КУРС ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ ОП. 13 «АВТОМОБИЛЬНЫЕ ЭКСПЛУАТАЦИОННЫЕ МАТЕРИАЛЫ». Нефть эксплуатационные материалы


Автомобильные эксплуатационные материалы Учебное пособие

СРЕДНЕЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАНИЕ

Н.Б.КИРИЧЕНКО

Допущено

Министерством образования Российской Федерации в качестве учебного пособия

для студентов учреждений среднего профессионального образования, обучающихся

по специальности 1705 «Техническое обслуживание и ремонт автомобильного

транспорта», 3106 «Механизация сельского хозяйства»

Москва

Академия

2003

УДК 629.119

ББК 39.33-08

К431

Рецензенты:

зам. директора по УПР Государственного образовательного учреждения

Мытищинский машиностроительный техникум-предприятие В.А.Базлов;

зав. кафедрой «Эксплуатация автомобильного транспорта» Махачкалинского

филиала МАДИ канд. тех. наук М.А.Масуев

Кириченко Н. Б.

К431 Автомобильные эксплуатационные материалы: Учеб. по­собие для сред. проф. образования / Нина Борисовна Кири­ченко. — М.: Издательский центр «Академия», 2003 — 208 с.

ISBN 5-7695-1079-Х

Рассмотрены основные свойства, показатели качества и организация рационального применения автомобильных эксплуатационных материалов: бензинов; дизельных и газовых топлив; моторных, трансмиссионных и не­которых других масел; специальных жидкостей (охлаждающих, для амор­тизаторов и гидравлических приводов различных агрегатов), а также рези­новых, лакокрасочных и других неметаллических материалов, необходи­мых для эксплуатации и ремонта автомобилей.

Для студентов средних профессиональных учебных заведений.

УДК 629.119

ББК 39.33-08

© Кириченко Н.Б., 2003

© Образовательно-издательский центр «Академия», 2003 ISBN 5-7695-1079-Х © Оформление. Издательский центр «Академия», 2003

ВВЕДЕНИЕ

Нефть и газ являются основным сырьем при производстве автомобильных эксплуатационных материалов.

Нефть — это минеральное жидкое маслянистое горючее вещество, на образование которого в природе требуется сотни миллионов лет.

В развитии отечественной нефтяной промышленности исключительно велика роль Дмитрия Ивановича Менделеева, придававшего особое значение науке о нефти как важному средству неуклонного движения научно-технического прогресса. «Без светоча науки, — писал Д. И. Менделеев, — и с нефтью будут потемки».

Ученые нашей страны, продолжая дело своего великого предшественника, внесли огромный вклад в решение основных вопросов по добыче, переработке и использованию нефти и нефтепродуктов.

Особое значение для развития производства и применения смазочных масел имела созданная Н. П. Петровым гидродинамическая теория смазки, которая нашла свое продолжение в трудах Н. Е.Жуковского, С. А. Чаплыгина, Л.С.Лейбензона и многих других ученых. Эта теория и в настоящее время служит основой многих научных исследований и проектно-конструкторских работ.

Фундаментальные исследования академиков Н.Д.Зелинского, С.С.Наметкина, Н.Н.Семенова и их учеников позволили раскрыть особенности строения и указать колоссальные возможности использования углеводородов нефти и нефтепродуктов. «Не просто взять из нефти то, что в ней содержится, но преобразовать в нужном нам направлении природу углеводородов нефти», — таково характерное направление работ Н.Д.Зелинского, оказавших огромное влияние на развитие науки о нефти и методах ее переработки.

Эффективное использование нефтепродуктов невозможно без ясного представления о процессах изменения и окисления их углеводородов, без арсенала методов и приборов для проведения обширного комплекса исследований. В этом направлении важное значение имеют работы Н.И.Черножукова, С.Э.Крейна, Б.В.Лосикова, Г.В.Виноградова, К.К.Папок, К.С.Рамайя и др.

Хотя надежных способов определения запасов ископаемых видов топлива (нефти, газа и угля) в мире до сих пор нет, по оценкам некоторых ученых постоянный рост их потребления исчерпает разведанные ресурсы в первые десятилетия текущего столетия.

В 60-х годах XX века в Западной Сибири (на севере Тюменской области) и на севере европейской части России были открыты большие залежи нефти и природного газа.

Мировая добыча нефти в 1990 г. составила 3100 млн т, а добыча нефти в России — около 300 млн т (при запасах 20 млрд т).

В 2000 г. суточный прирост добычи нефти в России составил 30 тыс. баррелей, и в первую очередь за счет объединения «Сургут- | нефтегаз». Второе и третье место по приросту добычи нефти занимали в это время соответственно «Тюменская нефтяная компа- ния» и «Славнефть».

В настоящее время в бурении новых скважин лидерами являются компании «Сургутнефтегаз», «Лукойл», «Сиданко», «Тюменская нефтяная компания», «Роснефть» и «Онако». Например, по ито- гам работы за 2000 г. объем добычи нефти компании «Онако» со- ставил 6,8 млн. т, а компании «Архангельскгеодобыча» — 172 тыс. т. Была также начата разработка 36 новых месторождений.

Добыча газа в России в настоящее время производится в объеме 530 млрд м3 в год. Например, компания «Севергазпром» в 2001 г. произвела 215 тыс. т газоконденсата и 120 тыс. т сжиженного газа.

За последние 30 лет за рубежом создана и успешно функционирует целая индустрия производства сжиженного природного газа (СПГ), обеспечивающая получение до 100 млрд м3продукта в год.

Производство СПГ определяется ростом значения использования природного газа (ПГ) в мировой энергетике, обусловленного его низкой ценой и экологическими показателями. В настоящее время в России практически отсутствует промышленное производство СПГ, хотя работы в данном направлении ведутся более 30 лет.

Автомобильный транспорт является основным потребителем (свыше 65 %) наиболее дефицитных и ценных светлых нефтепродуктов, получаемых на нефтеперерабатывающих заводах (НПЗ), а двигатели внутреннего сгорания (ДВС) — бензиновые карбюраторные и дизельные остаются наиболее массовыми силовыми установками автомобилей.

В нашей стране автомобили с дизельными двигателями составляют всего 15 % от общей численности парка, а, например, во Франции дизельные двигатели имеют 30 % автомобилей грузоподъемностью 4... 12 т и 98 % автомобилей с грузоподъемностью свыше 12 т.

Экономное расходование энергетических ресурсов — одна из важнейших задач народного хозяйства.

Проблема экономии горючесмазочных материалов (ГСМ) на автомобильном транспорте, потребляющем значительную часть производимого в стране жидкого топлива, является наиболее острой. Поэтому, наряду с увеличением выпуска дизельных автомобилей, проведением работ по совершенствованию технического уровня выпускаемых бензиновых двигателей и созданию новых более экономичных двигателей, важнейшими задачами становятся замена дефицитных видов топлива на более дешевые, перевод автомобилей на газовое топливо, повышение качества ГСМ и их экономия за счет рационального применения в процессе эксплуатации автомобилей.

Потребность в научной обоснованности применения ГСМ привела к появлению новой прикладной отрасли науки, получившей название «химмотология», впервые предложенное в 1964 г. К. К. Папок.

Химмотология — это направление науки и техники, занимающееся изучением эксплуатационных свойств и качеств топлив, масел, смазок и специальных жидкостей, а также теорией и практикой их рационального применения в технике.

Одним из ведущих ученых, развивающих эту молодую науку в настоящее время, является профессор А. А. Гуреев.

Химмотологию сегодня рассматривают как составную часть единой взаимосвязанной четырехзвенной системы: конструирование и изготовление техники — разработка и производство ГСМ— эксплуатация техники — химмотология. С учетом условий применения ГСМ на автомобильном транспорте эта система имеет вид: двигатель — топливо — смазочные материалы — эксплуатация (рис. В. 1).

