Справочник химика 21. Нефть происхождение значение


Происхождение слова нефть - Справочник химика 21

    Вопрос о происхождении нефти является одним из самых сложных и крайне интересных вопросов современного естествознания. По словам выдающегося советского ученого-нефтяника Губкина верная разгадка происхождения нефти в природе имеет для нас не только научно-теоретический интерес, но и первостепенное практическое значение [139]. [c.45]

    Наличие некоторых дискуссионных вопросов обусловлено сложностью проблемы происхождения нефти и газа, которые, обладая повышенной миграционной способностью, в отличие от каустобиолитов угольного ряда образуют промышленные скопления на большом удалении от мест их генерации (рождения). Вот почему название месторождение нефти и газа не отвечает действительному смыслу этого выражения и не отражает сути процесса формирования скоплений УВ, так как место их скопления не всегда является местом их рождения в отличие от каустобиолитов угольного ряда. Поэтому А. А. Бакиров (1973 г.) предложил заменить термин месторождение другим, в большей степени отражаюш,им суш,ность понятия, словом место-скопление . [c.20]

    Различают омыляемые и неомыляемые жиры. Первые из них — растительного или животного происхождения — представляют собой настоящие жиры в химическом понимании этого слова, т. е. глицериды жирных кислот — стеариновой, пальмитиновой, олеиновой и др. Вторые — неомыляемые — минерального происхождения, с химической точки зрения не являются жирами. Это смеси углеводородов — нефть, мазут, вазелин, тавот, соляровые масла и пр. [c.540]

    Отношение нефтяников, исследователей и производственников, работающих в области переработки нефти, к проблеме химии сера-органических соединений нефтяного происхождения определялось и определяется запросами основных потребителей нефтепродуктов или, другими словами, нормами на содержание серы в нефтепродуктах. Здесь будет уместно вспомнить, что установление норм на серу связано со специфическими свойствами серы и сера-органических соединений. В качестве примера можно указать на снижение сера-органическими соединениями октанового числа этилированных бензинов. Плохое знание свойств сера-органических соединений заставляет предъявлять, быть может излишне жесткие, требования к очистке нефтепродуктов и тем самым, усложняя технологические процессы, удорожать стоимость нефтепродуктов. Можно сказать, что если на приобретение знаний о свойствах сера-органических соединений нужно расходовать средства, то за незнание их свойств приходится косвенно расплачиваться ен1,е более дорогой ценой. [c.195]

    Н. д. Зелинский — один из крупнейших и разносторонних советских ученых — не мог не заинтересоваться вопросом происхождения нефти, на громадное значение которой для технической и культурной жизни страны он неоднократно указывал. Считая необходимым внести ясность в такие кардинальные вопросы происхождения нефти, как, например, вопрос о том, что могло служить материнским веществом для нефти, как объяснить оптическую активность ее, каковы температуры, при которых протекают процессы, приводящие к появлению нефтяных углеводородов,— И. Д. Зелинский в период с 1925 по 1931 г. проводит ряд блестящих работ, явившихся новым словом в йсследованиях происхождения нефти. Николаю Дмитриевичу удалось показать, что из целой серии продуктов, встречающихся в животных и растительных остатках, при температурах, близких к 200°, в результате каталитического действия хлористого алюминия образуются смеси углеводородов, подобные нефти. Не случайно, что именно русский ученый—Николай Дмитриевич Зелинский — сделал это замечательное открытие. [c.383]

    Отношение нефтяников-исследователей и производственников, работающих в области переработки нефти, к проблеме химии сернистых соединений нефтяного происхождения в основном определялось и определяется запросами основных потребителей нефтепродуктов, или, другими словами, нормами на содержание серы в нефтепродуктах. Здесь будет уместно вспомнить, что установление норм на серу связано со специфическими свойствами серы и сернистых соединений. В качестве примера можно указать на влияние сернистых соединений на октановое число этилированных бензинов. Плохое знание свойств сернистых соединений заставляло предъявлять излишне жесткие требования к очистке бензинов. Можно сказать, [c.31]

