2.5. Присутствие минеральных кислот, щелочей и солей в нефтепро­дуктах. Минеральные соли в нефти


Минеральная соль - Большая Энциклопедия Нефти и Газа, статья, страница 2

Минеральная соль

Cтраница 2

Минеральные соли применяют и в качестве кормовых средств - для подкормки скота и птицы. Добавки минеральных солей к кормовым рационам ускоряют развитие животных, увеличивают продуктивность скотоводства и птицеводства.  [16]

Минеральные соли применяются в сельском хозяйстве и в качестве кормовых средств - для подкормки скота и птицы. Они ускоряют развитие животных, увеличивают продуктивность животноводства и птицеводства.  [17]

Минеральные соли применяют и в качестве кормовых средств - для подкормки скота и птицы.  [18]

Минеральные соли, содержащиеся в нефти не только в виде водных растворов, но и в виде кристаллов, в значительной степени усиливают процессы коррозии, снижают срок службы основного оборудования. Отмеченное влияние воды и солей на процессы добычи, транспорта и переработки нефти требует проведения отделения воды и солей от нефти и обеспечения содержания их в регламентируемом количестве. Процессы обессолива-ния и обезвоживания осуществляются на сборных пунктах нефтепромыслов на специальных установках перед подачей нефти п нефтепровод. Процесс обезвоживания усложняется при образовании стойких нефтяных эмульсий, основным показателем которых является их стойкость, характеризующая длительность разделения эмульсии на составные компоненты.  [19]

Минеральные соли вырабатывались также в весьма малых количествах и ассортимент их был ограничен. В нашей стране, в недрах которой скрывались самые богатые в мире залежи солей калия, глауберовой соли и других, добыча этих солей не производилась. Глауберова соль также ввозилась, хотя некоторое количество ее производилось путем растворения и кристаллизации сульфата натрия, получавшегося при выработке соляной кислоты и переработке натриевой селитры на азотную кислоту.  [20]

Минеральные соли применяются и в качестве кормовых средств - для подкормки с ота и птицы. Добавки минеральных солей к кормовым рационам ускоряют развитие животных, увеличивают продуктивность скотовоД & тва и птицеводства. Для этой цели используют поваренную соль, карбонат кальция, фосфаты кальция - дикальцийфосфа. Кормовые фосфаты в ртличие от удобрительных не должны содержать вредного для животного организма фтора и поэтому изготовляются специально. Медь, цинк, кобальт и многие другие Элементы требуются для животного организма в ничтожных количествах, но влияют на егй развитие существенным образом. Так, подкормка овец и других животных солями кобальта и меди значительно увеличивает продуктивность по мясу и шерсти.  [21]

Минеральные соли проникают в клетку с большим трудом. Влияние других солей изучено еще не достаточно.  [22]

Минеральные соли и удобрения - химические вещества, применяемые для повышения плодородия почв. Сами по себе минеральные соли и сельскохозяйственные минеральные удобрения не обладают токсическим действием. Однако избыток различных минеральных солей в почвах и горных породах приводит к засолению почв техногенного происхождения, угнетению и разрушению экосистем. Неправильная агротехника на сельскохозяйственных полях при применении минеральных удобрений ( в частности, переудобрение почв) часто ведет к загрязнению почв различными солями, снижению плодородия, вторичному засолению и другим негативным экологическим последствиям. Токсические свойства минеральных удобрений проявляются при несоблюдении агротехники, правил их хранения и гигиенических требований. При этом они могут загрязнять почвы, горные породы и подземные воды. Особенно легко вымываются из почвы азотные удобрения.  [23]

Минеральные соли применяются и в качестве кормовых средств - для подкорм ки скота и птицы. Добавки минеральных солей к кормовым рационам ускоряют развитие животных, увеличивают продуктивность животноводства и птицеводства. Для этой цели используются поваренная соль, карбонат кальция, фосфаты кальция - дикальцийфосфат ( преципитат) и трикальцийфосфат, соли железа, меди, цинка, кобальта и другие, а также мочевина. Кормовые фосфаты в отличие от удобрительных не должны содержать вредного для животного организма фтора и поэтому изготовляются специально. Медь, цинк, кобальт и многие другие элементы требуются для животного организма в ничтожных количествах, но влияют на его развитие существенным образом. Так, подкормка овец и других животных солями кобальта и меди значительно увеличивает продуктивность по мясу и шерсти.  [24]

Минеральные соли расплав ляются, расплав стекает к задне. Распиливание сточных вод произво дится форсунками при помощи ежа того воздуха или пара. Дымовые га зы удаляются из печи через цилинд рический канал, расположенный п оси задней торцовой стенки.  [26]

Минеральные соли входят в состав цитоплазмы.  [27]

Минеральные соли удаляются при обессоливании, которое заключается в том, что нефть для растворения солей несколько раз промывается теплой водой. Образующиеся при промывке эмульсии отделяются от нефти при обезвоживании.  [28]

Минеральные соли получают двумя основными методами: 1) добычей природных солей и 2) производством солей из природного и промышленного сырья.  [29]

Минеральные соли в пластовой воде находятся практически полностью в растворенном состоянии.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Присутствие минеральных кислот, щелочей, солей в нефти и нефтепродуктах

из "Практикум по химии нефти и газа"