Важнейшими задачами на современном этапе развития химмотологии являются следующие: обоснование оптимальных требований к качеству ГСМ; усовершенствование технических характеристик двигателей и машин, повышающих надежность, долговечность и экономичность их работы при условии использования ГСМ, удовлетворяющих установленным оптимальным требованиям; создание новых сортов ГСМ и разработка основ их унификации; выявление оптимальных условий, обеспечивающих снижение потерь и сохранение качества ГСМ при хранении, транспортировании, заправке и применении.

Эффективность и надежность эксплуатации различных автомобилей зависит не только от их конструктивных и технологических особенностей, но и в значительной степени от того, насколько удачно подобраны к ним топливо, смазочные материалы и технические жидкости.

Рис. В.1. Схема единой четырехзвенной системы двигатель — топливо — смазочные материалы — эксплуатация

studfiles.net

2. ПРОИЗВОДСТВО АВТОМОБИЛЬНЫХ ЭКСПЛУАТАЦИОННЫХ МАТЕРИАЛОВ

нистые соединения кроме увеличения коррозии деталей двигателя при сгорании топлива образуют окислы серы, вредные для человека и окружающей среды. Кроме этого, увеличение содержания сернистых соединений в топливе снижает мощность двигателя и увеличивает расход топлива.

Основную часть кислородных соединений составляют фенолы, кетоны, эфиры и органические кислоты, главным образом нафтеновые, исмолисто-асфальтовыевещества. Эти вещества сильно корродируют цветные металлы, представляют собой высококипящие жидкости, нерастворимые в воде, но хорошо растворимые в органических жидкостях. В состав этих веществ могут входить и сера, и азот. Смо-листо-асфальтовыевещества делят на смолы, асфальтогеновые кислоты, асфальтены, карбены, карбоиды и мальтены.

Смолы – высокомолекулярные кислородосодержащие вещества, в состав которых могут входить сера, азот и некоторые металлы.

Асфальтогеновые кислоты (полинафтеновые) – смолистые вещества, входящие в состав высокомолекулярных частей нефти.

Асфальтены – высокомолекулярные твёрдые и мазеобразные вещества. При нагревании свыше 3300С разлагаются с образованием газа и кокса.

Карбены – продукты уплотнения и полимеризации асфальтенов.Карбоиды – комплекс высокомолекулярных соединений, образующихся при окислении и термическом разложении нефти и нефтепродуктов. Карбены и карбоиды – твёрдые вещества черного цвета,

нерастворимые в органических и минеральных растворителях. Мальтены – смесь смол и масел, растворимая в низкокипящих

насыщенных углеводородах.

Азотистые соединения не оказывают заметного влияния на эксплуатационные свойства нефтепродуктов, так как их содержание в нефти незначительно. В основном азотистые соединения концентрируются в тяжёлых фракциях, и больше половины их содержится всмолисто-асфальтовойчасти. В бензиновой фракции азотистых соединений практически нет.

Задача создания высококачественных двигателей и машин связана с изучением свойств топливосмазочных материалов, физикохимических процессов, происходящих в двигателе и механизме. В результате на стыке таких наук, как физика, органическая, физическая и коллоидная химия, теплотехника, экология, появилось новое научное направление – химмотология.

studfiles.net

Эксплуатационные материалы 1 Общая характеристика состава нефти 2 Влияние парафиновых нафтеновых ар

Работа добавлена на сайт samzan.ru: 2016-03-13

Вопросы для подготовки к зачету по дисциплине

«Эксплуатационные материалы»

1 Общая характеристика состава нефти

2 Влияние парафиновых, нафтеновых, ароматических и непредельных углеводородов на эксплуатационные свойства топлив

3 Сернистые соединения нефти и их влияние на эксплуатационные свойства топлив и масел

4 Кислородные соединения нефти и их влияние на эксплуатационные свойства топлив и масел

5 Смолисто-асфальтовые вещества нефти и их влияние на эксплуатационные свойства топлив и масел

6 Прямая перегонка нефти как основной способ ее переработки

7 Получение автомобильных топлив методом термического (атмосферного и вакуумного) и каталитического крекинга

8 Применение каталитического риформинга, изомеризации и алкилирования для повышения качества бензинов

9 Методы очистки продуктов переработки нефти

10 Автомобильные бензины. Требования к качеству автомобильных бензинов

11 Физические свойства автомобильных бензинов и их влияние на эксплуатационные свойства бензинов

12 Оценка испаряемости автомобильных бензинов методом фракционной разгонки

13 Оценка пусковых свойств бензина по температурам начала разгонки, перегонки 10 % бензина и давлению насыщенных паров

14 Влияние температур перегонки 50 %, 90 % и конца разгонки на эксплуатационные свойства бензинов

15 Виды сгорания топливно-воздушной смеси в цилиндрах бензиновых двигателей, их характерные признаки

16 Детонационная стойкость бензинов. Оценка детонационной стойкости, методы определения и повышения детонационной стойкости бензинов

17 Физическая и химическая стабильность бензинов. Индукционный период

18 Оценка качества бензинов по показателям кислотности, массовой доли серы, испытанием на медную пластинку, наличию воды и механических примесей

19 Марки бензинов и области их применения

20 Дизельное топливо. Требования к качеству дизельных топлив

21 Помутнение и застывание, показатели качества дизельных топлив. Методы улучшения низкотемпературных свойств дизельных топлив

22 Влияние вязкости дизельных топлив на процесс смесеобразования

23 Понятие о жесткой и мягкой работе дизельного двигателя

24 Самовоспламеняемость дизельных топлив и методы повышения самовоспламеняемости

25 Фракционная разгонка дизельных топлив. Оценка эксплуатационных свойств дизельного топлива по температурам перегонки 50 % и 96 % топлива

26 Физическая и химическая стабильность дизельных топлив. Йодное число дизельного топлива

27 Показатели, характеризующие нагарообразующую способность дизельного топлива

28 Показатели, характеризующие коррозионные свойства дизельных топлив

29 Марки дизельных топлив и их применение

30 Сжиженные газы как топливо для автомобильных двигателей. Состав сжиженных газов, особенности применения

31 Сжатые газы как топливо для автомобильных двигателей. Состав сжатых газов, особенности применения

32 Особенности применения синтетических спиртов и метил-третичнобутилового эфира в качестве добавок к бензину

33 Особенности применения газовых конденсатов в качестве топлива для дизельных двигателей

34 Свойства водорода как топлива для автомобильных двигателей. Перспективные направления использования водорода в качестве топлива для двигателей

35 Масла для автомобильных двигателей. Функции масел в двигателях внутреннего сгорания. Требования к качеству масел

36 Влияние вязкости масел при рабочей температуре двигателя на смазывание трущихся поверхностей деталей двигателя

37 Зависимость вязкости масел от температур. Индекс вязкости

38 Загущение масел. Всесезонные масла

39 Низкотемпературные свойства масел. Показатели, характеризующие низкотемпературные свойства масел

40 Преобразование моторного масла в низкотемпературной зоне двигателя. Антикоррозионные, щелочные, диспергирующие и противопенные присадки

41 Преобразование моторного масла в среднетемпературной зоне двигателя. Антиокислительные и моющие присадки

42 Классификация моторных масел по ГОСТ 17479.1-85, по SАЕ и АРJ

43 Ассортимент отечественных масел для двигателей

44 Специфические свойства трансмиссионных масел. Смазывающая способность трансмиссионных масел

45 Классификация трансмиссионных масел по ГОСТ 17479.2-85. Ассортимент отечественных трансмиссионных масел

46 Назначение пластичных смазок и важнейшие эксплуатационные требования к ним

47 Основные эксплуатационные свойства пластичных смазок

48 Свойства и области применения кальциевых смазок общего назначения, натриевых и натриево-кальциевых смазок

49 Свойства и области применения пластичных смазок на основе литиевых мыл, термостойких и морозостойких пластичных смазок

50 Характеристика воды как охлаждающей жидкости. Способы обработки воды для предупреждения образования накипи

51 Низкозамерзающие охлаждающие жидкости. Состав и свойства жидкостей, меры предосторожности при работе с ними

52 Требования к качеству тормозных жидкостей. Состав и свойства тормозных жидкостей на касторовой и гликолевой основе

53 Требования к качеству амортизаторных жидкостей. Марки, состав и свойства амортизаторных жидкостей

