Энциклопедия по машиностроению XXL. Надмолекулярные структуры в нефти


Надмолекулярные структуры образование - Справочник химика 21

    Мембраны представляют собой надмолекулярные структуры, образованные липидами, белками и углеводами. Фосфолипиды и белки являются главными компонентами структуры мембран. Белки составляют 60—85 % общей массы мембран. [c.69]

    Таким образом, участки АВ и ГЕ, имея много общего (образование надмолекулярных структур, характеризующихся различной прочностью и устойчивостью конечных твердых продуктов), различаются весьма существенно. Процессы структурирования, протекающие на участке АВ, предлагается называть физическим агрегированием, в отличие от участка ГЕ, где происходит химическое агрегирование. Физическое и химическое агрегирование различают по следующим признакам  [c.40]

    К полярным эластомерам относятся бутадиен-нитрильные каучуки СКН-18, СКН-26 и СКН-40. Их релаксационные спектры отличаются от спектров неполярных эластомеров тем, что наряду с -релаксационными переходами здесь наблюдается еще и л-процесс. В полярных эластомерах между полярными группами в макромолекулах (в бутадиен-нитрильных эластомерах — СЫ-группы) возникают локальные диполь-дипольные поперечные связи, которые являются одним из видов физических узлов молекулярной сетки эластомера. Они более стабильны, чем микроблоки надмолекулярной структуры (образованные полибутадиеновыми участками цепей), и менее стабильны, чем химические поперечные связи. В результате л-процесс (см. рис. 12.6), природа которого объясняется подвижностью локальных диполь-дипольных связей, характеризуется временем релаксации Тя большим, чем времена релаксации Я-процессов, и меньшим, чем время химической релаксации сшитого эластомера. [c.348]

    Под молекулой высокомолекулярного соединения следует понимать материальную частицу, в которой связь между отдельными атомами осуществлена за счет сил главных валентностей. Ассоциированные частицы (рои, мицеллы, или другие типы надмолекулярных структур), образованные за счет сил побочных валентностей, не следует отождествлять с молекулой. [c.5]

    В результате протекающих в облучаемом полиэтилене процессов изменяется плотность полимера. Это обусловливается постепенным снижением степени кристалличности полимера, изменением его надмолекулярной структуры, образованием пространственной молекулярной сетки и рядом других явлений. Зависимость плотности кристаллического полиэтилена при 20 С от дозы имеет минимум при 200—250 Мрад. В то же время плотность полиэтилена, измеренная при 150°С (выше температуры плавления кристаллитов), непрерывно увеличивается по мере возрастания поглощенной дозы излучения. Наблюдающееся при этом увеличение плотности обусловлено образованием более плотной простран- [c.19]

    Образование в нефтяной системе надмолекулярных структур придает ей принципиально иные свойства, отличные от свойств истинных растворов. Так, система приобретает определенные структурно-механические прочностные свойства, неустойчивость и способность к расслоению, что весьма существенно влияет а кинетику многих процессов и качество получаемых нефтепродуктов. [c.13]

    В принципе изменение равновесного влагопоглощения ПКА при введении модификаторов в массу полимера возможно за счет собственной гидрофильности добавки, изменения молекулярного веса ПКА (изменение количества полярных концевых групп), изменения степени кристалличности и характера надмолекулярной структуры, образования устойчивых водородных связей между амидными группами макромолекул и полярными группами модификатора. [c.100]

    Коллоидно-химические представления об образовании ассоциа-тов, различного рода комплексов и надмолекулярных структур со временем, очевидно, позволят создать теоретические основы компаундирования и объяснить имеющиеся отклонения от аддитивности по многим показателям. В настоящее время разработка рецептур смешения высокооктановых бензинов почти лишена научной базы. В расчетах часто используют не фактические свойства тех или иных компонентов, а условные характеристики смешения, учитывающие поведение данного компонента в конкретном базовом бензине. Основные законы, определяющие характеристики смешения, не выяснены, поэтому при компаундировании прибегают к эмпирическим методам расчета. [c.160]

    Первый фактор усложнения строения химически однородной системы (т. е. системы первого уровня) с гидродинамической точки зрения связан с образованием в ней надмолекулярных структур или глобул, под которыми понимаются коллективы или агрегаты близко расположенных молекул, обладающие относительной термодинамической устойчивостью (целостностью) при воздействии гидродинамических возмущений. Каждая глобула ведет себя как элементарная ФХС, где имеет место весь комплекс химических, тепловых и диффузионных явлений. Система, полностью разделенная на отдельные агрегаты молекул, равномерно распределенные по объему аппарата, называется полностью сегрегированной. Явление сегрегации характерно как для сплошной [15— 17], так и для дисперсной фазы [18, 19]. [c.25]

    Для улучшения низкотемпературных характеристик парафиносодержащих углеводородных конденсатов применяются депрессорные присадки нефтяного происхождения. При выборе такой депрессорной присадки необходимо учитывать групповой состав конденсатов, концентрацию и размеры надмолекулярных структур, образованных асфальтосмолистыми компонентами депрессатора и вьюо-комолекулярными углеводородами депрессируемых систем [21]. На основании лабораторных исследований выявлена депрессорная активность нефтяных остатков в углеводородном конденсате Карачаганакского НГКМ. Активно уменьшается в ряду гудрон арланской нефти - гудрон смеси западно-сибирской нефти - гудрон мангы-шлакской нефти. Наименьшая депрессорная активность гудрона мангышлакской нефти объясняется низким содержанием асфальтенов по отношению к смолам. [c.40]

    Парафиновые надмолекулярные структуры могут существовать в нефтяных системах только в области низких температур, и их количество тем больше, чем ниже температура системы, т. е. при соответствующих условиях образование таких надмолекулярных структур возможно в любых нефтяных системах (в остатках, дизельных, керосиновых и даже бензиновых фракциях). [c.23]

    Высокомолекулярные непредельные углеводороды нормального строения, по-видимому, обладают склонностью к образованию надмолекулярных структур так же, как и насыщенные парафиновые углеводороды дополнительное влияние на этот процесс оказывает наличие двой юй связи в непредельных углеводородах. [c.25]

    Минимальный интерЕ ал или его отсутствие обусловливают загущение жидкой массы до начала упорядочения надмолекулярных структур в системе и плавный переход ее из жидкого в твердое состояние при достижении соответствующей вязкости (не менее 10 2 Па-с) — происходит процесс стеклования. Несмотря на то, что нефтяной углерод в этих условиях является химически агрегированным веществом, он представляет собой перегретую жидкость , в которой, как в жидкости, сохраняется ближний порядок взаимодействия молекул. Температура, прп которой масса отверждается (образование 85% ни в чем ие растворимых веществ), называется температурой коксообразования. [c.48]

    Рассмотрим второй случай влияния РС среды иа надмолекулярную структуру, неспособную растворяться в нефтяной системе (кристаллит). Поскольку размер кристаллитов в процессе растворения не меняется, образование сольватных слоев формально удобно рассматривать как необратимую реакцию первого порядка. Для этого можно считать, что к концу формирования слоя толщины его будет равна бос. [c.63]

    В результате различной активности свободных радикалов, получаемых ири распаде боковых цепей надмолекулярных структур и ири химических превращениях НМС, протекают конкурирующие реакции, что приводит к образованию разнообразных продуктов. [c.162]

    Возбуждение структурных элементов надмолекулярных структур неньютоновских нефтей приводит к их разрушению и, как следствие, к уменьшению структурной вязкости. Под действием переменного электромагнитного поля происходит уменьшение предельного напряжения сдвига, такое изменение сохраняется некоторое время после снятия поля [71], аналогичный эффект наблюдался при облучении мангышлакской нефти ультразвуком [72]. Изучение механизма структурообразования в нефтях позволяет судить о природе связей, возникающих между частицами [73], но работ в этом направлении немного. Образование надмолекулярных структур определяет не только реологические параметры нефти и ее фракций, но и оказывает сильное влияние на результаты переработки последних. [c.21]

    Низкотемпературные свойства нефтяных фракций имеют чрезвычайно важное значение при их использовании. При понижении температуры нефтепродукты теряют подвижность из-за выделения надмолекулярных структур (кристаллов) алканов и образования структурного каркаса, а также из-за повышения структурной вязкости. Кроме того, с понижением температуры растворенная в нефтяной фракции вода может выделяться в виде кристаллов льда. [c.24]

    В отличие от левой ветви диаграммы в ее правой части фор- мирование надмолекулярных структур асфальтенов, карбенов, карбоидов происходит вследствие химических взаимодействий и сопровождается резким возрастанием структурно-механической прочности вплоть до образования в результате реакций уплотнения кристаллизационных структур типа отвержденных пен-коксов, [39]. [c.39]

    Под действием внешних факторов в результате диссоциации старых и образования новых межмолекулярных связей происходят взаимосогласованные изменения размеров составных ча стей сложной структурной единицы сольватного слоя и надмолекулярной структуры. Протекающие на молекулярном и надмолекулярном уровне изменения определяют новое энергетическое состояние и обуславливают соответствующие изменения макроскопических физико-химических свойств нефтяных дисперсных систем таких, как агрегативная устойчивость, структурномеханические характеристики. Для решения ряда практических задач технологии переработки нефтяных дисперсных систем необходимо действием различных факторов целенаправленно влиять на соотношение размеров составных частей сложной структурной единицы, Принимая за скорость формирования (разрушения) слоев отношение бесконечно малого приращения толщины слоя к соответствующему приращению растворяющей силы среды и используя модель последовательных реакций, в работе [112] получили систему кинетических уравнений. С их помощью построены кривые изменения радиуса надмолекулярной структуры Я и толщины сольватного слоя Я, которым соответствуют кривые изменения агрегативной устойчивости и структурно-механической прочности нефтяных дисперсных систем (рис. 6). [c.40]

    Другой характерной особенностью структурирования при кристаллизации из концентрированных растворов и расплавов поли-дисперсных полимеров является образование дендритов. Дендри-тами называются трехмерные древовидные структуры, растущие, несмотря на ветвление в радиальном направлении. Ветвление возникает вследствие нестабильной скорости роста, присущей процессу кристаллизации полидисперсных полимеров [20]. Эта нестабильность является следствием градиентов концентрации, появляющихся из-за преимущественной кристаллизации наиболее длинных цепей, для которых значение Тт выше и которые при температуре кристаллизации как бы подвергаются большему переохлаждению. Появление дендритов приводит к возникновению сферической симметрии. Таким образом, надмолекулярные структуры, образованные кристаллизующимися из расплава полимерами, должны иметь сферические поликристаллические области, образованные дефектными, но явно выраженными ламелями, состоящими из складчатых цепей. [c.52]

    Существует много факторов, влияющих на надмолекулярное структуро-образование кристаллизующихся полимепов. В качестве основных следует отметить внешние условия (температура, давление), введение пластифика- [c.91]

    Как отмечалось, высокой работой разрушения характеризуются полимерные смеси, имеющие микрогетерофазную структуру, у которых температура стеклования одной из фаз намного ниже комнатной температуры. Для исследуемых систем в силу существенного различия в параметрах растворимости ПТМО и ЭП (соответственно 16,4 и 20,6 (Дж/см ) ) также наблюдается микрорасслоение, что подтверждают результаты электронно-микроскопических исследований. При введении в эпоксидную матрицу ПТМО образуются частицы второй фазы неправильной формы размером около 3 мкм. Причем возникновение этой фазы является результатом агрегации более мелких образований, главным образом дендритной формы, с некоторым количеством окклюдированной ЭС. В случае модификации блок-сополимерами наряду с надмолекулярными структурами, образованными фазами ПТМО, размер которых увеличивается от 0,1 (БЭТ-255) до 1—2 мкм (БЭТ-280) по мере повышения концентрации эластичного блока, формируются также структуры длиной до 3 мкм, образованные, по-видимому, жесткими блоками ПБТ. [c.128]

    Асфальтены, в отличие от смол, не растворимы в алканах, имеют высокую степень ароматичности, которая в совокупности с высокой молекулярной массой гетероциклических соединений приводит к значительному межмолекуляриому взаимодействию, способствующему образованию надмолекулярных структур. Наличие надмолекулярной структуры асфальтенов является одной из важнейших особенностей этих компонентов и, в целом, определяет сложности их аналитического исследования. Если смолы можно легко разделить на узкие фракции то для разделения асфальтенов нужны специальные растворители, обладающие различной полярностью, а также специальные приемы, включающие гидрирование, термодеструкцию, озонолиз, а также набор современных методов (ИК- и УФ-спектроскопия, ЯМР-, ЭПР- и масс-спектрометрия, люминисцентный и рентгеноструктурный анализы) [19, 22, 23]. Например, экспериментами по гидрированию смол с М 600-800 и асфальтенов с М 1700 в мягких условиях [23] было показано, что из них могут быть получены углеводороды, по составу и свойствам приближающиеся к соответствующим углеводородам, вьвделенным из высокомолекулярной части нефти. Основное их отличие в более высокой цикличности, повышенном содержании серы и меньшем содержании атомов углерода с алифатическими связями. Это свидетельствует о наличии прямой генетической связи между высокомолекулярными углеводородами, гетероатомными соединениями, смолами, асфальтенами. [c.19]

    В качестве дисперсной фазы могут выступать различного рода ассоциаты и кристаллические образования, состоящие из значительного числа молекул или частиц, склонных к образованию надмолекулярных структур. Б процес- х асгоциатообразования и кристаллизации при различных условиях могут протекать обратимые и необратимые фазовые переходы. Обратимые фазовые переходы характерга>1 для низкотемпературных процессов, а необратимые протекают при высоких температурах. Склонностью к ассоциатообразованию и формированию фаз обладают большинство классов соединений, входящих в состав нефтяных остатков. Рассмотрим наиболее типичные фазовые переходы, которые характерны для различных классов соединений. [c.22]