Способы анализа нефти и нефтепродуктов на содержание сернистых соединений можно разбить на три группы качественные способы определения содержания активных сернистых соединений, количественные способы определения суммарного содержания сернистых соединений, количественные способы определения отдельных классов сернистых соединений. Качественные способы определения активных сернистых соединений широко используют в практике производства и применения нефтепродуктов. Наиболее распространенными способами качественного определения активных соединений серы являются проба на медную пластинку и ртутная проба. [c.49] Количественные способы определения серы делят на две фуппы. Способы первой фуппы служат для определения содержания серы в светлых нефтепродукта бензине, лифоине, керосине, реактивных и дизельных топливах. [c.49] Способы второй группы служат для определения содержания серы в смазочных маслах, котельных топливах, гудронах и других нефтепродуктах. [c.50] Свободные кислоты и щелочи могут образоваться и при примене1ши нефтепродуктов. Если в нефтепродукте содержатся соли сульфокислот, кислых эфиров, нафтеновых кислот и подобных соединений, то при действии высоких температур или влаги (гищюлиз) могут образоваться кислые и щелочные вещества минерального характера. Кислоты, щелочи и минеральные соли в нефтепродуктах являются нежелательными примесями, так как они вызывают коррозию аппаратуры. Поэтому нефтепродукты должны периодически контролироваться на содержание кислот, щелочей и солей. [c.50] Количественное содержание в нефтепродуктах кислот характеризуется кислотным числом, а щелочей — щелочным числом. [c.50] Кислотное число. Для количественной характеристики смеси кислот, имеющих незначительную разницу в физических и химических свойствах, а также в тех случаях, когда неизвестен точный молекулярный вес определяемой кислоты, применяют условный химический показатель — кислотное число (к.ч.). Этот показатель иногда называют числом нейтрализации или коэффициентом нейтральности. [c.50]

Вернуться к основной статье

chem21.info

Влияние минеральных солей на интенсивность разрушения устойчивых водонефтяных эмульсий деэмульгаторами в сочетании с микроволновым излучением

В процессе добычи нефти попутно извлекаются пластовая вода, механические примеси (песок, глина и т. п.) и минеральные соли в виде сложных эмульсий.

Содержание минеральных солей в нефтях месторождений Узбекистана высокое, что вынуждает производственников применять многостадийные процессы их обезвоживания и обессоливания (в промысле, УПН и на нефтеперерабатывающем заводе).

Так, например, в Джаркурганской нефти содержание минеральных солей в среднем составляет 700–800 мг/л, что приводит к интенсивной коррозии трубопроводов и арматуры. Кроме того, высокодисперсные и растворенные минеральные соли повышают устойчивость водонефтяных эмульсий Джаркурганского месторождения и, тем самым, создают комплекс минеральных веществ, участвующих в стабилизации бронирующих оболочки водяных глобул.

Несмотря на то, что хлористых солей в нефтях месторождений Джаркак и Шурчи меньше (385 мг/л и 369 мг/л, соответственно), чем в Джаргурганской нефти, тем не менее их обезвоживание и обессоливание сопровождается значительными отклонениями от норм, установленных в технологическом регламенте [1].

Если учитывать, что при первичной подготовке и отправке на нефтеперерабатывающие заводы преимущественно смешивают нефти различных месторождений, то выяснится причина больших потерь ценного сырья и расходов на его переработку.

Безусловно, для промышленной переработки необходимо подбирать близкие по составу и своим физико-химическим показателям нефти, в частности, по содержанию минеральных солей [2].

Например, не следует нефть Джаркурганского месторождения смешивать с нефтями Джаркакского и Шурчинского месторождений, у которых намного меньше содержания хлористых солей.

Анализ влияния содержания минеральных солей в пластовой воде на качественные показатели местных нефтей Джаркурганского, Шурчинского и Джаркакского месторождений показал, что они ускоряют процесс старения их эмульсий, чем пресная вода.

При обессоливании водонефтяных эмульсий из них удаляют соли в виде водных растворов с размером капель от 1,6 до 250 мкм [3].

Нами изучено влияние СВЧ-обработки на эффективность деэмульги-рования местных высокоминерализованных нефтей разрушением водонефтяных эмульсий месторождений Джаркурган, Шурчи и Джаркак.

Опыты проводили на лабораторной установке [4] в присутствии деэмульгатора К-1 в количестве 40 г/т, при вращении мешалки 60 об/мин в течении 10 минут. Для контроля, опыт провели и традиционным способом (без СВЧ — излучения), в тех же режимах путем конвективного нагрева эмульсии до 75–850С. Полученные результаты представлены в табл. 1.

Из данных табл. 1. видно, что после деэмульгирования водонефтяных эмульсий месторождений Джаркурган, Шурчи и Джаркак с СВЧ-обработкой, повышается содержание хлористых и щелочных солей в пластовой воде. Причем, больше растворяются в пластовой воде труднорастворимые хлористые соли, что очень важно с практической точки зрения для промышленной подготовки нефти. При частоте СВЧ — излучения равном 2450 МГц показатели по содержанию хлористых и щелочных солей в водонефтяных эмульсий местных нефтей начинают стабилизироваться на достигнутом уровне.

Таблица 1

Изменение содержания хлористых и щелочных солей в эмульсии, нефти и пластовой воде до и после деэмульгирования нефти деэмульгатором К-1 в сочетании с СВЧ-излучением и без него

Месторож­дение

Содержание солей, мг/г

в эмульсии

в нефти

в пластовой воде

хлористых

щелочных

хлористых

щелочных

хлористых

щелочных

без СВЧ-обработки (контроль):

Джаркурган

807,5

7,8

310,5

1,4

497,0

6,4

Шурчи

491,0

21,9

73,0

0,6

418

21,3

Джаркак

554,4

17,2

82,4

0,8

472

16,4

с СВЧ-обработкой при частоте излучения — 2450 МГц:

Джаркурган

807,5

7,8

195,5

0,6

612,0

7,2

Шурчи

491,0

21,9

50,5

0,2

440,5

21,7

Джаркак

554,4

17,2

63,2

0,4

491,2

16,8

 

Сырые нефти, добываемые в Узбекистане, классифицируются на три группы в зависимости от содержания в них воды и солей (табл. 2.) [5].

