Большая Энциклопедия Нефти и Газа. Нефть примеси серы


Минеральные примеси в нефти - Справочник химика 21

    Применение нефтяных сульфокислот в качестве моющих средств НОС Нефтяные сульфокислоты как средство для расщепления жиров ПОЗ Сульфированные масла в эмульсиях 1104. Применен)1е сульфированных минеральных масел в качестве- инсектисидов 1106. Применение нефтя ных сульфокислот при обработке тканей 1108. Различные случаи приме нения нефтяных сульфокислот 1109. [c.642]     Н. Д. Зелинский, подвергая холестерин термическому разложению в присутствии хлористого алюминия, получил сложную смесь углеводородов, напоминавшую природную нефть. На основании экспериментальных данных Н. Д. Зелинский пришел к заключению, что холестерин можно рассматривать как материнское вещество нефти он участвовал в процессе нефтеобразования не только как естественная примесь нефти, но и сам при соответствующих условиях разложения может служить исходным материалом всех углеводородов, характерных для естественной нефти. Н. Д. Зелинский высказал мысль, что процесс, вызванный в лабораторных условиях в присутствии хлористого алюминия, может протекать в земной коре с участием других минеральных веществ. [c.47]

    Все виды твердого топлива, нефть и мазут содержат примесь негорючих минеральных веществ, которые при сгорании топлива образуют золу. Некоторая часть этих веществ настолько тесно связана с органической массой топлива, что образует сложные химические соединения с последней. Примером таких соединений могут служить соли гуминовых кислот — гуматы. При горении топлива органическая часть гума-6 83 [c.83]

    Нефть представляет собой сложную смесь углеводородов и их производных каждое из этих соединений может рассматриваться как самостоятельный токсикант. В ее составе обнаруживается свыше 1000 индивидуальных органических веществ, содержащих 83—87 % углерода, 12—14 % водорода, 0,5—6,0 % серы, 0,02—1,7 % азота и 0,005—3,6 % кислорода, и незначительная примесь минеральных соединений зольность нефти не превышает 0,1 %. Основные характеристики нефти представлены в табл. 34. [c.106]

    Содержание соединений серы в нефти сильно колеблется — в бакинских до 0,4%, в башкирских до 4%. Различают нефти малосернистые, содержащие серы до 0,5%, и сернистые — 0,5% и более. Примесь сернистых соединений в нефти является вредной. Минеральных соединений в нефти незначительное количества (тысячные и сотые доли процента). [c.173]

    Это высококипящая фракция нефти, содержащая насыщенные углеводороды. За рубежом его называют минеральным маслом. Имеется также фирменное название nujol (нуйол) со средним составом С25. — Прим. ред. [c.89]

    Обусловленное этим широкое внедрение методов обессерива-ния нефтей и газов ведет к резкому увеличению ресурсов серы. В результате баланс промышленного производства серы изменяется уменьшается производство серной кислоты из флотационного серного колчедана, пирита и других металлорудных минеральных источников и быстро развивается получение свободной серы при переработке попутных природных газов и сернистых нефтей. Причем сера, получаемая из этих новых источников, отличается высокой степенью чистоты и не требует сложных и дорогостоящих способов очистки от таких примесей, как, например, мышьяк - примесь металлорудной минеральной серы. [c.5]

chem21.info

Механические примеси в нефти и нефтепродуктах

из "Химия нефти"

Механические примеси содержатся в сырой нефти в виде песка, глинистых минералов и различных солей, которые находятся во взвешенном состоянии. При исследованиях нефтей большое содержание механических примесей может в значительной степени повлиять на правильность определения таких показателей, как плотность, молекулярная масса, коксуемость, содержание серы, азота, смолисто-асфальтеновых веществ и микроэлементов. Поэтому нефть перед поступлением на анализ необходимо освободить от них отстаиванием или фильтрованием. [c.37] В процессе переработки нефти в нефтепродукты могут попасть продукты коррозии аппаратов и трубопроводов, катали-заторная пыль, мельчайшие частицы отбеливающей глины, минеральные соли. Загрязнение нефти и нефтепродуктов может происходить также при хранении и транспортировке. [c.37] Механические примеси в топливе могут привести к засорению топливопроводов, фильтров, увеличению износа топливной аппаратуры, нарушению питания двигателя. Эти же примеси в хмаслах и смазках могут вызвать закупорку маслопроводов, поломку смазочной аппаратуры, образование задиров на трущихся поверхностях. [c.37] Из механических примесей наиболее опасными являются песок и другие твердые частицы, истирающие металлические поверхности. [c.37] Методы определения общего содержания механических примесей основаны на способности всех органических компонентов нефти растворяться в органических растворителях. Нераство-рившийся остаток, задерживаемый фильтром при фильтровании раствора нефти или нефтепродукта, и характеризует содержание в них механических примесей. [c.38] Навеску берут с погрешностью до 0,05 г и разбавляют подогретым на водяной бане растворителем. Горячий раствор навески фильтруют через высушенный до постоянной массы фильтр, который помещают в стеклянную воронку, укрепленную в штативе. Воронку наполняют не более чем на 4 высоты фильтра. Раствор наливают на фильтр по стеклянной палочке с оплавленным концом. Стакан ополаскивают горячим растворителем и сливают на фильтр. [c.38] После окончания фильтрования фильтр промывают горячим раствором при помощи промывалкн до тех пор, пока на нем ле останется следов нефти, а фильтрат не будет совершенно прозрачным и бесцветным. Затем фильтр переносят в стаканчик, в котором сушился чистый фильтр, и сушат в течение 1 ч в термостате при 105—110°С. После этого стаканчик закрывают крышкой, охлаждают в эксикаторе в течение 30 мин н взвешивают с погрешностью до 0,0002 г. Операцию повторяют. до получения расхождения между двумя последовательными взвешиваниями не более 0,0004 г. [c.39] Содержание механических примесей вычисляют как среднее арифметическое из результатов двух параллельных определений. [c.39] Если механических примесей содержится не более 0,005 %, то это рассматривается как их отсутствие. [c.39]