    Вь1сокомолекулярные нормальные алкань 1 в обычных условиях, начиная с гексадекана представляют собой твердые вещества кристаллической структуры с температурой плавления 16-95 °С. При низких те шерат> рах алканы в виде кристаллов сцепляются друг с другом и образуют надмолекулярную структуру под действием дисперсионных сил, возникающих при взаимном обмене электронами между молекулами. В результате действия адсорбционных сил, часть жидкой фазы среды ориентируется вокруг ассоциированных кристаллов и образует сольватные оболочки различной толщины, В ячейках между сцепленными кристаллами включается часть дисперсионной среды (масел) и образованная система приобретает структурную прочность. [c.22]

    По определению Л.Д. Ландау, фазовым переходом второго рода в общем смысле считается точка изменения симметрии. Иными словами, в такой точке скачкообразно изменяется упорядоченность системы. Поскольку вблизи точки фазового перехода второхо рода свойства фаз мало отличаются друг от друга, возможно образование зародышей большого размера одной фазы в другой. Такие зародыши называются флуктуациями [14]. При этом существенно изменяются динамические свойства системы, что связано с очень медленным рассасыванием флуктуаций. В многокомпонентных нефтяных системах под флуктуациями понимаются образующиеся ассоциаты нового структурного уровня. Благодаря силам обменного взаимодействия рассасывание таких флуктуаций, то есть спонтанный разрыв межмолекулярных связей, имеет существенно меньшую вероятность, чем их образование. Поэтому в точках фазовых переходов из флуктуаций довольно быстро формируется новый уровень надмолекулярной структуры. [c.7]

    При рассмотрении структуры отдельных частиц асфальтенов следует учитывать их происхождение (нативные, подвергнутые термической деструкции), а также возраст нефти. Асфальтены, выделенные из остатков вакуумной перегонки, характеризуются меньшим содержанием водорода и более высоким содержанием гетероатомов, чем нативные. Нативные асфальтены, вьщеленные из молодых нефтей, характеризуются линейной надмолекулярной структурой, в которой связи между структурными блоками осуществляются метиленовыми цепочками [19]. Асфальтены более старых нефтей, прошедшие стадию глубокого катагенеза, имеют пачечную макроструктуру [25]. По этой модели (рис. 1.6) асфальтены ббразуют трехмерную структуру из ряда монослоев полициклических конденсированных аренов. Монослой (рис. 1.7) имеет М 800-3500, а образованная этими частицами слоистая структура М 5 500—5 900. Ассоциаты, образованные слоистыми частицами, могут иметь М 37 ООО-100 ООО. В настоящее время пйлучило всеобщее признание объяснение высоких значений молекулярной массы асфальтенов склонностью их к ассоциации с образованием коллоидных частиц различных размеров [23, 25]. [c.24]

    Молекулярный подход к описанию эластомеров не исключает необходимости учета возникающих в ряде случаев различных надмолекулярных образований [6]. Надмолекулярная структура полимеров, в том числе эластомеров, проявляется, как известно, в трех разновидностях в виде определенного рода упорядоченностей и морфологически обусловленных неоднородностей в аморфном полимере в виде кристаллических образований и, наконец, в виде сегрегированных областей микроскопических либо субмикроско-пических размеров (доменов), возникающих в эластомерных композициях, а также в блок-сополимерах, а в некоторых случаях и в статистических сополимерах вследствие несовместимости компонентов либо участков цепи, различающихся по химической природе. Наличие и конкретная роль того или иного типа надмолекулярных образований зависит от химической природы и молекулярной структуры эластомеров, а также от условий их получения, переработки и эксплуатации. [c.42]

    Застудневание является важной стадией получения волокнистых материалов из растворов полимеров. Свойства растворов 1 Ысокомолекуля[)ных соединений с повышением их концентрации все больше и больше отличаются от свойств растворов ннзкомолекуляриых соединений. Это происходит в результате взаимодействия друг с другом отдельных макромолекул, приводящего к образованию надмолекулярных структур, оказывающих большое влияние на качества изделмй (волокон, пластмасс) из полимеров. [c.315]

    В соответствии с общими положениями теории дисперсных систем ограничение подвижности структурных образований, определяющее физико-химические свойства жидкостей при низких температурах, тесно связано с типом надмолекулярной структуры и интенсивностью межмолекулярных связей [16,17,26,28-33]. Множественный корреляционный анализ указывает на сильную, но неоднозначную связь температуры застывания компаундов с содержанием ас-фальто-смолистых компонентов, а в некоторых случаях и с размерами дисперсных частиц (табл. 1.3). [c.12]

    Полученные данные свидетельствуют о том, что в результате механоактивационной обработки происходит изменение качественного и количественного состояния надмолекулярных структур нефтяных остатков. В зависимости от количества дисперсной фазы ультразвуковая обработка может вызывать как уменьшение размеров надмолекулярных образований, так и их увеличение. Наибольший эффект механоактивации наблюдается в основном для асфальта, характеризующегося наибольшим количеством дисперсной фазы для исследованного сырья. [c.123]

    Межмолекулярные взаимодействия склонных к структурированию ВМС приводят к образованию иространственных надмолекулярных структур, состоящих из множества макромолекул, В зависимости от характера связей надмолекулярные структуры делят иа физические ассоциаты, в которых действуют силы Ван-дер-Ва-альса, и на физико-химические комплексы с более прочными химическими связями. Физические ассоциаты способны при определенных условиях переходить в комплексы (кристаллиты). Число мак- [c.11]

    Удаление из системы углеводородов, являющихся растворителями надмолекулярных структур (например, испарением или экстракцией). В процессе удаления таких углеводородов в остатке накапливаются высокомолекулярные компоненты (асфальтены, смолы, полициклические ароматические углеводороды, парафинЕя), склонные к образованию сложных структур [109]. [c.33]

    Начиная с точки Г, в результате образования надмолекулярных структур и снижения удерживающей способности диснерсионной среды, раствор пересыщается и выделяются ассоциаты асфальтенов, а затем другие углеводороды. В итоге формируется аномальная жидкость с критическим напряжением сдвига Рг), подчиняющаяся тем же закономерностям, которые описывает уравнение Освальда. [c.39]

    Необходимо более подробно изучить условия равновесия, образования н разрушения ассоциатов на участке АВ (см. рис. 4), влияние отношения ф/Кд, с иа кинетику выделения твердой фазы, форму и размеры надмолекулярных структур, структурно-механические свойства, а также на устойчивость различных нефтяных дисперсных систем и установить более обшие закономерности для управления этими сложными ироцессами, имеющими важное промышленное значение. [c.43]

    Аналогично изменению толщины сольватного слоя иод действием РС среды может изменяться и толщина слоя надмолекулярной структуры НДС (ассоциата). Эта толщина формируется под влиянием разницы сил межмолекулярного взаимодействия ВМС и растворяющей силы сольватного слоя. На образование сольватного слоя в свою очередь, как было ранее показано, оказ[>1вает влияние растворяющая сила дисперсионной среды. В общем случае эти изменения могут быть представлены в следующем виде  [c.62]

    В последнем случае надмолекулярные структуры могут находиться в растворе и в виде выделившейся фазы. Регулируя состав дисперсионной среды, ее растворяющую силу и устойчивость, можно управлять соотношением и качеством трех видов асфальтенов в системе и соответственно кинетикой карбоидо-образования и качеством получаемых коксов. [c.167]

    При разработке кинетическом модели термодеструкцин остатков приняты I [18] представления об образовании надмолекулярных структур в жидких продуктах деструкции и об изменении по мере неирерывного превращения групповых компонентов устойчивости н механической прочности системы. [c.177]

    Первый метод наиболее прост и в настоящее время используется в практике работы заводских лабораторий и исследовательских институтов. Под действием гравитационного поля оседают только достаточно крупные частицы — 0,1 —100 мкм (10" —10 м). Гравитационный метод определения устойчивости НДС осложняется образованием сольватных оболочек вокруг надмолекулярных структур, что снижает движущую силу процесса расслоения системы на фазы. Заменяя действие гра-игггационных сил действием центробежных сил, обеспечивающих ускорение, превышающее в 100—1000 раз ускорение свободного падения, можно создать условия для достаточно быстрого осаждения ССЕ. Установлено, что воздействие центробежного поля достаточной интенсивности (фактор разрешения 50 000 при ско- [c.140]

chem21.info

Некоторые особенности надмолекулярных структур в нефтяных средах

и

УДК 541.11/18 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА МЕЖФАЗНОЙ ПОВЕРХНОСТИ СИСТЕМЫ НЕФТЬ ВОДА С.М.АСАДОВ, А.М.АЛИЕВ Институт Химических Проблем НАН Азербайджана, г. Баку [email protected] и [email protected]

Подробнее

ФИЗИЧЕСКАЯ ХИМИЯ. Демон Максвелла

Задача 1 Всероссийская олимпиада школьников по химии ФИЗИЧЕСКАЯ ХИМИЯ Демон Максвелла «Замуровали, демоны!!!» Иоанн Васильевич, 16 век «Демоном Максвелла» называют любое устройство, которое «нарушает»

Подробнее

Спектроскопия ЯМР высокого разрешения

Спектроскопия ЯМР высокого разрешения Провести соотнесение линий в спектрах: Задание выполняется с помощью программы MestreNova. Изучить общий вид спектра количество и интенсивность линий, наличие тонкой

Подробнее

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ АММОНИЯ В ВОДЕ.

ОПРЕДЕЛЕНИЕ СОДЕРЖАНИЯ АММОНИЯ В ВОДЕ. Зачем нужно знать содержание аммония в питьевой воде, воде бассейна. Присутствие иона аммония свидетельствует о наличии в воде органического вещества животного происхождения.

Подробнее

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ Спектрофотометрия в ОФС.1.2.1.1.0003.15 ультрафиолетовой и Взамен ОФС ГФ X, ОФС ГФ XI, видимой областях ОФС 42-0042-07 ГФ XII,

Подробнее

X = 101/ X = /Е = 1239,8 /Е

Лекция 5 Электронная спектроскопия. Спектроскопия в видимой и ультрафиолетовой (УФ) областях План лекции 1. Вероятности переходов между электронно-колебательновращательными состояниями. Принцип Франка-Кондона.

Подробнее

Третий тур Условие Страница 1 из 1

Третий тур Условие Страница 1 из 1 Люминесценция Расчет погрешностей не требуется! Проверяются только листы ответов! Приборы и оборудование Источники света: лазер фиолетовый, лазер зеленый (с источником

Подробнее

Лабораторная работа по теме «Оптика»

Лабораторная работа по теме «Оптика» Прохождение света через дисперсную систему сопровождается такими явлениями как поглощение, рассеяние, преломление и отражение. Особенности этих явлений для коллоидных

Подробнее

ГЛАВА 3 ЛЮМИНЕСЦЕНЦИЯ

ГЛАВА 3 ЛЮМИНЕСЦЕНЦИЯ Люминесцентные методы включают в себя исследования с использованием флуоресценции (флуориметрйя) и фосфоресценции (фосфориметрия). Наиболее широко люминесцентные измерения используются

Подробнее

Лекция 4. Смолисто-асфальтовые вещества

Лекция 4 Смолисто-асфальтовые вещества Смолисто-асфальтовые вещества - сложная смесь наиболее высокомолекулярных компонентов нефти, содержание которых достигает 10-50 % масс. В высококонцентрированном

Подробнее

Оптические измерения

Тема 1 Введение в дисциплину 1. Предмет, задачи и содержание дисциплины 2. Структура спецкурса, его связь с другими дисциплинами 3. Основные понятия теории оптических измерений 4. Средства измерений и

Подробнее

История открытия ЯМР и ЭПР:

История открытия ЯМР и ЭПР: 1936- Гортер, Гайтлер, Теллер заложили теоретические основы релаксации ядер. Как основой вывод для наблюдения ЯМР необходимо добавлять парамагнитные примеси. 1939- опыт Раби.

Подробнее

Химический факультет

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кемеровский государственный университет» Химический

Подробнее

СИНТЕЗ КОЛЛОИДНЫХ РАСВОРОВ НАНОСЕРЕБРА

СИНТЕЗ КОЛЛОИДНЫХ РАСВОРОВ НАНОСЕРЕБРА 1.1. Боргидридный метод В настоящее время способ восстановления солей серебра тетраборгидридоборатом (боргидридом) натрия является наиболее распространенным в процессах

Подробнее

РЕФЕРАТ ВЛИЯНИЕ УЛЬТРАЗВУКА НА СТАБИЛЬНОСТЬ ПОЛИМЕРНЫХ ПРИСАДОК Работа содержит 52 страницы текста, 16 рисунков, 12 таблиц, 39 источников литературы. НЕФТЬ, НЕФТЯНОЙ ПАРАФИН, ДЕКАН, ПОЛИМЕРНАЯ ПРИСАДКА,

Подробнее

ПРЕДМЕТ ФИЗИЧЕСКОЙ И КОЛЛОИДНОЙ ХИМИИ

ПРЕДМЕТ ФИЗИЧЕСКОЙ И КОЛЛОИДНОЙ ХИМИИ Физическая химия наука, изучающая общие закономерности химических явлений на основании физических законов и физических принципов. Так как физическая химия неразрывно

Подробнее

Основы магнитного резонанса

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» Физический факультет Кафедра

Подробнее

11 класс Вариант 1. Задание 1

Задание класс Вариант Концентрированную серную кислоту добавили к кристаллической поваренной соли, в результате чего образовалась кислая соль и выделился газ. Полученный газ ввели в реакцию с раствором

Подробнее

docplayer.ru

Надмолекулярные структуры агрегирование - Справочник химика 21

    При переходе системы от молекулярного состояния к надмолекулярному молекулы или надмолекулярные структуры взаимодействуют друг с другом, что сопровождается выделением или поглощением тепла. Значения тепловых эффектов позволяют оцепить тип взаимодействий и степень прочности НДС. Суммарный тепловой эффект взаимодействия лри химическом агрегировании во много раз больше суммарного теплового эффекта при физическом агрегировании. [c.15]     Таким образом, участки АВ и ГЕ, имея много общего (образование надмолекулярных структур, характеризующихся различной прочностью и устойчивостью конечных твердых продуктов), различаются весьма существенно. Процессы структурирования, протекающие на участке АВ, предлагается называть физическим агрегированием, в отличие от участка ГЕ, где происходит химическое агрегирование. Физическое и химическое агрегирование различают по следующим признакам  [c.40]