Из табл. 2. видно, что после обработки местных нефтей СВЧ — излучением с частотой 2450 МГц наблюдается снижения содержания в них минеральных солей. Причем, чем больше минеральных солей в нефти, тем больше они переходят в состав отделяемых вод.

Таблица 2

Изменение содержания воды и солей в местных сырых нефтях без и с СВЧ-обработкой их при деэмульгировании деэмульгатором К-1

Месторождение нефти

Содержание воды, %

Содержание солей, мг/г

Группа сырой нефти

Группа сырой нефти

I

II

III

I

II

III

По ТУ TSH 39.0–176:1999,

не более (контроль)

0,5

1,0

1,0

100,0

300,0

1800

без СВЧ-обработки (контроль):

Джаркурган

-

-

0,85

-

-

311,4

Шурчи

0,50

-

-

73,6

-

-

Джаркак

0,48

-

-

83,2

-

-

с СВЧ-обработкой при частоте излучения — 2450 МГц:

Джаркурган

-

0,98

-

-

196,1

-

Шурчи

0,47

-

-

50,7

-

-

Джаркак

0,46

-

-

63,6

-

-

 

Опыты показали, что применение СВЧ — излучения при разрушении высокоминерализованных водонефтяных эмульсий Джаркурганского месторождения позволило получить сырые нефти с меньшим содержанием солей, что дало возможность подготовить к переработке нефти II группы вместо группы III. Это значительно позитивно оказывает влияние на технико-экономические показатели предприятий и способствует повышению качества выпускаемых нефтепродуктов.

В сырых нефтях, добываемых на месторождениях Шурчи и Джаркак, после их СВЧ-обработки при деэмульгировании, значительно снизилось содержание солей, но они оставались в I группе.

При деэмульгировании образцов нефтей эффект от действия СВЧ-излучения достигался при частоте 2450 МГц и дальнейшее его повышение не считалось рациональным.

Как видно, процессы обезвоживания и обессоливания местных нефтей тесно взаимосвязаны и на сегодняшний день требуют коренного совершенствования действующей технологии с применением современных СВЧ — излучений.

Причем, нормы по соли на многих месторождениях нефти при их отгрузке сегодня превышают допустимые пределы. Это объясняется расположением месторождений в засоленных зонах и высокоминерализованностью пластовых вод, а также (в ряде случаев) дополнительным применением щелочных и других ПАВ для повышения нефтеотдачи пластов [5]. Все это отрицательно отражается на разрушении устойчивых водонефтяных эмульсий местных нефтей и на их качестве.

Таким образом, используя СВЧ-обработку высокоминерализованных устойчивых водонефтяных эмульсий можно повысить качество получаемой нефти и сказать в нем содержание солей, что положительно влияет на его переработку.

 

Литература:

 

1.                  Инструкция по стабилизации работы ступеней предварительного обезвоживания установок подготовки нефти в условиях применения химреагентов в нефтедобыче. РД 153–39, 0–390–05., Бугульма.: 2005. 23 с.

2.                  Багиров И. Т. Современные установки первичной переработки нефти.Баку.:1998. -125 с.

3.                  Рудин М. Г., Драбкин А. Е. Краткий справочник нефтепереработчика. –М.: Химия, 1989. -382 с.

4.                  Адизов Б. З. Разрушение высокоминерализованных эмульсий местных нефтей разработанными деэмульгаторами в сочетании с микроволновым излучением. Автореф…,канд. Техн. Наук., Ташкент, ИОНХ АН Руз, 2009–26 с.

5.                  Влияние химических реагентов, применяемых при добыче нефти на устойчивость нефтяных эмульсий /Губайдуллин Ф. Р., Татьянина О. С., Космачева Т. Ф. и др. Нефтяное хозяйство. 2003. -№ 8. — С. 68–70.

moluch.ru

2.5. Присутствие минеральных кислот, щелочей и солей в нефтепро­дуктах

Кислотность нефтепродуктов почти всегда обус­ловлена присутствием серной кислоты или ее производных (сульфокислоты, кислые эфиры серной кислоты). Щелочность в основном обусловливается присутствием NaOH и Nа2СО3.

Свободные кислоты и щелочи могут образоваться и при приме­нении нефтепродуктов. Если в нефтепродукте содержатся соли сульфокислот, кислых эфиров, нафтеновых кислот и подобных соединений, то при действии высоких температур или влаги (гидролиз) могут обра­зоваться кислые и щелочные вещества минерального характера. Кис­лоты, щелочи и минеральные соли в нефтепродуктах являются неже­лательными примесями, так как они вызывают коррозию аппаратуры. Поэтому нефтепродукты должны периодически контролироваться на содержание кислот, щелочей и солей.

Количественное содержание в нефтепродуктах кислот характери­зуется кислотным числом, а щелочей — щелочным числом.

Кислотное число. Для количественной характеристики смеси кис­лот, имеющих незначительную разницу в физических и химических свойствах, а также в тех случаях, когда неизвестен точный молекуляр­ный вес определяемой кислоты, применяют условный химический по­казатель — кислотное число (к.ч.). Этот показатель иногда называют числом нейтрализации или коэффициентом нейтральности.

Кислотным числом называют количество миллиграммов едкого кали, необходимое для нейтрализации свободных кислот, содержа­щихся в 1 г анализируемого вещества. Кислотное число обычно опре­деляют для жиров, масел, смол и других веществ и оно служит харак­теристикой качества готовой продукции.

