Просто о сложном: что такое темная материя и где ее искать. Нефть это темная материя


что такое темная материя и где ее искать — T&P

Теоретическая конструкция в физике, называемая Стандартной моделью, описывает взаимодействия всех известных науке элементарных частиц. Но это всего 5% существующего во Вселенной вещества, остальные же 95% имеют совершенно неизвестную природу. Что представляет из себя эта гипотетическая темная материя и как ученые пытаются ее обнаружить? Об этом в рамках спецпроекта «Физтех. Читалка» рассказывает Айк Акопян, студент МФТИ и сотрудник кафедры физики и астрофизики.

Стандартная модель элементарных частиц, окончательно подтвержденная после обнаружения бозона Хиггса, описывает фундаментальные взаимодействия (электрослабое и сильное) известных нам обычных частиц: лептонов, кварков и переносчиков взаимодействия (бозонов и глюонов). Однако оказывается, что вся эта огромная сложная теория описывает лишь около 5–6% всей материи, тогда как остальная часть в эту модель никак не вписывается. Наблюдения самых ранних моментов жизни нашей Вселенной показывают нам, что примерно 95% материи, которая окружает нас, имеет совершенно неизвестную природу. Иными словами, мы косвенно видим присутствие этой скрытой материи из-за ее гравитационного влияния, однако напрямую поймать ее пока не удавалось. Это явление скрытой массы получило кодовое название «темная материя».

Современная наука, особенно космология, работает по дедуктивному методу Шерлока Холмса

Эксперимент LUX, в ходе которого ученые пытались с помощью бассейна, заполненного 400 кг жидкого ксенона, поймать частички темной материи — WIMPs, слабо взаимодействующие массивные частицы, — ни к чему не привел. Сейчас к запуску готовится новый эксперимент — DARWIN, в котором планируется использовать 25-тонную массу ксенона для детектирования WIMP (см. рис. 1). С другой стороны, эксперимент ADMX, направленный на обнаружение других (во много раз более легких по массе) кандидатов на роль темной материи, гипотетических аксионов, тоже пока не дал никаких результатов.

Установки экспериментов LUX (слева) и ADMX (справа)

В результате такого молчания детекторов возникает совершенно естественный вопрос: почему мы ищем именно эти частицы, почему не что-то другое? Почему эта масса не может скрываться в других известных нам частицах или объектах? Не может ли быть так, что мы вообще идем на поводу у кодового названия, то есть не может ли быть так, что никакой темной материи и вовсе нет, просто теория гравитации дает сбой и не работает на таких масштабах? Как ученые могут быть так уверены в себе?

Дело в том, что современная наука, особенно в области космологии, работает по дедуктивному методу Шерлока Холмса. Изначально может быть огромное количество вероятных и невероятных, обычных и экзотических, вписывающихся в современную теорию и противоречащих ей гипотез, объясняющих какое-либо явление. Однако объективным судьей, отсеивающим все невозможные варианты гипотез, является самое простое наблюдение и эксперимент. Соответствие наблюдениям — самый базовый критерий, которому должна удовлетворять любая научная теория. Иными словами, если отбросить все невозможные гипотезы, то оставшаяся, сколь бы парадоксальной и невероятной она ни была, и является истиной. Наука работает так, как происходит расследование преступления, где каждая улика и алиби подозреваемых имеют решающий вес. Здесь я хочу как раз рассказать об этих отсеянных гипотезах и объяснить, почему такие длительные и дорогостоящие поиски WIMP и аксионов имеют под собой очень твердые основания.

Первые наблюдения, Или место преступления

Впервые странное явление обнаружил американский астроном Цвикки в 1933 году. Он исследовал скопление галактик Волос Вероники (Coma Cluster) и обнаружил странное расхождение. Дело в том, что измерить массу галактики можно двумя способами. В первом случае можно просто посчитать количество галактик в скоплении, прикинуть их примерную массу по количеству звезд (зная примерно массу каждой) и просто сложить массы всех галактик. У него получилось примерно 1013 (в массах Солнца). Во втором случае можно измерить скорости галактик: чем больше скорость, тем больше гравитационная сила, действующая на эту галактику, и тем больше общая масса скопления. Таким образом можно снова с некоторой точностью оценить массу скопления, и в этот раз у Цвикки получилось 5×1014, то есть в 50 раз больше.

Подозреваемый №1: межзвездная пыль/газ

Подобное расхождение на тот момент не вызвало большого резонанса в научном мире, так как наблюдений было в принципе очень мало и, соответственно, не хватало информации о межзвездной пыли, газе, карликовых звездах. Тогда считалось, что эта дополнительная масса может скрываться именно в них.

В своей работе 1970 года Вера Рубин и Кент Форд изучали для галактики Андромеды зависимость скорости звезд от их отдаленности от центра галактики (так называемую кривую вращения). Так как основная часть звезд сконцентрирована вблизи центра галактики, логично предположить, что чем дальше звезда от центра, тем меньше должна быть гравитационная сила, действующая на нее, и тем меньше должна быть ее скорость. Однако оказалось, что для звезд на периферии такой закон не выполняется и кривая выходит на константу (см. рис. 2).

Кривая вращения для галактики Андромеды (из статьи V. Rubin, Kent Ford Jr., 1970)

Это означало, что основная масса, которая влияет на вращение звезд, не просто скрыта от нас. Она распределена вплоть до периферии и, возможно, еще дальше. Позже подобные кривые были прорисованы для различных галактик с абсолютно тем же результатом. Для многих эллиптических галактик эти кривые не просто не спадали, но и возрастали, то есть чем дальше звезда находилась от центра, тем больше была ее скорость. Получается, что большая часть массы (в среднем более 90%) заключена не в звездах и эта скрытая масса распределена далеко за областью галактического диска в виде сферического гало (см. рис. 3). (Гало — оптический феномен, светящееся кольцо вокруг объекта — источника света. — Прим. ред.)

Сравнение области скрытой массы и размера галактики

Межзвездная пыль и газовые облака теперь уже никак не могли объяснить наличие скрытой массы. Дело в том, что так или иначе и пыль, и газ имеют внутреннее взаимодействие: из-за трения излучения частички пыли или молекулы газа теряли бы энергию, постепенно скапливаясь с периферии в центр. И в результате мы бы имели не огромное гало, простирающееся далеко за пределы самой галактики, а скопление вещества в центре. Поэтому гипотеза газопылевой природы опровергается.

Подозреваемый №2: слабо излучающие астрофизические объекты

Следующей по простоте очевидной гипотезой было то, что скрытая часть массы может быть заключена в каких-нибудь известных астрофизических объектах (англ. MACHO — Massive astrophysical compact halo object), таких как слабые или потухшие звезды, белые, коричневые карлики, нейтронные звезды, черные дыры или даже массивные планеты типа Юпитера. Ввиду своей малости и слабой светимости эти объекты не видны в телескоп, и, вполне возможно, их так много, что они и обеспечивают наличие этой скрытой массы.

Когда слабосветящийся массивный объект пересекает наш луч зрения, то видимый объект, находящийся позади, например звезда, становится ярче из-за гравитационного линзирования света (см. рис. 4). Такое явление называется гравитационным микролинзированием. Наличие таких MACHO должно было бы привести к огромному количеству событий микролинзирования. Однако наблюдения орбитального телескопа Hubble показали, что таких событий необычайно мало и если такие объекты MACHO и есть, то их масса составляет меньше 20% от массы галактик, но никак не 95%.

Микролинзирование звезды объектом MACHO

Более того, все эти опровержения позже были подкреплены наблюдениями космического реликтового фона. Дело в том, что эти наблюдения вводят четкое ограничение на число барионов (протоны, нейтроны и все, что состоит из кварков), которые могли родиться в ранней Вселенной в период нуклеосинтеза (образования атомных ядер. — Прим. ред.). В частности, это говорит нам о том, что та барионная материя (все светящиеся звезды, газ, пылевые облака) — это уж, по крайней мере, большая часть всей барионной материи в нашей Вселенной и, соответственно, скрытая масса не может состоять из барионов.

Подозреваемый №3: модифицированные теории

Вернемся к началу рассказа: а что, если никакой дополнительной массы нет? Что, если у нас просто немножко по-другому работает теория гравитации или законы Ньютона?

В самом начале мы говорили, что чем больше гравитационная сила, действующая на объект (в данном случае — на галактику или отдельную звезду), тем больше ее ускорение (закон Ньютона) и, соответственно, скорость, так как центростремительное ускорение пропорционально квадрату скорости. Но что, если подкорректировать закон Ньютона? В 1983 году израильский физик Мордехай Милгром предложил гипотезу MOND (Modified Newtonian dynamics), в которой закон Ньютона был несколько cкорректирован для случая, когда ускорения достаточно малы (10–8 см/с2).

Такой подход хорошо объяснял кривые вращения, полученные Рубин и Фордом, и возрастающие кривые вращения для эллиптических галактик. Однако для скоплений темной материи, где ускорения галактик куда больше ускорения единичных звезд, MOND не вносил никаких поправок, и вопрос оставался открытым. Другой подход был предложен в многочисленных попытках модифицировать теорию гравитации. Сейчас существует широкий класс таких теорий, называемый параметризованным постньютоновским формализмом, где каждая отдельная теория описывается своим набором 10 стандартных параметров, объясняющих отклонение от обычной гравитации.