    Минимальный интерЕ ал или его отсутствие обусловливают загущение жидкой массы до начала упорядочения надмолекулярных структур в системе и плавный переход ее из жидкого в твердое состояние при достижении соответствующей вязкости (не менее 10 2 Па-с) — происходит процесс стеклования. Несмотря на то, что нефтяной углерод в этих условиях является химически агрегированным веществом, он представляет собой перегретую жидкость , в которой, как в жидкости, сохраняется ближний порядок взаимодействия молекул. Температура, прп которой масса отверждается (образование 85% ни в чем ие растворимых веществ), называется температурой коксообразования. [c.48]

    На первой стадии (слабые взаимодействия) надмолекулярные структуры (центры кристаллизации) формируются за счет сил Ван-дер-Ваальса. В зависимости от природы ВМС нефти и величины сил взаимодействия молекул для каждого вида ВМС образуется свой тип надмолекулярных структур, обладающих определенными физико-химическими свойствами (асфальтеновый, парафиновый и другие ассоциаты). Парафиновые надмолекулярные структуры при повышении температуры дезагрегируются полностью или подвергаются одновременно дезагрегированию и химическому разрушению. Асфальтеновые ассоциаты с повышением температуры склонны к физическому и далее к химическому агрегированию. [c.158]

    Процесс агрегирования молекул поверхностно-активных веществ в неполярных средах должен при определенных их концентрациях завершаться образованием мицелл. Для определения областей критических концентраций мицеллообразования-ККМ-было проведено электрофоретическое исследование систем. Системы содержали углеводороды масляных фракций нефти, растворитель и поверхностно-активные вещества, т. е. смолы и полярные модификаторы структуры. Изменения, связанные с формированием и развитием надмолекулярных структур, можно проследить, изучая диэлектрическую проницаемость нефтяных дисперсий при изменении концентрации полярных модификаторов структуры. На примере изменения диэлектрической проницаемости системы, состоящей из рафината 2 (см. табл. 3.1) и растворителя-метилэтилкетона показан аддитивный характер изменения диэлектрической проницаемости, что свидетельствует об отсутствии взаимодействий, приводящих к образованию ассоциатов. [c.108]

    Большое влияние на скорость химических реакций в полимерах оказывает форма макромолекулы, а также образование вторичных (надмолекулярных) структур при агрегировании макромолекул (гл. III). При этом может замедляться скорость диффузии низкомолекулярных реагентов и реакция проходит только по границе раздела отдельных надмолекулярных структур. Если же реакция идет в растворе полимера, то свернутая или выпрямленная форма макромолекулы соответственно затрудняет или облегчает вероятность столкновения реагента с функциональными группами макромолекул. [c.34]

    Весьма примечательную качественную картину вариаций профиля ММР дает ступенчатое изменение температуры хроматографических колонок при автономных анализах. Измерения проводились при изменении температуры колонок на 5 °С на каждой ступени в интервале 15—45 °С. Первые, очень чувствительные изменения в профилях ММР происходят уже при температурах 15—20 °С с двумя неразрешенными максимумами в ВМ зоне, а именно за счет перераспределения их интенсивностей. Это явление можно объяснить только предполагаемым разрушением надмолекулярных или агрегированных структур в структуры с более низкой организацией. [c.33]

    Четкое проявление надмолекулярных структур, закладываемых предысторией покрытий (в растворе, расплаве), а также в процессе их формирования, наблюдается уже в начальной стадии старения покрытий. При этом образуются новые структурные элементы, имеющие тенденцию к расположению в определенном порядке. Последующее старение покрытия приводит к агрегированию структурных элементов и образованию более сложных морфологических форм. [c.83]

    Модифицирование введением малых количеств веществ иного строения. Для воздействия на процессы образования и агрегирования различных элементов надмолекулярной структуры предложено введение в полимер малых ко.чичеств поверхностно-активных веществ, к-рые влияют на процессы структурообразования в полимерах так же активно, как и в хорошо известных случаях структурообразования низкомолекулярных веществ. Добавками поверхностно-активных веществ можно изменять размеры и форму. элементов надмолекулярной структуры. [c.131]

    Как известно , исходный изотропный стеклообразный или полукристаллический полимер при больших деформациях одноосного растяжения, растягиваясь в шейку, становится анизотропным. При этом как в кристаллическом, так ив стеклообразном полимере происходит преобразование надмолекулярной структуры путем ее частичного или полного разрушения, распрямления агрегированных макромолекул и образования новой структуры, элементы которой ориентированы. [c.105]

    С понижением темпера уры ло — 50 С отмечена полная потеря подвижности не только олигомерных молекул олигомера, но и их звеньев и отдельных групп. При этой температуре возможно разрушение связей внутри и между надмолекулярными структурами под действием внутренних напряжений. Для покрытий, отвержденных при 80 °С, в этих условиях наблюдается неоднородная глобулярная структура с глобулами диаметром от 20 до 50 нм. Особенно значительна агрегация структурных элементов с понижением температуры у покрытий, сформированных при 20 °С. Перегруппировка структурных элементов в сетчатом полимере при температуре — 50 С сопровождается формированием в покрытиях цепочечных структур из агрегированных ассоциатов. По-видимому, это происходит под действием возникающих в системе значительных внутренних напряжений, локализующихся по границам раздела структурных элементов. [c.39]

    Итак, в общем случае в результате слабых взаимодействий ВМС и НМС происходит физическое агрегирование молекул ВМС с образованием надмолекулярных структур и ССЕ. В [c.51]

    Сммвагрегирование надмолекулярной структуры. [c.91]

    Согласно работе [8], наиболее уязвимым местом в физикохимической механике нефтяных дисперсных систем до определенного времени являJЮ Ь то, что в ее рамках не было обоснованного ответа на вопрос, какова природа сил, ответственных за образование надмолекулярных структур в крайне разнородных по химическому составу нефтепродуктах. Попытки найти причины агрегирования так или иначе связывались со структурами, объединенными под названием асфальтены. В работе [10], например, показано, что коксообразование начинается только при достижении определенной концентрации асфальтеновых соединений. [c.32]

    Для исследования полимеризации ГХФ в расплаве при 250°С был привлечен также метод электронной микроскопии [65]. На ранних этапах полимеризации было найдено наличие крупных сферических частиц, свидетельствующих о высокой скорости роста цепи. Оказалось также, что обнаруживается существенное различие между образцами ПДХФ, полученными обычным способом (способ А), и образцами, полученными с предварительным удалением из сферы реакции остаточной воды и фосфазеновых продуктов гидролиза (способ Б) [49, 50]. Формированию организованной надмолекулярной структуры полимера, синтезированного способом А, вероятно, препятствует наличие сшивок между его макромолекулами. На отдельных участках электронной микрофотографии полимера, полученного по способу Б, хорошо видны надмолекулярные образования ламенарного типа. Таким образом, структура ПДХФ в агрегированном состоянии на глубоких стадиях полимеризации зависит от способа синтеза. [c.322]

    Сопоставление этих данных с результатами электронномикроскопических исследований, полученных при изучении влияния надмолекулярных структур на процесс структурооб-разования в растворах продуктов гидролиза полиакрилонитрила едким натром [54], показывает, что первая точка изгиба на кривой оптическая плотность раствора К-4 — концентрация полимера соответствует ассоциации элементов надмолекулярных структур — фибрилл, состоящих из ориентировочных распрямленных макромолекул препарата, а вторая — агрегированию ассоциатов. [c.52]

    С появлением гибкости цепи молекул, что характерно для высокомолекулярных веществ, в растворах ПАВ протекает процесс структурообразования с возникновением различных по форме надмолекулярных структур. Так, критические концентрации формирования надмолекулярных структур, их агрегирования и образования объемной структуры в растворах полиэлектролитов — сополимеров акриламида с акр иловой кислотой равны 3,0 10"" 1,0 10 и 4,2 10 г/100 амидирован-ного стиромаля— 4,0- 10 , 1,0 10 1,0 анилинмаленатформальде-гида —5 0 10 3,2 10 3,0 10°, антранилфенолформальдегида— [c.197]

    В результате исследования окрашенных н термофиксированных триацетатных волокон установлено, что при термофиксации увеличивается светостойкость окрашенных волокон и значительно замедляется выцветание самого красителя. Это можно объяснить повышением при термо-фиксации степени агрегации красителя и изменением надмолекулярной структуры волокна. По-видимому, при термофиксации происходит охват агрегированных частиц красителя средой, что затрудняет доступ воздуха и влати и замедляет его фотодеструкцию [24]. [c.188]

    На основании реологических, теплофизических, физико-механических и структурных исследований было установлено, что при получении покрытий из олигомерных систем, расплавов и растворов полимеров на первой стадии процесса их формирования наблюдается образование локальных связей в пределах небольшого числа молекул или между отдельными ассоциатами, что сопровождается образованием надмолекулярных структур или агрегацией имеющихся структурных элементов. На второй стадии между этими структурами возникают связи, что приводит к резкому торможению релаксационных процессов и нарастанию внутренних напряжений. Такой характер структурообразования наблюдался при формировании пространственной сетки из ненасыщенных полиэфиров [46, 90], эпоксидов [118, 119], олигоэфируретанов [102, 120, 121], кремнийорганических олигомеров разного химического состава [122], фенолоформальдегид-ных и алкидных олигомеров [123], олигоэфиракрилатов, [96, 124, 125], растворов полиуретанов и эпоксидов [103, 126, 127], растворов поливинилового спирта и его производных [128], по-листирольных [129—131] и других пленкообразующих. Для предотвращения образования при формировании покрытий из растворов и расплавов полимеров и олигомерных систем неоднородной структуры, состоящей из крупных агрегированных структурных элементов, на начальной стадии их формирования осуществляется модификация пленкообразующих поверхностноактивными веществами с определенной структурой молекул. Изучение структурообразования в присутствии поверхностно-активных веществ свидетельствует о том, что они блокируют часть полярных групп пленкообразующего, изменяют конформацию молекул и препятствуют агрегации структурных элементов. Показано [42], что введение таких поверхностно-активных веществ в состав ненасыщенных полиэфиров позволяет создать упорядоченную структуру в покрытиях с более высокими прочностными и адгезионными свойствами и меньщими внутренними напряжениями как на начальной стадии формирования, так и после завершения процесса полимеризации. Такая структура [c.81]

    Модель наименьшего элемента надмолекулярной структуры (НЭНС), отражающего ММР полимера, предложена недавно Антча-ком, Чураковой и Берестневой . Способность к агрегированию цепей зависит от их длины в первую очередь должны приходить в контакт наиболее длинные макромолекулы. Поэтому более вероятно, что низкомолекулярные фракции полимера располагаются в наружных слоях пачек, а их внутренние слои образуют цепи большей длины. Такое строение низших элементов надмолекулярных структур подтверждается при изучении некоторых физических и физико-механических свойств эластомера. [c.34]

    Значительную информацию о влиянии ориентации на структуру органических стекол дает изучение характера трансформации надмолекулярных образований электронно-микроскопическим методом (рис. 5.18). По мере пов ышения температур вытяжки с Гс+б др Ть- -40 С наблюдается переход от глобулярной к более совершенным структурам фибриллярного типа, агрегированном в многогранники, форма которых зависит от направленности внешнего силового поля (см. рис. 6.22), При ГсН-бОХ. т. е. в области интенсивного протекания термодеструкционных процессов, происходит разрушение ориентированных надмолекулярных структур. [c.113]

chem21.info

Смолисто-асфальтеновые вещества

 

Смолисто-асфальтеновые вещества (САВ) – высокомолекулярные гетероциклические соединения. Их содержание в нефти может доходить до 25-50% вес.

Смолы – вещества, растворимые в низкокипящих алканах, в нафтеновых и ароматических углеводородах.

Асфальтены – вещества, растворимые в сероуглероде CS2 и в тетрахлоруглероде СС14, в ароматических углеводородах, но не растворимые в низкокипящих алканах.

Например, арланская нефть содержит асфальтенов 6%, их протность r420=1.140, молекулярная масса 1700. Элементный состав, %: С=82.8; Н=8.22; N=2.27; S=5.42; О=1.29.

Таким образом, это две группы коллоидно-дисперсных веществ нефтей, различающихся по составу, строению, размерам частиц и свойствам.

Методом ЭПР установлено, что в молекулах САВ имеются неспаренные электроны. В конденсированных ароматических структурах неспаренный электрон может быть делокализован по всем связям молекулы САВ, что снижает их химическую активность.

Установлена экспоненциальная зависимость между содержанием свободных радикалов в САВ и степенью их ароматичности. По мере увеличения степени ароматичности в ряду масла ® смолы ® асфальтены ® карбоиды число свободных радикалов возрастает на 1 порядок и составляет от 1*1017 до 1.5*1020 на 1г вещества.

Асфальтены в нефтях могут находиться в молекулярном состоянии и в виде надмолекулярных структур, в состав которых входит до 5 и более молекул. На степень их ассоциации сильно влияет состав среды.

При низких концентрациях асфальтенов (2% - в бензоле и 16% - в нафталине) они находятся в молекулярном состоянии и можно точно поределить их молекулярную массу. Полученное значение молекулярной массы порядка 2000.

При повышении концентрации асфальтенов формируются надмолекулярные структуры. В результате этого молекулярная масса асфальтенов возрастает до 4000 или 6000 в зависимости от числа молекул в ассоциате.

Молекулярная масса смол 460-1600 а.е.

Методами РСА, электронной микроскопии и др. найдены размеры надмолекулярных структурных образований асфальтенов, представляющих пачку из 5-6 молекул асфальтенов:

Диаметр ассоциата 8-15 А°,

Толщина 16-20 А°, (А°=10-10м).