Вернуться к основной статье

chem21.info

Сернистые примеси нефтей - Справочник химика 21

    С развитием переработки нефти и получением из нее кроме керосина смазочных масел, затем бензина и других нефтепродуктов при изучении как состава и свойств самих нефтей, так и получаемых нефтепродуктов стали решать новые задачи. Были разработаны и стандартизованы специальная методика и приборы для более детальной разгонки нефти и нефтепродуктов — бензина, керосинов и др. (разгонка по Энглеру). Стали испытывать свойства нефтепродуктов — температуру застывания и вспышки, вязкость, показатель преломления света и др. В нефтях и остатках после ее переработки определяли примесь серы и кислорода. Было установлено присутствие в нефтях, помимо углеводородов, некоторых сернистых, кислородных, а также азотистых соединений. [c.218]     Сернисто-ароматические концентраты, полученные хроматографическим разделением бензино-керосиновых фракций узбекских нефтей, содержали 5—10 вес. % общей серы, т. е. в 5 раз больше, чем исходные фракции (степень извлечения сернистых соединений составляла 60%). Однако примесь ароматических углеводородов в полученных концентратах достигала 50 вес. % и более [14]. Выделить из сернисто-ароматического концентрата некоторые сернистые соединения оказалось возможным лишь при использовании дополнительных методов (комплексообразование, ректификация). [c.100]

    Все нефти в тех или иных количествах содержат сернистые соединения. Поэтому во всех нефтяных топливах, полученных даже с использованием гидрогенизационных процессов (гидроочистка, гидрокрекинг), в том числе и в бензинах, содержится примесь этих соединений. [c.72]

    На основе этой методики из двух дистиллятов и деасфальти-рованного концентрата туймазинской девонской нефти выделены и охарактеризованы твердые парафиновые, нафтеновые и ароматические углеводороды, имеющие длинные цени нормального и разветвленного строения. Ароматические углеводороды содержат значительную примесь твердых сернистых соединений. [c.157]

    Нефть представляет собой природную жидкую смесь углеводородов с примесью сернистых, кислородных, азотистых и некоторых других их производных. Эта примесь бывает в некоторых нефтях значительной. Кроме того, в нефти могут присутствовать в растворенном состоянии газообразные углеводороды, а во взвешенном состоянии некоторые твердые органические и неорганические вещества. [c.5]

    Авиационные реактивные топлива являются продуктами прямой перегонки нефти. Топлива, предназначенные для сверхзвуковых самолетов, по-видимому, будут характеризоваться строго определенным групповым, а отдельных случаях и индивидуальным углеводородным составом. Дизельные топлива, применяемые для быстроходных двигателей, также представляют собой дистилляты прямой перегонки нефти. Лишь для некоторых сортов допускается небольшая примесь (до 20%) газойля каталитического крекинга. Топливо для перспективных быстроходных двигателей большой мощности будет отличаться групповым углеводородным составом и, главным образом, глубиной очистки от неуглеводородных органических примесей (кислородных сернистых соединений и др.). [c.26]

    Один из путей предотвращения загрязнения нефтей и нефтепродуктов — своевременная зачистка резервуаров иг транспортных емкостей от остатков нефтепродуктов, воды, механических приме- eй (грязи, песка, ржавчины), продуктов окисления, сернистых соединений и пр. ГОСТ 1510—76 устанавливает следующие сроки зачистки внутренней поверхности металлических резервуаров  [c.154]

    Так как сера и сернистые соединения являются одними из наименее желательных составных частей нефти и ее продуктов, то значение обессеривания как метода повышения качества нефтепродуктов следует расценивать чрезвычайно высоко. Действительно, если вспомнить, что уже простая перегонка некоторых высокосернистых нефтей нередко связана с чрезвычайно быстрым изнашиванием нефтеперегонной аппаратуры и что присутствие сернистых соединений всегда вызывает более или менее значительную коррозию не только в разнообразнейших случаях приме- [c.627]

    Изыскание способов выделения сераорганических соединений из дистиллятов высокосернистых и сернистых нефтей и их приме-пения в народном хозяйстве. [c.24]

    Исключительное значение имеют экстракционные методы, впервые разработанные румынским ученым Эдельману. В 1906 году он применил для экстракции примесей жидкий сернистый ангидрид сейчас с этой целью используют множество веществ, большинство из которых избирательно удаляет тот или иной ненужный компонент. Экстракция позволяет полностью удалить определенную примесь, которая особенно мешает при дальнейшем использовании нефти. Удаление одного определенного вредного компонента снижает и стоимость очистки. [c.74]

    Содержание соединений серы в нефти сильно колеблется — в бакинских до 0,4%, в башкирских до 4%. Различают нефти малосернистые, содержащие серы до 0,5%, и сернистые — 0,5% и более. Примесь сернистых соединений в нефти является вредной. Минеральных соединений в нефти незначительное количества (тысячные и сотые доли процента). [c.173]

    Некоторые нефти Поволжья и Приуралья богаты сернистыми соединениями. —> Прим. ред. [c.602]

    Сера представляет собой постоянную примесь к нефти, хотя ее содержание иногда падает до очень низких величин. В сырых нефтях сера содержится главным образом в виде органических сернистых соединений, а в дистиллятах и готовых нефтепродуктах она присутствует как в чистом виде, так и в виде сероводорода и органических соединений. [c.38]

    Значительная часть нефтяных месторождений нашей страны относится к сернистым (содержание серы в нефти 0,5-1,9%) и высокосернистым (содержание серы свыше 1,9%). Сера - не примесь, а составная часть нефти, она содержится в ней в виде растворенного сероводорода, алифатических и циклических меркаптанов, сульфидов, тиофе-нов и др. При переработке такой нефти часть сернистых соединений переходит в светлые нефтепродукты - бензин и керосин, но основное количество остается в мазуте (5%). [c.15]

    Многие пефти содержат более или менее значительную примесь сернистых соединений, которые корродируют аппаратуру. Если подвергать первичной переработке нефть, содержащую сернистые соединения и свободную серу, то в результате нагрева образуется сероводород. В ряде случаев такая нефть уже содержит растворенный сероводород. Воздействие сероводорода на металлические части установок — (трубопроводы, ректификационные колонны и др.) приводит к их коррозии, быстрой порче и выходу из строя. Сернистые нефти часто содержат повышенные концентрации солей — хлоридов натрия, кальция и магния. При первичной nepe-работке нефти вследствие разложения этих солей происходит образование хлористоводородной кислоты, которая также вызывает коррозию аппаратуры. [c.254]