Контрольные вопросы

  1. Что такое кислотное число

  2. Какие соединения вызывают повышение кислотности нефти и нефтепродуктов

  3. С присутствием каких соединений связана щёлочность нефтей

  4. Почему кислотность и щёлочность нефтей должна постоянно контролироваться

2.6. Механические примеси в нефти

Механические при­меси в нефтях состоят в основном из песка, глины, мельчайших частиц железа и минеральных солей. В готовых очищенных нефтепродук­тах механическими примесями могут быть частицы адсорбента (белая глина), железной окалины, минеральных солей и других веществ. Светлые маловязкие нефтепродукты почти не содержат механических примесей вследствие их быстрого оседания. Твердые механические примеси (песок и др.) в смазочных маслах очень вредны, так как царапают и истирают трущиеся поверхности.

2.7. Степень ненасыщенности нефтей и нефтепродуктов

Наличие ненасыщенных соединений в нефти незначительно, но в продуктах нефтепереработки может быть значительным. Содержание ненасыщен­ных соединений в жирах и смолах и является одним из важнейших показателей их качества. Ненасыщенность характеризуется йодным или бромным числами.

Йодное число. Йодное число показывает, сколько граммов галоида в пересчете на йод может присоединиться к 100 г данного вещества. Определение йодного числа основано на том, что ненасыщенные алифатические соеди­нения легко присоединяют по месту разрыва двойной связи молекулу галоида. При этом хлор и бром частично вступают в реакцию замеще­ния. Йод же вступает в реакцию присоединения очень медленно. Поэ­тому для определения степени ненасыщенности применяют смесь галоидов: хлор — йод, бром — йод или йодноватистую кислоту.

Спиртовой раствор йода образует с водой йодноватистую кислоту:

I2 + h3O  HIO + HI .

Йодноватистая кислота вступает в реакцию с непредельными кис­лотами быстрее, чем свободный йод:

Бромное число. Для определения двойных связей в непредельных соединениях используют реакцию присоединения брома:

R—CH=CH—R1 + Br2  R—CH—CH—R1

│ │

Вr Br

К испытуемому веществу приливают определенное количество раствора брома и по окончании реакции определяют остаток брома йодометрическим титрованием по реакциям

Вr2 + 2КI  I2 + 2KBr I2 + 2Na2S2O3  2NaI + Na2S4O6

По количеству брома, затраченному на бромирование, вычисляют содержание непредельного соединения. Для смеси не­скольких непредельных соединений или смеси неизвестного состава и молекулярного веса результаты выражают в виде условной величины — бромного числа.

Бромное число — это количество граммов брома, которое присое­диняется к 100 г вещества. Так как чистый бром легколетучий и частично вступает в реакцию замещения, то для бромирования применяют бромид-броматный раствор (5 КВr + КВrО3) или раствор брома в ме­тиловом спирте, насыщенном бромистым натрием. В этом растворе бром находится в виде молекулярного соединения с бромистым натрием (NaBr•Br2) и поэтому не вызывает никаких побочных реакций заме­щения или окисления, наблюдающихся для растворов свободного брома.

Метод бромирования пригоден для определения двойных связей в спиртах, альдегидах, кетонах, простых и сложных эфирах и кисло­тах. Присутствие фенолов мешает определению.

Контрольные вопросы

  1. Какова причина появления ненасыщенных соединений в нефтепродуктах

  2. Что такое йодное число Каков механизм взаимодействия йодной воды с ненасыщенными соединениями

  3. Дайте определение бромного числа. Представьте реакцию присоединения брома к пропилену.

  4. Почему при бромировании используют не раствор брома, а смесь бромида и бромата калия

studfiles.net

Минеральная соль - Большая Энциклопедия Нефти и Газа, статья, страница 3

Минеральная соль

Cтраница 3

Минеральные соли, присутствующий в воде, снижают эффе.  [31]

Минеральные соли, такие как сульфаты меди, железа, аммония, щелочноземельных металлов н натрия, при такой обработке удаляются лишь частично. При повторном использовании сконцентрированной кислоты минеральные соли могут накапливаться в системе, что в конце концов делает регенерированную кислоту непригодной для дальнейшего использования.  [32]

Минеральные соли - удаляются при обессоливании, которое заключается в том, что нефть несколько раз промывается теплой водой для растворения солей. Образующиеся при промывке эмульсии отделяются от нефти при обезвоживании.  [33]

Минеральные соли NaCl, NasC03 и Na2S04 заметно отличаются друг от друга по интенсивности испарения при рабочих температурах процесса обезвреживания. Хлористый натрий обладает весьма высокой упругостью паров. Со свободной поверхности при 1000 С испаряется около 13 7 кг / ( ма ч) NaCl. Обезвреживание сточных вод, содержащих NaCl, при повышенных температурах неизбежно приведет к интенсивному испарению и большому выносу этой соли из реактора с отходящими газами.  [35]

Минеральная соль тяжелого металла увеличивает межповерхностное натяжение заполнитель / вода.  [36]

Некоторые минеральные соли задерживаются в организме. Так, соединения кальция, магния и фосфора концентрируются главным образом в костной ткани, железе - в печени, хлористый натрий - в коже. В случае недостаточного поступления указанных веществ в организм с пищей они переходят из указанных депо в кровь.  [37]

Поскольку минеральные соли практически нерастворимы в нефтях, ими сделан вывод о том, что появление солей в нефти-связано с наличием в ней незначительного количества минерализованной воды, не улавливаемой аппаратом Дина и Старка в поверхностных пробах нефти. При определении содержания воды в нефти более точным гидриднокальциевым методом ( ГОСТ 8287 - 57) постоянно отмечается присутствие воды в безводных ( по Дину и Старку) нефтях в количестве 0 08 % вес. Указанным методом определяют суммарное количество влаги в нефти - эмульгированной и растворенной. Взаимная растворимость воды и углеводородов крайне мала.  [38]