Какие-то из этих теорий действительно снимают проблему скрытой массы, однако ведут к другим проблемам. Например, к массивным фотонам или хроматичности гравитационной линзы (зависимости отклонения света от частоты), что, конечно же, не подтверждается наблюдениями. В любом случае, ни одна из этих теорий до сих пор не подтверждена наблюдениями. Таким образом, из всевозможных гипотез осталась только одна возможная (хотя изначально экзотическая), не противоречащая эксперименту: темная материя — это какие-то частицы небарионной природы (то есть не состоящие из кварков). Таких кандидатов в теории существует очень много (см. рис. 5), однако их подразделяют на две основные группы — холодную и горячую темные материи.

Кандидаты на роль темной материи, отсортированные по массам (из статьи V. Trimble, 1987)

Подозреваемый №4: горячая темная материя

Горячая темная материя — это легкие частицы, движущиеся со скоростями, близкими к скорости света. Самым очевидным кандидатом на эту роль является самое обычное нейтрино. Эти частицы имеют очень малые массы (раньше считалось, что их масса равна нулю), рождаются в недрах звезд при различных термоядерных процессах и летят, почти ни с чем не взаимодействуя. Однако оказалось, что при том количестве нейтрино, которое есть у нас во Вселенной, для объяснения темной материи необходимо, чтобы их масса была около 10 электронвольт. Но эксперименты ограничивают массу нейтрино сверху до долей одного эВ, что в сотни раз меньше.

После отказа от обычных нейтрино появилась теория о наличии так называемых стерильных нейтрино — гипотетических частиц, возникающих в теории суперслабых взаимодействий. Однако такие частицы в экспериментах пока не обнаружены, и факт их существования сейчас под вопросом. Космологические наблюдения последних лет показали, что если горячая темная материя и есть, то она составляет не больше 10% от всей темной материи. Дело в том, что различные типы темной материи предлагают различные сценарии формирования галактик (см. рис. 6).

В сценарии горячей темной материи (top-down) в результате эволюции сперва формируются большие куски материи, которые затем схлопываются в отдельные мелкие скопления и в итоге превращаются в галактики. В сценарии холодной темной материи (bottom-up) сперва формируются мелкие карликовые галактики и скопления, которые затем сцепляются и образуют более крупные. Наблюдения и компьютерное моделирование показывают, что в нашей Вселенной реализуется именно этот сценарий, что указывает на явное доминирование холодной темной материи.

Сверху — сценарий top-down (горячая темная материя), снизу — сценарий bottom-up (холодная темная материя)

Подозреваемый №5: холодная темная материя

Гипотеза с холодной темной материей на сегодняшний день является самой распространенной в ученом сообществе. Гипотетические частицы холодной темной материи подразделяются на две категории — слабо взаимодействующие массивные частицы (WIMPs — weakly interacting massive particles) и слабо взаимодействующие легкие частицы (WISPs — weakly interacting slim particles). WIMPs — это в основном частицы из теории суперсимметрии (суперсимметричные партнеры обычных частиц) с массами больше нескольких килоэлектронвольт, такие как фотино (суперпартнер фотона), гравитино (суперпартнер гипотетического гравитона) и так далее. Существование одного из главных претендентов на роль WISP — аксионоподобной частицы (ALP) — опровергли недавние наблюдения орбитального гамма-телескопа FERMI/LAT.

Сейчас основным кандидатом из группы WISP является аксион, возникающий в теории сильного взаимодействия и имеющий очень малую массу. Такая частица способна в больших магнитных полях превращаться в фотон-фотонную пару, что дает намеки на то, как можно попробовать ее обнаружить. В эксперименте ADMX используют большие камеры, где создается магнитное поле в 80000 гаусс (это в 100000 раз больше магнитного поля Земли). Такое поле в теории должно стимулировать распад аксиона на фотон-фотонную пару, которую и должны поймать детекторы. Несмотря на многочисленные попытки, пока обнаружить WIMP, аксионы или стерильные нейтрино не удалось.

Таким образом, мы пропутешествовали через огромное количество различных гипотез, стремящихся объяснить странное наличие скрытой массы, и, откинув с помощью наблюдений все невозможное, пришли к нескольким возможным гипотезам, с которыми уже можно работать.

Отрицательный результат в науке — это тоже результат, так как он дает ограничение на различные параметры частиц, например отсеивает диапазон возможных масс. Из года в год все новые и новые наблюдения и эксперименты в ускорителях дают новые, более строгие ограничения на массу и другие параметры частиц темной материи. Таким образом, выкидывая все невозможные варианты и сужая круг поисков, мы день ото дня становимся все ближе к понимаю, из чего же все-таки состоит 95% материи в нашей Вселенной.

Не пропустите следующую лекцию

theoryandpractice.ru

Что такое тёмная материя?

Темная материя - одна из самых загадочных субстанций во вселенной. Во всяком случае, так считают очень многие. Загадочности этому "веществу" придает и то, что её невозможно обнаружить, и то, что она якобы есть везде, и само название "темная".Но, на самом деле, ничего особенно загадочного в ней нет. Или есть. Решайте сами =)

Немного истории

"Открытие" темной материи состоялось в конце прошлого века. Физики изучали скорость вращения галактик и внезапно пришли к выводу, что она значительно выше, чем предсказываемая теоретически.Галактики вращались слишком быстро.

А поскольку скорость вращения галактики напрямую зависит от её массы, астрономы и физики пришли к выводу, что помимо непосредственно наблюдаемой материи в галактиках есть еще что-то - что-то тяжелое и невидимое. Темная материя.

Изначально предполагалось, что темная материя - это просто материя, невидимая в "стандартном" электромагнитном диапазоне. В конце концов, в космосе полно объектов, которые невозможно разглядеть в обычные телескопы.Однако доля массы темной материи в общей массе галактики настолько превышает долю массы "обычной" материи, что становится очевидно - темная материя - это не всякие коричневые карлики. Это что-то иное.

Что это вообще такое

Тем временем, наступил 2014 год, а физики всё никак не могут дать ответ на вопрос "Что такое темная материя?".Впрочем, список кандидатов достаточно велик.

Во-первых, это всё-таки может быть "обычная" материя, по ряду причин ненаблюдаемая.Те же коричневые карлики и черные дыры имеют очень малые физические размеры, не наблюдаются в обычный телескоп и при этом достаточно тяжелые.

Во-вторых, это может быть "странная", небарионная материя - легкие и тяжелые нейтрино либо суперсимметричные партнеры частиц.Объяснение того, что значит "суперсимметричные партнеры частиц" слишком длинное для записи, потому примите как факт.Суперпарнеры частиц - самый подходящий кандидат на роль темной материи. Их действительно невозможно обнаружить, а их энергия значительно превышает энергию "обычных", "наших" частиц.

Ну и, наконец, многие ученые полагают, что темная материя - и не материя как таковая вовсе, а просто "материализовавшиеся" дефекты структуры пространства-времени - магнитные монополи, космические струны и всякое такое. Подобные дефекты при малых физических размерах имеют колоссальную массу, и, следовательно, вполне годятся на роль темной материи.

Темная материя рядом с вами

Темная материя вездесуща. Её можно найти даже в Солнечной системе. Правда, совсем немного - около 50 грамм.Впрочем, теории предсказывают, что в Солнечной системе найдется полкило темной материи, так что, может быть, ещё не все потеряно, и кто-нибудь в будущем сможет её обнаружить.

Научно-фантастический взгляд

В научной фантастике темная материя предстает то спасителем вселенной, то убийцей.На самом деле, в настоящий момент темная материя практически не оказывает никакого влияния на состояние вселенной, присутствуя только лишь "для галочки" - образуя массу и подтверждая космологические теории, касающиеся способа образования галактик.

И несмотря на то, что природа темной материи пока неизвестна, сама по себе темная материя - нечто обыденное, нормальное для нашей вселенной. А вот темная энергия...

ribalych.ru

Физики надеются найти темную материю в БАКе

Вокруг темной материи появилось столько интриг и новостей, что корреспонденты Infox.ru решили разобраться, что же это такое и зачем физикам нужна эта самая темная материя. За ответами они обратились к людям, которые ее ищут.

Нас окружает огромный, но совершенно неизведанный мир. Это темная материя -- непонятное вещество, само существование которого люди заподозрили лишь в XX веке. По массе темная материя в несколько раз превосходит все то вещество, которое мы видим, -- звезды, планеты, нас самих. Но о природе ее ученые почти ничего не знают. Темная материя -- главная загадка физики наших дней.

Темная материяГипотетическое вещество, составляющее большую часть массы во Вселенной. Его присутствие пока надежно обнаружено лишь по его гравитационному взаимодействию, и предполагается, что оно или очень слабо участвует, или вовсе не участвует в других фундаментальных физических взаимодействиях.