    Метод масс-спектрометрии. Методом масс-спектрометрии исследованы первые и вторые сульфиды фракции 170—310° С ар-ттанской нефти —сырые, очищенные фракционной реэкстракцией водной серной кислотой (последовательно полученные первая и вторая фракции), и смесь первых и вторых сульфидов в пропорциональных количествах, очищенная методом разделительной хроматографии (головная, основная и хвостовая фракции). При исследованиях была применена методика масс-спектрометрического анализа, разработанная для нефтепродуктов с высоким содержанием сернистых соединений [29]. Она позволяла определить в смеси содержание диалкилсульфидов, моно-, би- и тритиацикланов, алкил-циклоалкилсульфидов, производных тиофена (в том числе бензтиофена), примесь углеводородов. [c.171]

    В табл. 13 для прим.ера приведён групповой состав сернистых соединений двух нефтей с общим содержанием серы в одной около 1 % (Сыз-ранская нефть), в другой около 5% (Чусовская нефть). [c.76]

    Сернистые соединения, выделенные на первой ступени фчльтрации, содержали примесь значительного количества бензола и толуола. Поэтому концентрат подвергали нескольким последовательным фильтрациям через окись алюминия для снижения содержания ароматических углеводородов до весьма малой величи1[ы, которой можно было пренебречь. Часть сернистых соединений переходила в спиртовой фильтрат их удаляли смешением фильтрата с раствором соли с последующим экстрагированием смеси изо-пептаном. Эти изопептановые экстракты использовали как часть разбавителя при следующем повторном пропуске через окись алюминия. Конечный продукт представлял сернистый концентрат общим весом 37,6 г, что соответствовало 0,034% от исходной нефти. Этот концентрат все еще содержал следы ароматических углеводородов, но во фракции, выкипающей в пределах 38—100° С, присутствовал только бензол, который не мешал последующей идентификации эту фракцию концентрата и подвергали полумикро-фракционированию [12]. [c.266]

    Рекомендуемая методика микрохроматографического анализа дает возможность из небольшой навески получить 15—20 микрофракций, в которых показатель преломления обычно сначала последовательно увеличивается до какой-то определенной величины, а затем начинает уменьшаться. Во многих методах анализа [46, 47], использующих хроматографическое деление на силикагеле, принимается, что фракции, имеющие показатель преломления ниже 1,49, относятся к мстано-нафтеновым углеводородам. Это не совсем правильно, так как в настоящее время известно, что полициклические нафтеновые углеводороды, присутствующие, например, в высококипящих фракциях эмбенских и бакинских нефтей, содержащих примесь сернистых соединений, имеют [c.48]

    Сказанное справедливо при условии, что на установке атмосферновакуумной перегонки перерабатывается малосернистая нефть. При переработке сернистых нефтей стоки из барометрических конденсаторов, как правило, загрязнены сероводородом. Прим. ред. [c.456]

    Возможность и условия примено.чия четыреххлорнстого олова в качестве комплексообразователя с сульфидами подробно изучила Караулова [78]. Ею показано, что хотя эта реакция осуществи.ма, хлорное олово все же не является селективным экстрагенто.м сераорганических соединений. Метод извлечения сернистых соеднненнй с помощью комплексообра-зования с солями тяжелых. металлов был положен в основу ряда работ, посвященных исследованию некоторых нефтей Южного Узбекистана. Так, Сергеева [79] выделила и-метил- [c.32]

    Согласно этой методике, сульфиды сернисто-ароматических концентратов, выделенных из широких фракций нефтей Хаудага и Кызыл-Тумшука, были окислены до сульфоксидов, причем часть последних оказывалась в водно-кислотном слое, из которого экстрагировалась хлороформом (хлороформный экстракт), другая часть — в органическом слое. Органический слой подвергался разделению на силикагеле АСК, с которого сульфоксиды элюировались этиловым спиртом (спиртовый десорбат). Характеристика полученных таким образом сульфоксидов показывает, что сера в них, за исключением хлороформного экстракта нефти Кызыл-Тумшук, в основном представлена сульфоксидной формой, т. е. суммы сульфоксидов не содержат заметных количеств неокисленных сернистых соединений. Что касается хлороформного экстракта кызыл-тумшукской нефти, то, по-видимому, в нем имеется незначительная примесь кислородных соединений несульфоксидного характера. [c.145]

    На основе этой методики из концентрата ромашкинской нефти выделены и охарактеризованы твердые парафиновые, нафтеновые, ароматические и нафтено-ароматические углеводороды, имеющие длинные цени иормального и разветвленного строения. Ароматические углеводороды с цепями разветвленного строения содерн ат в своем составе значительную примесь твердых сернистых соединений. [c.207]

    Обусловленное этим широкое внедрение методов обессерива-ния нефтей и газов ведет к резкому увеличению ресурсов серы. В результате баланс промышленного производства серы изменяется уменьшается производство серной кислоты из флотационного серного колчедана, пирита и других металлорудных минеральных источников и быстро развивается получение свободной серы при переработке попутных природных газов и сернистых нефтей. Причем сера, получаемая из этих новых источников, отличается высокой степенью чистоты и не требует сложных и дорогостоящих способов очистки от таких примесей, как, например, мышьяк - примесь металлорудной минеральной серы. [c.5]

chem21.info

Примесь - сера - Большая Энциклопедия Нефти и Газа, статья, страница 2

Примесь - сера

Cтраница 2

Примеси серы и кислорода не создают у меди красноломкость, так как температуры плавления эвтектики Си - Cu2S и Си - Си2О значительно превышают температуру ее прокатки.  [16]

Примеси серы ( до 0 1 %), магния ( до 0 25 %), меди ( до 0 12 %), олова ( до 0 4 %), свинца ( до 0 003 %), церия и других РЗМ ( до 0 2 %), циркония ( до 0 01 %) мало влияют на стойкость аустенитных сталей против хлоридного КР.  [17]

Примеси серы в нефти нежелательны. Сероводород и меркаптаны в присутствии воды вызывают коррозию аппаратуры Меркаптаны, кроме того, имеют неприятный запах, придают нежелательную окраску легким нефтепродуктам и снижают их стабильность. Сернистые соединения ухудшают антидетонационные и антиокислительные свойства бензина, в частности, снижают приемистость к тетраэтилсвинцу. При сгорании соединения серы образуют продукты окисления, обладающие коррозионными свойствами. По этим причинам сернистые соединения стараются удалить, хотя бы частично, или перевести в другие, менее вредные соединения.  [18]

