больших количеств катализатора. Первичным превращением является изомеризация в: ри сохранении молекулярного веса в простейшие изомеры.  [27]

Изменения метановых углеводородов состоят, с одной стороны, в разукрупнении молекул, но частично возможна дегидроциклиза-ция их в ароматические. Например: термокаталитическое превращение парафина и церезина дает широкую гамму ароматических углеводородов, содержащихся во всех фракциях в количествах, возрастающих вместе с температурой кипения. Формально ароматические углеводороды образуются, так сказать, вместо углерода, который должен был бы выделиться за счет большого расхода водорода на образование низших метановых углеводородов. Конечным продуктом превращения метановых углеводородов является метан, а так как метановые углеводороды, с свою очередь, могут возникать из других классов углеводородов, то можно сказать, что метан есть вообще конечный продукт превращений, за исключением ароматических углеводородов, подвергающихся прогрессирующей полициклизации, конечным результатом которой может быть графит, широко представленный в осадочных породах древних возрастов.  [28]

Построение метановых углеводородов в развернутую цепочку, когда в ней каждый раз замещается крайний атом водорода, называется нормальным строением.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Углеводороды метанового ряда - Справочник химика 21

    Нефтяной парафин представляет собой смесь углеводородов метанового ряда со значительным преобладанием молекул нормального строения. Мягкий парафин (температура плавления 40—42°) применяется главным образом в спичечной промышленности, для пропитки бумаги, в кожевенной и текстильной промышленности и т. д. Твердые парафины (температура плавления 50—52°) находят наиболее широкое применение в свечном производстве, а также для некоторых областей пропитки. Из процессов химической переработки парафинов в Германии наибольший интерес представляет производство жирных кислот на основе твердых парафинов (см. главу VI Окисление парафиновых углеводородов , стр. 432, или раздел Исходное сырье для процесса окисления парафина , стр. 444). [c.49]     Мы отметим три группы методов получения углеводородов метанового ряда  [c.20]

    Наконец, ненасыщенные соединения углеводородов встречаются почти во всех нефтях, но в небольших количествах. Рассмотрение представителей отдельных углеводородов мы начнем с группы насыщенных углеводородов метанового ряда. [c.77]

    Резюмируя, можно отметить, что, согласно правилу Марковникова, иод действием азотной кислоты будут получаться главным образом вторичные и третичные нитропроизводные (по крайней мере до 10и°). Действие азотной кислоты на углеводороды метанового ряда зависит особенно от концентрации кислоты, от температуры и структуры обрабатываемого углеводорода. [c.24]

    Осажденные битумы. В остатках перегонки нефти наряду со смолисто-асфальтеновыми веществами содержатся высокомолекулярные высококипящие углеводороды, которые разлагаются при перегонке, но в то же время они являются ценными соеди-нениями для дальнейшей переработки нефти. Эти углеводороды выделяют в процессах деасфальтизации легкими углеводородами метанового ряда от Сз до Сд (обычно пропаном). [c.82]

    Общая формула углеводородов метанового (парафинового) ряда где под п можно подразумевать любое число, начиная с 1. Свойства углеводородов метанового ряда сведены в табл. 24. [c.77]

    Какие же именно углеводороды метанового ряда из приведенного их перечня содержатся в нефтях отдельных районов . Приведем несколько примеров [c.78]

    В конечном результате после ряда превращений из исходного животного материала получались насыщенные углеводороды метанового ряда, нафтены, олефины, терпены и другие ненасыщенные углеводороды, кислородные соединения (кислоты, кетоны, фенолы, асфальт и др.) и небольшое количество сернистых и азотистых соединений. Различия в условиях образования (изменение температуры, давления) приводили к изменению количественных соотношений составных частей, а это в свою очередь служило причиной возникновения различных нефтей. [c.313]

    При изучении вязкости углеводородов различных рядов давно уисе было установлено, что при одном п том -же числе углеродных атомов в молекуле вязкость возрастает при переходе от углеводородов метанового ряда к нафтеновым и ароматическим угле-водоро ],ам. [c.283]

    Природный углеводородный газ состоит лишь из углеводородов метанового ряда. Для извлечения из него этана, пропана, бутана, изобутана, углеводородов С5 и С применяют серию последовательно расположенных колонн. Хотя задача разделения газовой смеси благодаря отсутствию непредельных углеводородов более простая, тем не менее для получения из природного газа указанных компонентов применяют установки, включающие 8—10 и более ректификационных колонн (рис. 120). [c.295]