Присутствие минеральных солей в виде кристаллов в нефти и раствора в воде приводит к усиленной коррозии металла оборудования и трубопроводов, увеличивает устойчивость эмульсии, затрудняет переработку нефти. Количество минеральных солей, растворенных в воде, отнесенное к единице ее объема, называется общей минерализацией.  [39]

Из минеральных солей ускорителями являются СаСЬ, К СОз, Na2CO3, Na2SiO3, FeCl3, A1C13, A12 ( SO4) 3, MgCl2, Na. Хлоэид натрия, сульфаты железа и меди могут быть как ускорителями, так и замедлителями, в зависимости от концентрации и температуры.  [40]

Производство минеральных солей, за исключением солей мышьяка, фосфора и хрома, свинца и ртути.  [41]

Производство минеральных солей занимает значительное место в химической промышленности. При получении их применяют самые разнообразные печи-термореакторы, которые существенно отличаются друг от друга. По конструкции печи производства минеральных солей можно разделить на следующие типы: 1) вращающиеся; ) тамбурные; 3) шахтные; 4) камерные; 5) ретортные.  [42]

Из минеральных солей в природных водах чаще всего встречаются углекислые, хлористые и сернокислые соли кальция, магния и натрия. Состав природных вод определяется следующими ионами: Са2, Mg -, Na C1 -, SOl -, HCO3 -, Н5ЮГ, остальные ионы: СО -, н, ОН -, NHt, NO2 -, НОз -, Fe2, Cu2 и др. - обычно содержатся в природных водах в незначительных количествах, но тем не менее оказывают существенное влияние на свойства питательной воды и поведение ее в парогенераторах.  [43]

Присутствие минеральных солей в растворах ПАВ, в первую очередь влияет на основную характеристику растворов - - ККМ. При этом концентрация и валентность противоионов играют значительно большую роль, чем природа ионов.  [44]

Ассортимент минеральных солей, используемых в промышленности, в сельском хозяйстве, в медицине и для бытовых целей, весьма велик. Он исчисляется сотнями наименований и непрерывно растет. Масштабы мировой добычи и производства некоторых минеральных солей достигают миллионов и даже десятков миллионов тонн в год.  [45]

Страницы:      1    2    3    4

www.ngpedia.ru

Количество - минеральная соль - Большая Энциклопедия Нефти и Газа, статья, страница 2

Количество - минеральная соль

Cтраница 2

Присутствие минеральных солей в виде кристаллов в нефти и раствора в воде приводит к усиленной коррозии металла оборудования и трубопроводов, увеличивает устойчивость эмульсии, затрудняет переработку нефти. Количество минеральных солей, растворенных в воде, отнесенное к единице ее объема, называется общей минерализацией.  [16]

С насыщенным паром, покидающим барабан котла, уносится некоторое количество влаги в виде мелких капелек котловой воды. В них присутствует в растворенном состоянии соответствующее количество примесей, содержащихся в котловой воде, и, таким образом, пар, покидающий барабан котла, уносит с собой некоторое количество минеральных солей. Эти соли после испарения капелек воды в пароперегревателе отлагаются на внутренней поверхности змеевиков, вследствие чего в них ухудшается теплообмен и возникает нежелательное повышение температуры трубок пароперегревателя. Соли могут также, отложившись в арматуре паропроводов, привести к нарушению ее плотности, а попав в проточную часть паровой турбины - - & ызв-ать снижение экономичности ее работы.  [17]

Всю болотную растительность принято подразделять на три типа з зависимости от характера водно-минерального питания торфяника. Растительный покров торфяника не связан с минеральным грунтом и получает минеральные соли в виде раствора из увлажняющих торфяник вод. Торфяники, питаемые грунтовыми и речными водами, покрыты растительностью, требовательной к количеству минеральных солей. Среди растений таких торфяников в древесном ярусе преобладающую роль играют ольха, береза, в травяном - осока, тростник, хвощ и некоторые цветковые растения, в моховом - гипновые ( зеленые) и сфагновые низинные мхи. Растительность такого состава относится к низинному типу.  [18]

Экстракцию проводят в делительных воронках, а при больших активностях в автоматических экстракторах лабораторного типа. Некоторое количество механически захваченного молибдена и других примесей может присутствовать в органической фазе. Карбонат аммония уменьшает количество минеральных солей в растворе технеция, так как при последующей отгонке метилэтилкетона он разрушается.  [19]

К очень огнеопасным материалам относятся лаковые красители, получающиеся при сочетании некоторых диазосоставляющих с бетаоксинафтойной кислотой. Для предотвращения самовозгорания такие материалы следует сушить в вакуум-шкафах и выгружать после охлаждения. При смешении с некоторым количеством минеральных солей эти красители становятся неогнеопасными.  [20]

В нефтях содержатся также водные растворы минеральных солей ( хлоридов натрия, магния и др.), образующих с нефтью стойкие эмульсии. При переработке нефти эти соли под действием повышенных температур разлагаются с выделением хлористого водорода, который является весьма коррозионно-активным агентом. Количество хлористого водорода зависит от количества минеральных солей и температуры нагревания нефтепродукта. Особенно интенсивно коррозионное разрушение металла при совместном действии хлористого водорода и сероводорода, что типично для большинства сернистых нефтей.  [22]

Экстракцию проводят в делительных воронках, а при больших активностях в автоматических экстракторах лабораторного типа. Некоторое количество механически захваченного молибдена и других примесей может присутствовать в органической фазе. Удаляют их, промывая органическую фазу небольшими порциями К СОз или ( МЩЬСОз. Карбонат аммония уменьшает количество минеральных солей в растворе технеция, так как при последующей отгонке метилэтилкетона он разрушается.  [23]

Страницы:      1    2

www.ngpedia.ru

Минеральные компоненты - Основы химии нефти и газа

2.6.5. Минеральные компоненты К минеральным компонентам нефти относят содержащиеся в нефти соли и комплексные органические соединения металлов. Общее содержание их в нефти не превышает 0,03% масс. Часть металлов попадает в нефть при её добыче и транспортировке. В нефтях обнаружены щелочные и щелочно-земельные металлы (Na, K, Ba, Sr, Mg), металлы переменной валентности (d-элементы:V, Zn, Ni, Fe, Mo, Co, W, Cr, Cu, Mn, Pb, Ga, Ag, Ti; p-элементы: Cl, Br, I, Si, Al, B, P ) и др.