Впрочем, как раз в последние несколько лет в этой области науки наметился прорыв. Астрономы все лучше узнают свойства темной материи на космических масштабах, от огромных скоплений галактик до небольших сгустков массой порядка массы Земли. А физики вплотную подобрались к тому, чтобы впервые «пощупать» это загадочное вещество в лабораториях -- наземных и орбитальных.

Что же это такое, темная материя? Почему она «темная»? Откуда мы про нее узнали? Каковы ее свойства и какое место она занимает в общей картине физического мира? Каким экспериментам удалось схватить темную материю за рукав и как интерпретировать результаты этих опытов?

Обо всем этом в интервью Infox.ru рассказал российский физик, сотрудник Центра космологии и физики частиц при Университете Нью-Йорка Дмитрий Малышев.

Темная материя в физике и в мире

-- В чем состоит проблема темной материи?

-- Есть несколько указаний на то, что существует вещество, которое взаимодействует с видимым веществом лишь с помощью гравитации. Из космологии известно, что без темной материи не получается правильный спектр реликтового микроволнового излучения. Есть наблюдения вращения звезд в галактиках, и по скорости их вращения получается, что должно быть больше массы, чем есть видимого вещества.

Наконец, есть эксперименты по гравитационным линзам: в теории относительности свет отклоняется в гравитационном поле. Так из наблюдений можно оценить, сколько массы отклоняет свет. И опять помимо видимого вещества должно быть еще и невидимое.

Это и есть так называемая темная материя, и, собственно, проблема заключается в том, чтобы понять, какова ее структура, какова ее природа.

-- Почему мы считаем, что этот недостаток массы -- не просто какое-то обычное вещество, которое мы не видим, а действительно что-то не входящее в рамки привычной, стандартной физики?

-- Обычное вещество обязательно излучает или поглощает свет. Оно имеет какую-то температуру и светится в каком-нибудь диапазоне. Даже если оно холодное, то будет светиться в радио-, инфракрасном свете. А темная материя прозрачна и не проявляется ни в электромагнитном, ни в слабом, ни в сильном взаимодействиях.

-- То есть темная материя может быть вообще никак не связана с нашим привычным миром, частицы которого участвуют в этих процессах?

-- В принципе может. Но есть указания на то, что связь между темным и светлым мирами все-таки есть и частицы из одного мира могут превращаться в кирпичики другого.

Например, теория естественным образом объясняет наблюдаемую среднюю плотность темной материи, если мы допускаем аннигиляцию темной материи в обычные частицы. Если этого не предполагать, очень трудно понять, почему нынешняя плотность темной материи должна равняться тому значению, которое мы получаем из астрофизических наблюдений.

Хотя не исключено, что такое объяснение существует и темные частицы никак не связаны с обычными (кроме как гравитацией). И тогда все наши попытки измерить их свойства в лаборатории по большому счету бессмысленны. Но такое объяснение, даже если оно будет найдено, вряд ли будет естественным.

-- Если темный мир все-таки связан со светлым, как его можно исследовать?

-- Есть несколько способов детектировать темную материю. Во-первых, косвенные, астрономические, о которых я уже говорил. Они показывают, что темная материя есть.

Во-вторых, так называемые непрямые поиски темной материи. В стандартных космологических моделях предполагается, что частицы темной материи могут распадаться или аннигилировать друг с другом так, что при этом рождается видимая материя. Непрямой способ обнаружения -- это искать продукты распада или аннигиляции темной материи в космических лучах -- большом потоке обычных материальных частиц, которыми наполнен космос. Проблема заключается в том, что существуют стандартные, астрофизические способы создания космических лучей. И нужно уметь отделять от этого астрофизического фона тот продукт, что получается в результате аннигиляции темной материи.

В-третьих, есть эксперименты по прямому детектированию, в которых ищут следы упругих столкновений частиц темной материи с обычными атомами. Смотрят на отдачу этих атомов в результате столкновений, какие-то сцинтилляции, когда частицы темной материи ударяют по этим атомам. Ну и, наконец, есть надежда, что на LHC, Большом адронном коллайдере, в столкновениях протонов можно будет просто создавать частицы темной материи, как-то детектировать их и исследовать их свойства.

Непрямые поиски

-- Ваши основные работы как раз посвящены непрямым поискам темной материи, в частности эксперименту PAMELA. Не могли бы вы рассказать о нем подробнее?

-- PAMELA (англ. Payload for Anti-Matter Exploration Light nuclei Astrophysics, оборудование для исследований антиматерии и астрофизики легких ядер) -- это детектор, установленный на спутнике (российском аппарате «Ресурс-ДК». -- Infox.ru), который ловит разные космические лучи -- протоны, электроны, фотоны и так далее.

Особенность оборудования PAMELA в том, что оно может определять заряд частиц до очень высоких энергий; далеко не все эксперименты на спутниках или высотных воздушных шарах могут отличать заряженные частицы от их противоположно заряженных античастиц. Участники проекта PAMELA измерили поток позитронов, то есть антиэлектронов, и посчитали долю античастиц в общем потоке электронов и позитронов.

И получилось вот что. В стандартной теории отношение позитронов к электронам должно с энергией убывать. Позитроны в стандартной теории рождаются в основном в столкновениях протонов, которых в космических лучах большинство. Число протонов с ростом энергии убывает, а значит, с ростом энергии должно убывать и число рождаемых ими позитронов.

А в результатах PAMELA начиная с некоторой энергии, порядка 10 ГэВ, отношение числа позитронов к электронам возрастает, античастиц становится все больше. И вот это можно интерпретировать как результат аннигиляции или распада частиц темной материи.

-- Существуют ли более прозаические объяснения и как отличить одно от другого?

-- Основное альтернативное, консервативное объяснение -- это астрофизические источники, то есть какие-то стандартные для астрофизики процессы.

В любом случае источник этих частиц должен находиться относительно недалеко. Дело в том, что позитроны очень быстро теряют энергию в магнитном поле Галактики. Расстояния, которые могут пролетать позитроны с энергией в десятки ГэВ, это несколько килопарсеков.

-- И какие источники могут находиться так близко?

-- Для темной материи это ограничение не беда, потому что она -- везде и легко может быть источником таких позитронов. А вот круг астрофизических объектов, способных разогнать частицы до таких высоких энергий, резко сужается. Расстояние до центра нашей Галактики -- 8 килопарсеков, до ближайших других галактик -- десятки и сотни килопарсеков. При этом все объекты, которые могут создавать частицы высоких энергий, должны быть видны. Наблюдения сейчас уже на достаточно высоком уровне, а делать частицы высоких энергий втихаря вряд ли возможно.

По моему мнению, это оставляет лишь одну астрофизическую альтернативу темной материи -- пульсары. Пульсар -- это нейтронная звезда, у которой очень большое магнитное поле и быстрое вращение. В общем, сложная система. Это очень плотный объект, массой в полтора раза больше Солнца, а размером всего 10 км. При этом у него очень сильное магнитное поле, порядка 1012 Гс, то есть в десятки миллионов раз сильнее, чем у самых мощных магнитов, которые есть на Земле. И все это крутится с периодом порядка 1 секунды.

Быстро вращающееся магнитное поле создает очень сильное электрическое. Вместе они могут рождать пары электронов и позитронов и разгонять их до очень больших энергий.

-- И какой вывод вы сделали, сравнив темную материю и пульсары в качестве потенциальных источников?

-- Вывод был в том, что на данный момент и темная материя, и пульсары могут быть источниками энергичных позитронов, которые фиксирует PAMELA. Чтобы разобраться с этим вопросом, нужны какие-то новые эксперименты, новые наблюдения, нужно лучше понимать, как позитроны рождаются и ускоряются в пульсарах и как они распространяются по Галактике.

-- А нельзя просто посмотреть, откуда прилетают энергичные электроны и позитроны?

-- PAMELA видит, с какой стороны в нее врезаются электроны и позитроны, но это ничего не говорит о том, где их источник. Пути заряженных частиц очень быстро запутываются в хаотическом магнитном поле Галактики, и разобрать, откуда они прилетели, невозможно.

Что касается направлений прихода, более интересно посмотреть на незаряженные частицы, нейтрино. Они также могут рождаться при аннигиляции темной материи, но на них магнитное поле не влияет. Еще лучше -- фотоны, кванты света. И такие данные есть, они получены спутником Fermi и были опубликованы в августе.

Распад и аннигиляцияРаспадом называют самопроизвольный распад частиц, как распадается ядро урана или нейтрон, покинувший любое атомное ядро. Аннигиляция -- это взаимное уничтожение частиц при их встрече друг с другом, например аннигиляция электрона и позитрона и вообще вещества и антивещества.

Сама команда Fermi не стала публиковать анализ этих данных, но его сделали другие люди. Они нашли, что в центре Галактики действительно есть гало, из которого приходит много фотонов высоких энергий -- больше, чем предсказывается в рамках стандартной физики. Более того, форма этого гало из фотонов очень близко напоминает то, что ожидается от аннигиляции темной материи.

-- Так что, Fermi и PAMELA удалось увидеть темную материю?

-- Не обязательно. Наша Галактика состоит не только из диска, в котором, в частности, обращается наша Солнечная система, но и из звездного гало. И кроме звезд в нем есть так называемые миллисекундные пульсары, которые тоже могут излучать фотоны высоких энергий. Так что полной ясности результаты непрямых поисков что PAMELA, что Fermi пока не дали.