    Как это видно по данным, приведенным в табл. 90, рассмотренные нефти различны по содержанию легких компонентов и по своему групповому составу. Однако закономерности в распределении циклических углеводородов (среди изомеров) во всех нефтях достаточно близкие. В табл. 86—89 представлены данные о соотношении нафтенов лишь в нескольких типичных нефтях. В настоящее время имеются сведения о распределении нафтенов 7—С9 в десятках нефтей различных месторождений как Советского Союза, так и зарубежных. Во всех нефтях распределение циклических углеводородов примерно такое же. Поэтому распространенное мнение о различии химического состава нефтей относится скорее к соотношению суммы углеводородов различных рядов, но не к соотношению изомеров. Правда, в нефтях имеются и различия в концентрациях изомеров, но это относится скорее к углеводородам метанового ряда, где концентрация нормальных алканов (на сумму изомеров) действительно меняется в широких пределах и может служить хорошим классификационным признаком нефтей [2]. [c.349]

    На нормальные углеводороды метанового ряда серная кислота прп обыкновенных температурах почти не действует. Повышение температуры обработки до 60—70°, в особенности при использовании крепкой серной кислоты, приводит к образованию сульфокислот  [c.303]

    Одним из способов утилизации продуктов дегазации воды является подача их вместе с газами И ступени сепарации сернистой нефти, содержащими до 2% сероводорода, 1% углекислого газа и 97% углеводородов метанового ряда, на сероочистную установку с последующим получением элементарной серы. [c.109]

    Естественные газы, за исключением некоторых посторонних компонентов, как углекислый газ, азот, кислород, полностью со- стоят из углеводородов метанового ряда [c.8]

    Как известно, углеводороды метанового ряда, начиная с бутана, имеют различные изомеры, число которых сильно растет по мере увеличения количества углерода в углеводородах. [c.8]

    Тем не менее в результате тщательных исследований удалось выделить из некоторых нефтей ряд индивидуальных углеводородов метанового ряда и определить их содержание в отдельных фракциях. [c.9]

    Содержание жидких углеводородов метанового ряда в низкокипящих фракциях различных нефтей варьирует в довольно шИ роких пределах в зависимости от месторождения нефти. [c.9]

    Считалось, что в нефтях существуют некристаллические, аморфные изопарафины, которые только после термического расщепления дают кристаллизующиеся формы нормальных углеводородов метанового ряда. [c.53]

    В углеводородах метанового ряда и нафтенах асфальтены не набухают и не растворяются, т. е. по отношению к этим углеводородам асфальтены лиофобны. [c.54]

    Углеводороды метанового ряда изостроения, содержащие тре- [c.131]

    Нижй помещена таблица главнейших известных углеводородов метанового ряда. [c.20]

    Парафины представляют собой смесь углеводородов метанового ряда нормального строения с 18—35 атомами углерода в молекуле. Вещества белого цвета кристаллического строения с температурой плавления 45—65 °С и молекулярной массой 300— 400. Парафины получают при депарафинизации дистиллятного масляного сырья. Применяют их в качестве сырья в нефтехимической промышленности при производстве моющих средств и поверхностноактивных веществ, для пропитки бумаги и бумажной тары, в производстве свечей и сиичек, в электротехнике, при выработке вазелинов, пластичных смазок, полировальных и защитных материалов. В зависимости от области применения парафины подразделяются на технические, высокоочищенные и для пищевой промышленности. [c.482]

    Углеводороды метанового ряда могут быть получены пирогенети-ческим разложением одно- и двуосновных кислот в присутствии щелочей. Например, натриевая соль пробковой киатоты, обрабатываемая натронной известью, дает  [c.22]

    Углеводороды метанового ряда газообразны вплоть до члена с 3-ю углеродами и жидки до чле1на с 15-ю углеродами. Отш весьма мало растворимы в воде и слегка растворимы р этиловом спирте. [c.23]