Определение состава и концентрации этих элементов проводят главным образом спектральным анализом золы, полученной при сжигании нефти.

В заметно больших количествах по сравнению с другими элементами в нефти содержится ванадий и никель, которые связаны в металлопорфириновые комплексы.

В высокосернистых нефтях содержание ванадия достигает 2·10-2%, никеля 1·10-2%, содержание других металлов значительно меньше.

Изучение микроэлементов нефти представляет большой интерес в связи с проблемой происхождения нефти. Наличие в нефти многих элементов, характерных для растений и животных, является доказательством их родства.

Присутствующие в нефтях металлы затрудняют её переработку. Многие металлы и, в первую очередь, ванадий и никель снижают активность катализаторов, ускоряют процесс отложения кокса в печах. При сгорании котельных топлив образуется оксид ванадия (V), который способствует коррозии.

Присутствующие в нефтяных коксах микроэлементы нефти загрязняют продукцию электротермических производств (алюминий, железо и др.). Металлоорганические комплексы зачастую обладают поверхностно-активными свойствами и адсорбируются на границе раздела нефти и воды, способствуя образованию эмульсий.

Металлоорганические соединения. Металлоорганические соединения V, Ni, Cu, Zn и других металлов, содержащихся в нефтях, в основном, сосредоточены в гудроне, хотя некоторая часть (до 0,01%) их летуча и при перегонке переходит в масляные дистилляты.

Основная часть металлов связана со смолами и асфальтенами. Значительная часть металлов находится в нефтях в виде металлопорфириновых комплексов. Содержание металлорганических соединений в нефтях с высоким содержанием гетероорганических соединений, смол и асфальтенов значительно - на 2-3 порядка – выше, чем в малосернистых нефтях с низким содержанием асфальто-смолистых веществ.

  1. Переработка нефти

3.1. Подготовка нефти к переработкеДобытая на промыслах, так называемая сырая нефть, содержит попутный газ (50-100 м3/т), пластовую воду (200-300 кг/т), минеральные соли (10-15 кг/т) в виде водных растворов и механические примеси.

Прежде чем пустить нефть на переработку, нужно избавиться от примеси твёрдых частиц, а также от воды и газа. Если не удалить твёрдые примеси, то они будут портить установки, в которых нефть подвергается переработке, а в связи с этим снижать качество получаемых нефтепродуктов.

Следует выделить из нефти газ и наиболее летучие её компоненты. Если этого не сделать, то при хранении нефти даже за то время, которое пройдёт, пока она попадёт на нефтеперерабатывающий завод, газ и наиболее летучие жидкие углеводороды выделятся и будут утеряны. А между тем газ и наиболее летучие жидкие углеводороды являются ценными продуктами. Поэтому одна из задач подготовки нефти заключается в выделении и сборе газа и летучих её компонентов.

Выделение из нефти попутных газов производится в газоотделителях-трапах путём уменьшения растворимости газов за счёт снижения давления.

Одновременно с газами увлекается и часть лёгких бензиновых фракций, которые затем направляются для дальнейшей переработки на газоперерабатывающие (газобензиновые) заводы. На эти заводы поступают также газы и конденсат газоконденсатных месторождений. На этих заводах проводят:

  1. извлечение из газов нестабильного бензина, углеводородов от С3 и выше;
  2. сжижение газа для перекачки его потребителям;
  3. разделение нестабильного бензина на индивидуальные углеводороды - пропан, изобутан, бутан и стабильный бензин.
На газоперерабатывающих заводах имеются также установки по осушке и очистке газа от сероводорода.

На промыслах нефть также освобождается от основной части воды и солей.

Вода является постоянным и неизбежным компонентом, выходящим вместе с нефтью из скважины.

Отделить нефть от воды необходимо по той причине, что примесь воды нарушает технологический режим работы установок, где происходит переработка нефти. Кроме того, в воде, примешанной к нефти, содержатся растворённые соли – хлористый натрий, хлористый кальций и магний. При перегонке нефти эти хлористые соли частично разлагаются, а образующаяся при этом соляная кислота разъедает аппаратуру.

Освободить нефть от воды во многих случаях не так легко. Дело в том, что при движении нефти с той или иной примесью воды к скважине по пористым породам нефть с водой часто настолько хорошо перемешиваются, что образуется эмульсия. В результате из скважины выходит не нефть с примесью воды как две несмешивающиеся и легко разделяющиеся жидкости, а эта эмульсия. Вода находится здесь в виде бесчисленного количества мельчайших капель, рассеянных в нефти и образующих с ней однородную смесь. Встречается и другой тип эмульсий, когда нефть в виде мельчайших капель находится в воде.

Образование таких мельчайших капель нефти или воды объясняют тем, что из присутствующих в нефти и воде примесей на поверхностях капель образуется плёнка некоторых веществ, препятствующая слиянию капель. Эти вещества называются эмульгаторами. К ним относятся содержащиеся в нефтях смолы, асфальтены, мыла нафтеновых кислот, соли. В зависимости от присутствия тех или иных эмульгаторов образуются мельчайшие капельки или нефти, или воды.