Базисные плоскости асфальтенов, образованные конденсированными ароматическими ядрами, расположены беспорядочно на расстоянии 3.5 - 3.7А° друг от друга. Базисные плоскости связаны между собой силами Ван-дер-Ваальса.

Таким образом, в зависимости от степени ассоциации молекул асфальтенов в надмолекулярных структурах колеблется как молекулярная масса ассоциатов, так и их размеры.

Соотношение молекул асфальтенов и их надмолекулярных структур зависит от состава дисперсионной среды

Нефть представляет собой по отношению к асфальтенам смесь растворителей, лиофобных (метановые углеводороды и, возможно, нафтены) и лиофильных (ароматические углеводороды и, особенно, смолы).

Если дисперсионная среда (нефть) содержит растворители (углеводороды) хорошо растворяющие асфальтены, то они, как правило, не образуют ассоциатов. Если же дисперсионная среда лиофобна по отношению к асфальтенам, то в таких нефтях асфальтены образуют ассоциаты, которые коагулируют и выпадают в твердую фазу, если степень ассоциации асфальтенов высока. Часто это происходит еще в условиях залегания нефти в пласте (табл.3.). Или они могут находиться в системе во взвешенном состоянии, если вязкость системы высока, а степень ассоциации асфальтенов низкая.

Таблица 3

Состав нефти, добытой из залежи пласта А4 Ильменевского месторождения и оставшейся в пласте после завершения разработки

 

Нефть Содержание, %
Асфальтены Смолы Парафины Сера
Добытая 1.70 10.30 5.70 1.40
Остаточная 26.36 14.23 6.24 1.66

 

По этой причине легкие нефти, бедные ароматическими углеводородами, содержат в растворенном состоянии лишь ничтожное количество асфальтенов, небольшое количество их находится иногда еще во взвешенном грубодисперсном состоянии. Напротив, тяжелые, богатые смолами нефти могут содержать значительное количество асфальтенов в виде устойчивого коллоидного раствора.

Таким образом, число молекул в ассоциате, равновесное состояние ассоциатов в дисперсионной среде обусловлено соотношением в ней различных групп углеводородов.

С повышением температуры асфальтеновые ассоциаты склонны к физическому и даже к химическому агрегированию.

Одни и те же соединения, из которых состоит нефть как дисперсионная среда, по разному влияют на поведение ассоциатов различной природы в нефтяной системе. Парафины, в отличие от асфальтенов, хорошо растворяются в парафиновых углеводородах, которые являются неполярными растворителями. Твердые парафины (С17-С36)­­ лучше растворяются в высокомолекулярной части неполярных растворителей, чем в легких углеводородах, особенно при низких температурах.

Таким образом, степень полярности дисперсионной среды (растворителя) по разному влияет на размерразличных по природе ассоциатов в нефтяной дисперсной системе, обусловливая различную концентрацию надмолекулярных структур в нефтях.

Область условий, при которых нефтяная система является молекулярной, зависит от ее химического состава. С ростом содержания смолисто-асфальтеновых соединений область молекулярного состояния постепенно вырождается и нефтяная система становится дисперсной при любых значениях давления и температуры. Так, сырым нефтям присуща исходная дисперсность, обусловленная наличием в них смолисто-асфальтеновых веществ.

Принципиально может быть три способа получения или возникновения нефтяных систем, содержащих ССЕ:

1. Удаление из системы углеводородов, являющихся растворителями надмолекулярных структур. Например, испарение легких фракций нефти при хранении. Тогда в остатке накапливаются высокомолекулярные компоненты (асфальтены, смолы, ароматические, парафиновые углеводороды), склонные к образованию сложных структур;

2. Введение в нефтяную систему специальных добавок, например, ПАВ и полициклических ароматических углеводородов. Аналогичная ситуация наблюдается при смешении нефти, содержащей значительные количества асфальтенов с нефтью парафинового основания. Парафины являются лиофобным растворителем по отношению к асфальтенам и это приведет к коагуляции последних и выпадению их из раствора.

В пластовых условиях в нефти в растворенном виде содержится значительное количество газообразных углеводородов от метана до пентана. Растворенные газы оказывают десольватирующее действие на ассоциаты асфальтенов, т.е. разрушают сольватную оболочку. Поэтому асфальтеновые ассоциаты теряют устойчивость и коагулируют, т.е. дисперсные частицы асфальтенов слипаются между собой, укрупняются. Это приводит к потере ценных составляющих нефти и снижению нефтеотдачи пласта (табл.3.).

Разгазирование нефти приводит к относительному возрастанию в нефти содержания ароматических углеводородов и, следовательно, к растворению в них дисперсных частиц, образованных асфальтенами. При этом вязкость нефти увеличивается.

3. Понижение или повышение температуры: при этом появляются надмолекулярные структуры, в результате чего система переходит из стабильного состояния в нестабильное. Наиболее чувствительны к температуре парафиновые ССЕ.

Приведенные примеры наглядно показывают, что степень дисперсности нефтяной системы, размеры ССЕ зависят от внешних условий, от степени воздействия внешних факторов. Под их влиянием происходит антибатное изменение размеров ядра и толщины сольватного слоя ССЕ (рис.7). В зависимости от процессов целесообразно одни осуществлять при минимальных значениях размеров ядра ССЕ, а другие – при максимальных.

Можно проследить зависимость изменения параметров ССЕ, например, от растворяющей способности(т.е. состава) дисперсионной среды: нерастворитель ® плохой растворитель ® хороший растворитель, т.е. через растворяющую способность (РС) среды воздействовать (регулировать) на структурно-механическую прочность и устойчивость НДС, поскольку именно эти свойства существенно влияют на многие процессы переработки нефти, а также добычи и транспорта.

Изменение РС среды (переход от нерастворителя к хорошему растворителю) сопровождается следующими явлениями в нефтяной системе (рис.7).

Кривые изменения радиуса ядра (R) ССЕ (1) и толщины сольватного слоя (d) (2) носят антибатный характер. Между радиусом ядра ССЕ (1) и структурно-механической прочностью (4) и между толщиной сольватного слоя (2)и устойчивостью ССЕ (3)наблюдается четкая связь. Все кривые связаны друг с другом.

Повышение РС среды (нерастворитель – плохой растворитель) приводит к уменьшению радиуса ядра ССЕ и одновременному увеличению толщины сольватного слоя до максимального значения. В точке максимума, когда скорость формирования сольватных оболочек равна скорости их разрушения, НДС имеет максимальную устойчивость против расслоения системы на фазы. Это объясняется тем, что в этой точке ассоциаты имеют максимальную толщину сольватной оболочки, следовательно, минимальную плотность, что уменьшает движущую силу процесса расслоения: разность плотностей частицы и среды (закон Стокса). Наличие толстой прослойки между частицами ассоциатов приводит к снижению взаимодействия между ними и, следовательно, структурно-механической прочности системы, первый минимум на кривой 4.

При дальнейшем повышении РС среды (от плохого растворителя к хорошему) она начинает оказывать интенсивное действие на сольватный слой. Результатом этого является оттягивание части растворяющей силы сольватного слоя для компенсации увеличивающейся РС среды и возрастание радиуса ядра ССЕ.

При утонении сольватного слоя на поверхности ассоциатов повышается нескомпенсированность поверхностной энергии, система становится неустойчивой. После полного удаления сольватного слоя дисперсионная среда начинает взаимодействовать непосредственно с ядром надмолекулярной структуры, обусловливая ее полное разрушение при некотором значении РС, когда ССЕ полностью переходит в состояние молекулярного раствора с бесконечной устойчивостью против расслоения (система термодинамически устойчива).

Примером проявления свойств нефти как дисперсной системы служит следующая ситуация. Дебит скважины могут ограничивать факторы, связанные с физико-химическими свойствами потока, движущегося в условиях изменяющегося давления и температуры. К ним относятся: песчаные пробки, образующиеся в результате скрепления частиц вяжущими компонентами нефти, АСПО, кристаллогидраты природных газов и др.

Все эти явления связаны с фазообразованием, изменением размеров дисперсной фазы, расслоением дисперсной системы. Чтобы их предотвратить, следует повысить устойчивость нефти против расслоения путем регулирования межмолекулярных взаимодействий внешними воздействиями, например, введением различных добавок.

Так, для предотвращения нежелательного выпадения парафинов и асфальтенов на поверхность скважины можно применить подачу на забой активатора – концентрата ароматических углеводородов. В результате изменения баланса сил ядроССЕ диспергируется, тем самым повышается устойчивость дисперсной системы против расслоения и происходит вынос асфальтенов и парафинов вместе с потоком флюидов на поверхность.

Другой пример. Добыча нефти на Чкаловском месторождении осуществляется из двух горизонтов: юрского и М-горизонта (палеозойского). Юрская нефть типична для Томской области, а нефть палеозойского – уникальна по своим реологическим свойствам, обусловленным высоким содержанием парафина: 20-38% в зависимости от скважины. Смол и асфальтенов, соответственно, 0,56% и 0,43% (1992 г.), т.е. очень мало, а в 1994 г. их не обнаружили совсем. Температура застывания нефти М-горизонта +12 - +18 оС, динамическая вязкость – 7,98мПа*с. Температура застывания юрской нефти: -25 оС, динамическая вязкость – 1,65 мПа*с.

Вязкость палеозойской нефти очень высокая, а при +12 - +18 оС свойство текучести утрачивается полностью из-за образования структуры парафиновых ассоциатов. Как перекачивать такую нефть? Выход был найден в смешении палеозойской и юрской нефтей с соотношении 1:9, т.е. изменили соотношение структурирующихся и неструктурирующихся компонентов. Вязкость системы составила 1,885 м2/с. Но при температуре ниже 20 оС неньютоновские свойства остаются.

Между дисперсностью и макроскопическими свойствами нефтяной дисперсной системы существует связь, выражаемая полиэкстремальными зависимостями (рис.8,9). Такие зависимости позволяют подбирать оптимальные сочетания внешних воздействий для целенаправленного изменения коллоидно-химических и реологических свойств нефтей.

Рис.8. Зависимость кинематической вязкости (а) и температуры застывания (б) смеси песцовой и западно-сибирской нефти от содержания песцовой нефти в смеси

 

Оптимизация процессов транспорта нефтяных систем связана с проблемой уменьшения гидравлического сопротивления. Принципиально новые решения возможны путем целенаправленного воздействия на нефтяные системы перед и в процессе транспорта.

На рис.8 представлена полиэкстремальная зависимость вязкости и температуры застывания нефтяной смеси от соотношения исходных нефтей. При транспорте в условиях переменных термобарических параметров нефть претерпевает многократные изменения структуры, результатом является изменение степени дисперсности и свойств поверхностных слоев, разделяющих объемную фазу и поверхность трубопроводов.

Известно, что при переходе к развитому турбулентному течению происходит резкое изменение скорости потока при переходе от пристеночной области к объемной. Физико-химический механизм действия добавок связан ламинаризацией турбулентного потока, изменением его структуры, уменьшением интенсивности поперечных турбулентных пульсаций и поперечного переноса импульса при одновременном увеличении толщины пристенного слоя.

Более «массивные» дисперсные частицы отстают от потока, мигрируют в поперечном направлении и скапливаются вблизи поверхности раздела. В нефтяной системе такими «массивными» частицами являются высокомолекулярные смолисто-асфальтеновые соединения. Этот эффект ведет к концентрационному перераспределению компонентов по радиусу трубы и, соответственно, к дополнительному уменьшению устойчивости системы.

Регулирование гидродинамических параметров путем управления физико-химическими характеристиками транспортируемой нефтяной системы позволило бы значительно увеличить пропускную способность нефтепроводов.

При изучении процессов извлечения нефти из пласта исходят из того, что нефть рассматривают как некое физическое тело с усредненными параметрами, взаимодействующее с породой. И именно характеристики породы определяют коэффициент нефтеотдачи пласта. На первый взгляд это вполне очевидно: порода имеет постоянные характеристики: проницаемость, пористость, неоднородность капилляров, удельная поверхность, смачиваемость и т.д., в то время как характеристики нефти переменчивы и в большой степени зависят от внешних условий. Вместе с тем, на природу и эффективность контакта нефти с породой, безусловно, влияют особенности свойств нефти, обусловленные ее дисперсным состоянием в породе, и игнорирование этого влияния может привести к серьезному методическому просчету и, как следствие, к снижению результативности методов повышения нефтеотдачи.

В силу развитой поверхности пор важным коллоидно-химическим фактором, влияющим на эффективность добычи нефти, является строение и толщина слоев нефти на границе с коллекторными породами. Граничный слой толщиной порядка нескольких микрометров представляет собой дисперсную систему, по строению и свойствам отличную от объемной фазы нефти, которая характеризуется собственной дисперсностью. Неоднородность дисперсного строения породы и дисперсность нативной нефти осложняют решение, казалось бы, очевидной задачи — регулирование толщин граничных слоев в соответствии с размерами капилляров породы. Исходя из того, что большая доля нефти не может быть извлечена на дневную поверхность и находится в гранично-связанном состоянии, проблему повышения коэффициента нефтеотдачи можно решить, связав ее именно с регулированием толщины граничных слоев нефти.

Толщины граничных слоев меняются экстремально в зависимости от природы, концентрации и степени дисперсности вытесняющих реагентов. Так, под влиянием ПАВ происходит почти двухкратное изменение толщин граничных слов нефти (рис.4). Растворы ПАВ, полимеров, легкие углеводороды и другие реагенты, применяемые для увеличения коэффициента нефтеотдачи, фактически оказывают воздействие на толщину граничных слоев, что ведет к регулированию вязкости, угла смачивания и поверхностного натяжения на макроскопическом уровне.

Таким образом, достижение высоких показателей процессов добычи, транспорта и переработки нефти возможно путем установления оптимальных соотношений между параметрами внешнего воздействия на нефтяную дисперсную систему в области экстремумов нелинейных эффектов.