    Они гадЬобрялтш вплоть ДО углеводородов с пятью углеродами и жидки до углеводородов с шестнадцатью углеродами. При одном и том же количестве углеродных атомов в цепи они имеют более высокую температуру кипения, чем соответствуюпще предельные углеводороды. Их удельныквес вьше, чем у парафинов, но всегда меньше единицы, Ввиду непредельного характера этих углеводородов можно заранее предвидеть, что они будут иметь более сильную реакционную способность, чем углеводороды метанового ряда, и действительно, в отличие от последних, они дают реакции не только замеш,ения, но и присоединения. [c.29]

    Таким образам, примейяя ЗО , можно отделить сернистые примеси, ароматические и этиленовые углеводороды от углеводородов метанового ряда, которые нри о1б(рабо пк,е хлористым алюминием дадут шро-дукты превосходных качеств. Применяя предварительное удаление цримесей, можно сократить до миннмл ма расход хлористого алюминия. / [c.211]

    В состав газообразных углеводородов входят этилен, пропилен, пзобутплеи II углеводороды метанового ряда. [c.242]

    Углеводородами метанового ряда особенно богаты нефти пенсильванская, галицийская, из советских — грозненская и челе-кенская. Нафтенами боГаты бакинские, некоторые галицийские и японские нефти но и в таких типично парафиновых нефтях, как пенсильванская, найдены различные представители нафтеновой группы. [c.76]

    Мы уже говорили, что углеводороды метанового ряда, начиная с С1еНз4 (гексадекан) и далее, представляют собой твердые тела с температурой плавления от 37 до 104° С. Эти твердые углеводороды называются парафинами и встречаются почти во всех нефтях, но в различных количествах. [c.77]

    Первые опыты, проведенные в 1877—1878 гг. химиком С1о-ёг, как будто до известной степени подтверждали мысли Вертело.. Эти опыты состояли в действии соляной или серной кислоты на зеркальный чугун, содержащий 4% углерода. В результате получались водород и значительное количество насыщенных и ненасыщенных углеводородов с запахом, напоминающим нефть. Удалив из сырой смеси олефины бромом и крепкой серной кислотой, С1оё2 путем фракционировки получил, углеводороды метанового ряда С10Н22 и другие до С16Н34. [c.301]

    Парафины— твердые углеводороды метанового ряда (СпИзе— СбоНиг) —в пластовых условиях обычно находятся в растворенном состоянии. При снижении температуры, давления, а также в результате раз-газирования нефти парафин выпадает в виде кристаллов, которые могут скапливаться на поверхности НКТ, глубинного оборудования и в промысловых газонефтепроводах, резко снижая производительность системы. [c.28]

    Псрыальпый гептан, один из углеводородов метанового ряда, часто применяется при исследованиях в области химии нефти. [c.364]

    Первичной реакцией является реакция распада, расщепления углеводородной цени. Для углеводородов метанового ряда, например GieHji, оиа протекает с образованием молекулы предельного и молекулы непредельпого углеводорода  [c.432]

    Из углеводородов метанового ряда исследовано поведение пропана, Зутана, изобутана, я-пентана, -гептана, изооктана, н-до-декана, изододекапа и н-гексадекана. [c.438]

    Установлено, что катализатор мало влияет на скорость реакции крекинга низших углеводородов метанового ряда. Так, пропан Л1[шь очень слабо изменяется при ООО С бутан и изобутан при 550 С подвергаются крекингу на 4% к-пентан нри 500 С почти не изменяется. В одинаковой степени эти углеводороды слабо подвергаются реакциям дегидрогенизации и изоморизацни. [c.438]

    При разделении масляных фракций на группы компонентов в качестве растворителя применяются низкомолекулярные углеводороды метанового ряда, исходя из того, что их адоорбируемость на полярных адсорбентах в основном ниже адсорбируемости компонентов этих фракций, а при адсорбционной очистке масляного сырья используются низкокипящие фра/кции нефти, в частности, лигроин. [c.260]