54 Марки и состав жидкостей, облегчающих запуск автомобильных двигателей при отрицательных температурах

55 Свойства пластмасс, используемых в конструкции автомобилей

56 Термопластические и термореактивные пластмассы в автомобилестроении

57 Понятие о сырой резине. Физико-механические свойства резины

58 Изменение свойств резины при изменении температуры, от контакта с нефтепродуктами и в процессе старения

59 Конструкционно-ремонтные материалы и технологии их использования

60 Требования, предъявляемые к лакокрасочным покрытиям. Строение лакокрасочного покрытия

61 Технология подготовки автомобильных кузовов к покраске

62 Марки, назначение и применение моющих, чистящих и полирующих средств для лакокрасочных покрытий автомобильных кузовов

63 Управление нормированием расхода топлива и смазочных материалов

64 Виды норм расхода топлива для автомобилей различного назначения и их корректирование в зависимости от условий эксплуатации

65 Экономия горюче-смазочных материалов при эксплуатации автомобильной техники

66 Методы эффективного использования горюче-смазочных материалов на автотранспортных предприятиях

samzan.ru

Эксплуатационные материалы для строительно-дорожных машин. Сведения о нефти, изготовление топлив и масел

СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ПУТЕЙ СООБЩЕНИЯ (СГУПС)

эксплуатационные материалы для строительно-дорожных машин

Учебное пособие

Новосибирск 2008

УДК 621.892

Эксплуатационные материалы для строительно-дорожных машин: Учебное пособие / Сост. , . – Новосибирск: Изд-во СГУПСа, 2008. – 48 с.

В учебном пособии даны сведения по каждой изучаемой теме дисциплины «Эксплуатационные материалы», дающие возможность предварительной подготовки студентов к практическим и лабораторным занятиям. В пособие входят разделы знакомящие с ассортиментом и свойствами топлив, смазочных материалов и технических жидкостей, приведены нормы расхода горюче-смазочных материалов.

Предназначено для студентов всех форм обучения специальности 190603 «Сервис транспортных и технологических машин и оборудования», 190601 «Автомобили и автомобильное хозяйство», изучающих дисциплину «Эксплуатационные материалы», а также может быть использовано студентами специальности 190205 «Подъемно-транспортные, строительные, дорожные машины и оборудование» при изучении дисциплины «Эксплуатация ПСДМ».

Утверждено редакционно-издательским советом университета в качестве учебного пособия

ВВЕДЕНИЕ

На автомобильном транспорте используется широкий спектр эксплуатационных материалов, которые получают путем переработки дорогостоящего сырья, запасы которого далеко не безграничны.

Наша страна богата ископаемыми, однако их запасы постепенно истощаются, а масштабы добычи, обусловленные техническим прогрессом, непрерывно возрастают. При этом в разработку вовлекаются все новые месторождения, расположенные на значительной глубине, в более трудных и менее благоприятных географических условиях. Это касается в первую очередь нефти и природного газа, используемых для получения основных эксплуатационных материалов для автомобилей.

Автомобильная техника страны использует значительную часть производимых продуктов переработки нефти и газа в виде топлива, масел и смазок. Организация экономного расходования этих материалов при эксплуатации машин имеет важное государственное значение. Достаточно сказать, что только затраты на топливо, масла и смазки составляют 30% себестоимости перевозок. При этом от качества эксплуатационных материалов, их соответствия данным условиям применения в значительной мере зависят надежность работы, долговечность и производительность автомобилей, затраты на их техническое обслуживание и ремонт (ТО и Р). Важнейшем путем удешевления ТО и Р является рачительное отношение к эксплуатационным материалам при использовании, техническом обслуживании и ремонте машин. Рациональное использование топлив, смазочных материалов и специальных жидкостей, предусматривает, наряду с другими мерами, применение только таких материалов, которые по своим качествам, соответствуют данным условиям эксплуатации автомобильной техники. Применение эксплуатационных материалов более высокого, чем требуется, качества, ведет к неоправданному увеличению затрат.

Использование же материалов более низкого качества неизбежно приводит к снижению долговечности и надежности работы деталей, узлов и механизмов автомобиля, усложнению технического обслуживания и ремонта.

Знание показателей, которыми характеризуется качество, физические и химические свойства того или иного эксплуатационного материала, а также предъявляемых к нему технико-экономических требований, позволяет судить о рациональном использовании материала, о создании необходимых условий для хранения, что, в конечном счете, снижает эксплуатационные затраты.

ГЛАВА I СВЕДЕНИЯ О НЕФТИ, ИЗГОТОВЛЕНИЕ ТОПЛИВ И МАСЕЛ

ДОБЫЧА НЕФТИ

Нефть необходима сегодня для развития всех отраслей экономики. Страна не жалеет средств для развития нефтедобывающей и нефтеперерабатывающей отраслей, для решения их научных, технических и социальных проблем.

Сейчас практически не найти ни одной отрасли народного хозяйства, в которой не использовались бы продукты переработки нефти. Сконцентрированная в ней энергия движет многие тысячи морских и речных судов, дает жизнь миллионам автомобилей, поднимает в воздух гигантские самолеты, вращает турбины тепловых электростанций. Из нее производят разные искусственные материалы: синтетические каучуки, ткани, пластмассы и многое другое.

В химическом отношении «черное золото» – сложная смесь примерно 2000 органических соединений, составляющих, как правило, гомологические ряды или группы. Человек научился выделять из неё некоторые нужные структуры, а на остальные – избирательно воздействовать, получая немало ценных продуктов. Нефть уже давно перестала быть только топливом. Она служит исходным материалом для получения тысяч химических продуктов. При этом значение нефти с каждым годом все возрастет.

Примерно 6-8% объема сырой нефти поступает на химическую переработку и в дальнейшем используется для выпуска продуктов не топливного назначения (несколько десятков наименований). Суммарный выход их не так велик – в весовом отношении приблизительно в десять раз меньше, чем топлив и масел. Но их общая стоимость значительна. Еще большую ценность имеют конечные вещества, получаемые в процессе

vunivere.ru

Конспект лекций по дисциплине «Автомобильные эксплуатационные материалы» - Конспект лекций

Министерство образования Тверской области

ГБОУ СПО Тверской колледж им. А.Н. Коняева

Конспект лекций по дисциплине

«Автомобильные эксплуатационные материалы»

Преподаватель:

Абрамова Н.В.

Тверь

2012

ВВЕДЕНИЕ

Цель и содержание дисциплины, последовательность изло­жения тем, связь с дисциплинами по специальности. Значение дисциплины как одной из специальных дисциплин при подготов­ке техников в области технического обслуживания и ремонта автомобильного транспорта.

Понятие о химмотологии. Основные требования к автомо­бильным топливам и смазочным материалам. Затраты на эксплу­атационные материалы и себестоимость перевозок. Понятия о показателях свойств и показателях качества топлив, масел, смазок и специальных жидкостей. Понятие о паспорте на топ­ливо, смазочные материалы и специальные жидкости.

Расходы на эксплуатацию подвижного состава автомобиль­ного транспорта, а также надёжность его работы существенно зависят от качества и культуры применения эксплуатационных материалов. Следует отметить, что затраты на топливо, мас­ла, смазки составляют до 30% себестоимости перевозок.

Необходимо уяснить, что эффективность использова­ния эксплуатационных материалов может быть достигнута в результате изучения свойств, правил хранения и применения этих материалов. В процессе усвоения дисциплины следует научиться правильно выбирать необходимые марки ав­томобильных топлив, масел и пластичных смазок в зависимости, от условий эксплуатации автомобилей и уметь применять свои знания на практике.

Начиная изучать учебный материал дисциплины, следует ознакомиться с общим содержанием тем, которые преду­сматривают не только знакомство с нефтепродуктами (маслами, смазками, топливами), но и изучение свойств и характеристик автомобильных специальных жидкостей (для гидравлических си­стем и систем охлаждения), а также с конструкционными, лако­красочными и другими ремонтными материалами. Последний раз­дел предлагает изучить токсичность и огнестойкость автомобильных материалов, а также требования техники безопасности при работе с ними. Не следует забывать о мерах защиты окружающей среды и о вредном воздействии эксплуатационных материалов на флору и фауну.