 

Итак, в общем случае в результате слабых взаимодействий ВМС и НМС происходит физическое агрегирование молекул ВМС с образованием надмолекулярных структур и ССЕ. В нефтяной системе при данных условиях углеводородные и не углеводородные соединения образуют: сильноструктурированную (надмолекулярную), слабоструктурированную (сольватные оболочки) и неструктурированную (дисперсионная среда) части. Между ними устанавливается обратимое динамическое равновесие. Для изменения равновесия необходимо изменить энергиюнефтяной системы.

На стадии слабых взаимодействий надмолекулярные структуры формируются за счет сил Ван-дер-Ваальса. В зависимости от природы ВМС нефти и величины сил взаимодействия молекул для каждого вида ВМС образуется свой тип надмолекулярных структур, обладающих определенными физико-химическими свойствами (асфальтеновый, парафиновый и др. ассоциаты).

В зависимости от температуры возможно существование трех состояний нефтяных дисперсных систем: молекулярные растворы, обратимо структурированные жидкости и необратимо структурированные жидкости.

Процессами физического агрегирования можно управлять изменением сделующих факторов:

· Отношение структурирующихся компонентов к неструктурирующимся;

· Температура;

· Давление;

· Растворяющая сила среды;

· Степень диспергирования ассоциатов, применяя механические способы, электрические и магнитные поля и др.

 

Похожие статьи:

poznayka.org

Надмолекулярные структуры изменение толщины слоя

    Изменение РС среды (переход от нерастворителя к хорошему растворителю) сопровождается сложными явлениями в нефтяных системах. Кривые изменения толщины слоя надмолекулярной структуры (см. рис. 13, а, кривая I) н сольватного слоя (кривая 2) носят антибатный характер. Между толщиной слоя надмолекулярной структуры и структурно-механической прочностью (кривая 4) и между толщиной сольватного слоя и устойчивостью (кривая 3) сложной структурной единицы наблюдается четкая закономерность. Все эти кривые взаимосвязаны друг с другом. [c.63]

    На кинетику изменения толщин слоев надмолекулярных структур (в случае ассоциатов), сольватного слоя, устойчивость и структурно-механическую прочность сложной структурной единицы под действием РС среды весьма существенное влияние оказывает состав среды. Обычно в реальных дисперсионных средах применяют смесь различных растворителей, обладающих неодинаковыми (чаще всего аномальными) свойствами, приводящими к неодинаковым сопротивлениям системы при реализации взаимодействия твердой фазы со средой. Это обстоятельство должно быть учтено на практике. [c.64]

    Не рассматривая вывод кинетических уравнений формирования слоев надмолекулярных структур, аналогичных уравнениям, выведенным выще для изучения кинетики формирования сольватных слоев, мы остановимся на выводах, вытекающих из этих уравнений. На рис. 13 на основании кинетических уравнений формирования (разрушения) слоев показана зависимость изменения толщины слоев от растворяющей силы дисперсионной среды (нерастворитель, плохой растворитель, хороший растворитель). РС среды, обусловливает структурно-механическую прочность н устойчивость НДС, оказывающих существенное влияние на многие процессы переработки нефти (в том числе и на процессы производст- [c.62]

    Под действием внешних факторов в результате диссоциации старых и образования новых межмолекулярных связей происходят взаимосогласованные изменения размеров составных ча стей сложной структурной единицы сольватного слоя и надмолекулярной структуры. Протекающие на молекулярном и надмолекулярном уровне изменения определяют новое энергетическое состояние и обуславливают соответствующие изменения макроскопических физико-химических свойств нефтяных дисперсных систем таких, как агрегативная устойчивость, структурномеханические характеристики. Для решения ряда практических задач технологии переработки нефтяных дисперсных систем необходимо действием различных факторов целенаправленно влиять на соотношение размеров составных частей сложной структурной единицы, Принимая за скорость формирования (разрушения) слоев отношение бесконечно малого приращения толщины слоя к соответствующему приращению растворяющей силы среды и используя модель последовательных реакций, в работе [112] получили систему кинетических уравнений. С их помощью построены кривые изменения радиуса надмолекулярной структуры Я и толщины сольватного слоя Я, которым соответствуют кривые изменения агрегативной устойчивости и структурно-механической прочности нефтяных дисперсных систем (рис. 6). [c.40]

    Изменение растворяющей способности дисперсионной среды и активности надмолекулярной структуры вследствие перехода от нерастворителя к плохому растворителю и далее к хорошему растворителю сопровождается в обратимой нефтяной дисперсной системе двумя противоположными процессами. С одной стороны, по мере перехода от нерастворителя к плохому растворителю происходит повышение степени дисперсности ассоциатов, приводящее к увеличению поверхностной активности и росту толщины сольватного слоя сложной структурной единицы с другой стороны, взаимодействие дисперсионной среды с поверхностью сольватного слоя уменьшает толщину последнего. Разность скоростей формирования и разрушения сольватных слоев определяет их толщину при воздействии данного вида растворителя и обусловлена энергией взаимодействия сольватного слоя с поверхностью надмолекулярной структуры. [c.48]

    Следует особо отметить зависимость изменения толщины сольватного слоя и устойчивости нефтяной дисперсной системы от растворяющей способности дисперсионной среды. Повышение растворяющей способности среды вызывает непрерывное увеличение сольватного слоя сложной структурной единицы до максимума и одновременное уменьшение размеров надмолекулярной структуры. При этом нефтяная дисперсная система имеет максимальную устойчивость против расслоения, то есть максимальную коллоидную стабильность. При дальнейшем увеличении растворяющей способности среды, при переходе от плохого растворителя к хорошему, дисперсионная среда оказывает интенсивное влияние на сольватный слой и толщина его уменьшается, за счет чего повышается движущаяся сила процесса расслоения системы на фазы. Дисперсионная среда начинает взаимодействовать непосредственно с надмолекулярной структурой. После полного растворения сольватной оболочки и надмолекулярных структур нефтяная дисперсная система переходит в состояние молекулярного раствора с бесконечной устойчивостью против расслоения. В этом случае система термодинамически устойчива. [c.48]

    Образцы полимеров, имеющие значительную толщину (волокна, пленки, бруски и др.), можно изучать с помощью т. наз. метода реплик. В этом случае исследуется морфология поверхности в предположении, что строение блока в объеме такое же. На свеже-сформованную поверхность полимера (образовавшуюся либо в результате удаления растворителя, либо при охлаждении расплава) напыляют в вакууме (0,013— 0,0013 н1ж , или 10- —10 рт. ст.) чаще всего слой платины и угля толщиной ок. 10 нм (100 А), который передает все неровности поверхности, обусловленные наличием надмолекулярных структур. Напыленный слой (реплику) можно отделить от поверхности практически всех полимеров с помощью желатина, растворяемого в водном р-ре роданистого аммония. Промытую в воде реплику вылавливают на металлич. сеточку и помещают в микроскоп. Методом реплик исследуют кристаллизацию полимеров, закономерности изменения структуры полимеров при отжиге, деформировании, радиационных воздействиях, изучают влияние химич. превращений на возникновение и трансформацию надмолекулярных струк р и др. [c.475]

    Описанные эффекты в равной мере присущи как аморфным, так и кристаллическим полимерам. Однако в случае последних ограничения, накладываемые поверхностью, приводят к изменению условий кристаллизации и характера возникающих в присутствии поверхности надмолекулярных структур, а в случае, когда толщина поверхностного слоя особенно мала, возможно полное подавление процессов кристаллизации, как это было показано в работах Малинского [17, 18]. [c.180]

    Установлена корреляция между изменениями надмолекулярной организации и протеканием термоокисления. В начале процесса слой крупных сферолитов постепенно распространяется от поверхности в глубину образца (до 500 мкм) рост толщины слоя прекращается при появлении на поверхности образца новой структуры. Этот момент совпадает с окончанием индукционного периода окисления. В начале окисления скорость химического связывания кислорода невелика и слой крупных сферолитов (рис. 3) сравнительно глубок. Последующие изменения надмолекулярной структуры локализуются в узкой полосе у самой поверхности (25—125 мкм). Окисление развивается настолько быстро, и скорость связывания кислорода так велика, что кислород не успевает [c.41]

    Обнаруженные закономерности в изменении надмолекулярной структуры ненаполненных и наполненных покрытий в зависимости от природы подложки проявляются для покрытий, сформированных в различных условиях. Число двойных связей ненасыщенного полиэфира и стирола, вступающих во взаимодействие в процессе полимеризации, можно регулировать путем изменения температуры и продолжительности формирования покрытий. Из кинетических данных об изменении внутренних напряжений следует, что при толщине 300 мкм процесс формирования покрытий при 20 °С заканчивается через 20 сут, а при 80 °С — через 6 ч. Для покрытий, сформированных в этих условиях, были получены сравнительные данные о влиянии режима отверждения на их структуру. В покрытиях, отвержденных при 20 °С на подложках с малой адгезией, формируется структура глобулярного типа. При формировании покрытий в этих же условиях на стали наблюдается образование сетчатой структуры из анизодиаметричных структурных элементов. Использование меньшего числа центров структурообразования и более рыхлая упаковка структурных элементов в граничных слоях покрытий, отвержденных при 20 °С, обусловлены малой подвижностью структурных элементов в этих условиях формирования. С повышением температуры до 80 °С уменьшается вязкость полиэфиров и увеличивается доступность для структурных элементов большего числа активных центров структурообразования на поверхности подложки. [c.30]

    Все это свидетельствует о том, что в полимерных покрытиях значительной толщины поверхностные процессы на границе полимер — подложка являются одним из важных факторов, определяющих надмолекулярную структуру и свойства покрытий в целом. Из этих данных также следует, что адгезия полимерных покрытий определяется не только природой, числом и характером распределения молекулярных связей в пограничном слое, но и скоростью протекания релаксационных процессов при формировании покрытий, зависящей от строения полимера и структуры покрытий. Формирование адгезионных связей необходимо рассматривать как поверхностный процесс, действие которого не ограничивается пределами одного или нескольких мономолекулярных слоев, а вызывает изменение структуры всех слоев покрытий в целом. [c.37]

    В других работах [63] структура пограничного слоя представляется из клубков, взаимодействующих с поверхностью по отдельным звеньям. В зависимости от плотности упаковки макромолекул клубки могут быть эллипсоидальной или цилиндрической формы с большой осью, ориентированной перпендикулярно поверхности. При отсутствии специфического взаимодействия полимера с наполнителем силы, действующие в поверхностном слое, достаточно малы, чтобы вызвать изменение конформации макромолекул и разворачивание полимерных клубков. Если взаимодействие макромолекул с поверхностью адсорбента больше сил внутримолекулярного взаимодействия, допускается возможность разворачивания макромолекул в пограничном слое [62]. Предполагается также [64], что большая толщина граничных слоев обусловлена адсорбцией поверхностью наполнителя из умеренно концентрированных растворов вторичных надмолекулярных структур. [c.38]

    Аналогичный эффект послойной упорядоченности и различной плотности упаковки структурных элементов, обусловленный ориентацией их в пограничном слое, имеет место при формировании полимерных покрытий на различных подложках. Образование упорядоченных надмолекулярных структур в олигомерах на границе полимер — наполнитель и полимер — подложка увеличивает скорость полимеризации и тем больше, чем меньше толщина покрытий. Об этом свидетельствуют кинетические данные об изменении внутренних напряжений и теплофизических параметров при формировании покрытий различной толщины (рис. 1.24). Это связано с особенностями полимеризация в присутствии ориентированных упорядоченных структур. При взаимодействии пленкообразующего с твердой поверхностью в результате образования ориентированных упорядоченных структур условия полимеризации вблизи твердой поверхности должны отличаться от условий в объеме. С образованием ориентированных слоев из молекул мономеров связывается увеличение скорости полимеризации мономе- [c.42]

    Специфика формирования полимерных покрытий связана с возникновением неоднородной дефектной структуры по толщине пленки вследствие неодинаковых скорости и условий отверждения различных слоев [51]. Одним из способов резкого понижения внутренних напряжений в полимерных покрытиях является использование пленкообразующих с регулярным строением молекул. Причина этого явления в таких системах связана с особенностями структурообразования, обусловленными формированием в жидкой фазе однородной упорядоченной структуры из )азвернутых макромолекул п фиксированием ее в покрытиях 180]. Эта особенность структурообразования наглядно проявляется при формировании покрытий из олигоэфиракрилатов различного строения. На основании реологических, физико-механических, теплофизических и структурных данных было установлено, что при получении покрытий из олигомеров на первой стадии их формирования образуются локальные связи между небольшим числом молекул с одновременным формированием надмолекулярных структур, а на второй стадии между этими структурами возникают связи и образуется пространственная сетка. На последней стадии вследствие торможения релаксационных процессов наблюдается резкое нарастание внутренних напряжений. Из данных об изменении реологических свойств олигоэфирмалеинатов на различных этапах их отверждения следует, что исходные олигомеры представляют собой системы ньютоновского типа. Через определенный период времени наблюдается не только нарастание вязкости, но и изменение характера реологических кривых, связанное с переходом системы в структурированное состояние за счет возникновения связей между структурными элементами. На рис. 5.1 приведены данные о кинетике расходования двойных связей, нарастании внутренних напряжений, прочности при растяжении, модуля упругости и вязкости при формировании покрытий из этих, же систем. Из рисунка видно, что, несмотря на участие в процессе полимеризации на начальной стадии формирования значительного числа функциональных групп, покрытия характеризуются низкими внутренними напряжениями и физико-механическими характеристиками. Резкое нарастание последних наблюдается [c.182]

    Из изложенного видно, что существенную роль в формировании структуры и свойств полимерных покрытий играют поверхностные явления. В отличие от пленок и блочных материалов, процесс формирования покрытий имеет ряд специфических особенностей. Адсорбционное взаимодействие пленкообразующего с поверхностью твердых тел сопровождается формированием неоднородной дефектной структуры по толщине пленки. Изменение структуры по толщине пленки наблюдается для покрытий из пленкообразующих различного химического состава и класса (мономеров, олигомеров, растворов, расплавов и дисперсий полимеров). Характер изменения структуры по толщине покрытий определяется прочностью адгезионного взаимодействия и существенно зависит от текстуры подложки. Для покрытий с соотношением адгезионной к когезионной прочности большим 0,1—0,2 на границе с подложкой образуется слой толщиной 100—200 нм с однородной упорядоченной структурой из более мелких и плотно упакованных структурных элементов по сравнению с остальными слоями. Толщина таких слоев намного превосходит толщину монослоя, что свидетельствует о взаимодействии с поверхностью подложки не отдельных молекул, а образуемых ими надмолекулярных структур. [c.250]