Столкновение с темным

-- А прямые поиски? Как работают такие эксперименты? Какова их основная идея?

-- Смысл этих экспериментов прост. Если темная материя может аннигилировать в частицы обычного вещества, то просто из законов квантовой теории поля следует, что частица темной материи может рассеиваться на обычных частицах: если взаимодействие есть, то соответствующие процессы должны идти в разных направлениях.

В некоторых теориях масса частиц темной материи предполагается порядка сотни атомных единиц, то есть примерно такой, как масса ядер тяжелых элементов, например германия, ксенона и так далее. А когда сталкивающиеся частицы имеют примерно одинаковую массу, возрастает эффективность рассеяния, передачи энергии при столкновении.

Если собрать очень большой объем вещества -- так, чтобы оно было очень чистым, чтобы не было никаких радиоактивных элементов, изолировать его, чтобы внутрь не попадали космические лучи, то [с помощью такой установки] можно искать темную материю. Когда частица темного вещества ударит в ядро, оно получит большой импульс и полетит в сторону и при этом может как-то проявить себя, например ионизировать окружающие атомы.

Например, мы полгода смотрим на какой-то объем вещества, и оно полгода остается темным. И вдруг в какой-то момент происходит его спонтанная ионизация, и мы видим или вспышку, или какой-то трек. Это было бы признаком того, что темная материя ударила в атомное ядро.

-- В последнее время было много шума вокруг эксперимента CDMS -- то ли он обнаружил темную материю, то ли нет...

-- В CDMS (англ. Cryogenic Dark Matter Search, «криогенный поиск темной материи») как раз и ищут примерно такие события, удары темных частиц по ядрам атомов германия и кремния. И совсем недавно участники эксперимента обнародовали свои результаты. После того как они вычитают всевозможный фон (который там все же есть, совсем от фона избавиться не получается), два события все равно у них остаются.

Два события -- это, конечно, статистика очень маленькая. Поэтому они скорее дают надежду на будущее. Это еще не точно темная материя, но это уже хороший знак.

-- А по тем событиям, которые они зафиксировали, можно уже что-то сказать о физике темной материи?

-- Частота событий говорит нам о сечении взаимодействия частиц темной и обычной материи -- грубо говоря, о связи обычной физики и физики темной. По отдаче, которую получают обычные частицы и которую мы можем измерить, можно оценить массу, энергию и импульс частиц темной материи.

Но эти эксперименты, конечно, не так чувствительны. Можно ограничить какие-то параметры каких-то моделей, но многих свойств темной материи отсюда не вытянуть, понять, какова ее структура, невозможно.

Самый интересный эксперимент в этом плане, конечно, LHC, Большой адронный коллайдер (БАК). Предполагается, что там можно будет эти частицы создавать, как-то контролировать их параметры. Здесь уже можно будет получить намного больше информации.

-- А как вообще может быть устроен этот темный мир? Могут ли там быть какие-то новые, неизвестные нам взаимодействия? Своя сложная структура? Темные силы, темные атомы, темные молекулы?

-- Тут, конечно, простор для фантазии огромный. В принципе можно вводить и какие-то «темные силы», действующие исключительно между частицами темной материи. Это даже может быть естественным в каких-то моделях, но… Это будет очень сложно проверить. Надежда сейчас на то, что в ближайшем будущем какие-то эксперименты смогут сказать что-то более конкретное.

– На что именно надо надеяться? Какие эксперименты нужны, чтобы получилась чуть-чуть больше ясности?

-- Больше всего надежд, конечно, на LHC. Надежд, что они найдут какие-то новые частицы. Прямые эксперименты, наверное, лучше всего и быстрее всего смогут доказать существование частиц, которые участвуют в каких-то новых взаимодействиях. Правда, каких-то подробностей об этом новом, наверное, не стоит ждать и от них.

-- То есть мы можем еще надолго остаться в неведении об этой новой физике?

-- Может быть. Будем ждать.

www.infox.ru

Сверхъестественное Вселенского масштаба: что такое тёмная материя, куда ведут черные дыры, и зачем нужна квантовая механика

Физика, как ни парадоксально звучит, — наука наиболее разношёрстная, неизученная и неполноценная. И это мнение не только научных журналистов, но и самих учёных, понимающих как много ещё им предстоит открыть. Взять ту же Теорию относительности Эйнштейна: она идеально работает для планет и галактик, но для микромира субатомных частиц она совершенно непригодна. В микроскопических масштабах правит квантовая физика.

Если даже теоретические модели физики не могут объединиться, то что уж говорить об экспериментальных наблюдениях. Здесь как в притче об истине и слоне: один слепой мудрец сказал, что истина — это огромное и необъятное, потрогав слона за брюхо, другой — что она длинная и гибкая, коснувшись хобота животного, а третий — что у истины кисточка на тонком стебельке — как у хвоста.

И всё же, существуют в мире науки неоспоримые результаты наблюдений и идеальные с математической точки зрения гипотезы, в которых действительно интересно разобраться. Ведь они могут открыть такие просторы для размышлений, что попытка осмыслить бесконечность Вселенной покажется детской загадкой о качелях.

Тёмная материя

В марте 2013 года учёные из Европейского космического агентства получили результаты наблюдений космической обсерватории «Планк», изучавшей микроволновое фоновое излучение — свет, оставшийся в космосе после того самого Большого взрыва. Вместе с точной картой этого реликтового излучения физикам удалось составить наиболее полную диаграмму состава Вселенной.

Выяснилось: на долю обычной материи, из которой состоим мы с вами, звёзды, планеты и все остальное, приходится всего 4,9% от общего состава. 26,8% приходится на долю тёмной материи; больше всего во Вселенной тёмной энергии — 68,3%. Осознав ничтожность наших галактик, кластеров и туманностей, учёные заволновались: что это такое, и почему мы до сих пор ничего об этом не знаем?

Тёмную материю можно охарактеризовать всего двумя словами: «вездесущая» и «неуловимая». Если вспоминать школьный курс физики, то можно припомнить, что видов взаимодействия (по крайней мере, нам известных) существует всего четыре — гравитационное, электромагнитное, сильное и слабое. Всё, что мы можем увидеть или засечь каким-либо прибором, обязательно будет участвовать в электромагнитном взаимодействии, однако тёмная материя, как назло, этим не занимается.

Теоретики решили, что если есть материя, значит, она из чего-то состоит. В смысле, из каких-то частиц, похожих на наши атомы, или по крайней мере, протоны и электроны. Как только ни пытались назвать эти частицы физики — тёмными атомами, аксионами, космионами, тяжёлыми нейтрино. Наконец, сравнительно недавно с названием для частиц тёмной материи определились. Их назвали вимпами.

Астрономический спутник «Планк».

Вимп — грубая калька с английской аббревиатуры WIMP, которая расшифровывается как Weakly Interacting Massive Particles, то есть, «слабо взаимодействующие массивные частицы». Из четырёх видов взаимодействий вимпы участвуют только в двух — слабом, как видно из названия, и гравитационном, как видно из наблюдений. Астрономы постоянно сталкиваются с гравитационной тягой, которую оказывают скопления тёмной материи на наши родные звёзды и галактики.

На этом познания физиков о тёмной материи заканчиваются, если, конечно, не учитывать массу громоздких расчётов. Совершенно неясно, какой массой обладают эти частицы: одни расчёты указывают на 6-8 гигаэлектронвольт, другие — на 33 гигаэлектронвольта, а третьи дают вообще несопоставимые с реальностью данные.

Также непонятно, как поймать злосчастные вимпы. Пока что физики-экспериментаторы пытаются зафиксировать случаи взаимодействия тёмной материи с обычной и используют для этого сверхчувствительные детекторы. Участники эксперимента LUX («Большой подземный ксеноновый детектор»), к примеру, недавно заявили об отрицательных результатах своих трёхмесячных поисков, и о том что искомых вимпов малой массы найдено не было.

Пока весь мир ждет, когда будут выделены средства на постройку более чувствительных и крупных детекторов, остается только фантазировать, что же такое тёмная материя и тёмная энергия, и что они скрывают под своей темнотой.

Чёрные дыры

Чёрные дыры — фактически мёртвые звёзды. Они не имеют ничего общего с тёмной материей и являются вполне обычными с определённой точки зрения объектами. После того, как массивное светило напрочь исчерпает свой запас топлива и взорвётся сверхновой, образуется собственно чёрная дыра.

Это тело представляет собой сверхплотную точку — так называемую сингулярность — аналогичную тому, что представляла собой Вселенная в момент Большого взрыва. Сингулярность окружена горизонтом событий — гипотетической границей, за которую не может выйти ни материя, ни свет, ни даже информация. К слову, знаменитый Стивен Хокинг немного несогласен с последним утверждением: его именем названо так называемое излучение Хокинга, представляющее собой частицы, которым всё же удалось выпрыгнуть за пределы горизонта событий.

После осознания того факта, что чёрные дыры удерживают своей гравитацией целые галактики и обладают массами, равными миллионам солнечных, но крайне малыми размерами, начинается самое интересное.