Приобретенные знания помогут учащимся экономно расхо­довать эксплуатационные материалы, строго выполнять меры пре­досторожности при работе с ними и определять качество неко­торых из них простейшими методами в условиях автотранспортных предприятий. Это позволит им на практике обеспечивать безотказность транспортных средств, повышать их долговечность и тем самым сокращать затраты на техническое обслужи­вание и ремонт подвижного состава.

Достижению рационального использования эксплуатационных материалов способствует новая наука, получившая название химмотология.

Следует уяснить суть этой науки, разобрать­ся в трёх- и четырёхзвенной её структуре.

X и м мо т о л о г и я - это теория и практика рацио­нального использования горючего и смазочных материалов в тех­нике. Основной её задачей является повышение эффективности использования топлив и масел.

Название этого нового научного направления образовано сокращением трех слов: химия + мотор + логия, т.е. учение о химии в моторах.

Все проблемы рационального использования топлив и масел в двигателях внутреннего сгорания можно разделить на первич­ные и вторичные:

- первичные, возникающие в процессе создания или со­вершенствования двигателя когда одновременно разрабатыва­ются технические требования к качеству топлива и масел, на которых должен будет эксплуатироваться двигатель;

- вторичные, возникающие в условиях эксплуатации двига­теля, когда по тем или иным причинам появляется необходимость в изменении качества применяемых топлив и масел.

В первом случае химмотологические проблемы рассматри­ваются в основном в трехзвенной система: двигатель - топливо - смазочное масло, а во втором - в четырехзвенной системе: двигатель - топливо - смазочное масло - эксплуатация.

В химмотологии двигатель, топливо и смазочное масло рассматриваются как составные части единой трехзвенной сис­темы, которая для наглядности представлена в виде схемы (рис.1), отражающей качественную взаимосвязь между ее звеньями.

Эта трехзвенная система характеризуется двумя особен­ностями. Во-первых, между ее звеньями существует сложная взаимосвязь. Так, например, если изменить качество топлива или масла только по одному из его показателей, то при этом неизбежно произойдут количественные изменения и в других показателях этого продукта, величина которых будет зависеть от качества перерабатываемого сырья и технологических про­цессов получения, продукта. Побочные изменения в качестве продукта, в свою очередь, могут повлиять на эффективность эксплуатации техники. Во-вторых, при существенном изменении в одном из звеньев, как правило, приходится вносить измене­ния и в другие звенья.

Подтвердим это положение следующим примером. При пере­воде среднеоборотных дизелей с дистиллятного топлива на ос­таточное (более тяжелое по фракционному составу, но более дешевое) столкнулись с закоксовыванием форсунок, повышенным износом цилиндров, компрессионных колец и поршневых канавок, прогаром фасок клапанов и образованием углеродистых отложе­ний в турбокомпрессорах. Чтобы устранить эти недостатки, при­шлось изменить конструкцию форсунок, химический состав металлов, из которых изготовлены цилиндры, поршневые кольца и фаски клапанов, режим работы двигателя, а также применить более высококачественное масло, нейтрализовавшее вредное дей­ствие сернистых соединений, содержащихся в остаточном топ­ливе.

Эти особенности трехзвенной системы показывают, какие серьёзные затруднения стоят на пути решения первичных химмотологических проблем, в частности, когда для двигателя подбираются топливо и масло. При этом проще решаются зада­чи, если двигатель предназначен для работы на существующих сортах топлива и масла, и значительно труднее, если вопрос ставится об использовании новых сортов этих продуктов. В по­следнем случае качество нефтепродуктов обычно рассматрива­ется как одно из средств улучшения конструкции, повышения надежности, долговечности и экономичности работы двигателя, т.е. получения более совершенного образца техники. Разуме­ется, что при этом учитывается и вопросы, имеющие отношение к производству и экономии топлив и масел. Однако в целом первичные химмотологические проблемы носят преимущественно технический характер, так как подчинены в первую очередь совершенствованию образцов техники,

В четырёхзвенной химмотологической системе существует ещё более сложная связь между звеньями, обусловленная дей­ствием многочисленных факторов, представленная для нагляд­ности в виде схемы (рис.. 2).

В полном виде эта схема применима для поршневых дви­гателей, для других видов техники она чаще всего использу­ется в сокращенных вариантах в соответствии со спецификой данного образца техники.

Так, например, для реактивных двигателей, у которых топливо и масло не контактируют между собой, на схеме не нужны связи (на рисунке показаны стрелками) 2-3 и 3-2; для механизмов, работающих вне контакта с топливом, использует­ся только часть данной схемы, т.е. двухзвенная система: ме­ханизм - смазочный материал (1-3) или трехзвенная система: механизм - смазочный материал - эксплуатация (1-3-4).

Эффективность использования топлив и смазочных масел в эксплуатации зависит от успешного решения как первичных, так и вторичных химмотологических проблем.

Вторичные химмотологические проблемы в большинстве слу­чаев проявляются при эксплуатации тогда, когда возникает не­обходимость внести те или иные изменения в качество приме­няемых топлив и масел, что может быть вызвано разными причинами, важнейшими из которых являются:

1.Экономические - в целях снижения стоимости нефтепро­дукта, повышения экономической эффективности его использова­ния в технике и уменьшения эксплуатационных затрат при его применении, хранении, транспортировании, перекачке и заправ­ках машин.

2.Технические - в целях повышения надежности работы и долговечности техники.

3. Энергетические - в целях снижения расхода продукте.

4. Экологические - в целях снижения токсичности продук­та и уменьшения загрязнения окружающей среды.

5. Международные - в целях приведения качества продук­та в соответствие с международными требованиями.

Итак, химмотология изучает топлива и смазочные матери­алы во взаимосвязи с их производством, техникой, для которой они предназначены, и условиями эксплуатации.

К основным задачам в области химмотологии относятся:

- разработка оптимальных требований к качеству горюче­го и смазочных материалов;

- разработка и внедрение в эксплуатацию новых сортов горючего и смазочных материалов;

- классификация топлив, масел и смазок;

- проведение унификации горючего и смазочных материа­лов;

- разработка норм расхода горючего и смазочных матери­алов;

- разработка мероприятий по сохранению качества и сни­жению потерь топлив, масел, смазок и специальных жидкостей при хранении, перекачках, транспортировании, применении;

- разработка квалифицированных методов оценки эксплуа­тационных свойств и методов контроля качества топлив, масел, смазок и жидкостей;

- разработка ускоренных эксплуатационных испытаний го­рючего и смазочных материалов;

- изучение процессов изменения горючего, смазочных ма­териалов, а также обобщение опыта эксплуатации и установле­ние закономерностей, связывающих качество топлив и смазоч­ных материалов с надежностью, долговечностью и экономичнос­тью работы двигателей и механизмов;

- решение экологических задач, направленных на сниже­ние загрязнения окружающей среды.

Топлива, масла, пластичные смазки, являющиеся продук­тами переработки нефти, имеют определенный элементный и групповой состав, определяющий их физические и химические свойства. Кроме того, в зависимости от условий работы уз­лов и агрегатов автомобиля, где применяются эксплуатацион­ные материалы, к последним предъявляются специфические тре­бования, соответствие которым обеспечивает безотказную ра­боту этих узлов и агрегатов.

Каждое требование определяется одним или несколькими показателями, величины которых нормированы соответствующи­ми ГОСТ и техническими условиями (ТУ). При конкретном из­учении бензинов, дизельных топлив, масел, пластичных сма­зок следует рассмотреть сущность основных показателей по каждому виду эксплуатационных материалов. Напри­мер, важнейшими требованиями, предъявляемыми к бензинам, яв­ляются испаряемость и детонационная стойкость. В соответст­вии с ГОСТ на бензин они определяются следующими показателями: температурные параметры фракционного состава, давление насыщенных паров и октановое число. Для масла одним из основных требований является прокачиваемость масла к узлам, что определяется показателем "вязкость". Другое требование - минимальное изменение вязкости с изменением температурных условий - характеризуется индексом вязкости и т.д.