    Таким образом, исследование процессов, происходящих в наполненных полимерных системах, с позиций термодинамики позволяет сделать выводы о структуре полимера в граничном слое вблизи поверхности раздела. Видно, что влияние наполнителя не ограничивается только слоями, лежащими в непосредственной близости к границе раздела. Это согласуется с данными о толщинах адсорбционных слоев, полученными различными методами, и может быть объяснено, как мы уже отмечали выше, только влиянием наполнителя на формирование надмолекулярных структур и взаимодействием их с поверхностью наполнителя, приводящим к изменению условий протекания релаксационных процессов и плотности упаковки макромолекул. [c.123]

    При термоокислении в блоке первая стадия процесса — укрупнение сферолитов — начинаясь в поверхностном слое, захватывает постепенно слой толщиной до 500 мкм и прекращается с окончанием индукционного периода окисления. Дальнейшие изменения надмолекулярной структуры протекают лишь в тонком поверхностном слое (до 125 мкм), поскольку кислород не успевает диффундировать в глубинные слои блока из-за большой скорости связывания его в поверхностном слое. Таким образом, поверхностный слой оказывает защитное действие по отношению к глубинным слоям блока [148, 153]. [c.99]

    В настоящее время имеется немного данных о структуре переходных слоев. Исследование структуры межфазного слоя в смеси полипропилен (ПП)—ПЭ методами оптической и электронной микроскопии показало, что в переходной зоне толщиной 1000 А отсутствуют четко выраженные надмолекулярные образования, а по мере удаления от границы раздела происходит постепенное изменение сферолитной структуры обоих компонентов [396]. [c.205]

    Экстремальные изменения радиуса надмолекулярной структуры II толщины сольватного слоя непосредственно влияют на характер зависимости структурно-механической прочности и агрегативной устойчивости нефтяной системы. Кривые изменения этих свойств типичны для многих нефтепродуктов. В точке Ж устойчивость нефтяных дисперсных систем к расслоению на фазы максимальна толщина сольватной оболочки в точке А имеет максимальное значение Я кс, благодаря чему уменьшается движущая сила процесса расслоения. Толстая прослойка дисперсионной среды между надмолекулярными структурами снижает структурно-механическую прочность нефтяных дисперсных систем, первый минимум которой достигается в точке К. Утоньшение сольватного слоя на поверхности надмолекулярных структур повышает движущую силу расслоения системы на фазы. После удаления основной части сольватного слоя (точка 3) дисперсионная среда начинает взаимодействовать непосредственно со слоем надмолекулярной структуры, обуславливая его полное разрушение в точке Б. В этой точке сложные структурные единицы переходят в состояние молекулярного растбора с бесконечной устойчивостью к расслоению на фазы. Предлагаемое объяснение экстремальных изменений структурномеханических свойств и агрегативной устойчивости нефтяных систем справедливо, если считать, что межфазная энергия на границе структурная единица — дисперсионная среда меняется незначительно. [c.41]

    Аналогично изменению толщины сольватного слоя иод действием РС среды может изменяться и толщина слоя надмолекулярной структуры НДС (ассоциата). Эта толщина формируется под влиянием разницы сил межмолекулярного взаимодействия ВМС и растворяющей силы сольватного слоя. На образование сольватного слоя в свою очередь, как было ранее показано, оказ[>1вает влияние растворяющая сила дисперсионной среды. В общем случае эти изменения могут быть представлены в следующем виде  [c.62]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Электронно-микроскопические исследования показали [8-34], что при нагревании СУ до 3000 С в основном наблюдаются образования, имеющие морфологию сажи (рис. 8-14). СУ сохраняет в основном морфологические признаки исходных полимеров [8-37, 39]. На электронной микрофотографии рис. 8-14 можно видеть набор претерпевших изменения глобул, которые близки по структуре к неграфитирующимся частичкам сажи. Исходя из этого модель основного каркаса неграфитирующегося углерода может быть изображена в виде взаимно переплетающихся углеродных лент, которые состоят из многократно изогнутых пачек гексагональных слоев (рис. 8-15). Гексагональные слои в пачках располагаются неупорядоченно (турбостратно). Средняя толщина пачек соответствует значению а расстояния до изгибов лент. В местах пересечения, по-видимому, уже на стадии отверждения ленты сшиваются. При дальнейшем термолизе, на основании изучения электронных микрофотографий можно считать, что надмолекулярная структура претерпевает изменения, но сохраняет свою морфологию. Данное обстоятельство препятствует переходу основного вещества СУ в трехмерноупорядоченное состояние. Различная упаковка глобул у СУ, полученного при 900 С, показана на рис. 8-16. [c.494]

    Адсорбция полимера из растворов на твердых поверхностях весьма апецифична и существенно отличается от адсорбции низкомолекулярных веществ. Эти отличия связаны с тем, что при адсорбции на поверхность адсорбента переходят не изолированные полимерные материалы (за исключением случаев (предельно разбавленных растворов), а агрегаты молекул или другие их надмолекулярные образования, возникающие в растворах уже при относительно небольших концентрациях. С изменением концентрации растворов происходит непрерывное изменение как размера, так и формы адсорбируемых частиц [5]. Молекулярная подвижность в адсорбционном слое немонотонно изменяется с толщиной слоя. Это обусловлено сложными изменениями структуры адсорбционного слоя в зависимости от концентрации раствора, из которого ведется адсорбция. [c.52]

    Из полученных данных вытекает, что структурные превращения в процессе старения под действием ультрафиолетового облучения сопровождаются разрушением структур, ранее возникших при формировании, и образованием новых, упорядоченных структур, не наблюдаемых при формировании покрытий. В зависимости от характера образующихся структур и прочности связи между ними изменяются механические и теплофизические параметры покрытий. Надмолекулярная структура, возникшая в межфазных слоях на границе с подложкой, является более прочной и стойкой к действию ультрафиолетового облучения. Из этих результатов также следует, что пленки толщиной 300—400 мкм из полиэфирных и эпоксидных олигомероЕ являются проницаемыми для ультрафиолетовых лучей, а структурные изменения в слоях, граничащих с подложкой, наблюдаются уже через 1,5 ч облучения. Эти данные хорошо согласуются с результатами, приведенными в работах [47, 48]. [c.32]

    Ярким примером зависимости кинетики реакции от наличия надмолекулярных образований может служить термоокислительная деструкция полипропилена, подробно исследованная в работах Шляпникова с сотр. [56—59]. Хотя реакции деструкции выходят за рамки нашего рассмотрения, надмолекулярные эффекты, проявляющиеся при окислении полипропилена, представляются достаточно интересными для макромолекулярных реакций вообще. Так, было показано [56], что термоокислительная деструкция идет преимущественно в аморфных областях. Если же сравнивать кинетику реакции в образцах с разной кристаллической структурой, то оказывается, что крупносферолитный полипропилен окисляется медленнее, чем мелкосферолитный [57]. Реакция также весьма чувствительна к толщине образца — в поверхностных слоях толстых образцов (300 мкм) деструкция протекает до большей глубины, чем в тонкой (30 мкм) ориентированной пленке, окисленной в тех же условиях [-58]. Скорость реакции окисления зависит и от степени вытяжки ориентированного образца [59], причем возрастание скорости в этом случае сопровождается увеличением степени кристалличности, что должно было бы приводить к замедлению реакции. Авторы [59] предполагают, что в ориентированном полипропилене кинетика реакции меняется в результате изменения конформаций цепей, входящих в аморфные области, и их конформационной подвижности. [c.49]

chem21.info

Надмолекулярная структура зависимость от ПАВ

    Одним из возможных факторов, определяющих высокую склонность асфальтенов к ассоциации и способствующих стабилизации надмолекулярных структур является наличие в них устойчивых свободных радикалов. Наличие свободных радикалов обуславливает явление парамагнетизма, свойственное асфальтенам. Установлено,, что между степенью ароматичности и количеством парамагнитных центров наблюдается прямолинейная зависимость. Концентрация парамагнитных частиц у асфальтенов имеет порядок Ш пмч/г. При средней молекулярной массе асфальтенов около 2000 содержание парамагнитных фрагментов составляющих молекул может достигать до 40% на ассоциат [21]. В смолах их содержание не более 2% от общего числа свободных радикалов, обнаруживаемых в исходном остатке [22]. [c.25]     Процесс релаксации напряжения в эластомерах, в частности в резинах, связан с протеканием в них как физических, так и химических процессов (см. 2 гл. П). Физическая релаксация объясняется перегруппировкой различных структурных элементов, выведенных из состояния равновесия внешними силами, и происходящими в поле действия межмолекулярных сил. Процессы ориентации свобо)1ных сегментов определяют быструю стадию физической релаксации, протекающую при обычных температурах практически мгновенно. Именно подвижность свободных сегментов ответственна за основной процесс стеклования, которому соответствует а-процесс в уже знакомом нам (гл. I) спектре времен релаксации, приведенном на рис. П. 14 для резин из диметилстирольного каучука при 20°С. Медленная стадия физической релаксации связана с молекулярной подвижностью сегментов, входящих в элементы надмолекулярной структуры с временами релаксации, находящимися в пределах 10 —10 с (при 20 °С). Это как раз сегменты с максимальной взаимной корреляцией движений. В зависимости от размеров и типа упорядоченных микрообластей, [c.99]

    Факт зависимости проницаемости от надмолекулярной структуры полимерных мембран связан также с линейной зависимостью между поглощением влаги и долей аморфной фазы в целлюлозе. Более того, при гидролизном нли микробном разложении полимерных мембран наиболее уязвимы аморфные области, которые разрушаются первыми. Этот факт является основой экспериментального метода определения сопротивляемости, а следовательно, и доли аморфной фазы по кинетике гидролиза. [c.71]

    Происходящие при разложении гидратцеллюлозного волокна процессы сопровождаются потерей массы с усадкой. Из кривых дифференциальных потерь массы в зависимости от температуры нагрева (рис. 9-65) видно, что максимальные скорости разложения находятся в интервале 200-350 С и зависят от структуры ГЦ волокна [9-137] и вида пропитки. Определенное влияние на разложение оказывают надмолекулярная структура, распре- [c.619]

    Минимумы представленных кривых - точки перехода к надмолекулярной структуре на основе асфальтенов для более активных вторичных асфальтенов крекинг-остатка лежат в области более низких концентраций, чем для смеси с гудроном. Та же тенденция наблюдается и для экстремумов описываемых зависимостей, характеризующих прочность коагуляционной структуры остатков. [c.8]

    Во-вторых, характер зависимостей на основе КГФ каталитического крекинга и замедленного коксования (рис. 1.17 и 1.18) указывает на определяющую роль дистиллята в формировании надмолекулярной структуры смесей кривые последних имеют вид, аналогичный соответствующим дистиллятам. Важно подчеркнуть, что данный эффект четко просматривается на описанных выше функциях распределения частиц и степени аномалии течения. Отличие кривых сравниваемых образцов друг от друга также несет важную информацию о коллоидных свойствах композиций. [c.24]

    Для смесей на основе КГФ каталитического крекинга с теми же остатками имеет место принципиально иной характер зависимостей (см. рис. 1.17 и 1.18). Резкое снижение величины энергетических параметров активации вязкого течения свидетельствует об интенсивном разрушении надмолекулярной структуры, ее хрупком характере. [c.25]

    Описываемые зависимости однозначно отражают характер модификации надмолекулярной структуры последних асфальтенами первичного и вторичного происхождения более поверхностно-активными, более ассоциированным асфальтенам крекинг-остатка отвечают более высокие значения теплоты активации. А в целом, введение тяжелого остатка делает более пологой зависимость теплоты активации от скорости деформации и температуры (см. рис. 1.17), то есть должно улучшать вязкостно-температурные свойства и агрегативную устойчивость смесей данного типа в эксплуатационном интервале температур. [c.26]

    Таким образом, в зависимости от степени ассоциации молекул асфальтенов в надмолекулярных структурах колеблется как молекулярная масса ассоциатов, так н их размеры. Следовательно не может быть единой структурной модели молекулы асфальтенов, как это пытаются доказать некоторые исследователи [169, 176]. [c.30]

    По мнению автора и Глаголевой, изменение РС среды приводит к более сложным явлениям, вызывающим изменение толщин сольватной оболочки и надмолекулярной структуры сложной структурной единицы. В зависимости от природы связей в ССЕ. могут быть два случая взаимодействия дисперсной фазы с дисперсионной средой. Первый, когда иод действием РС дисперсионной среды могут разрушаться сольватная оболочка (в нерастворителе и хорошем растворителе) и надмолекулярная структура (в хорошем растворителе) в случае ассоциата. Во втором случае дисперсионная среда НДС способна разрушать только сольватную оболочку, не затрагивая надмолекулярной структуры — в случае кристаллита. [c.59]

    На первой стадии (слабые взаимодействия) надмолекулярные структуры (центры кристаллизации) формируются за счет сил Ван-дер-Ваальса. В зависимости от природы ВМС нефти и величины сил взаимодействия молекул для каждого вида ВМС образуется свой тип надмолекулярных структур, обладающих определенными физико-химическими свойствами (асфальтеновый, парафиновый и другие ассоциаты). Парафиновые надмолекулярные структуры при повышении температуры дезагрегируются полностью или подвергаются одновременно дезагрегированию и химическому разрушению. Асфальтеновые ассоциаты с повышением температуры склонны к физическому и далее к химическому агрегированию. [c.158]