Примесь серы хорошо извлекается содой. Покровные флюсы, защищающие металл от выгорания, позволяют одновременно удалять и нек-рые примеси. Так, флюс, состоящий из 40 % плавикового шпата, 40 % сухого кварцевого песка и 20 % кальцинированной соды, хорошо удаляет из сплава серу и частично железо. Этот флюс вводят в количестве 1 % к весу шихты, он предохраняет металл от выгорания цинка, меди и др. При переплаве стружки флюс следует вводить одновременно с ней, что способствует ее быстрому расплавлению и частичному удалению вредных примесей. В качестве покровных флюсов применяют смеси из песка, соды, фтористого кальция ( напр.  [19]

Примесей серы и фосфора в нем мало. Пустой породой железняка обычно является кварцит. Плотность и прочность красного железняка весьма различны. Восстановимость его в доменных печах хорошая. Наиболее крупные залежи красного железняка находятся в районе Кривого Рога. Встречаются эти руды также на Урале и в Сибири.  [20]

Определение примеси серы в высокочистом трихлорсила-не имеет в настоящее время актуальное значение для многих случаев его применения в исследовательских работах и в технике. С учетом этого авторами настоящего сообщения был разработан метод определения содержания до 1.10 - 7 % примеси сульфидной серы в трихлорсилане [1] и внедрен в контроль производства.  [21]

Содержание примеси серы и магния допускается не более 0 002 % каждого.  [22]

Содержание примесей серы и магния допускается не более 0 002 % каждой, причем завод-изготовитель может проверку не производить, но должен гарантировать непревышение указанного содержания этих примесей.  [23]

Содержание примеси серы и магния допускается не более 0 002 % каждой. Примеси, не указанные в таблице, учитываются в общей сумме примесей.  [25]

Содержание примесей серы и магния не должно превышать 0 002 % каждой.  [26]

Как влияет примесь серы и фосфора на свойства сталей.  [27]

Аналогично действует примесь серы.  [28]

Как влияет примесь серы и фосфора на свойства стали.  [29]

Как влияет примесь серы и фосфора на свойства сталей.  [30]

Страницы:      1    2    3    4

www.ngpedia.ru

Способ очистки нефтепродуктов от примесей серы

Изобретение относится к способам очистки нефтепродуктов (сырая нефть, керосиновая и дизельная и др. фракции) от примесей серы, в частности к способам очистки с применением адсорбентов, и может быть использовано в нефтедобывающей, нефтеперерабатывающей и нефтехимической промышленности. Способ очистки нефтепродуктов от примесей серы, включающий проведение процесса очистки в центробежном поле вращающегося ротора-барабана путем совместного вращения в нем дисперсионной смеси адсорбента и исходных нефтепродуктов при массовом соотношении адсорбента и нефтепродуктов (1,5-2,0):1,0 в роторе-барабане. Процесс очистки продуктов от примесей серы проводят в центробежном поле путем совместного вращения дисперсионной смеси адсорбента и исходных нефтепродуктов в роторе-барабане, при наложении на дисперсионную смесь адсорбента и нефтепродуктов вертикального электрического поля напряженностью Е=1000-15000 В/м, при непрерывном поступлении во вращающийся ротор-барабан адсорбента и нефтепродуктов в указанном массовом соотношении. Число оборотов ротора-барабана равно 60-2500 об/мин. Дисперсионную смесь адсорбента и нефтепродуктов непрерывно сливают через внешнюю сторону ротора-барабана в емкость, из которой дисперсионная смесь идет на выделение нефтепродуктов от адсорбента. Очищенные нефтепродукты направляются потребителю, сорбент - на регенерацию и на повторное применение в очистке нефтепродуктов от примесей серы. Время выдержки поперечного слоя дисперсионной смеси сорбента и нефтепродуктов, двигающегося от центра к периферии ротора-барабана, составляет 10-30 минут. В случаях, когда электропроводность нефтепродуктов более чем на порядок меньше электропроводности природной воды, составляют дисперсионную смесь адсорбента, мелкодисперсного электропроводящего порошка и нефтепродуктов в массовом их соотношении соответственно (1,0-2,0):(0,1-1,0):1,0, процесс очистки нефтепродуктов от примесей серы проводят в центробежном поле путем совместного вращения нефтепродуктов в роторе-барабане и смеси адсорбента, мелкодисперсного электропроводящего порошка. Использованный в процессе очистки электропроводящий порошок вместе с регенерированным сорбентом идут на повторное их применение в процессе очистки нефтепродуктов от примесей серы. Технический результат изобретения - увеличение производительности способа очистки нефтепродуктов от примесей серы, положительное решение проблемы непрерывной очистки сырой нефти непосредственно после ее добычи, проблемы непрерывной очистки керосиновой и дизельной фракции от примесей серы в производственных условиях, удешевление процесса очистки от примесей серы. 2 з.п. ф-лы, 2 ил.

 

Изобретение относится к способам очистки нефтепродуктов (сырая нефть, керосиновая и дизельная и др. фракции) от примесей серы, в частности к способам очистки с применением адсорбентов, и может быть использовано в нефтедобывающей, нефтеперерабатывающей и нефтехимической промышленности.

Известны адсорбционные способы выделения сероорганических соединений нефти (ССН) из нефтепродуктов - сырой нефти, керосиновой, дизельной фракций, основанные на жидкостной хроматографии, путем пропускания исходного нефтепродукта через неподвижный слой адсорбента, установленный в колонке. В качестве адсорбента применяют силикагель, окись алюминия, активированный уголь, гипс и их смеси (см. Химия сероорганических соединений, содержащихся в нефти и нефтепродуктах, М.: Изд-во АН СССР, 1959, 126-137).

Однако данными способами достигается малая степень очистки нефтепродуктов от серы - всего 30-35% от общего количества серы, присутствующей в исходном сырье. Это объясняется тем, что метод жидкостной хроматографии с использованием чистых адсорбентов не позволяет выделить сернистые соединения, свободные от ароматических углеводородов. Кроме того, к недостаткам относятся: 1) большой расход элюентов как в количественном (их берут в количестве в 4-5 раз больше исходного нефтепродукта), так и качественном (берут 3-4 элюента с разными элюирующими способностями) отношениях; 2) большой расход адсорбента, количество которого превышает количество исходного нефтепродукта в 15-20 раз.