С целью контроля качества каждой партии нефтепродуктов выдается паспорт. Это документ, где для данного продукта приводятся конкретные значения показателей, определенных со­ответствующим ГОСТ.

Основными ГОСТ и ТУ с которыми следует ознакомиться, являются:

ГОСТ 2084-77, ТУ 30.001.165-87 «Автомобильные бензины».

ГОСТ Р1105-97 «Топлива для двигателей внутреннего сго­рания. Неэтилированный бензин».

ГОСТ 305-82 «Дизельные топлива».

ГОСТ 8581-78 «Масла для автотракторных дизелей».

ГОСТ 10541-78 «Масла для карбюраторных двигателей».

ГОСТ 17479.2-85 «Трансмиссионные масла».

Показатели качества определены конкретным ГОСТ и для каждого вида пластичной смазки.

Далее следует освоить оценку показателей ка­чества нефтепродукта в соответствии с техническими требова­ниями ГОСТ. Учащийся должен уметь отбраковать нефтепродукт (мас­ло, смазку, топливо и т.д.) по отклонениям показателей пас­порта от значений ГОСТ; пояснить, как эти отклонения ска­жутся на работоспособности деталей узлов (агрегатов), где он применяется; иметь представление о доведении нестандарт­ных показателей до норм ГОСТ.

Для закрепления этого материала необходимо дать ответ на соответствующий вопрос контрольной работы.

Тема 1. Химический состав топливно-смазочных материалов.

Производство нефтяного топлива.

Энергетической установкой, приводящей в движение транс­портное средство, является двигатель внутреннего сгорания. Следует вспомнить, что до настоящего времени источ­ником энергии для него служит жидкое и газообразное топливо. Основными видами жидкого топлива являются бензины и дизельные топлива.

Согласно общим требованиям, предъявляемым к топливам

любого вида, топливо должно:

своевременно и полностью сгорать в цилиндрах двигателя и образовывать минимальное количество токсичных веществ в отработавших газах;

сгорать с наименьшим количеством нагара в камере сго­рания и не вызывать отложений во внутренней системе двигате­ля;

обладать противоизносными и антикоррозионными свойства­ми;

обеспечивать быстрый и надежный пуск двигателя при различных температурах окружающего воздуха.

Общность физико-химических свойств и структуры топлив, как и предъявляемых к ним требований, определяется общим ис­ходным сырьем, из которого они получаются.

Изучение раздела необходимо начать с рассмотрения эле­ментного и группового состава нефти. В нефть в виде соедине­ний входят: углерод (83-87%), водород (12-14%), сера (3-45%), азот (0,001-1,8-5, кислород (0,5-1,0%).

Особенно глубоко следует изучить групповой химический состав топливо-смазочных материалов, т.е. предельные (насы­щенные) углеводороды, к которым относятся парафиновый, наф­теновый и ароматический ряды, и непредельные углеводороды, а также физические свойства предельных углеводородов.

Надо ознакомиться с их структурными формулами, обратить внимание на их свойства, т.к. количественное присутствие тех или иных групп углеводородов в топливах (карбюраторных, ди­зельных) и смазочных материалах оказывает влияние на их экс­плуатационные свойства.

Знание химического состава нефти облегчит усвоение последующего материала по конкретным топливам, маслам и смазкам.

Далее следует ознакомиться с соединениями, в молекулы которых входят сера и кислород, рассмотреть условия образо­вания смолисто-асфальтовых веществ, их классификацию, воз­действие на детали механизмов и систем двигателя. Не менее важно представлять их влияние на эксплуатационные показатели топливосмазочных материалов, знать, что свободная сера и сернистые соединения, вызывая коррозию металлов, оказыва­ют воздействие на металлы деталей механизмов и систем двигателя.

Надо остановиться на вопросах очистки или ограничения содержания в топливосмазочных материалах вредных примесей.

Изучая способы получения автомобильных нефтяных топлив, обратите внимание на технологию процессов переработки нефти. Первоначально нефть подвергается прямой перегонке, сущность которой заключается в нагревании нефти до заданной температу­ры с последующим охлаждением образующихся паров до жидкого состояния и разделением их на отдельные фракции.

С целью увеличения выхода светлых нефтепродуктов и повы­шения их качества применяется деструктивная переработка неф­тяного сырья.

Типичным процессом деструктивной переработки является крекинг-процесс. Сущность его заключается в том, что крупные молекулы углеводородов, кипящие при высокой температуре, составляющие перерабатываемое сырье, под действием темпера­туры и давления расщепляются на несколько легких молекул, ки­пящих при более низкой температуре, которые и составляют ав­томобильные топлива.

Из разновидностей крекинг-процессов самое главное вни­мание должно быть уделено каталитическому крекингу как наибо­лее передовому методу переработки нефтяного сырья.

Качество прямогонных бензинов (особенно полученных из сернистой нефти) улучшается при их последующем каталитичес­ком риформинге, являющемся одним из основных процессов совре­менного нефтеперерабатывающего завода.

Автомобильные нефтяные топлива, полученные одним из ука­занных способов, должны быть очищены от органических (нафте­новых) кислот, непредельных углеводородов, смолисто-асфальто­вых веществ, сернистых соединений, а также подвергнуты стаби­лизации для повышения их химической и физической стабильности во время транспортирования, хранения и применения.

Товарное топливо, т.е. то, которое поступает на рынок, представляет собой смесь из фракций, полученных различными способами переработки нефти. Качество его доводится до норм стандарта с помощью различных присадок, улучшающих те или иные свойства топлива.

В последнее время в связи с ограниченностью запасов нефти и остро вставшими вопросами защиты окружающей среды от канцерогенных продуктов сгорания топлива всё более широ­кое применение находят альтернативные топлива: природный газ, нефтяной углеводородный газ, спирты, синтетическое то­пливо, водород и другие. Заметное влияние на общий баланс потребления альтернативных топлив оказывает лишь сжатый природный газ, применяемый в первую очередь на грузовых авто­мобилях. Основными же видами топлива для автотранспорта тра­диционно остаются бензины и дизельные топлива.

Тема 2. Автомобильные бензины

Данная тема является одной из важнейших, ибо надежность и экономичность работы двигателей, в различных эксплуатаци­онных условиях, их долговечность во многом зависит от ка­чества применяемого бензина.

Следует твердо знать эксплуатационные требования к качеству бензинов: определенная испаряемость и детонационная стойкость, необходимая физическая и химическая стабильность, минимальное коррозионное воздействие на металлы, отсутствие механических примесей и воды. Надо знать показатели физических свойств бензинов: плотность, теплотворную способность, испаряемость. Особое внимание надо уделить последнему пока­зателю. Студент должен знать, что испаряемость определяет надежность поступления топлива из бака в карбюратор, ско­рость образования и качество топливовоздушной смеси, а этим определяется легкость пуска двигателя, быстрота прогрева и полнота сгорания бензина после прогрева двигателя, возможность образования паровых пробок в топливной системе. Испа­ряемость бензина определяется фракционным составом. При из­учении фракционного состава необходимо обратить внимании на его характерные точки: температуры начала и конца разгонки, температуры перегонки 10%, 50%, 90% объёма бензина. Далее надо разобраться в сути эксплуатационной оценки бензинов по фракционному составу с использованием специальных номограмм. По этим номограммам надо знать, что означают области темпе­ратур, при которых выгоняется 10%, 50%, 90% бензина, и уметь практически определять для данного бензина различные темпе­ратурные зоны работы двигателя (зона легкого запуска, затрудненного запуска и т.д.).

Чтобы точно оценить особо легкие фракции, наиболее опа­сные с точки зрения образования паровых пробок в топливопро­водах, в ГОСТ на бензины введен дополнительный показатель испаряемости - давление насыщенных паров. По этому показате­лю судят о пусковых качествах бензина и склонности его к об­разованию паровоздушных пробок в системе питания двигателей: чем выше давление насыщенных паров, тем лучше пусковые каче­ства бензина и больше вероятность образования паровоздушных пробок во время работы двигателя. С повышением давления на­сыщенных паров бензина увеличиваются потери от испарения его при хранении на складах и в топливных баках.