Нефтяные эмульсии являются устойчивыми смесями. Такая эмульсия даже при длительном её хранении в каком либо резервуаре не разделяется на нефть и воду. Нужно добавить, что из нефтяной эмульсии не осаждаются и мелко распылённые твёрдые частицы горных пород. Направлять эмульсию на нефтеперерабатывающий завод нельзя из–за присутствия в ней воды и примеси твёрдых частиц. Поэтому нефтяная эмульсия предварительно подвергается специальной обработке, называемой деэмульсацией нефти.

Поскольку причиной, препятствующей слиянию капелек, является наличие на их поверхностях плёнок эмульгатора, то задача заключается в том, чтобы разрушить эти плёнки. Известно несколько способов деэмульсации нефти. Один из способов заключается в нагреве нефтяной эмульсии. При этом у нестойких эмульсий в резервуарах–отстойниках происходит разделение нефти и воды. Однако во многих случаях эмульсии являются достаточно стойкими, и подогрев с отстоем в резервуаре не приводит к желаемому разделению нефти и воды.

Поэтому для деэмульсации нефти широко применяется добавка к эмульсии специальных веществ – деэмульгаторов в сочетании с подогревом.

В настоящее время для разрушения эмульсий и удаления воды применяют различные способы, в том числе термохимический под давлением. Более качественным способом разрушения эмульсий является электрический способ, основанный на воздействии электрического поля.

Обессоливание и обезвоживание нефти под действием электрического поля осуществляется на специальных электрообессоливающих установках в аппаратах, называемых электродегидраторами.

В таком электродегидраторе имеются электроды, между которыми проходит эмульсия. К электродам подведено высокое напряжение от трансформатора. Под действием переменного напряжения происходит движение заряженных капелек. Непрерывное изменение направления движения капелек, связанное с частотой электрического поля, приводит их к столкновению друг с другом и с электродами. В результате этого происходит слияние капель. Вода накапливается в нижней части электродегидратора и спускается по трубе.

В настоящее время для эмульсации применяют электродегидраторы, имеющие шаровую форму и ёмкость 500 – 600 м3.

Введение деэмульгатора непосредственно в свежеполученную из скважины нефть способствует более глубокому обессоливанию, позволяет снизить содержание остаточных солей на ЭЛОУ (до 5 – 7 мг/л). Обычно нефть поступает на ЭЛОУ после обработки в термохимических отстойниках, где отделяется основная масса пластовой воды, – это облегчает работу электродегидраторов. В электродегидраторы подаётся нефть с добавлением 3 – 7% промывной воды и около 0,05% щёлочи. Щёлочь необходима для создания нейтральной или слабощелочной среды, что ускоряет процесс деэмульсации и уменьшает коррозию аппаратуры.

На рис. 3 изображена технологическая схема электрообессоливающей установки, совмещающей ступень термохимического обезвоживания и собственно ЭЛОУ.

Такая обработка нефти производится предварительно на промысле и окончательно на нефтеперерабатывающем заводе. Кроме того, на заводе проводится защелачивание нефти (добавление раствора щёлочи или аммиака) для нейтрализации кислых и сернистых примесей, вызывающих коррозию аппаратуры при переработке нефти.

Рис. 3. Технологическая схема электрообессоливающей

установки (ЭЛОУ) с шаровыми электродегидраторами:

1 – сырьевой насос; 2 – теплообменник; 3 – паровой подогреватель; 4 – термоотстойник; 5,6 – электродегидраторы; 7,8 – водяные насосы; 9 – дозировочные насосы; 10 – смесительные клапаны; 11 – регулятор давления.

Линии: I – сырая нефть; II – деэмульгатор; III – щёлочь; IV – свежая вода;

V – обессоленная нефть; VI – водяной пар; VII – вода в канализацию3.2. Первичная перегонка нефтиПервичная перегонка нефти – первый технологический процесс переработки нефти. Установки первичной переработки имеются на каждом нефтеперерабатывающем заводе.

Прямая перегонка основана на разнице в температурах кипения групп углеводородов, близких между собой по физическим свойствам.

Перегонка или дистилляция – это процесс разделения смеси взаимнорастворимых жидкостей на фракции, которые отличаются по температурам кипения как между собой, так и с исходной смесью. При перегонке смесь нагревается до кипения и частично испаряется; получают дистиллят и остаток, которые по составу отличаются от исходной смеси. На современных установках перегонка нефти проводится с применением однократного испарения. При однократном испарении низкокипящие фракции, перейдя в пары, остаются в аппарате и снижают парциальное давление испаряющихся высококипящих фракций, что даёт возможность вести перегонку при более низких температурах.

При однократном испарении и последующей кондесации паров получают две фракции: лёгкую, в которой содержится больше низкокипящих компонентов, и тяжёлую, в которой содержится меньше низкокипящих компонентов, чем в исходном сырье, т.е. при перегонке происходит обогащение одной фазы низкокипящими, а другой высококипящими компонентами. При этом достичь требуемого разделения компонентов нефти и получить конечные продекты, кипящие в заданных температурных интервалах, с помощью перегонки нельзя. В связи с этим после однократного испарения нефтяные пары подвергаются ректификации.

Ректификация – диффузионный процесс разделения жидкостей, различающихся по температурам кипения, за счёт противоточного многократного контактирования паров и жидкости.

На установках первичной перегонки нефтти однократное испарение и ректификация, как правило, совмещаются.

В настоящее время прямая перегонка нефти осуществляется в виде непрерывного процесса в так называемых атмосферно-вакуумных трубчатых установках (рис. 4), основными аппаратами которых являются трубчатая печь и ректификационная колонна.