Известен способ выделения ССН из нефтепродуктов при 150-370°С с помощью жидкостной хроматографии на силикагеле и окиси алюминия, обладающих повышенной избирательностью к сероорганическим соединениям (см. Патент РФ 2083640, С10G 25/00, 10.07.97). Повышение избирательности позволило увеличить степень очистки нефтепродуктов от ССН до 70% от общего содержания серы. Такое увеличение степени выделения ССН из нефтепродуктов достигается модифицированием и импрегнированием силикагеля и окиси алюминия ацетатом ртути, нитратом серебра, хлористым палладием, хлоридом цинка, тетрахлоридом олова. Данный способ опробован в лабораторных условиях.

Применение их в промышленности практически не возможно из-за:

1) использования дорогостоящих, дефицитных, токсичных и экологически опасных химических веществ - элюентов; 2) негативного влияния данных веществ на качество самих нефтепродуктов; 3) нетехнологичности операций подготовки адсорбентов и хроматографической колонки.

Известен способ выделения ССН из нефтепродуктов, в частности из керосина, с помощью жидкостной хроматографии с использованием адсорбента, модифицированного диметилформамидом, где адсорбент представляет собой смесь активированного угля и отбеливающей глины (см. А.С. СССР №419545; С10G 25/00, 15.03.74).

Выделение осуществляется при комнатной температуре в стеклянном перколяторе с высотой столба адсорбента 300 мм. Количество исходной фракции (керосина) берут к количеству смеси адсорбентов в соотношении 1:1. Данное количество керосина пропускают самотеком через неподвижный слой адсорбента, модифицированного до 10% диметилформамидом. В результате нетехнологической операции получают адсорбат в количестве 80-82 вес.% и с содержанием остаточной серы от 0,05 до 0,2 вес.%, а также сероароматический концентрат в количестве 15-17 вес.% и с содержанием серы 6,0 - 8,5 вес.%, что составляет степень выделения общей серы 70-80%.

Данный способ также не обладает достаточной эффективностью для его промышленного использования. Во-первых, для модифицирования адсорбентов необходимо использовать дорогостоящие и дефицитные химические вещества. Во-вторых, диметилформамид оказывает негативное влияние на качество адсорбента.

Наиболее близким к предлагаемому изобретению относится способ очистки нефтепродуктов от примесей серы, заключающийся в том, что процесс проводят в центробежном поле путем совместного вращения дисперсионной смеси адсорбента и исходного нефтепродукта в роторе-барабане, при этом количество адсорбента и количество нефтепродукта берут в соотношении (1,5-2,0):1,0, а вращение ротора-барабана устанавливают в пределах 2000-2500 об /мин в течение 30-40 мин. (см. Кадыров М.У., Крупин С.В., Барабанов В.П. Патент RU 2171826 С1. Способ выделения сероорганических соединений нефти из нефтепродуктов). Такое техническое решение позволяет увеличить степень очистки чистыми адсорбентами нефтепродуктов от примесей серы до 90% от ее первоначального содержания, что является существенным прогрессом по сравнению с известными адсорбционными способами. Прогрессивность способа проявляется в том, что при его осуществлении не требуется применение дефицитных дорогостоящих химических веществ - элюентов, количество адсорбента нужно брать в 8-10 раз меньше, чем в аналогичных способах.

Недостатками способа-прототипа являются: низкая производительность способа из-за слишком большого времени процесса поглощения сорбентом примесей серы, из-за необходимости периодической остановки ротора-барабана для слива из него смеси нефтепродуктов и сорбента, необходимости последующей загрузки в ротор-барабан новой порции смеси нефтепродуктов и сорбента, на повторный запуск во вращение ротора требуются большие дополнительные затраты энергии. Способ-прототип поэтому имеет высокую стоимость, не технологичен и не оптимален для очистки от серы нефтепродуктов в промышленных условиях, не применим для непрерывной очистки нефтепродуктов.

Технический результат - увеличение производительности способа очистки нефтепродуктов от примесей серы, положительное решение проблемы непрерывной очистки сырой нефти непосредственно после ее добычи, проблемы непрерывной очистки керосиновой и дизельной и других фракций от примесей серы в производственных условиях, удешевление процесса очистки от примесей серы. Применение предлагаемого способа приведет к существенному увеличению стоимости экспортируемой нефти, к существенному уменьшению загрязненности окружающей среды соединениями серы, исключению опасности выпадения на местности кислотных дождей из-за выхода в атмосферу соединений серы от сгорания нефтепродуктов в различного рода машинах, аппаратах, котельных, ТЭЦ и других установках.

Указанный технический результат при осуществлении предлагаемого способа достигается тем, что составляют дисперсионную смесь адсорбента и нефтепродуктов в массовом их соотношении соответственно (1,0-2,0):1,0, процесс очистки продуктов от примесей серы проводят в центробежном поле путем совместного вращения дисперсионной смеси адсорбента и исходных нефтепродуктов в роторе-барабане, при наложении на дисперсионную смесь адсорбента и нефтепродуктов вертикального электрического поля напряженностью Е=1000-15000 В/м, при непрерывном поступлении во вращающийся ротор-барабан адсорбента и нефтепродуктов в указанном массовом соотношении, при числе оборотов ротора-барабана 60-2500 об/мин, при непрерывном сливе дисперсионной смеси адсорбента и нефтепродуктов через внешнюю сторону ротора-барабана в емкость, из которой дисперсионная смесь идет на выделение нефтепродуктов от адсорбента, очищенные нефтепродукты направляется потребителю, сорбент - на регенерацию и на повторное применение в очистке нефтепродуктов от примесей серы, причем время выдержки поперечного слоя дисперсионной смеси сорбента и нефтепродуктов, двигающегося от центра к периферии ротора-барабана, составляет 10-30 минут. В случаях, когда электропроводность нефтепродуктов более чем на порядок меньше электропроводности природной воды, составляют дисперсионную смесь адсорбента, мелкодисперсного электропроводящего порошка и нефтепродуктов в массовом их соотношении соответственно (1,0-2,0):(0,1-1,0):1,0, процесс очистки нефтепродуктов от примесей серы проводят в центробежном поле путем совместного вращения нефтепродуктов в роторе-барабане и смеси адсорбента, мелкодисперсного электропроводящего порошка, использованный в процессе очистки электропроводящий порошок вместе с регенерированным сорбентом идут на повторное их применение в процессе очистки нефтепродуктов от примесей серы.