Далее следует провести оценку качества бензинов по показателям их химических свойств: детонационной стойкости, химической стабильности, коррозионности.

Надо иметь в виду, что развиваемая двигателем мощность зависит от скорости, начала, конца и полноты сгорания рабо­чий смеси. Надо изучить условия нормального и аномального (детонационного и калильного) сгорания.

Учащийся должен четко представлять сущность детонацион­ного сгорания топлива. Надо хорошо разобраться в причинах, вызывающих детонацию; знать, какие изменения происходят в работе двигателя, как они влияют на его тягово-мощностные показатели, а также иметь представление о способах устране­ния детонационного режима.

Надо разобраться, каким показателем и как оценивается детонационная стойкость бензина, как присваивается каждому бензину значение этого показателя, какие методы при этом используются и как можно повысить показатель детонационной стойкости бензина.

Изучая вопрос о химической стабильности бензинов на­до разобраться в её сущности, методах оценки. Уяснить, что характеризует показатели: "индукционный период", "содержа­ние фактических смол", "кислотность". Надо знать условия повышения коррозионной активности бензинов по присутствию в них минеральных и органических кислот, серы и сернистых соединений, уметь дать оценку этой активности.

Следует обратить внимание на тот факт, что для большинства высокофорсированных двигателей с высокими степенями сжатия требуется этилированный бензин, содержащий в ан­тидетонационных присадках тетраэтилсвинец. Свинец и его со­единения пагубно действуют на органы и ткани человека, нарушают обменные процессы и нервную систему. В комплексе с другими вредными веществами, входящими в состав отработав­ших газов, они загрязняют и отравляют нашу флору и фауну. В целях защиты последних этилированное топливо постепенно выходит из употребления. Следует ознакомиться с группой новых неэтилированных бензинов, определенных ГОСТ Р1105-97 "Топлива для двигателей внутреннего сгорания. Неэтилированный бензин".

Необходимо ознакомиться с действующими ГОСТ 2084-77 и

ТУ 38.001.165 87 на автомобильные бензины и вни­мательно разобраться в значениях показателей, чтобы сравнивая конкретные значения паспорта и ГОСТ, уметь объяснить как отклонения в показателях повлияют на работу двигателя в различных эксплуатационных условиях.

gigabaza.ru

КУРС ЛЕКЦИЙ ПО ДИСЦИПЛИНЕ ОП. 13 «АВТОМОБИЛЬНЫЕ ЭКСПЛУАТАЦИОННЫЕ МАТЕРИАЛЫ»

КУРС ЛЕКЦИЙ

ПО ДИСЦИПЛИНЕ ОП. 13 «АВТОМОБИЛЬНЫЕ ЭКСПЛУАТАЦИОННЫЕ МАТЕРИАЛЫ»

2016 г.

Курс лекций содержит основные сведения по производству и применению автомобильных эксплуатационных материалов. В данном курсе рассмотрены свойства топлив, смазочных материалов, технических жидкостей, влияющих на качественную работу автомобилей.

Курс лекций предназначен для студентов, обучающихся по специальности 190631 «Техническое обслуживание и ремонт автомобильного транспорта» для самостоятельного овладения знаниями в области эксплуатации автомобильной техник

СОДЕРЖАНИЕ

Введение

4

Автомобильные бензины

12

Дизельные топлива

18

Альтернативные виды топлив

22

Моторные масла

26

Трансмиссионные масла

39

Пластичные смазки

41

Технические жидкости

46

Изменение качества материалов при хранении и эксплуатации Пути экономии автомобильных эксплуатационных материалов

51

Список литературы

58

Лекция 1 Введение

Цели: иметь представление:

- о назначении топлив, их классификации, о зависимости между теплотворной способностью топлива и его расходом.

знать:

- способы получения автомобильных топлив из нефти; методику доведения топлив до норм стандарта их отчисткой и введением присадок; виды альтернативных топлив и способы их получения.

Так как автомобильный транспорт потребляет значительную часть жидкого топлива, проблема экономии горюче-смазочных материалов для этой отрасли является наиболее острой. В связи с повышением роли и значения ГСМ в экономике страны, как фактора увеличения надёжности, долговечности и экономичности работы техники, возникла потребность иметь научную основу их применения. Это привело к появлению на стыке ряда научных дисциплин новой прикладной отрасли науки, получившей название "химмотология" от слов "химия", "мотор" и "логос" (наука). Химмотология - это направление науки и техники, занимающееся изучением эксплуатационных свойств и качеств топлив, смазок и специальных жидкостей, теорией и практикой их рационального применения в технике.

Химмотологию сегодня рассматривают, как составную часть единой взаимосвязанной четырёхзвенной системы: конструирование и изготовление техники - разработка и производство ГСМ - эксплуатация техники - химмотология. С учётом эксплуатационных условий применения ГСМ на автомобильном транспорте эта система (двигатель - топливо - смазочное масло - эксплуатация) может быть охарактеризована следующей сложной взаимосвязью между её звеньями Один из основных разделов химмотологии - это теория и практика применения ГСМ на автомобильном транспорте, что является основным содержанием данного курса.

Компоненты нефти и их влияние

на нефтепродукты

Нефть используется человеком очень давно. Археологи нашли остатки нефтяного промысла на берегах Евфрата за 4–6 тыс. лет до нашей эры, а известный путешественник Марко Поло около 700 лет назад при посещении Кавказа обратил внимание на «земляное масло», используемое как горючее вещество и средство для лечения верблюдов Сначала собирали нефть, скапливающуюся в углублениях на поверхности земли, а затем стали добывать из-под земли. Первую в мире скважину пробурил в 1848 г. Ф. А. Семёнов – техник небольшого промысла недалеко от Баку.Нефть – жидкое горючее ископаемое от светло-коричневого до тёмно-бурого цвета со специфическим запахом, плотностью 650–1050 кг/м3. Нефть плотностью ниже 830 кг/м3 называют лёгкой, 831–860 – средней и выше 860 кг/м3 – тяжёлой.С, теплота сгорания – 43,7–46,2 МДж/кг.

Температура начала кипения нефти, как правило, от +26 Атомарный состав нефти: углеводород – 82–87%, водород – 11–14%, сера – до 7%, азот и кислород – до 3%.Основа нефти – жидкие соединения углерода с водородом (углеводороды), в которых растворены твёрдые и газообразные вещества:

1. Сnh3n+2 – алканы или парафины. Это насыщенные углеводороды, т. е. отсутствуют двойные связи.Количество алканов в нефтях зависит от месторождения и составляет в основном 25–30%. В нефтях некоторых месторождений, с учётом растворённых в них газов, содержание алканов достигает 50–70%.По своей структуре алканы бывают нормального строения, например октан и изоалканы с разветвлёнными цепями (изооктан).

2. В отличие от цепочного строения (нормальные или изомерные парафины) атомы углерода могут быть замкнуты в кольцо (нафтеновые углероды). Во втором случае у каждого атома углерода две связи идут на соединение с соседними углеродными атомами, а две – с атомами водорода. Структурная формула Сnh3n , например циклогексан: 

3. В нефти присутствуют и ароматические углеводороды с двойной связью в кольце – например бензол С6H6. Общая структурная формула Сnh3n-6 

Общий признак этих трёх классов углеводородов – химическая устойчивость при нормальных температуре и давлении. Непредельных углеводородов в сырой нефти нет.

При переработке нефти почти всегда образуются непредельные ненасыщенные углеводороды (олефины). Это различной длины парафиновые цепи с одной или двумя двойными связями, например бутен С4H8 или бутадиен С4H6:

Перечисленные углеводороды весьма существенно влияют на свойства нефтепродуктов.

 Нормальные парафиновые углеводороды очень неустойчивы к повышенным температурам, легко окисляются и вызывают взрывное сгорание (детонацию). Их присутствие в бензинах нежелательно. Изомеры (изооктан), напротив, имеют высокую детонационную стойкость. Для высокооборотных дизелей эти свойства обеспечивают оптимальный режим работы, однако их содержание в дизельных топливах ограничивают вследствие высокой температуры застывания.