Рис. 4. Схема атмосферно-вакуумной установки для перегонки

нефти:

1,5 - трубчатые печи; 2,6 – ректификационные колонны; 3 – теплообменники;

4 - конденсаторы

Основы процесса сводятся к тому, что нефть, нагретая до 350 0С в трубчатой печи, поступает в среднюю часть нижней секции ректификационной колонны, работающей под атмосферным давлением. При этом её бензиновая, керосиновая и другие фракции, кипящие в интервале температур от 40 до 300 0С, оказываются перегретыми по отношению к нефти, имеющей температуру 350 0С, и поэтому сразу превращаются в пар. В ректификационной колонне пары этих низкокипящих фракций устремляются вверх, а высококипящий мазут стекает вниз. Это приводит к неодинаковой температуре по высоте колонны. В её нижней части температура самая высокая, а в верхней - самая низкая.

Поднимающиеся вверх пары углеводородов при соприкосновении с более холодной жидкостью, стекающей вниз, охлаждаются и частично конденсируются. Жидкость при этом нагревается и из неё испаряются более летучие фракции. В результате состав жидкости и пара изменяется, так как жидкость обогащается труднолетучими углеводородами, а пары - легколетучими. Такой процесс конденсации и испарения вследствие неодинаковости температуры по высоте колонны приводит к своеобразному расслаиванию углеводородах фракций по температурам кипения, а следовательно, и по составу. Для интенсификации этого расслаивания внутри колонны устанавливаются специальные разделительные полки, называемые тарелками. Тарелки представляют собой перфорированные стальные листы с отверстиями для жидкости и пара. В некоторых конструкциях отверстия с выступами для выхода пара прикрыты колпачками, а для жидкости предусмотрены сливные трубки (рис. 5).Рис. 5. Схема устройства и работы ректификационной тарельчатой колонны:

1 – тарелки; 2 – патрубки; 3 – колпачки; 4 – сливные стаканы; 5 – стенки колонныНа такой тарелке поднимающиеся сверху пары пробулькивают в жидкость из под колпачков, интенсивно перемешивая и превращая её в пенный слой. Высококипящие углеводороды при этом охлаждаются, конденсируются и остатки в жидкости, в то время как растворённые в жидкости низкокипящие углеводороды, нагреваясь, переходят в пар. Пары поднимаются на верхнюю тарелку, а жидкость перетекает на нижнюю. Там процесс конденсации и испарения снова повторяется. Обычно в ректификационной колонне, имеющей высоту 35-45 м, устанавливается до 40 тарелок. Достигаемая при этом степень разделения позволяет конденсировать и отбирать фракции по высоте колонны в строго определённом интервале температур. Так, при 300-350 0С конденсируется и отбирается соляровое масло, при температуре 200-300 0С - керосиновая фракция, при температуре 160-200 0С - лигроиновая фракция. Не сконденсировавшиеся пары бензиновой фракции с температурой 180 0С выводятся через верхнюю часть колонны, где охлаждаются и конденсируются в специальном теплообменнике. Часть охлаждённой бензиновой фракции возвращается на орошение верхней тарелки колонны. Это делается для того, чтобы соприкосновением горячих паров с охлаждённой бензиновой фракцией тщательнее отделить легколетучие углеводороды и сконденсировать примеси менее летучих, стекающих вниз. Такая мера позволяет получить более чистый и более качественный бензин с октановым числом от 50 до 78.

При более тщательной разгонке бензиновая фракция может быть разделена на газолин (петролейный эфир) - 40-70 0С, собственно бензин - 70-120 0С и лигроин 120-180 0С.

В самой нижней части ректификационной колонны собирается мазут. В зависимости от содержания в нём сернистых соединений он может служить котельным топливом либо сырьём для получения смазочных масел или дополнительных количеств моторного топлива и нефтяных газов. Обычно при содержании в мазуте серы более 1% его используют как высококалорийное котельное топливо, и на этой стадии перегонку прекращают, сводя процесс к одностадийному. При необходимости получения из мазута смазочных масел его подвергают дальнейшей перегонке во второй ректификационной колонне, работающей под вакуумом. Такая схема называется двухстадийной. Двухстадийный процесс отличается от одностадийного меньшим расходом топлива и более высокой интенсивностью работы аппаратуры, что достигается использованием вакуума и более высокой степенью утилизации тепла. Использование вакуума на второй стадии перегонки предотвращает расщепление тяжёлых углеводородов, снижает температуру кипения мазута и тем самым уменьшает расход топлива на его нагревание.

Сущность второй стадии сводится к нагреванию мазута раскалёнными газами до 420 0С в трубчатой печи и к последующей его разгонке в ректификационной колонне. В результате образуется до 30 % гудрона и до 70 % масляных компонентов, являющихся сырьём для получения смазочных масел. Примерный выход и температура отбора масляных фракций мазута приведены в табл. 15.

Для большей экономии тепла и улучшения технико-экономических показателей работы атмосферно-вакуумных установок нагревание нефти до 350 0С ведут в два этапа.

Таблица 15

Фракции перегонки мазута

Фракция Температура отбора, 0С Примерный выход, %
Веретённая 230-250 10-12
Машинная 260-305 5
Цилинровая

лёгкая

тяжёлая

315-325

350-370

3

7

Остаток (гудрон) 350-370 27-30

В начале её предварительно нагревают до 170-175 0С теплом продуктов перегонки (последние при этом охлаждаются), а затем в трубчатой печи теплом раскалённых газов. Такая утилизация тепла позволяет сократить расход топлива на проведение процесса и снизить себестоимость первичной переработки.

topuch.ru