Приведенные существенные признаки изобретения, несмотря на значительное понижение по сравнению со способом-прототипом допустимого нижнего предела угловой скорости вращения ротора-барабана с 2000 до 60 об/мин, определяют повышение степени очистки нефтепродуктов от примесей серы адсорбентами до 90-98 вес % за время выдержки в центробежном поле сжатия смеси нефтепродуктов и порошка адсорбента в 2-3 раза менее соответствующего времени в способе-прототипе и обеспечивают возможность непрерывности процесса очистки.

Сущность изобретения поясняется чертежом, где на фиг.1 изображено устройство, состоящее из ротора-барабана 1, его периферийного пространства 2, предназначенного для дисперсионной смеси сорбента, мелкодисперсного электропроводящего порошка и нефтепродукта, которая прижимается к внешней стенке вращающегося ротора-барабана 1 под действием центробежной силы привода 3, вращающего ротор-барабан 1, загрузочного устройства 4 для заливки данной дисперсионной смеси в ротор-барабан 1, отверстий 5 на внешней стенке ротора-барабана 1 для выгрузки обработанной дисперсионной смеси, емкости 6, предназначенной для слива в нее обработанной дисперсионной смеси, отверстий 7 для слива из емкости 6 обработанной дисперсионной смеси для разделение ее на нефтепродукт, адсорбент, мелкодисперсный электропроводящий порошок, причем верхняя крышка и дно ротора-барабана 1 находятся под электрическим напряжением, электрические потенциалы на них подаются через скользящие контакты 8 и 9, все устройство находится в защитном чехле 10, и на фиг.2, где изображено устройство, состоящее из ротора-барабана 1, его периферийного пространства 2, предназначенного для дисперсионной смеси сорбента, мелкодисперсного электропроводящего порошка и нефтепродукта, которая прижимается к внешней стенке вращающегося ротора-барабана 1 под действием центробежной силы привода 3, вращающего ротор-барабан 1, загрузочного устройства 4 для заливки данной дисперсионной смеси в ротор-барабан 1, отверстий 5 на внешней стенке ротора-барабана 1 для выгрузки обработанной дисперсионной смеси, емкости 6, предназначенной для слива в нее обработанной дисперсионной смеси, отверстий 7 для слива из емкости 6 обработанной дисперсионной смеси для разделение ее на нефтепродукт, адсорбент, мелкодисперсный электропроводящий порошок, причем верхняя крышка и дно ротора-барабана 1 находятся под электрическим напряжением, электрические потенциалы на них подаются через скользящие контакты 8 и 9, все устройство находится в защитном чехле 10 и диэлектрической перегородки 11, разделяющей внутреннее пространство ротора-барабана на две части, в верхней из которой происходит очистка.

Указанные в формуле изобретения пределы параметров выбирают исходя из следующих соображений.

В зависимости от величины сорбирующей способности адсорбента выбирается соответствующее соотношение количества адсорбента к количеству нефтепродукта: чем более активен адсорбент, тем меньшее его количество требуется для составления дисперсионной смеси. Например, обладающий относительно высокой сорбирующей способностью цеолит смешивают с нефтепродуктом в соотношении 1,0:1,0, а амфотерные материалы, обладающие меньшей сорбирующей способностью, чем цеолит, например монтмориллонит, смешивают с нефтепродуктом в соотношении 2,0:1,0. В диапазоне соотношения мелкодисперсного электропроводящего порошка и нефтепродуктов (0,1-1,0):1,0 нижний предел 0,1:1,0 выбирается для предельно малых размеров частиц порошка - для пудры, верхний предел 1,0:1,0 - для обычных порошков, выпускаемых промышленностью. Нижний предел угловой скорости вращения ротора 60 об/мин выбирается для обеспечения очистки нефтепродуктов от примесей серы при максимальном дебите нефти из отработанных скважин (до 100 т/месяц), для чего необходимо иметь максимально возможные по величине диаметры роторов-барабанов, при этом величина электрического поля принимается максимальной в допустимых в формуле пределах Е=15000 В/м. Верхний предел угловой скорости вращения ротора 2500 об/мин выбирается при минимальном дебите нефти из отработанной скважине (˜10 т/месяц), для чего допускаются минимальные диаметры ротора-барабана 1, при этом величина электрического поля принимается минимальной в допустимых в формуле пределах Е=1000 В/м.

Способ осуществляют следующим образом.

Пример 1. Порошок монтмориллонита (амфотерный материал) смешивают с сырой необезвоженной нефтью, обладающей электропроводностью по порядку величины такой же, как и электропроводность природной воды, в массовом соотношении 2,0:1,0, полученную дисперсионную смесь загружают в ротор-барабан 1, эта смесь под действием центробежных сил вращающегося ротора-барабана 1 концентрируется в периферийном пространстве 2 ротора-барабана, который приводится во вращение с угловой скоростью 1000 об/мин приводом 3, загружают дисперсионную смесь в ротор-барабан 1 через загрузочное устройство 4, через отверстия 5 обработанную смесь адсорбента и нефтепродуктов сливают в емкость 6, из которой через отверстия 7 сливают обработанную дисперсионную смесь для разделения на адсорбент, нефтепродукты, очищенные от примесей серы, электропроводящий порошок, на верхнюю крышку 9 ротора-барабана 1 подают через скользящие контакты 10 и 11 электрическое напряжение постоянного электрического поля, создающее напряженность Е=8000 В/м, при этом время выдержки поперечного слоя смеси адсорбента и нефтепродуктов составляет 20 минут.

Пример 2. Порошок монтмориллонита (амфотерный материал), смешанный наполовину с порошком природного цеолита Холинского месторождения, смешивают с сырой обезвоженной нефтью, обладающей электропроводностью по порядку величины равной электропроводности природной воды, в массовом соотношении 1,5:1, полученную дисперсионную смесь загружают в ротор-барабан 1 через загрузочное устройство 4, эта смесь под действием центробежных сил вращающегося ротора-барабана 1 концентрируется в периферийном пространстве 2 ротора-барабана 1, который приводится во вращение с угловой скоростью 1000 об/мин приводом 3, на верхнюю крышку 9 ротора-барабана 1 подают через скользящие контакты 10 и 11 электрическое напряжение постоянного электрического поля, создающее на дисперсионной смеси напряженность Е=8000 В/м, при этом время выдержки поперечного слоя смеси адсорбента и нефтепродуктов составляет 20 минут, через отверстия 5 обработанную дисперсионную смесь адсорбента и нефтепродуктов сливают в емкость 6, из которой через отверстия 7 сливают дисперсионную смесь для разделения на нефтепродукты, очищенные от примесей серы, и адсорбент для его повторного применения в процессе очистки нефтепродуктов.