 Нафтеновые углеводороды занимают по свойствам промежуточное положение между парафиновыми и ароматическими. Они пригодны и для бензина, и для дизельного топлива. Из-за низкой температуры застывания нафтены – основа зимних видов топлива.

Ароматические углеводороды в дизельном топливе нежелательны, так как трудно окисляются, вызывая жёсткую работу двигателя. При понижении температуры их вязкость сильно возрастает. Низкомолекулярные арены (бензол и его производные) входят в состав автомобильных бензинов (в дизельном топливе нежелательны). 

 Непредельные углеводороды очень непрочны, для них характерны реакции присоединения по месту разрыва двойной связи. Они легко окисляются, образуя смолы, органические кислоты и другие соединения. Чем выше температура и больше концентрация кислорода (летом в незначительно заполненных топливных баках), тем быстрее и интенсивнее протекают реакции окисления.

Олефины склонны также к соединению нескольких молекул в одну с большей молекулярной массой (полимеризация) и присоединению отдельных молекул к исходному веществу (конденсация). В результате в топливе накапливаются высокомолекулярные смолисто-асфальтовые соединения, резко ухудшающие их свойства. Непредельные углеводороды значительно снижают стабильность (неизменность состава) нефтепродуктов, их присутствие нежелательно.

По содержанию серы нефти разделяют на малосернистые – до 0,5%, сернистые 0,5–2,0% и высокосернистые – более 2%. Сера присутствует в нефти и нефтепродуктах в свободном состоянии и в виде химических соединений.

Элементарная сера, находясь в растворённом или взвешенном состоянии, способна вызывать сильную коррозию металлов даже при низких температурах.

Сероводород (газ с неприятным, резким запахом) хорошо растворяется в воде и в значительно меньшей степени в углеводородах, на чём основано его удаление из нефтепродуктов. В присутствии воды он обладает свойствами слабой кислоты и способен замещать свой водород на металлы, активно корродируя их.

Меркаптаны RSH ввиду наличия атома водорода действуют на металлы аналогично.

Элементарная сера S, сероводород h3S и меркаптаны RSH относятся к активным сернистым соединениям способным корродировать металлы при нормальных условиях.

Неактивные сернистые соединения (в основном сульфиды углеводородов) при нормальных условиях металлы не корродируют. Но при полном сгорании в двигателе они образуют сернистый SO2 и серный SO3 ангидриды. При взаимодействии с водой получаются сернистые и серные кислоты, чрезвычайно агрессивные. Кислоты воздействуют на конструкционные материалы двигателя, а попадая в атмосферу, образуют мельчайшие капельки, которые переносятся ветром на большие расстояния, вызывая кислотные дожди.

Смолисто-асфальтовые вещества содержатся как в нефти, так и в нефтепродуктах, особенно тяжёлых. Они вызывают отложения в системе смазки, лако- и нагарообразование.

Другие соединения имеются в нефти в весьма незначительных количествах и заметного влияния на свойства топлив и смазочных материалов не оказывают.

Получение нефтепродуктов

Получение нефтепродуктов из нефти ведётся по двум направлениям: прямая перегонка (дистилляция) и деструктивная переработка. Сначала нефть подвергали только дистилляции, сейчас этот способ переработки называют первичным или физическим. При этом средний выход бензиновых компонентов колеблется в зависимости от состава нефти от 15 до 25%, а на долю остальных топлив обычно приходится 20–30% получаемых дистиллятов.

В связи с ростом потребления горюче-смазочных материалов русскими учёными (А. А. Летний – 1875 г., В. Г. Шухов – 1891 г. и др.) были разработаны методы вторичной или химической переработки, позволившие значительно увеличить выход нефтепродуктов – до 55–60% от общего количества переработанной нефти.

Прямая перегонка нефти

Для получения компонента нефти – керосина – русские мастеровые братья Дубинины в 1823 г. построили простейшую нефтеперегонную установку, работавшую по принципу дистиллятора

Рис.Нефтеперегонная установка братьев Дубининых, 1823 г.:

1 – нефть, 2 – вода, 3 – керосин Принцип действия дистиллятора основан на разных температурах кипения углеводородов с различной молекулярной массой. Вначале закипают и выкипают наиболее лёгкие дистилляты, затем более и более тяжёлые. Причём при достижении температуры кипения какого-либо углеводорода, рост температуры до его полного выкипания прекращается. Тепло идёт на испарение. Повышение количества подводимого тепла вызывает более бурное кипение.

При температуре от 30 до 200 оС отбирают бензиновую фракцию (группу дистиллятов), от 200 до 300 оС – дизельную. Остаток после перегонки – мазут (около 80%) подают в дистилляционную колонну, в которой поддерживают разрежение. При пониженном давлении температура кипения понижается, что упрощает технологический процесс.

Прямая перегонка нефти при атмосферном и пониженном давлении называется атмосферно-вакуумной перегонкой.

В результате вакуум-перегонки получают соляровые фракции и полугудрон.

Соляровый дистиллят (температура кипения 280…300 оС) является сырьём для получения химическим способом бензинов, а также дистиллятных масел: индустриальных, цилиндровых, моторных и т. д.

Прямая перегонка является первичным и обязательным процессом переработки нефти. Практически она осуществляется испарением нефти в трубчатой печи при нагреве до 300…350 оС (рис. 1.2). 

Рис. - Принципиальная схема нефтеперегонной установки:

1 – трубчатая печь; 2 – испарительная колонна;

3 – ректификационная колонна; 4 – теплообменник;

5 – холодильник.Затем нефть подаётся в среднюю часть ректификационной колонны. Жидкий остаток стекает вниз, а углеводородные пары поднимаются вверх и конденсируются на ректификационных тарелках. Эти тарелки установлены по высоте колонны. На нижних конденсируются тяжёлые углеводороды, более лёгкие – на последующих, выше. Газообразные углеводороды отводятся из верха колонны.

В атмосферной ректификационной колонне получают топливные дистилляты. После перегонки остаётся мазут, который может подвергаться дальнейшему разделению, либо использоваться для вторичной переработки. Испарение мазутов осуществляют в вакуумных трубчатых установках, а их разделение – в вакуумных ректификационных колоннах. В верхней части вакуумной колонны конденсируются соляровые фракции, ниже – масляные, идущие на приготовление товарных масел. Жидкий остаток наиболее тяжёлых фракций мазута – полугудрон или гудрон – собирается в нижней части вакуумной колонны.

Деструктивная переработка нефти

При деструктивной (вторичной, химической) переработке дистиллятов, полученных атмосферно-вакуумной перегонкой, применяют методы химической переработки тяжёлых нефтепродуктов.

Тяжёлые углеводороды при изменении трёх основных составляющих процесса температуры, давления и катализаторов расщепляются на более лёгкие, в том числе и бензиновые фракции.

Первая промышленная установка, в которой был реализован разработанный русскими исследователями метод расщепления высоко-молекулярных углеводородов, была построена не в России, а в США, и поэтому метод получил название крекинг-процесс. Крекинг в переводе с английского означает «расщепление, растрескивание».

В зависимости от вариации давления, температуры и катализаторов различают следующие основные способы вторичной (деструктивной) переработки нефти [3]:

1.  Каталитический крекинг позволяет перерабатывать соляровую фракцию, получаемую в результате вакуумной перегонки. Она представляет собой смесь углеводородов с числом атомов углерода от 16 до 20. Процесс происходит при температуре 450…550 оС и давлении 0,07–0,3 МПа. В качестве катализатора обычно применяют алюмосиликаты (75–80% окиси кремния и 10–20% окиси алюминия). С помощью каталитического крекинга получают бензин с октановым числом до 85 ед. и керосино-газойлевые фракции, используемые в качестве дизельного топлива.

Возможно получение бензинов с более высоким октановым числом – до 98, но необходимо использовать более дорогие катализаторы – алюмомолибденовые или алюмоплатиновые. Давление 3 МПа.