Вполне доказанным является тот факт, что в чёрных дырах нет времени. Совсем нет. Оно вообще не идёт. Как не шло до Большого Взрыва. При приближении к чёрной дыре время замедляется, а потом останавливается вовсе. Одни и те же часы в космосе, где гравитация Земли не действует, идут быстрее, пусть и на такие доли секунды, которые для нас совершенно незаметны. Но одно дело Земля, а совершенно другое — чёрная дыра с исполинской массой. Полная остановка времени удивительна сама по себе, но теоретикам и этого мало. Они придумали массу интересных гипотез, абсолютно идеальных с математической точки зрения и поражающих воображение.

Например, американский физик польского происхождения Никодем Поплавский (Nikodem Poplawski) из университета Нью-Хейвена рассказал, что чёрные дыры могут быть фабричными печами для создания мельчайших семян материи. Теоретик уверен, что каждая чёрная дыра содержит в себе свою Вселенную, похожую на нашу. Согласно гипотезе Поплавского, все мы тоже живём внутри чёрной дыры и если прыгнем в чёрную дыру в центре Млечного Пути, то окажемся в параллельной Вселенной. Правда, скорее всего, в виде мельчайших частиц.

Чуть ранее другой теоретик, Ниайес Афшорди (Niayesh Afshordi) из Института теоретической физики «Периметр» предложил не менее экстравагантную гипотезу. Он зацепился за невероятное сходство сигнулярностей чёрных дыр и бесконечно малой точки, которую представляла собой Вселенная до Большого Взрыва. Космологи считают, что собственно Взрыв — единственное событие, которому не было причины. Но Афшорди не согласен.

Он предположил, что в параллельном измерении существует другая Вселенная, но не трёхмерная, как наша, а четырёхмерная. Поэтому наша трёхмерность — всего лишь горизонт событий четырёхмерной чёрной дыры, и образовалась наша Вселенная в момент взрыва сверхновой, выброса вещества и рождения чёрной дыры в четырёх измерениях. Эта версия идеально подходит для объяснения странной равномерности температурного фона, которого вряд ли могла достичь Вселенная за 13,8 миллиардов лет своего существования.

Квантовая механика

Квантовая механика скрывает за собой самые интересные тайны Вселенной. Выше уже было сказано: законы квантовой механики идеально функционируют для описания взаимодействий субатомных частиц, однако для описания природы массивных тел, будь то стул и стол или звезда и галактика, квантмех непригоден.

Но что будет, если включить фантазию? В этом разделе физики есть, как минимум, два явления, достойных внимания и ближайшего рассмотрения. Первое из них называется суперпозиция. Некая частица обладает сразу несколькими состояниями до тех пор, пока её не измерят — всё зависит от нас, наблюдателей. Здесь же уместно вспомнить замученного интернет-пользователями кота Шрёдингера: теоретик придумал этот мысленный эксперимент именно для иллюстрации понятия суперпозиции — кот жив и мёртв одновременно, пока коробку не откроют и наблюдатель не сыграет свою роль.

По принципу суперпозиции строятся квантовые компьютеры. В них вместо привычных битов функционируют кубиты (qubit, quantum bit — квантовый бит), которые принимают значения «0» и «1» одновременно. За счёт этого увеличивается скорость вычислений и, соответственно, производительность компьютера.

Другое квантовомеханическое явление называется квантовой запутанностью. Представьте себе две частицы, разведённые по разным концам Вселенной. Если они «запутаны» друг с другом, то как только одна из них примет определённое состояние, другая мгновенно пример противоположное. Если бы они сообщались посредством какого-либо электрического сигнала, то он шёл бы миллиарды лет, а тут смена происходит одновременно.

Фантазии на тему квантовой запутанности приводят учёных к разным выводам. Например, крупная команда исследователей из Принстона, Стэнфорда и Вашингтонского университета рассмотрела это явление с точки зрения макромира, то есть Общей теории относительности. Как показали расчёты, с математической точки зрения связь запутанности между двумя частицами полностью идентична червоточине — гипотетическому туннелю между двумя чёрными дырами, сквозь который можно путешествовать по пространству и времени.

И если представить, что наша Вселенная — всего лишь голограмма, проекция от другой или других миров, это математически означает, что то, что мы видим как квантовую запутанность, есть червоточина, только в четырёхмерном мире.

Исследованием голографического принципа занимается и всю жизнь занимался аргентинец Хуан Малдасена (Juan Maldacena). Изучая квантовую механику, учёный пришёл к выводу, что с ОТО её может примирить лишь теория струн, пока что полностью математическая. В рамках этой теории действует принцип, согласно которому наша Вселенная — результат проекций нескольких других измерений, от каждой из последних взявший по одному измерению.

На одной идее о квантовой запутанности можно зайти очень далеко. В конце концов, мгновенная передача какой-либо информации есть прямо нарушение принципа непреодолимости скорости света. Если когда-нибудь кто-нибудь придумает, как заставить запутанные частицы передавать нужную нам информацию — а пока что к этому не подобрались даже теоретики — то у нас появится шанс, к примеру, связаться с обитателями далёких планет. Если на них, конечно, вообще кто-то живет.

А если придумают как по запутанности передавать материю, то мечты фантастов о телепортации станут реальностью.

* * *

Кстати, за чудесами физики не надо лезть ни в чёрную дыру, ни нырять внутрь атома, достаточно выйти завтра утром на пробежку. Знайте, чем быстрее вы бежите сквозь пространство, тем медленнее движетесь сквозь время. Так что душ будете принимать не только постройневшим, но и помолодевшим.

Текст: Ася Горина, редактор «Вести Наука».

disgustingmen.com

Темная, темная материя ... | Блог JeDi

Термины темная энергия и темная материя не вполне удачны и представляют собой дословный, но не смысловой перевод с английского. В физическом же смысле данные термины подразумевают, только то, что эти вещества не взаимодействуют с фотонами, и их с таким же успехом можно было бы назвать невидимой или прозрачной материей и энергией.

Тёмная материя в астрономии и космологии, а также в теоретической физике — гипотетическая форма материи, которая не испускает электромагнитного излучения и не взаимодействует с ним. Это свойство данной формы вещества делает невозможным её прямое наблюдение.

Вывод о существовании тёмной материи сделан на основании многочисленных, согласующихся друг с другом, но косвенных признаков поведения астрофизических объектов и по создаваемым ими гравитационным эффектам. Обнаружение природы тёмной материи поможет решить проблему скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.

Давайте узнаем про все это подробнее …

Темная материя и темная энергия — это то, что не видно глазу, однако их присутствие доказано в ходе наблюдений за Вселенной. Миллиарды лет назад наша Вселенная родилась после катастрофического Большого Взрыва. По мере того, как ранняя Вселенная медленно охлаждалась, в ней начала развиваться жизнь. В результате сформировались звезды, галактики и остальные видимые ее части. Размеры нашей Вселенной просто ошеломительны. К примеру, одного Солнца достаточно для освещения и обогрева миллиона планет, аналогичных Земле. При этом Солнце является звездой среднего размера, а одна только наша галактика состоит из 100 миллиардов звезд. Это количество превышает количество песчинок на небольшом пляже. Однако это еще не все.

Как известно, Вселенная состоит из нескольких миллиардов галактик, где существует самая разная материя.  Возможно ли, чтобы какая-то из этих материй была невидима глазу. Скорее всего, поскольку результаты недавно проведенных исследований показали, что мы можем видеть лишь десятую часть Вселенной. Значит, более 90% материи человек просто не способен рассмотреть даже с использованием специального оборудования. Астрономы называют такую материю темной.

Известно, что тёмное вещество взаимодействует со «светящимся» (барионным), по крайней мере, гравитационным образом и представляет собой среду со средней космологической плотностью, в несколько раз превышающей плотность барионов. Последние захватываются в гравитационные ямы концентраций тёмной материи. Поэтому, хотя частицы тёмной материи и не взаимодействуют со светом, свет испускается оттуда, где есть тёмное вещество. Это замечательное свойство гравитационной неустойчивости сделало возможным изучение количества, состояния и распределения тёмной материи по наблюдательным данным от радиодиапазона до рентгеновского излучения.

Опубликованное в 2012 году исследование движения более 400 звёзд, расположенных на расстояниях до 13 000 световых лет от Солнца, не нашло свидетельств присутствия тёмной материи в большом объёме пространства вокруг Солнца. Согласно предсказаниям теорий, среднее количество тёмной материи в окрестности Солнца должно было составить примерно 0,5 кг в объёме Земного шара. Однако измерения дали значение 0,00±0,06 кг тёмной материи в этом объёме. Это означает, что попытки зарегистрировать тёмную материю на Земле, например, при редких взаимодействиях частиц тёмной материи с «обычной» материей, вряд ли могут быть успешными.

Согласно опубликованным в марте 2013 года данным наблюдений космической обсерватории «Планк», интерпретированным с учётом стандартной космологической модели Лямбда-CDM, общая масса-энергия наблюдаемой Вселенной состоит на 4,9 % из обычной (барионной) материи, на 26,8 % из тёмной материи и на 68,3 % из тёмной энергии. Таким образом, Вселенная на 95,1 % состоит из тёмной материи и тёмной энергии.