Пример 3. Порошок монтмориллонита, смешанный наполовину с порошком цеолита, алюминиевую пудру смешивают с сырой обезвоженной нефтью, обладающей электропроводностью, на полтора порядка меньшей, чем электропроводность природной воды, в массовом соотношении 1,5:0,1:1, полученную дисперсионную смесь загружают в ротор-барабан 1, далее повторяют все операции, изложенные в примере 1, получают те же результаты, что и в примере 1.

Таким образом, изложенные данные свидетельствуют о выполнении при использовании заявленного изобретения следующей совокупности условий:

- средство, воплощающее заявленный способ при его осуществлении, предназначено, в частности, для использования в нефтедобывающей, нефтеперерабатывающей и нефтехимической промышленности с целью увеличения производительности способа очистки нефтепродуктов от примесей серы, для положительного решения проблемы непрерывной очистки сырой нефти непосредственно после ее добычи, проблемы непрерывной очистки керосиновой и дизельной фракций от примесей серы в производственных условиях, удешевления процесса очистки от примесей серы; применение предлагаемого способа приведет к существенному увеличению стоимости экспортируемой нефти, к существенному уменьшению загрязненности окружающей среды соединениями серы, исключению опасности выпадения на местности кислотных дождей из-за выхода в атмосферу соединений серы от сгорания нефтепродуктов в различного рода машинах, аппаратах, котельных, ТЭЦ и других установках, а именно для увеличения производительности и удешевления способа очистки нефтепродуктов от примесей серы, для положительного решения проблемы непрерывной очистки сырой нефти непосредственно после ее добычи, проблемы непрерывной очистки керосиновой и дизельной фракций от примесей серы в производственных условиях;

- для заявленного способа в том виде, как он охарактеризован в независимом пункте изложенной формулы изобретения, подтверждена возможность его осуществления с помощью описанных в заявке средств и методов.

Следовательно, заявленное изобретение соответствует условию «промышленная применимость».

1. Способ очистки нефтепродуктов от примесей серы, включающий проведение процесса очистки в центробежном поле вращающегося ротора-барабана путем совместного вращения в нем дисперсионной смеси адсорбента и исходных нефтепродуктов при массовом соотношении адсорбента и нефтепродуктов (1,5-2,0):1,0 в роторе-барабане, отличающийся тем, что процесс очистки нефтепродуктов от примесей серы проводят в центробежном поле путем совместного вращения дисперсионной смеси адсорбента и исходных нефтепродуктов при их массовом соотношении (1,0-2,0):1,0 в роторе-барабане при наложении на смесь адсорбента и нефтепродуктов вертикального электрического поля напряженностью Е=1000-15000 В/м, при непрерывном поступлении во вращающийся ротор-барабан адсорбента и нефтепродуктов в указанном массовом соотношении, при числе оборотов ротора-барабана 60-2500 об/мин, при непрерывном сливе адсорбента и нефтепродуктов через внешнюю сторону ротора-барабана в емкость, из которой очищенные нефтепродукты направляют потребителю, а адсорбент - на регенерацию и на его повторное применение, причем время выдержки поперечного слоя смеси сорбента и нефтепродуктов, двигающегося от центра к периферии ротора -барабана, составляет 10-30 мин.

2. Способ по п.1, отличающийся тем, что в случаях, когда электропроводность нефтепродуктов более чем на порядок меньше электропроводности природной воды, составляют смесь адсорбента, мелкодисперсного электропроводящего порошка и нефтепродуктов в массовом их соотношении соответственно (1,5-2,0):(0,1-1,0):1, процесс очистки нефтепродуктов от примесей серы проводят в центробежном поле путем совместного вращения нефтепродуктов в роторе-барабане и смеси адсорбента, мелкодисперсного электропроводящего металлического порошка, использованный в процессе очистки мелкодисперсный электропроводящий металлический порошок вместе с регенерированным сорбентом идут на повторное их применение в процессе очистки нефтепродуктов от примесей серы.

3. Способ по п.1 или 2, отличающийся тем, что процесс очистки нефтепродуктов от примесей серы проводят в верхней части ротора барабана, разгороженной от нижней его части диэлектрической перегородкой.

www.findpatent.ru

Сера и сернистые соединения нефти

 

Во всех нефтях в разных количествах содержатся сераорганические соединения. Основная масса их концентрируется в высокомолекулярных фракциях (масла, мазуты, гудроны). По химической природе они представляют собой главным образом нейтральные соединения типа сульфидов с алифатическими и циклическими радикалами и гетероциклические соединения типа гомологов тиофана и теофена с различным количеством циклов в молекуле. В некоторых нефтях найдена также в незначительном количестве свободная сера. В нефтях тяжелых и вязких часто содержатся сероводород, низкомолекулярные меркаптаны и дисульфиды. Эти же вещества, как правило, присутствуют и в дистиллятных нефтепродуктах. [8]

Сероводород, меркаптаны и свободную серу относят к активным сернистым соединениям по их способности вызывать сильную коррозию оборудования. Высокомолекулярные серосодержащие соединения коррозию не вызывают и относятся к неактивным. Но они могут разлагаться под действием температуры с образованием активных сероводорода и меркаптанов.

Кроме того, такие сернистые соединения, как: сульфиды, дисульфиды, тиофаны, тиофены и другие нейтральные вещества могут в известных условиях оказаться ответственными за возникновение коррозии. Дело в том, что при сгорании топлива все сернистые соединения образуют SO2 и SO3. При низких температурах, когда получающиеся при сгорании или находящиеся в воздухе водяные пары конденсируются, эти оксиды превращаются в соответствующие кислоты, что вызывает сильную коррозию. Также присутствие в продуктах горения SO3 сильно повышает точку росы. При сжигании сернистых мазутов накопление SO3 в дымовых газах повышает температуру конденсации водяных паров на 50 градусов и, следовательно, даже при обычных температурах будет образовываться серная кислота и возникать коррозия. Чем больше сернистых соединений в топливе, тем сильнее опасность этой кислотной коррозии.