При термическом крекинге образуется много ненасыщенных углеводородов – олефинов. Эти бензины имеют низкую химическую стабильность и невысокую детонационную стойкость. Этот процесс сейчас не применяют.

2. Гидрокрекинг происходит при давлении до 20 МПа и температуре 480…500 оС, в среде водорода с катализатором, что исключает образование ненасыщенных углеводородов. Химическая стабильность продукта высокая. Сырьё – полугудрон.

3.  Каталитический риформинг применяют для повышения качества бензина прямой перегонки. Процесс идёт в присутствии водорода при температуре 460…510 °С и давлении 4 МПа. При этом идёт перестройка молекул и образование ароматических углеводородов (бензола, толуола, ксилолов и др.) из алканов и нафтенов, что повышает детонационную стойкость горючего.

4.  Коксование тяжёлых фракций процессов крекинга проводят при температуре 550 °С и атмосферном давлении. При этом образуются кокс, газо-образные углеводороды и жидкая фракция, из которой извлекают бензин.

5.  Синтезирование побочных газообразных продуктов кренинга и коксования проводят с целью получения высокоактивных компонентов –изооктана, алкилата, алкилбензола, метилтретичнобутилового эфира и других нефтепродуктов, используемых в качестве добавок для улучшения качества бензинов.

Схема получения горючего из нефти показана на рис.

Получение горючего

Горючее для современных двигателей – бензин и дизельное топливо – представляет собой смесь различных углеводородов и добавляемых веществ – присадок, значительно повышающих качество. Именно смесь различных веществ может обеспечить легкий запуск и бесперебойную, экономичную работу мощных и высокооборотных современных двигателей на всех режимах.

Получаемые компоненты топлив содержат различные нежелательные примеси, от которых необходимо избавиться. Поэтому все получаемые нефтепродукты подвергают очистке.

Очистка является заключительной стадией подготовки базовых продуктов. Их необходимо очистить от избытка сернистых соединений, органических кислот, смолисто-асфальтеновых веществ и застывающих при высоких температурах парафиновых и некоторых циклических углеводородов.

Гидроочистка применяется для удаления сернистых, азотистых, кислородных, металло-органических и непредельных соединений. В процессе гидроочистки соединения, содержащие серу, азот или кислород при реакции с водородом переводят в газообразные, легко удаляемые продукты. Гидроочистку проводят при температуре 300…430 °С и давлении 5–7 МПа в присутствии водорода и катализатора. Гидроочистку применяют для обессеривания дизельных топлив, а также при подготовке сырья для некоторых вторичных процессов переработки нефти.

Карбоновые кислоты нейтрализуют щёлочью с последующей промывкой водой для удаления солей и сушкой для удаления остатков воды.

Смолы удаляют обработкой серной кислотой, а затем последовательно промывают щелочным раствором и чистой водой, после чего производят сушку.

Застывающие при сравнительно высоких температурах парафины и нафтены удаляют, используя различные методы депарафинизации. При производстве дизельных топлив зимних марок распространение получила карбамидная депарафинизация. Топливо смешивают с карбамидом (мочевиной) (Nh3)2CO. В результате реакции с парафинами образуются нормального строения кристаллические комплексы, выпадающие в осадок. После фильтрации дизельное топливо может сохранять текучесть даже до минус 60 °С. Фильтрацию производят на специальных фильтрах – прессах.

Топлива, прошедшие очистку и отвечающие требованиям по фракционному составу обеспечивают работу современных высокофорсированных двигателей.

Вопросы для самопроверки

1 Какими направлениями занимается химмотология, как наука и как область практической деятельности?

1 Что представляет собой четырёхзвенная система: топлива - смазочные материалы - двигатели - эксплуатация?

2 Каким образом классифицируются автомобильные эксплуатационные материалы?

Лекция 2. Автомобильные бензины

Цели: иметь представление:

о назначении бензина и его агрегатном состоянии;

о температурах кипения нефтяных фракций;

знать:

- свойства, влияющие на подачу топлива и смесеобразование, на процесс сгорания бензина и образование отложений; факторы, влияющие на коррозийность; марки бензинов и их применение;

Сгорание топлива в двигателе

Под "сгоранием" применительно к автомобильным двигателям понимают быструю реакцию взаимодействия углеводородов и содержащихся в топливе соединений с кислородом воздуха, сопровождающуюся свечением и выделением значительного количества тепла.

На процесс сгорания в значительной степени влияет количество подаваемого воздуха.

Количество воздуха L0 в горючей смеси, теоретически необходимое для полного сгорания 1 кг топлива, называют стехиометрическим. Отношение действительного количества L воздуха к стехиометрическому называют коэффициентом избытка воздуха .

= L / L0, (2.1)

Как недостаток (<1, богатая смесь), так и избыток (>1, бедная смесь) воздуха приводит к уменьшению скорости горения и снижению эффективности тепловых процессов. Обогащение топливо-воздушной смеси, помимо этого, приводит к повышению токсичности отработавших газов двигателя.

Одной из важнейших характеристик топлива является теплота его сгорания. Теплота сгорания (теплотворность, теплотворная способность) - количество тепла, которое выделяется при полном сгорании единицы массы или объёма топлива.

Различают высшую и низшую теплоту сгорания. За высшую теплоту сгорания НВ принимают всё тепло, выделившееся при сгорании 1 кг топлива, включая количество тепла, которое выделяется при конденсации паров воды. При определении низшей теплоты сгорания НН тепло, выделяющееся при конденсации паров воды из продуктов сгорания, не учитывается. Оценивая теплоту сгорания топлива, обычно пользуются значениями низшей теплоты сгорания.

Теплота сгорания топлива влияет на топливную экономичность: чем она выше, тем меньше топлива содержится в 1 м3смеси, так как с увеличением теплоты сгорания топлива возрастает количество воздуха, теоретически необходимого для его полного сгорания.

Структуру процесса сгорания топлива можно представить, как две фазы образование очага горения (участок 1-2 и образование пламени (участок 2-3). Первая фаза - период скрытого сгорания или период задержки воспламенения характеризуется более интенсивной подготовкой рабочей смеси к сгоранию, чем в период сжатия.

Вторая фаза - непосредственное сгорание (сопровождается более быстрым, чем при чистом сжатии, повышением давления) продолжается до максимального подъёма давления и обычно заканчивается спустя несколько градусов после верхней мёртвой точки.

Скорость сгорания при нормальном развитии процесса зависит от следующих основных факторов:

химического состава топлива;

количества топлива;

соотношения количества топлива и воздуха;

количества остаточных газов в цилиндре;

температуры рабочей смеси в момент подачи искры;

давления рабочей смеси в момент подачи искры;

конструкции камеры сгорания;

степени сжатия;

частоты вращения коленчатого вала.

При нормальном сгорании процесс проходит плавно с почти полным протеканием реакций окисления топлива и средней скоростью распространения пламени 10 - 40 м/с.

Рисунок 1- Диаграмма процесса сгорания в двигателе с зажиганием от искры

Когда скорость распространения пламени резко возрастает (почти в 100 раз) и достигает 1500 - 2000 м/с, возникает детонационное сгорание, характеризующееся неравномерным протеканием процесса, скачкообразным изменением скорости пламени и возникновением ударной волны.

Согласно перекисной теории (она в настоящее время общепризнанна), при детонации образуются первичные продукты окисления топлива - органические перекиси.

При присоединении молекулы кислорода к углеводородам по С - С связи образуется перекись, по С - Н связи - гидроперекись. Перекиси, образующиеся в процессе предварительного окисления, накапливаясь в несгоревшей части рабочей смеси, распадаются (по достижении критической концентрации) со взрывом и выделением большого количества тепла.

Детонация приводит к потере мощности двигателя, его перегреву, прогару поршней, клапанов и поршневых колец, нарушению изоляции свечей, растрескиванию вкладышей шатунных подшипников, повышению токсичности отработавших газов.

Когда детонирует около 5 % смеси, появляются внешние признаки детонации. Если детонирует 10 - 12 % смеси, наблюдается детонация средней интенсивности. Очень сильная детонация характерна для 18 - 20 % детонирующей смеси

infourok.ru