 

 

Доказательством существования темной материи является ее тяжесть – сила гравитации, которая, словно клей, сохраняет целостность Вселенной. Все части Вселенной взаимно притягиваются друг к другу. Благодаря этому ученые смогли рассчитать общую массу видимой Вселенной, а также показатели гравитационных сил. В ходе расчетов был выявлен существенный дисбаланс в этих параметрах, что дало основание полагать, что существует некая невидимая материя, обладающая определенной массой и также подверженная воздействию гравитации.

Изучение темной материиКроме того, доказательством существования темной материи стало ее гравитационное влияние на другие объекты, в том числе на траекторию движения звезд и галактик. Было обнаружено, что многие галактики вращаются быстрее, чем ожидалось. Согласно теории гравитации А. Эйнштйна, они должны разлетаться в разные стороны. Однако что-то невидимое будто удерживает их вместе.

Также темная материя может повлиять на траекторию распространения света. Было исследован феномен гравитационного линзирования, который состоит в том, что плотные объекты способны отражать свет дальних объектов, меняя траекторию световых потоков. Это приводит к искажению изображения и возникновению миражей звезд и галактик. Ученые фиксируют эти световые изгибы, но не могут назвать природу этого явления.

Темная материя в нашей Вселенной может существовать в виде массивных астрономический гало-объектов (МАГО). К ним относятся планеты, луны, коричневые и белые карлики, пылевые облака, нейтронные звезды и черные дыры. Как правило, они слишком малы, чтобы их свет был обнаружен человеком, однако их существование может быть вычислено через гравитационное воздействие на световые потоки. В последние годы астрономы обнаружили несколько типов МАГО-объектов. Они могут состоять как из обычных барионных частиц, так и аксинов, нейтринов, вимпилов и суперсимметричной темной материи.

Исследование темной материи и темной энергии

Поскольку интерес к темной материи продолжает расти, появляются новые инструменты, помогающие в получении более обширных представлений об этом таинственном феномене. Так, космический телескоп Хаббл предоставил весьма ценную информацию о размере и массе видимой Вселенной. Эти данные стали первым и очень важным шагом на пути к изучению истинного количество темной материи во Вселенной.

Важно понимать, что устройство Вселенной не является случайным, и с помощью Хаббла можно детально представить ее структуру. Доподлинно известно, что галактики располагаются в кластерах, а эти кластеры — в суперкластерах. Сверхскопления космических тел находятся в губчатой структуре с обширными пустотами. Очевидно, формирование такой структуры обусловлено весьма конкретными причинами. Рентгеновские телескопы, которые имеются в обсерватории Чандра, помогают в изучении огромных облаков горячего газа в этих скоплениях. Ученые выяснили, что в этих областях должна присутствовать и темная материя, иначе газ будет утекать из кластера. Кроме того, в данный момент ведется разработка новых инструментов, которые, в конце концов, помогут разглядеть эту темную сторону Вселенной.

Подходы и методы исследования частиц темной материи

Из чего состоит Вселенная

На данный момент ученые всего мира всячески пытаются обнаружить или получить искусственно в земных условиях частицы темной материи, посредством специально разработанного сверхтехнологичного оборудования и множества различных научно-исследовательских методов, но пока все труды не увенчиваются успехом.

Один из методов связан с проведением экспериментов на ускорителях высокой энергии, широко известных как коллайдеры. Ученые, считая, что частицы темной материи тяжелее протона в 100-1000 раз, предполагают, что они должны будут зарождаться при столкновении обычных частиц, разогнанных до высоких энергий посредством коллайдера. Суть другого метода заключается в регистрации частиц темной материи, находящихся повсюду вокруг нас. Основная сложность регистрации данных частиц состоит  в том, что они проявляют очень слабое взаимодействие с обычными частицами, которые по своей сути для них являются как бы прозрачными. И все же частицы темной материи очень редко, но сталкиваются с ядрами атомов, и имеется определенная надежда рано или поздно все же зарегистрировать данное явление.

Существуют и другие подходы и методы исследования частиц темной материи, а какой из них первым приведет к успеху, покажет лишь время, но в любом случае открытие этих новых частиц станет важнейшим научным достижением.

Субстанция, обладающая антигравитацией

Темная энергия представляет собой еще более необычную субстанцию, чем та же темная материя. Она не обладает способностью собираться в сгустки, в результате чего равномерно распределена абсолютно по всей Вселенной. Но самым необычным ее свойством на данный момент является антигравитация.

Благодаря современным астрономическим методам имеется возможность определить темп расширения Вселенной в настоящее время и смоделировать процесс его изменения ранее во времени. В результате этого получена информация о том, что в данный момент, так же как и в недалеком прошлом, наша Вселенная расширяется, при этом темп этого процесса постоянно увеличивается. Именно поэтому и появилась гипотеза об антигравитации темной энергии, так как обычное гравитационное притяжение оказывало бы замедляющее воздействие на процесс «разбегания галактик», сдерживая скорость расширения Вселенной. Данное явление не противоречит общей теории относительности, но при этом темной энергии необходимо обладать отрицательным давлением – свойством, которым не обладает ни одно из известных на данный момент веществ.

Кандидаты на роль «Темной энергии»

Масса галактик в скоплении Абель 2744 составляет менее 5 процентов от всей его массы. Этот газ настолько горячий, что светит только в рентгеновском диапазоне (красный цвет на этом изображении). Распределение невидимой темной материи (составляющей около 75 процентов от массы этого кластера) окрашено в синий цвет.

Одним из предполагаемых кандидатов на роль темной энергии является вакуум, плотность энергии которого остается неизменной в процессе расширения Вселенной и подтверждает тем самым отрицательное давление вакуума. Другим предполагаемым кандидатом является «квинтэссенция» — неизведанное ранее сверхслабое поле, якобы проходящее через всю Вселенную. Также имеются и другие возможные кандидаты, но не один из них на данный момент так и не поспособствовал получению точного ответа на вопрос: что же такое темная энергия? Но уже сейчас понятно, что темная энергия представляет собой что-то совершенно сверхъестественное, оставаясь главной загадкой фундаментальной физики XXI века.

https://masterok.livejournal.c...

×

cont.ws

Темная материя и темная энергия

Объекты глубокого космоса > Темная материя и темная энергия

Темная материя  и темная энергия - это то, что не видно глазу, однако их присутствие доказано в ходе наблюдений за Вселенной. Миллиарды лет назад наша Вселенная родилась после катастрофического Большого Взрыва. По мере того, как ранняя Вселенная медленно охлаждалась, в ней начала развиваться жизнь. В результате сформировались звезды, галактики и остальные видимые ее части. Размеры нашей Вселенной просто ошеломительны. К примеру, одного Солнца достаточно для освещения и обогрева миллиона планет, аналогичных Земле. При этом Солнце является звездой среднего размера, а одна только наша галактика состоит из 100 миллиардов звезд. Это количество превышает количество песчинок на небольшом пляже. Однако это еще не все.

График распределения темной материи и темной энергии сегодня и 13.7 млрд лет назад

Как известно, Вселенная состоит из нескольких миллиардов галактик, где существует самая разная материя.  Возможно ли, чтобы какая-то из этих материй была невидима глазу. Скорее всего, поскольку результаты недавно проведенных исследований показали, что мы можем видеть лишь десятую часть Вселенной. Значит, более 90% материи человек просто не способен рассмотреть даже с использованием специального оборудования. Астрономы называют такую материю темной.

Изучение темной материи

Доказательством существования темной материи является ее тяжесть – сила гравитации, которая, словно клей, сохраняет целостность Вселенной. Все части Вселенной взаимно притягиваются друг к другу. Благодаря этому ученые смогли рассчитать общую массу видимой Вселенной, а также показатели гравитационных сил. В ходе расчетов был выявлен существенный дисбаланс в этих параметрах, что дало основание полагать, что существует некая невидимая материя, обладающая определенной массой и также подверженная воздействию гравитации.

Кроме того, доказательством существования темной материи стало ее гравитационное влияние на другие объекты, в том числе на траекторию движения звезд и галактик. Было обнаружено, что многие галактики вращаются быстрее, чем ожидалось. Согласно теории гравитации А. Эйнштйна, они должны разлетаться в разные стороны. Однако что-то невидимое будто удерживает их вместе.

Также темная материя может повлиять на траекторию распространения света. Было исследован феномен гравитационного линзирования, который состоит в том, что плотные объекты способны отражать свет дальних объектов, меняя траекторию световых потоков. Это приводит к искажению изображения и возникновению миражей звезд и галактик. Ученые фиксируют эти световые изгибы, но не могут назвать природу этого явления.

Массивный астрономический гало-объект

Темная материя в нашей Вселенной может существовать в виде массивных астрономический гало-объектов (МАГО). К ним относятся планеты, луны, коричневые и белые карлики, пылевые облака, нейтронные звезды и черные дыры. Как правило, они слишком малы, чтобы их свет был обнаружен человеком, однако их существование может быть вычислено через гравитационное воздействие на световые потоки. В последние годы астрономы обнаружили несколько типов МАГО-объектов. Они могут состоять как из обычных барионных частиц, так и аксинов, нейтринов, вимпилов и суперсимметричной темной материи.