    Растворители обычно состоят из полярных компонентов (оса-дителей парафина) и неполярных (углеводородных) компонентов— разбавителей масла. Полярные компоненты растворителя осаждают парафин из охлаждаемого раствора сырья. Поскольку масляная часть сырья плохо растворяется в полярных растворителях, к ним добавляют неполярные компоненты, способствующие растворению масла. Кетоны, спирты, хлорпроизводные и альдегиды являются полярными веществами в качестве неполярных компонентов могут использоваться простейшие ароматические углеводороды (бензол, толуол), углеводороды метанового ряда (пропан, гептан и др.), непредельные углеводороды (пропилен) и др. В некоторых процессах применяют растворитель, состоящий только из полярного (высшие кетоны, метилэтилкетон, дихлорэтан) или только из неполярного (пропан, гептан и др.) компонента. Иногда растворитель состоит из смеси двух полярных компонентов, например дихлорэтана с дихлорметаном (процесс Ди-Ме), метилэтилкетона с метилизобутилкетоном, ацетоном и др. Природа применяемого растворителя оказывает существенное влияние на эффективность, обеэмас и 1я. Так, при использовании для переработки дистиллятного сырья пропана необходимо к сырью добавить модификаторы кристаллической структуры. В противном случае образуются тонкие пластинчатые кристаллы парафина, трудно отделяемые от жидкой фазы. [c.112]

    Таким образом, и при окислении углеводородов метанового ряда возникают как. яльдегиды и кислоты, так и соединения перекиспого типа. Что касается относительной стабильности в отношении окисленгтя парафиновых и олефиновых углеводородов, то последние, как правило, менее стабильны, но можно подобрать и такпе структуры, что это соотношение изменится на обратное. К тому же олефиновые углеводороды, окисляющиеся быстрее, оказывают индуцирующее влияние на скоромь окисления парафиновых углеводородов. В их присутствпи начинают быстрее окисляться и парафиновые углеводороды. [c.325]

    Сырьем для получения вольтоловых масе.л могут быть как масла, так и более нпзкокппящие керосиновые фракции нефтей и первичных смол. По выходу полимеров (масел) первое место принадлежит олефинам (до 60%), второе нафтеновым и парафиновым углеводородам (2.3—28 о) и третье место —углеводородам ароматического ряда (15%). По абсолютной величине вязкости имеет место обратное соотношение на первом месте стоят ароматические углеводороды, на втором — нафтены и на третьем — углеводороды метанового ряда н олефины. По индексу вязкости (отношен1тю вя жости при 20° к вязкости [c.434]

    Парафин — смесь твердых углеводородов метанового ряда пренмущестиенно нормального строения с примесью разветвленных алканов (церезинов), а также соединений, содержащих в длинной цени алканового типа ареиэвые или цнклоалкановые ядра. Данные о содержании парафины в нефтях приведены в табл. 6.9. [c.110]

    Несмотря на родственную химическую природу, асфальтены . представляющие более высокомолекулярные соединения, выделены в отдельную группу из-за их нерастворимости в отличие от смол в углеводородах метанового ряда. Асфальтены хорошо растворимы в ароматических растчорителях, но при введении в раствор достаточного количества парафиновых углеводородов происходит их коагуляция и выпадение из раствора. Без наличия третьего компонента, препятствующего коагуляции асфальтенов, так называемого дефлоку-лянта, асфальтены в смеси парафиновых и ароматических углеводородов с незначительным содержанием последних (менее 20%) образуют неустойчивые коллоидные растворы. Причем, как показали исследования [4, 5, б], дисперс- [c.14]

    Столь энергичная реакция церезина с указанными кислотами привела Маркуссона к заключению, что церезины представляют собой изопарафиновые углеводороды. Это соответствовало известной теории Залозецкого [45] о существовании в нефти прото-и ниропарафинов. Пиропарафины — м-углеводороды метанового ряда — по взглядам Залозецкого, получались путем термического разложения при перегонке нефти протопарафинов, имевших изомерное строение. [c.34]

    Бакинские нефти в большинстве весьма богаты нафтеновыми углеводородами в противоположность таким нефтям, как Трознен-ские или Второго Баку (Ишимбай, Туймазы, Бугуруслан, Красно-камск и т. д.). Наоборот, последние нефти более богаты в легких фракциях углеводородами метанового ряда. [c.14]

    Однако последующие работы Брея и Пилата показали, что осаждение (свертывание) смолистых веществ в присутствии низкомолекулярных углеводородов метанового ряда резко увеличивается с понижением молекулярного веса этих углеводородов. При этом из (раствора выпадают не только смолы, но и углеводороды, входящие в состав высококипящих фракций нефти. В результате можно не только выделять из нефтей асфальтовосмолистые вещества, но и достаточно четко расфракционировать, например, мазут с получением соответствующих масляных фракций. [c.55]

chem21.info

Распределение изомеров метановых углеводородов в нефти

    Распределение изомеров метановых углеводородов в нефти [c.43]