    Следует особо отметить зависимость изменения толщины сольватного слоя и устойчивости нефтяной дисперсной системы от растворяющей способности дисперсионной среды. Повышение растворяющей способности среды вызывает непрерывное увеличение сольватного слоя сложной структурной единицы до максимума и одновременное уменьшение размеров надмолекулярной структуры. При этом нефтяная дисперсная система имеет максимальную устойчивость против расслоения, то есть максимальную коллоидную стабильность. При дальнейшем увеличении растворяющей способности среды, при переходе от плохого растворителя к хорошему, дисперсионная среда оказывает интенсивное влияние на сольватный слой и толщина его уменьшается, за счет чего повышается движущаяся сила процесса расслоения системы на фазы. Дисперсионная среда начинает взаимодействовать непосредственно с надмолекулярной структурой. После полного растворения сольватной оболочки и надмолекулярных структур нефтяная дисперсная система переходит в состояние молекулярного раствора с бесконечной устойчивостью против расслоения. В этом случае система термодинамически устойчива. [c.48]

    Классификация по активности. Наполненные системы различаются по активности. Надмолекулярные структуры нефтяных дисперсных систем характеризуются поверхностной и объемной активностью, обусловливающей определенные физико-механические свойства системы, С учетом необходимости направленного регулирования этих свойств нефтяных дисперсных систем предлагается их классифицировать в зависимости от поверхностной и объемной активности. [c.69]

    Полимеры, обладающие одномерным остовом. Линейные макромолекулы обладают большим избытком свободной энергии, вследствие чего принимают такую конфигурацию, при которой каждый их атом окружен возможно ббльшим количеством соседей эффективное внутримолекулярное взаимодействие между ними в значительной мере понижает уровень свободной энергии. В зависимости от характера строения и состава цепные молекулы скручиваются спиралями или складываются гармошкой и упаковываются в таком виде как можно плотнее, образуя так называемые надмолекулярные структуры. [c.39]

    Мы видим, что конструирование твердого вещества связано с особыми подходами. Эти подходы разрабатывает структурная механика, которая изучает закономерности упаковки молекул и макромолекул, а также зависимость термомеханических свойств от молекулярной и надмолекулярной структуры синтезируемого вещества. [c.244]

    В случае больших у надмолекулярная структура некристаллических полимеров претерпевает весьма существенные изменения, влияя на характер их течения. При, переходе от малых (0,1 с ) к большим (4,0 С ) у зависимости Р = [ Т) для регулярного бута-170 [c.170]

    Информацию о связи молекулярного строения и надмолекулярной структуры полимеров с их физическими свойствами обычно получают, изучая их физические превращения (или переходы). К таким превращениям относятся процессы стеклования и плавления. Анализ экспериментальных данных, полученных для разных полимеров, показывает, что оба эти процесса наблюдаются вместе лишь у кристаллических полимеров, содержащих неупорядоченные и упорядоченные области. Из сопоставления температурных зависимостей термодинамического потенциала Ф, коэффициентов термического расширения Р и изотермической сжимаемости Хт следует [10.7], что характер их изменения в области стеклования и плавления полимеров оказывается примерно одинаковым (рис. 10.21). [c.271]

    Таким образом, анализ данных, полученных при исследовании температурно-временных зависимостей комплекса важнейших механических характеристик сшитых и несшитых эластомеров, таких, как релаксация напряжения, вязкое течение, процессы разрушения (долговечность и разрывное напряжение), приводит к выводу, что выше температуры стеклования Тс и ниже температуры пластичности Тп температурная зависимость релаксационных процессов и разрушения характеризуется одним и тем же значением энергии активации, но различным для различных эластомеров. Эта же энергия активации характерна и для Я-процессов релаксации в эластомере, наблюдаемых на спектрах времен релаксации. Из этого следует, что механизмы релаксационных процессов и разрушения неполярных эластомеров определяются перестройкой и разрушением надмолекулярных структур — микроблоков. Различие между про- [c.347]

    Экстремальный характер представленных зависимостей обусловлен конкуренцией надмолекулярных структур компонентов смесей. Левые ветви парабол для смесей с крекинг-остатком описывают низкотемпературные качества надмолекулярных структур на основе асфальтенов остатков, в которых соотношение парафино-нафтено-вых и ароматических углеводородов не превышает единицы. Последнее, отношение доли содержания асфальтенов и смол, средневзвешенное значение радиусов частиц, как видно, являются однонаправленными факторами. Уменьшение их величины приводит к сниже- [c.14]

    Кривая 1, соответствующая дистилляту вторичного происхождения (КГФЗК), отражает температурную зависимость, характерную для надмолекулярных структур кристаллизационного типа [17, 31,38]. [c.19]

    Кинетика старения битумов обусловлена спецификой протекания в них химических реакций и процессов формирования равновесных надноде-кулярных структур. Как известно, кинетика химических реакций и формирования надмолекулярных структур находится в пряной зависимости от структурного состояния битумов и интенсивности молекулярных движений. Вследствие увеличения молекулярной подвижности по мере повышения температуры скорость химических превращений в органических соединениях, в том числе и у битумов, всегда возрастает. В то же время скорость формирования равновесных надмолекулярных структур в битумах при определенных температурах имеет экстремальную величицуГ 1J. [c.77]

    Исследованиями зарубежных и отечественных ученых усгановлено, что эксплуатационные свойства углеродных материалов находятся в прямой зависимости от структуры и, в частности, кристаллической структуры нефтяных коксов. При высокотемпературной обработке нефтяных коксов при прокаливании и графитации происходит целый ряд физико-химических превращений, в результате которых несоверщенный по своей структуре кокс перестраивается в кристаллический материал с трехмерно упорядоченной структурой. Особый интерес представляет перестройка тонкой кристаллической структуры, так как многообразие переходных форм углерода, многообразие свойств углеграфитовых материалов определяется сочетанием углерода в различных гибридных состояниях с разным типом углерод-углеродных связей, а также надмолекулярной структурой, определяемой ориентацией графитовых слоев и степенью их совершенства. [c.117]

    С помощью МУР изучено распределение пор по размерам в структуре коксов стандартной прокалки. У игольчатого кокса субструктурная пористость состоит, в основном, из макропор с радиусом инерщ1и около 500 А, у рядового - из переходных и макропор с радиусом инерции 350 А, у коксов КНПС пористость определяется микропорами с радиусом инерции около 20 А. Содержание закрытых пор меняется довольно значительно, составляя 30 % для коксов игольчатой структуры и 67 % для изотропного кокса. Сопоставление характеристик структурной пористости с характеристиками сырья коксования показало зависимость надмолекулярной структуры и пористости от содержания асфальтенов. Чем больше содержание асфальтенов в сырье, тем выше структурная пористость, меньше величина сростков кристаллитов. Чем больше суммарное содержание ароматических углеводородов, тем больше величина последних. Следовательно, по характеристикам сырья можно прогнозировать структуру кокса. [c.118]

    Полученные данные свидетельствуют о том, что в результате механоактивационной обработки происходит изменение качественного и количественного состояния надмолекулярных структур нефтяных остатков. В зависимости от количества дисперсной фазы ультразвуковая обработка может вызывать как уменьшение размеров надмолекулярных образований, так и их увеличение. Наибольший эффект механоактивации наблюдается в основном для асфальта, характеризующегося наибольшим количеством дисперсной фазы для исследованного сырья. [c.123]

    Межмолекулярные взаимодействия склонных к структурированию ВМС приводят к образованию иространственных надмолекулярных структур, состоящих из множества макромолекул, В зависимости от характера связей надмолекулярные структуры делят иа физические ассоциаты, в которых действуют силы Ван-дер-Ва-альса, и на физико-химические комплексы с более прочными химическими связями. Физические ассоциаты способны при определенных условиях переходить в комплексы (кристаллиты). Число мак- [c.11]

    Не рассматривая вывод кинетических уравнений формирования слоев надмолекулярных структур, аналогичных уравнениям, выведенным выше для изучения кинетики формирования сольватных слоев, мы остановимся на выводах, вытекающих из этих уравнений. На рис. 13 па основании кинетических уравнений формирования (разрушения) слоев показана зависимость изменения толщины слоев от растворяющей силы диснерсионной среды (иерас-творитель, плохой растворитель, хороший растворитель). РС среды, обусловливает структурно-механическую прочность и устойчивость НДС, оказывающих существенное влияние на многие процессы переработки нефти (в том числе и на процессы произво.дст- [c.62]

    На основании учета диффузионных и кинетических факторов, а также представлений о радикально-цепном механизме рассмотрим экспериментальный и теоретический материал, имеиэщийся по термической деструкции компонентов ароматических концентратов и тяжелых нефтяных остатков. При нагреве нефтяных остатков в зависимости от порога устойчивости надмолекулярных структур происходит их последовательное выделение из нефтяной системы, Прн термодеструкции расслоившаяся диснерсионная среда и дисперсная фаза нефтяных остатков ведут себя по-разному. [c.162]

    При дальнейшем повышении температуры начинают устанавливаться химические связи, и наступает момент, когда энергия тепло -вого движения становится соизмеримой с энергией взаимодействия высокомолекулярных соединений. В этом случае, несмотря иа наличие межмолекулярного взаимодействия, возможно изменение взаимного расположения отдельных частей (сегментов) сложных молекул. Такое состояние именуется высокоэластичным . При дальнейшем повышении температуры энергия взаимодействия молекул и их частей становится настолько большой, что она начинает значительно превышать энергию теплового движения, длительность установления равновесной конфигурации молекул возрастает, начиная с некоторой температуры структура фиксируется, осуи1еств-ляется переход от равновесной к неравновесной структуре амор( )-ного вещества, т. е. происходит стеклование. Наиболее отчетливо этот процесс прослеживается по изменению концентрации асфальтенов в системе, 1к которых формируются надмолекулярные структуры. В зависимости от растворяющей способности среды концентрация асфальтенов в системе сначала повышается, проходит через максимум и затем падает. [c.166]

    На примере исследования деформационно-прочностных свойств мангышлакской нефти было показано, что в зависимости от градиента скорости нефть ведет себя как псевдопластичное, идеаль-но-пластичное тело или как тело Шведова — Бингама [66]. Эффективная вязкость парафиннстых нефтей складывается из структурной вязкости, зависящей от наличия в системе надмолекулярных структур, температуры, градиента скорости сдвига и вязкости ньютоновской" жидкости, в которую переходит неньютоновская жидкость после разрушения структурированной системы [67]. Термообработка, введение специальных добавок оказывают большое влияние на реологические свойства парафиннстых нефтей [68—70]. [c.21]

    Экстремальные изменения радиуса надмолекулярной структуры II толщины сольватного слоя непосредственно влияют на характер зависимости структурно-механической прочности и агрегативной устойчивости нефтяной системы. Кривые изменения этих свойств типичны для многих нефтепродуктов. В точке Ж устойчивость нефтяных дисперсных систем к расслоению на фазы максимальна толщина сольватной оболочки в точке А имеет максимальное значение Я кс, благодаря чему уменьшается движущая сила процесса расслоения. Толстая прослойка дисперсионной среды между надмолекулярными структурами снижает структурно-механическую прочность нефтяных дисперсных систем, первый минимум которой достигается в точке К. Утоньшение сольватного слоя на поверхности надмолекулярных структур повышает движущую силу расслоения системы на фазы. После удаления основной части сольватного слоя (точка 3) дисперсионная среда начинает взаимодействовать непосредственно со слоем надмолекулярной структуры, обуславливая его полное разрушение в точке Б. В этой точке сложные структурные единицы переходят в состояние молекулярного растбора с бесконечной устойчивостью к расслоению на фазы. Предлагаемое объяснение экстремальных изменений структурномеханических свойств и агрегативной устойчивости нефтяных систем справедливо, если считать, что межфазная энергия на границе структурная единица — дисперсионная среда меняется незначительно. [c.41]

    В качестве пластификаторов применяют низкомолекулярныо растворители, которые прн иведении в полимер распределяются между макромолекулами илн между надмолекулярными структурами в зависимости от качества растворителя — пластификатора. В результате уменьшается когезия между макромолекулами, образуется подвижная структура, обладающая малой вязкостью и высокой эластичностью. [c.391]

    Многочисленными исследованиями установлено,что свойства углеродной продукции находятся в прямой зависимости от структуры и физико-химических свойств нефтяных коксов. ОсоОый интерес представляет тонкая структура, так как многооОразив переходных форм углерода объясняется сочетанием углерода в различных гибридных состояниях, разным типом углерод-углеродных связей, а также надмолекулярной структурой, определяемой ориентацией графитовых слоев, степенью их совершенства. [c.96]

    Чтобы определить долговечность битумов в асфальтобетонных покрытиях, необходимо учесть также усталостное воздействие транспортных нагрузок на Т . Учет этого фактора был произведен на основе допущения, что количество циклов усталостного нагружения при 0°С, с частотой 5 Гц, амплитудой деформации 0,3x10 ддя дороги П технической категории составляет 10 -10 . При таком воздействии в асфальтобетоне на битуме со структурой гель температура растрескивания возрастает примерно на 3°С [4 ]. Тогда срок службы асфальтобетонного покрытия на битуме со структурой гель согласно рис. 5 будет определен по кривой путем понижения критической температуры, растрескивания (-18°С) на 3°С, что и позволяет учесть таким образом усталостное воздействие транспортных нагрузок на изменение Т в процессе термоокислительного старения и формирования равновесных надмолекулярных структур. Влияние усталостного воздействия на Т других битумов было определено путем использования зависимостей усталостного воздействия и Т , представленных на рис. 3. С этой целью для соответствующего битума определялась величина смещения температуры относительно зависимости для битума > I при одинаковой какой-либо величине усталостного воздействия. [c.217]