Исследование темной материи и темной энергии

Поскольку интерес к темной материи продолжает расти, появляются новые инструменты, помогающие в получении более обширных представлений об этом таинственном феномене. Так, космический телескоп Хаббл предоставил весьма ценную информацию о размере и массе видимой Вселенной. Эти данные стали первым и очень важным шагом на пути к изучению истинного количество темной материи во Вселенной.

На этом коллаже показаны изображения шести разных галактических скоплений, сделанные при помощи космического телескопа НАСА Хаббл. Кластеры были обнаружены во время попыток исследовать поведение темной материи в галактических скоплениях при их столкновении.

Важно понимать, что устройство Вселенной не является случайным, и с помощью Хаббла можно детально представить ее структуру. Доподлинно известно, что галактики располагаются в кластерах, а эти кластеры -  в суперкластерах. Сверхскопления космических тел находятся  в губчатой структуре с обширными пустотами. Очевидно, формирование такой структуры обусловлено весьма конкретными причинами.

Рентгеновские телескопы, которые имеются в обсерватории Чандра, помогают в изучении огромных облаков горячего газа в этих скоплениях. Ученые выяснили, что в этих областях должна присутствовать и темная материя, иначе газ будет утекать из кластера. Кроме того, в данный момент ведется разработка новых инструментов, которые, в конце концов, помогут разглядеть эту темную сторону Вселенной.

o-kosmose.net

Темная материя

Игорь Сокальский,кандидат физико-математических наук«Химия и жизнь» №11, 2006

Невидимые действующие лица и их предполагаемые исполнители

В предыдущих статьях цикла мы рассмотрели устройство видимой Вселенной. Поговорили о ее структуре и частицах, которые формируют эту структуру. О нуклонах, играющих главную роль, поскольку именно из них состоит всё видимое вещество. О фотонах, электронах, нейтрино, а также о второстепенных актерах, занятых во вселенском спектакле, что разворачивается 14 миллиардов лет, прошедших с момента Большого взрыва. Казалось бы, рассказывать больше не о чем. Но это не так. Дело в том, что видимое нами вещество — лишь малая часть того, из чего состоит наш мир. Все остальное — нечто, о чем мы почти ничего не знаем. Это загадочное «нечто» получило название темной материи.

Если бы тени предметов зависели не от величины сих последних,а имели бы свой произвольный рост, то, может быть, вскоре не осталось бы на всем земном шаре ни одного светлого места.

Козьма Прутков

Что будет с нашим миром?

После открытия в 1929 году Эдвардом Хабблом красного смещения в спектрах удаленных галактик стало ясно, что Вселенная расширяется. Одним из вопросов, возникших в этой связи, был следующий: как долго будет продолжаться расширение и чем оно закончится? Силы гравитационного притяжения, действующие между отдельными частями Вселенной, стремятся затормозить разбегание этих частей. К чему торможение приведет — зависит от суммарной массы Вселенной. Если она достаточно велика, силы тяготения постепенно остановят расширение и оно сменится сжатием. В результате Вселенная в конце концов опять «схлопнется» в точку, из которой когда-то начала расширяться. Если же масса меньше некоторой критической массы, то расширение будет продолжаться вечно. Обычно принято говорить не о массе, а о плотности, которая связана с массой простым соотношением, известным из школьного курса: плотность есть масса, деленная на объем.

Расчетное значение критической средней плотности Вселенной примерно 10–29 граммов на кубический сантиметр, что соответствует в среднем пяти нуклонам на кубический метр. Следует подчеркнуть, что речь идет именно о средней плотности. Характерная концентрация нуклонов в воде, земле и в нас с вами составляет около 1030 на кубический метр. Однако в пустоте, разделяющей скопления галактик и занимающей львиную долю объема Вселенной, плотность на десятки порядков ниже. Значение концентрации нуклонов, усредненное по всему объему Вселенной, десятки и сотни раз измеряли, тщательно подсчитывая разными методами количества звезд и газопылевых облаков. Результаты таких измерений несколько различаются, но качественный вывод неизменен: значение плотности Вселенной едва дотягивает до нескольких процентов от критической.

Поэтому вплоть до 70-х годов XX столетия общепринятым был прогноз о вечном расширении нашего мира, которое неизбежно должно привести к так называемой тепловой смерти. Тепловая смерть — это такое состояние системы, когда вещество в ней распределено равномерно и разные ее части имеют одну и ту же температуру. Как следствие, невозможна ни передача энергии от одной части системы к другой, ни перераспределение вещества. В такой системе ничего не происходит и никогда уже не сможет произойти. Наглядной аналогией служит вода, разлитая по какой-либо поверхности. Если поверхность неровная и есть хотя бы небольшие перепады высот, вода перемещается по ней с более высоких мест на более низкие и в конце концов собирается в низинах, образуя лужи. Движение прекращается. Оставалось утешаться только тем, что тепловая смерть наступит через десятки и сотни миллиардов лет. Следовательно, еще очень-очень долго об этой мрачной перспективе можно не задумываться.

Однако постепенно стало ясно, что истинная масса Вселенной намного больше видимой массы, заключенной в звездах и газопылевых облаках и, скорее всего, близка к критической. А возможно, в точности равна ей.

Свидетельства существования темной материи

Первое указание на то, что с подсчетом массы Вселенной что-то не так, появилось в середине 30-х годов XX века. Швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления Волосы Вероники (а это одно из самых больших известных нам скоплений, оно включает в себя тысячи галактик) движутся вокруг общего центра. Результат получился обескураживающим: скорости галактик оказались гораздо больше, чем можно было ожидать, исходя из наблюдаемой суммарной массы скопления. Это означало, что истинная масса скопления Волосы Вероники гораздо больше видимой. Но основное количество материи, присутствующей в этой области Вселенной, остается по каким-то причинам невидимой и недоступной для прямых наблюдений, проявляя себя только гравитационно, то есть только как масса.

О наличии скрытой массы в скоплениях галактик свидетельствуют также эксперименты по так называемому гравитационному линзированию. Объяснение этого явления следует из теории относительности. В соответствии с ней, любая масса деформирует пространство и подобно линзе искажает прямолинейный ход лучей света. Искажение, которое вызывает скопление галактик, столь велико, что его легко заметить. В частности, по искажению изображения галактики, которая лежит за скоплением, можно рассчитать распределение вещества в скоплении-линзе и измерить тем самым его полную массу. И оказывается, что она всегда во много раз больше, нежели вклад видимого вещества скопления.

Через 40 лет после работ Цвикки, в 70-е годы, американский астроном Вера Рубин изучала скорости вращения вокруг галактического центра вещества, расположенного на периферии галактик. В соответствии с законами Кеплера (а они напрямую следуют из закона всемирного тяготения), при движении от центра галактики к ее периферии скорость вращения галактических объектов должна убывать обратно пропорционально квадратному корню из расстояния до центра. Измерения же показали, что для многих галактик эта скорость остается почти постоянной на весьма значительном удалении от центра. Эти результаты можно истолковать только одним способом: плотность вещества в таких галактиках не убывает при движении от центра, а остается почти неизменной. Поскольку плотность видимого вещества (содержащегося в звездах и межзвездном газе) быстро падает к периферии галактики, недостающую плотность должно обеспечивать нечто, чего мы по каким-то причинам увидеть не можем. Для количественного объяснения наблюдаемых зависимостей скорости вращения от расстояния до центра галактик требуется, чтобы этого невидимого «чего-то» было примерно в 10 раз больше, чем обычного видимого вещества. Это «нечто» получило название «темная материя» (по-английски «dark matter») и до сих пор остается самой интригующей загадкой в астрофизике.

Еще одно важное свидетельство присутствия темной материи в нашем мире приходит из расчетов, моделирующих процесс формирования галактик, который начался примерно через 300 тысяч лет после начала Большого взрыва. Эти расчеты показывают, что силы гравитационного притяжения, которые действовали между разлетающимися осколками возникшей при взрыве материи, не могли скомпенсировать кинетической энергии разлета. Вещество просто не должно было собраться в галактики, которые мы тем не менее наблюдаем в современную эпоху. Эта проблема получила название галактического парадокса, и долгое время ее считали серьезным аргументом против теории Большого взрыва. Однако если предположить, что частицы обычного вещества в ранней Вселенной были перемешаны с частицами невидимой темной материи, то в расчетах всё становится на свои места и концы начинают сходиться с концами — формирование галактик из звезд, а затем скоплений из галактик становится возможным. При этом, как показывают вычисления, сначала в галактики скучивалось огромное количество частиц темной материи и только потом, за счет сил тяготения, на них собирались элементы обычного вещества, общая масса которого составляла лишь несколько процентов от полной массы Вселенной. Получается, что знакомый и, казалось бы, изученный до деталей видимый мир, который мы совсем недавно считали почти понятым, — только небольшая добавка к чему-то, из чего в действительности состоит Вселенная. Планеты, звезды, галактики да и мы с вами — всего лишь ширма для громадного «нечто», о котором мы не имеем ни малейшего представления.