Непосредственно содержание самой серы в нефти составляет от долей процента до 5-7%. Но общее содержание сернистых соединений в нефти может достигать и 30 %. В анализах, как правило, судят о содержании общей серы. Этот показатель является важнейшей технологической характеристикой сырой нефти, определяющей, в числе прочих, конечную ценность и стоимость нефти. Чем меньше серы, тем выше цена нефти. [7]

Для нефтепродуктов сернистые соединения являются очень вредной примесью: они токсичны; они придают нефтепродуктам неприятный запах; вредно отражаются на антидетонационных свойствах бензинов; способствуют смолообразованию в крекинг-продуктах; вызывают коррозию металлов.

Содержание серы нормируется для всех видов топлива, их компонентов, осветительных керосинов, бензинов-растворителей и некоторых нефтяных масел. Наиболее жесткие нормы по содержанию серы установлены для бензиновых и реактивных топлив и бензинов-растворителей (0,02 - 0,1%). Среднее положение по этому показателю занимают тракторные керосины и дизельные топлива (0,2 - 1%). Больше всего допускается серы в котельном топливе (0,5 - 3,5%). Поэтому сжигание сернистых мазутов проводят по специальным инструкциям во избежание отравления персонала дымовыми газами. Следует отметить, что для некоторых специальных масел (трансмиссионное, для гипоидных передач, для коробок передач и рулевого управления) и для смазочно-охлаждающей жидкости сульфофрезол нормируется не высший, а низший предел содержания серы (не менее 0,9 - 1,7%), так как в этих нефтепродуктах присутствие серы улучшает их специфические свойства (липкость, маслянистость).

Содержание сероводорода в нефтепродуктах оценивают по качественной пробе. Отсутствие сероводорода нормируется для топлива Т-2 и для некоторых дизельных и котельных топлив. Содержание меркаптановой серы нормируется для топлив Т1-С, Т-2 –не более 0,01% и отсутствие - для бензинов-растворителей.

При исследовании сераорганических соединений, входящих в состав нефти и её отдельных фракций, применяют различные варианты группового анализа сернистых соединений, предусматривающие комплексное использование химических и физико-химических методов.

Для определения количественного содержания в нефтях и нефтепродуктах так называемой «общей серы», т. е. серы, входящей в любые органические соединения, предложено большое число химических и физических методов анализа. Физические методы основаны на способности элементов поглощать с различной интенсивностью рентгеновские и радиоактивные излучения. Как правило, это рентгенофлуоресцентный метод, который реализуется в приборах марки "Спектроскан".

Сущность всех химических методов анализа заключается в том, что сера, входящая в состав сераорганических соединениях, количественно переводится либо в сероводород методом гидрирования, либо, путем окисления (сжигания), в оксиды серы, которые затем легко определяются обычными химическими или физико-химическими методами количественного анализа. Из этих двух направлений наиболее широкое распространение получили окислительные методы. Следует, однако, отметить, что при микроанализе тяжелых нефтепродуктов, содержащих значительные количества серы, метод деструктивной гидрогенизации над платиновым катализатором имеет некоторые преимущества перед стандартным окислительным методом.

Ввиду значительного различия нефтепродуктов между собой как по фракционному составу, так и по физическим свойствам, единых универсальных условий полного окисления сернистых соединений, входящих в их состав, подобрать не удается. Поэтому для различных нефтепродуктов применяются методы, значительно отличающиеся друг от друга, как по аппаратурному оформлению, так и по применяемому окислителю.

 

Похожие статьи:

poznayka.org

Глава 16 Технология нефти

Сырая нефть впервые в значительных количествах была добыта в 1880 г. С тех пор ее добыча росла экспоненциально и сейчас в мировом масштабе ежегодно составляет 3,2 • 109 м3. Сырая нефть является смесью химических веществ, содержащей сотни компонентов. Основ­ную массу нефти составляют углеводороды—алканы, циклоалканы, арены. Содержание в нефтях алканов (предельных углеводородов) может составлять 50—70%, Циклоалканы могут составлять 30—60% общего состава сырой нефти, большинство из них является моноцик­лическими. Наиболее часто можно обнаружить циклопентан и цикло-гексан. Непредельные углеводороды (алкены), как правило, в нефти отсутствуют. Арены (ароматические углеводороды) составляют мень­шую долю от общего состава по сравнению с алканами и циклоалка-нами. В легкокипящих фракциях нефти преобладают простейший аро­матический углеводород бензол и его производные.

В основу классификации нефтей положено преимущественное со­держание какого-либо одного или нескольких классов углеводородов, причем количество основного компонента, определяющего название нефти, должно составлять не менее 50%. Так, различают нефти пара­финовые (например, некоторые грозненские, башкирские, нефти Та­тарии), нафтеновые (некоторые бакинские), парафино-нафтеновые (су-раханская), парафино-нафтено-ароматические (некоторые майкопс­кие), ароматические (чусовская).

Помимо углеводородов в составе органической части нефти нахо­дятся смолистые и асфальтовые вещества, представляющие собой вы­сокомолекулярные соединения углерода, водорода, серы и кисло­рода, сернистые соединения, нафтеновые кислоты, фенолы, азотис­тые соединения типа пиридина, хинолина, различные амины и др. Все эти вещества являются нежелательными примесями нефти. Для очистки от них требуется сооружение специальных установок. Сер­нистые соединения, вызывающие коррозию аппаратуры, наиболее вредны как при переработке нефти, так и при использовании нефте-45&

продуктов. По содержанию серы нефти классифицируют на малосер­нистые (бакинская, грозненская), содержащие от 0,1 до 0,5% серы;

сернистые (волжская и башкирская) — до 2,5—3% серы; высокосер­нистые (чусовская)— до 5% серы.

К минеральным примесям нефти относят воду, присутствующую, как правило, в двух видах — легко отделяемую от нефти при отстаи­вании и в виде стойких эмульсий. Вода содержит растворенные в ней минеральные соли—Nad, CaCIg.MgCh и др. Зола составляет в нефти сотые и тысячные доли процента. Кроме того, нефть содержит механи­ческие примеси — твердые частицы песка и глины.

Фракционный состав нефти определяется фракционной перегонкой, при которой нефть разделяется на фракции по температурам кипения. По плотности фракций, кипящих при одинаковой температуре, нефть классифицируют на легкую и тяжелую. Фракционный состав нефти предопределяет пути ее промышленной переработки,.

Для переработки и использования нефти и нефтепродуктов большое значение имеют следующие свойства: температуры застывания, вспыш­ки, воспламенения и самовоспламенения, взрывоопасность.

studfiles.net