    Между количественными и качественными изменениями в нефтяной дисперсной системе существует зависимость, которая определяется соотношением поверхностной и объемной энергий взаимодействия компонентов, составляющих надмолекулярную структуру. Обладая нескомпенсированной избыточной поверхностной энергией, зародыши формируют вокруг себя сольватные оболочки определенной толщины из молекул дисперсионной среды. Вместе с сольватной оболочкой зародыш образует сложную структурную единицу (ССЕ), которая при изменении вне-пших условий может разрушаться или расти. Во втором случае формируются вторичные ССЕ, размеры которых — радиус надмолекулярной структуры и толщина сольватной оболочки, а также упаковка молекул в надмолекулярной структуре могут изменяться по мере изменения межмолекулярного взаимодействия среды [ 16]. [c.47]

    Приведенные выше рассуждения соответствуют релаксационной теории структурного стеклования, впервые предложенной Кобеко [39, с. 176]. Эта теория учитывает, однако, йзл 1енение структуры жидкости только в пределах ближнего порядка и поэтому не объясняет всех особенностей процессов стеклования а полимерах. Например, в полимерах выше Тс с изменением темпе ратуры, кроме изменения структуры на уровне ближнего порядка, идут процессы структурообразования, например процессы формирования флуктуационных надмолекулярных структур, процессы обратимого и необратимого структурирования и т. д. Это приводит к более сильной температурной зависимости физических свойств в области стеклования. [c.85]

    При еустановившемся течении зависимость продольной вязкости от относительной деформации определяется скоростью деформации (рис. V. 7). На начальном этапе развития (область А) вязкость пропорциональна деформации, что было показано Каргиным и Соголовой на примере высокомолекулярного полиизобутилена . Область А будет тем шире, чем выше скорость деформации. Физический смысл нарушения пропорциональности связан с протеканием при деформировании конкурирующих процессов ориентации, обусловливающей рост X, и разрушения надмолекулярной структуры, приводящей к падению X (см. гл. VI). Для легкости сопоставления данные зависимости сдвиговой вязкости, например от скоро- сти деформации, представляются в приведенных координатах (рис. V. 8). Таким образом удается уложить на одну обоб-щенную кривую данные для вязкосги при g, различных температурах и даже для различных полимеров. Независимость хода  [c.179]

    На начальном этапе растяжения (область А) вязкость возрастает пропорц1ионально деформации (рис. 6.7), что было показано экспериментально для высокомолекулярного полиизобутилена (Л = 5,3-10 ) Каргиным и Соголовой. Чем больше скорость деформирования, тем дольше будет сохраняться эта зависимость. Размытый максимум на кривых Я=/(е) соответствует конкурируюшему проявлению двух процессов ориентации, вызываюш,ей увеличение Я, и частичному разрушению надмолекулярных структур (их раз- [c.159]

    Константы в соотношениях, приведенных выше, как показывает анализ, проведенный для большого числа полимеров, всегда представляют собой числа, большие нуля, но меньшие единицы. Более точное значение константы можно установить лишь зная особенности молекулярного строения и надмолекулярной структуры полимеров. Для этого все полимеры можно классифицировать по степени гибкости их цепей гибкоцепные, полужесткоцепные и жесткоцепные. При этом важно знать, содержат ли макромолекулы полимеров боковые группы или более крупные ответвления и имеются ли в них звенья разных видов (статистические сополимеры, блок-сополимеры). Проведенные подсчеты зависимостей числа полимеров N от отношения TdT - показали, что в общем случае они имеют вид, представленный на рис. 10.23. [c.273]

chem21.info

Структура надмолекулярная - Энциклопедия по машиностроению XXL

Для полиэфирных покрытий рентгеноструктурным анализом установлена взаимосвязь между природой подложки и структурой сформированных надмолекулярных образований в зоне раздела [Л. 75], причем замечено, что размер надмолекулярных структур покрытия и их распределение зависят от количества активных центров на поверхности подложки. Таким образом, процесс формирования гетерогенных полимерных систем, в том числе и клеевых, проходит через стадию образования надмолекулярных структур, зависящих от природы субстрата. В свою очередь структура надмолекулярных образований определяет прочность адгезионного взаимодействия, величину внутренних напряжений и термического сопротивления клеевых прослоек.  [c.69] При понижении температуры или приложении сил (усиливающих упорядоченность структуры) надмолекулярные структуры способствуют кристаллизации полимера. При этом кристаллизуются полимеры с макромолекулами, имеющими правильное, регулярное строение. Кристаллизация в связи с нерегулярностью строения макромолекул не бывает полной.  [c.60]

В условиях ползучести при сдвиге время релаксации будет возрастать как при понижении температуры, так и при увеличении давления, однако охлаждение полимерного образца, например на 10—20° С, не вызывает существенных изменений в структуре надмолекулярных образований, а сказывается в основном на молекулярном уровне. С другой стороны, наложение гидростатического давления порядка нескольких сотен атмосфер может произвести существенные изменения в структуре полимерного материала.  [c.190]

Многие сложные природные системы для понижения величины собственной свободной энергии формируют ряд Промеж> точных надмолекулярных структур. В конечном итоге образуется иерархическая структура, низшие элементы которой являются составными частями более высших элементов. Так, в качестве минимальных элементов кристаллизующегося материала могут выступать не атомы или молекулы, а надмолекулярные структуры, которые, в свою очередь, также могут иметь сложное иерархическое строение.  [c.180]

Согласно более поздним исследованиям с применением трансмиссионной и оптической микроскопии в нефтяных пиролизных пеках было выявлено 4 характерных масштаба надмолекулярной структуры  [c.183]

Таким образом, в процессе карбонизации в тяжелых нефтяных системах осуществляется формирование развитой надмолекулярной структуры, которая значительно изменяет свойства целевого продукта.  [c.183]

Формирование промежуточных надмолекулярных структур есть способ образования более-менее однородных элементов мозаики на высшем масштабе из изначально неоднородных элементов низшего масштаба. Однородность элементов вовсе не подразумевает их идентичности. Микрофотографии показывают, что в одном н том же образце пека на масштабе зернистой структуры могут существовать зерна различных размеров. Точно так же отдельные зерна могут различаться и по своим физико-химическим характеристикам, хотя и не в такой степени, как индивидуальные химические соединения на молекулярном масштабе.  [c.188]

Увеличение проводимости с температурой может объясняться экспоненциальным ростом подвижности тогда представляет собой среднюю энергию, необходимую для преодоления межмолекулярных барьеров. Это подтверждается сильным влиянием на проводимость надмолекулярной структуры. Так, в полимерах с кристаллическим строением Величина у значительно выше, чем у аморфных всестороннее сжатие некоторых полупроводников приводит к возрастанию проводимости. Это подтверждает роль энергии активации подвижности на барьерах между макромолекулами в высокомолекулярных соединениях.  [c.208]

Структура поверхности значительно усложняется при применении наполненных полимеров, когда в тончайших слоях происходит существенное изменение надмолекулярных структур, что приводит обычно к повышению износостойкости. Для полимерных материалов характерно также нахождение на поверхности адсорбционных слоев различных веществ, которые оказывают заметное, пока еще малоизученное влияние на процесс трения и износа.  [c.265]

Причина усадки пленки может быть различной она может возникать вследствие испарения растворителя из пленки, протекания в ней реакции полимеризации, образования надмолекулярных структур и т. п. В процессе эксплуатации пленки усадка может появиться вследствие деструкции полимера, испарения пластификатора, поглощения влаги и других факторов.  [c.82]

Следует заметить, что спад напряжений на диаграмме а — е (рис. 4.94, в) не может быть объяснен образованием шейки. Во-первых, такой спад наблюдается и на кривой истинных напряжений (пунктир на рис. 4.94, в). Во-вторых, характер кривой а — 8 сохраняется и при сжатии, когда шейка, естественно, не образуется. Механизм вынужденной эластичности до настоящего времени не выяснен окончательно. Среди существующих версий отметим одну, согласно которой вынужденная эластичность связана с разрушением некоторой (возможно, надмолекулярной) структуры. В пользу такой гипотезы говорят опыты по повторному нагружению образцов. А именно, если при первом нагружении на кривой а — а  [c.343]

Положение и интенсивность главных и побочных максимумов декремента затухания зависят от строения молекулярных цепочек, межмолекулярного сцепления и конфигурации цепочек. У кристаллических полимеров это зависит от степени кристалличности и от способа расположения надмолекулярных структур. Положение и интенсивность дисперсных зон зависят в значительной степени от содержания и рода низкомолекулярных веществ (ма-номера, воды, пластификаторов), а иногда и от величины молекулярной массы и вида наполнителя [7, 8].  [c.56]

Согласно работе [70], наиболее уязвимым местом в физико-химической механике нефтяных дисперсных систем являлось то, что в ее рамках не было обоснованного ответа на вопрос, какова природа сил, о-гветственных за образование надмолекулярных структур в крайне разнородных по химическому  [c.151]

Лсфальтеновые ассоциаты как первый масштабный уровень надмолекулярной структуры  [c.164]

Это, в целом, согласуется с модифицированной моделью ССЕ, предложенной Ф.Г. Унгером асфальтеновые ассоциаты формируют вокруг себя сольватные оболочки, размер которых должен зависеть от величшш суммарного парамагнитного момента ассоциата, в результате чего образуются структуры, называемые в работе [70] первичными структурами, в том смысле, что они составляют первую ступень надмолекулярной организации в нефтяных дисперсных системах.  [c.165]

Применял принцип мозаичности к тяжелым нефтяным системам, в качестве начальных элементов мозаики будут выступать молекулы индивидуальных химических соединений. Известно, что количество таких соединений в нефтяных пеках может колебаться от нескольких сотен до нескольких тысяч, а их структура - от парафиновых цепочек и разветвленных изомеров до высококонденсированных ароматических соединений, которые, кстати говоря, являются антагонистами парафинов. Очевидно, что подобный химический состав продукта не может обеспечивать формирование наблюдаемых в пеках высокоупорядоченных макроструктур. Создание промежуточных надмолекулярных структурных уровней по принципу ССЕ для зт ификации свойств отдельных элементов дисперсной фазы - наиболее приемлемый способ обеспечить формирование макроструктуры. Движущей силой процесса иляется стремление к минимуму производства энтропии. В результате этого ка различных масштабных уровнях происходит ряд последовательных процессов ассоциирования элементов "мозаики".  [c.182]

Унгер Ф.Г. Масс- и радиоспектральные методы исследования группового состава и надмолекулярной структуры нефтей и нефтепродуктов Дисс.... докт.хим.наук.-Уфа,- 1984.  [c.382]

Несмотря на большое многообразие, все надмолекулярные структуры можно отнести к одной из следую1цих четырех групп  [c.91]

Фрикционное взаимодействие полимеров с металлами вызывает серьезные изменения в надмолекулярной структуре ориентированные эффекты, сн1ивку, деструкцию, структурирование, изменение сегментальной подвижности в поверхностных слоях и др. Э 1 И процессы приводя т к формированию на границе раздела подповерхностного слоя с отличаюп(имися от исходного [юлимера свойствами и определяют закономерности и механизм процессов трения и изнаи1ивания.  [c.96]

Принимая во внимание наличие высоких температур (более 600 К) в зоне трения, что подтверждается показанным вьш1е образованием фторидов, в целях уточнения характера и механизма изменения надмолекулярной структуры полимерной матрицы были проведены рентгенографические исследования в интервале температур 293-610 К. Рентге-нофафирование образцов из чистого фторопласта-4 и композиционных материалов проводили в монохроматизированном медном излучении, нагрев образцов - в высокотемпературной приставке, конструкция которой позволяла выдерживать заданную температуру с точностью 5 К в течение времени, необходимого для получения рентгенограммы.  [c.101]

Изнаишвание более жестких и хрупких полимерных материалов происходит в основном в результате микрорезания. На интенсивность изнашивания сильно влияет характер надмолекулярной структуры материала. При трении с фаничной смазкой преобладание кристаллических областей в структуре полимера над аморфными обеспечивает его более высокую твердосп, и износостойкость. Между тем увеличение степени кристалличности снижает износостойкость полимера при абразивном изнашивании. Это объясняется тем, что даже при повышении твердости полимера за счет увеличения кристаллических областей она остается в несколько раз ниже твердости абразива, поэтому повышение твердости оказывается неэффективным. Уменьшение эластичности гюлимера создает более благоприятные условия для начала срезания абразивными частицами микрообъемов материала при срезе опреде-  [c.129]

Нап1и исследования чистого и модифицированного политетрафторэтилена (ПТФЭ) показали, что введение наполнителей вызывает значительное изменение степени кристалличности и всех параметров надмолекулярной структуры. Применение рентгеносгруктурного анализа  [c.191]

Для получения статистически достоверных результатов исследование проводили в интервале температур 293-593 К, при каждой конкретной температуре снимали по пять рентгенофамм. По рассчитанн1)1м значениям параметра а и были построены температурные зависимости параметров надмолекулярной структуры (рис. 6.18).  [c.192]

Различие параметров надмолекулярной структуры ПТФЭ при введении различных наполнителей оказывает суп1ественное влияние на их физико-мехапические и триботехнические свойства.  [c.193]

В целом исследование надмолекулярной структуры модифицированного ПТФЭ (композиционных материалов) показало, что в нем, как  [c.193]

В главе 1 приведены сведения о физико-механических и триботехнических свойствах различных полимерных композиционных материалов, применяемых для изготовления деталей узлов трения (трибосис-тем). Эти материалы представляют собой полимеры (фторопласт-4, полиэтилен, полиамид, поликарбонат и др.), модифицированные введением различных наполнителей. В главе 6 на примере ПТФЭ (фторопласт-4) подробно рассмотрено влияние наполнителей-модификатора на параметры надмолекулярной структуры полимера, которое в совокупности с физическими свойствами наполнителей определяет свойства модифицированного полимерного материала.  [c.231]

Взаимное раснолон еиие макромолекул в полимерах носит характер упорядоченных по различным признакам регулярных структур (глобулярные, фибриллярные, дендритные и др.), носящих название надмолекулярных .  [c.230]

В зависимости от химического состава и структуры мономерного звена, строения макромолекул и их укладки (надмолекулярная структура) полимеры по своим элехстрическим и физическим свойствам подразделяются на полярные и неполярные.  [c.231]

mash-xxl.info