Наконец, общая теория относительности однозначно связывает темп расширения Вселенной со средней плотностью вещества, заключенного в ней. В предположении о том, что средняя кривизна пространства равна нулю, то есть в нем действует геометрия Эвклида, а не Лобачевского (что надежно проверено, например, в экспериментах с реликтовым излучением), эта плотность должна быть равна 10–29 граммам на кубический сантиметр. Плотность же видимого вещества примерно в 20 раз меньше. Недостающие 95% от массы Вселенной и есть темная материя. Обратите внимание, что измеренное из скорости расширения Вселенной значение плотности равно критическому. Два значения, независимо вычисленные совершенно разными способами, совпали! Если в действительности плотность Вселенной в точности равна критической, это не может быть случайным совпадением, а представляет собой следствие какого-то фундаментального свойства нашего мира, которое еще предстоит понять и осмыслить.

Что это?

Что же мы знаем сегодня о темной материи, составляющей 95% массы Вселенной? Почти ничего. Но что-то всё же знаем. Прежде всего, нет никаких сомнений в том, что темная материя существует — об этом неопровержимо свидетельствуют факты, приведенные выше. А еще нам доподлинно известно, что темная материя существует в нескольких формах. После того как к началу XXI века в результате многолетних наблюдений в экспериментах SuperKamiokande (Япония) и SNO (Канада) было установлено, что у нейтрино масса есть, стало ясно, что от 0,3% до 3% из 95% скрытой массы заключается в давно знакомых нам нейтрино — пусть масса их чрезвычайно мала, но количество во Вселенной примерно в миллиард раз превышает количество нуклонов: в каждом кубическом сантиметре содержится в среднем 300 нейтрино. Оставшиеся 92–95% состоят из двух частей — темной материи и темной энергии. Незначительную долю темной материи составляет обычное барионное вещество, построенное из нуклонов, за остаток отвечают, по-видимому, какие-то неизвестные массивные слабовзаимодействующие частицы (так называемая холодная темная материя). Баланс энергий в современной Вселенной представлен в таблице, а рассказ о ее трех последних графах — ниже.

Барионная темная материя

Небольшая (4–5%) часть темной материи — это обычное вещество, которое не испускает или почти не испускает собственного излучения и поэтому невидимо. Существование нескольких классов таких объектов можно считать экспериментально подтвержденным. Сложнейшие эксперименты, основанные всё на том же гравитационном линзировании, привели к открытию так называемых массивных компактных галообъектов, то есть расположенных на периферии галактических дисков. Для этого потребовалось следить за миллионами удаленных галактик в течение нескольких лет. Когда темное массивное тело проходит между наблюдателем и далекой галактикой, ее яркость на короткое время уменьшается (или увеличивается, поскольку темное тело выступает в роли гравитационной линзы). В результате кропотливых поисков такие события были выявлены. Природа массивных компактных галообъектов ясна не до конца. Скорее всего, это либо остывшие звезды (коричневые карлики), либо планетоподобные объекты, не связанные со звездами и путешествующие по галактике сами по себе. Еще один представитель барионной темной материи — недавно обнаруженный в галактических скоплениях методами рентгеновской астрономии горячий газ, который не светится в видимом диапазоне.

Небарионная темная материя

В качестве главных кандидатов на небарионную темную материю выступают так называемые WIMP (сокращение от английского Weakly Interactive Massive Particles — слабовзаимодействующие массивные частицы). Особенность WIMP состоит в том, что они почти никак не проявляют себя во взаимодействии с обычным веществом. Именно поэтому они и есть самая настоящая невидимая темная материя, и именно поэтому их чрезвычайно сложно обнаружить. Масса WIMP должна быть как минимум в десятки раз больше массы протона. Поиски WIMP ведутся во многих экспериментах в течение последних 20–30 лет, но, несмотря на все усилия, они до сих пор обнаружены не были.

Одна из идей состоит в том, что если такие частицы существуют, то Земля в своем движении вместе с Солнцем по орбите вокруг центра Галактики должна лететь сквозь дождь, состоящий из WIMP. Несмотря на то что WIMP представляет собой чрезвычайно слабо взаимодействующую частицу, какая-то очень малая вероятность провзаимодействовать с обычным атомом у нее всё же есть. При этом в специальных установках — очень сложных и дорогостоящих — может быть зарегистрирован сигнал. Количество таких сигналов должно меняться в течение года, поскольку, двигаясь по орбите вокруг Солнца, Земля меняет свою скорость и направление движения относительно ветра, состоящего из WIMP. Экспериментальная группа DAMA, работающая в итальянской подземной лаборатории Гран-Сассо, сообщает о наблюдаемых годичных вариациях скорости счета сигналов. Однако другие группы пока не подтверждают этих результатов, и вопрос, по существу, остается открытым.

Другой метод поиска WIMP основан на предположении о том, что в течение миллиардов лет своего существования различные астрономические объекты (Земля, Солнце, центр нашей Галактики) должны захватывать WIMP, которые накапливаются в центре этих объектов, и, аннигилируя друг с другом, рождать поток нейтрино. Попытки детектирования избыточного нейтринного потока из центра Земли в направлении к Солнцу и к центру Галактики были предприняты на подземных и подводных нейтринных детекторах MACRO, LVD (лаборатория Гран-Сассо), NT-200 (озеро Байкал, Россия), SuperKamiokande, AMANDA (станция Скотт-Амундсен, Южный полюс), но пока не привели к положительному результату.

Эксперименты по поиску WIMP активно проводят также на ускорителях элементарных частиц. В соответствии со знаменитым уравнением Эйнштейна Е=mс2, энергия эквивалентна массе. Следовательно, ускорив частицу (например, протон) до очень высокой энергии и столкнув ее с другой частицей, можно ожидать рождения пар других частиц и античастиц (в том числе WIMP), суммарная масса которых равна суммарной энергии сталкивающихся частиц. Но и ускорительные эксперименты пока не привели к положительному результату.

Темная энергия

В начале прошлого века Альберт Эйнштейн, желая обеспечить космологической модели в общей теории относительности независимость от времени, ввел в уравнения теории так называемую космологическую постоянную, которую обозначил греческой буквой «лямбда» — Λ. Эта Λ была чисто формальной константой, в которой сам Эйнштейн не видел никакого физического смысла. После того как было открыто расширение Вселенной, надобность в ней отпала. Эйнштейн очень жалел о своей поспешности и называл космологическую постоянную Λ своей самой большой научной ошибкой. Однако спустя десятилетия выяснилось, что постоянная Хаббла, которая определяет темп расширения Вселенной, меняется со временем, причем ее зависимость от времени можно объяснить, подбирая величину той самой «ошибочной» эйнштейновской постоянной Λ, которая вносит вклад в скрытую плотность Вселенной. Эту часть скрытой массы и стали называть «темная энергия».

О темной энергии можно сказать еще меньше, чем о темной материи. Во-первых, она равномерно распределена по Вселенной, в отличие от обычного вещества и других форм темной материи. В галактиках и скоплениях галактик ее столько же, сколько вне их. Во-вторых, она обладает несколькими весьма странными свойствами, понять которые можно, лишь анализируя уравнения теории относительности и интерпретируя их решения. Например, темная энергия испытывает антигравитацию: за счет ее присутствия темп расширения Вселенной растет. Темная энергия как бы расталкивает саму себя, ускоряя при этом и разбегание обычной материи, собранной в галактиках. А еще темная энергия обладает отрицательным давлением, благодаря которому в веществе возникает сила, препятствующая его растяжению.

Главный кандидат на роль темной энергии — вакуум. Плотность энергии вакуума не изменяется при расширении Вселенной, что и соответствует отрицательному давлению. Еще один кандидат — гипотетическое сверхслабое поле, получившее название квинтэссенция. Надежды на прояснение природы темной энергии связывают прежде всего с новыми астрономическими наблюдениями. Продвижение в этом направлении, несомненно, принесет человечеству радикально новые знания, поскольку в любом случае темная энергия должна представлять собой совершенно необычную субстанцию, абсолютно непохожую на то, с чем имела дело физика до сих пор.

Итак, наш мир на 95% состоит из чего-то, о чем мы почти ничего не знаем. Можно по-разному относиться к такому не подлежащему никакому сомнению факту. Он может вызывать тревогу, которая всегда сопутствует встрече с чем-то неизвестным. Или огорчение, оттого что такой долгий и сложный путь построения физической теории, описывающей свойства нашего мира, привел к констатации: большая часть Вселенной скрыта от нас и неизвестна нам.

Но большинство физиков сейчас испытывают воодушевление. Опыт показывает, что все загадки, которые ставила перед человечеством природа, рано или поздно разрешались. Несомненно, разрешится и загадка темной материи. И это наверняка принесет совершенно новые знания и понятия, о которых мы пока не имеем никакого представления. И возможно, мы встретимся с новыми загадками, которые, в свою очередь, также будут разгаданы. Но это будет совсем другая история, которую читатели «Химии и жизни» смогут прочесть не раньше, чем через несколько лет. А может быть, и через несколько десятилетий.

elementy.ru