    Как это видно по данным, приведенным в табл. 90, рассмотренные нефти различны по содержанию легких компонентов и по своему групповому составу. Однако закономерности в распределении циклических углеводородов (среди изомеров) во всех нефтях достаточно близкие. В табл. 86—89 представлены данные о соотношении нафтенов лишь в нескольких типичных нефтях. В настоящее время имеются сведения о распределении нафтенов 7—С9 в десятках нефтей различных месторождений как Советского Союза, так и зарубежных. Во всех нефтях распределение циклических углеводородов примерно такое же. Поэтому распространенное мнение о различии химического состава нефтей относится скорее к соотношению суммы углеводородов различных рядов, но не к соотношению изомеров. Правда, в нефтях имеются и различия в концентрациях изомеров, но это относится скорее к углеводородам метанового ряда, где концентрация нормальных алканов (на сумму изомеров) действительно меняется в широких пределах и может служить хорошим классификационным признаком нефтей [2]. [c.349]

    В бензиновых фракциях нефтей метанового основания, среди парафиновых углеводородов преобладают углеводороды нормального строения. Такие углеводороды часто составляют 50% и более от содержания всех изомеров. Распределение изомеров среди парафиновых углеводородов имеет некоторые особенности. Во всех фракциях заметно преобладание изомеров с одной алкильной группой, несколько меньше содержание двузамещенных углеводородов и совсем мало трех- и четырехзамещенных. Подавляющее большинство изомеров имеет в боковых цепях только метильные группы. Углеводороды с этильными и более длинными боковыми цепями встречаются в очень небольшом количестве среди углеводородов С,—Сщ. [c.10]

    При изучении распределения в нефтях нормальных и изоалканов выявляются некоторые закономерности, связанные с типом нефти. Так, оказывается, что в нефтях метанового типа преобладают нормальные углеводороды по сравнению с суммой их изомеров, составляя до 50% и более от содержания всех изомеров данного углеводорода. Во всех нефтях нафтенового типа обнаружены преимущественно изоалканы, их содержание достигает 75%, а иногда и более (например, эхабинская нефть, жирновская нефть и др.). [c.55]

    Рассмотренные в настоящей работе результаты работ по изучению индивидуального углеводородного состава бензиновых фракций нефтей и конденсатов показывают, что близкие к равновесным системам соотношения наблюдаются среди изомерных углеводородов одинакового типа замещения. Наиболее ярко эта тенденция проявляется среди геометрических изомеров в углеводородах ряда циклопентаиа и циклогексана. Соотношения этих углеводородов в нефтях и конденсатах постоянны и близки к равновесным для температур 200—300° С. Содержания н-алканов далеки от равновесных концентраций. Полученные с помощью метода газовой хроматографии новые данные о распределении в нефтях н-алканов в зависимости от их молекулярного веса представляют большой интерес с генетической точки зрения и позволяют отнести нормальные метановые углеводороды к реликтовым структурам. Изопреноидные углевороды, такие как 2,6-диметил, 2,6,10-три- [c.121]

    С учетом распределения нормальных и разветвленных алканов нефти можно разделить на 3 группы. В первую группу входят нефти с содержанием н-гептана и н-октана более 30% на сумму изомеров, а сумма нормальных монозамещенных составляет 80-90%. Нефти первой группы имеют метановое и метаново-нафтеновое основание, а в бензинах из нефтей метанового типа преобладают монометилзамещенные углеводороды. К этой группе относятся Ромашкинская, Грозненская и другие нефти. Выход бензина составляет 7-19%. Ко второй группе относятся нефти, в которых среди метановых преобладают монометилзамещенные (до 70%) углеводороды, например, Горгянская нефть. В нефтях третьей группы наблюдаются соотношения нормальных и изопарафиновых углеводородов близкие к равновесным (Балаханская нефть). Нефти второй и третьей групп имеют нафтеновое основание. В бензинах из нефтей нафтенового типа содержание нормальных парафинов не превышает 10-20%, среди изопарафинов преобладают монозамещенные в положении 2- и 3-, достаточно много дизамещенных с заместителями в положениях 2,4- и 2,5- очень мало изомеров с метильными группами в положениях 2,2-, что объясняется термодинамическими свойствами углеводородов различного строения. [c.5]

chem21.info