    Гипотеза происхождения нефти из наземных растений наиболее полно и обстоятельно развита К. Крэгом. Остроумно и резко критикуя гипотезу животного происхождения и всякого рода дпстилляционные гипотезы, он утверждает, что .. . единственным источником происхождения нефти, представляющимся в одно и то же время достаточным по объему, и допустимым с точки зрения как физической, так и химической возможности, является наземная растительность Сущность этой гипотезы сформулирована им следующим образом Нефть образуется из остатков наземной растительности, скопляющихся в глинах или песках, или самостоятельных залежах.. . путем таких естественных процессов, которые не только можно воспроизвести в лаборатории, но относительно которых может быть доказацо, что они происходили в прошлом и совершаются и но сие время. В других условиях эти остатки могут дать угли, лигниты, или углистые сланцы . Следовательно, К. Крэг считает, что исходный материал для образования углей и нефти один и тот же, и условия и формы его накопления одни и те же. Дельты больших рек, застойные водоемы, мелководные лагуны, покрытые болотными или мангровыми лесами, — вот те места, где происходило накопление, последующее погребение растительного материала и превращение его в уголь или нефть, смотря по наличию тех или иных условий, сопровождавших самый процесс изменения. Поэтому К. Крэг говорит о двух фазах одного и того же процесса — угольной и нефтяной — и отмечает, что .. . путем детального картирования стратиграфии доказано, что одни и те же горизонты, являющиеся углистыми в одной местности, становятся нефтеносными в другой. В некоторых случаях нефтеносная фаза сменяется угольной на протяжении всего 300 ярдов (в Бирме, на о. Тринидад) в тех же самых горизонтах . Разница состоит лишь в том, что везде, где появляется нефтеносная фаза, непосредственно над нефтеносными песками или несколько выше их залегают более или менее значительные толщи непроницаемых глин. Непроницаемость этих слоев, не позволявшая образующемуся газу уходить из залежп, и давление, которое производили вышележащие толщи вместе с давлением газа, и создали те условия, при которых растительный материал превратился в нефть. В этом отношении, по словам К. Крэга, весьма поучителен один из береговых разрезов на о. Тринидад, где обнажены горизонтально залегающие слои третичных отложений, содержащие прослои лигнита со стволами деревьев в вертикальном положении, корни которых находятся в подстилающей глине. Стволы представляют [c.320]

    В нефтеперерабатывающей промышленности процессы первичной и вторичной переработки нефти, газа и газоконденсатов проводят в гетерогенных системах (слова греч. heteros — дру-гой+греч. genos — род, происхождение в целом означают неоднородный). Так, обезвоживание нефти осуществляется в элект-родегидраторах при капельном состоянии воды, ректификацию нефти проводят в гетерогенной системе пар—жидкость, термические процессы типа крекинга и висбрекинга нефтяных фракций проходят в гетерогенной системе пар—жидкость, каталитические процессы крекинга, риформинга, гидроочистки проводятся в присутствии твердых катализаторов в системе твердое тело—пар—жидкость. [c.155]

    Некоторые исследователи придают термину каустобио-литы более широкое значение и подразумевают под ним вообще совокупность всех природных горючих ископаемых органического происхождения (нефть, горючий газ, угли, горючие сланцы, асфальт и т. д.). Слово каустобнолит происходит от греческих каустос — горючий, литое — камень, биос — жизнь, т. е. горючий камень органического происхождения. На рис. 2 показано положение каустобиолитов среди горных пород. Каустобиолиты, таким образом, относятся к природным веществам органического происхождения — биолитам. Среди биолитов встречаются и негорючие вещества или акаустобиолиты, например рифогенные известняки и другие органогенные образования, состоящие из скелетов различных организмов. [c.8]

    Поскольку залежь нефти как объект поиска формируется только в процессе миграции жидких УВ, то для названия теории происхождения нефти слово миграционная является необходимой составной частью. Это название, по мнению Н.Б. Вассоеви- [c.181]

    В качестве продуктов разложения древпих формаций в природе встречаются угли, главной составной частью которых является углерод (название последнего происходит от слова уголь). Нефть, озокерит (горный воск) и асфальт также являются углеродными соединениями, происхождение которых, по-видимому, следует искать в древних живых организмах, при разложении которых они и возникли. Далее следует еще упомянуть об янтаре, ископаемой смоле состава приблизительно 40 в4 4г и медовом камне меллит) А12С12012-18Н20, алюминиевой соли бензол-гексакарбоновой кислоты Ся(СООН)б, которая названа поэтому мелли-товой кислотой. [c.456]

chem21.info

Нефть происхождение - Справочник химика 21

    Основные положения современной органической теории происхождения нефти [c.55]

    Пирофорные соединения, способные к самовозгоранию при контакте с кислородом воздуха, могут образовываться при хранении, транспортировании и переработки сернистых нефтей и нефтепродуктов на незащищенных поверхностях резервуаров, емкостей, трубопроводов. Пирофорные отложения обычно представляют собой смесь продуктов сероводородной коррозии, смолистых веществ, продуктов органического происхождения и механических примесей. Активность пирофорных отложений (способность к самовозгоранию) зависит от температуры окружающей среды, состава и места образования. Пористая структура пирофорных отложений и примеси органических веществ способствуют их бурному окислению. Особую опасность представляют пирофорные отложения, насыщенные тяжелыми нефтепродуктами и маслами, так как последние сами могут разогреваться, способствуя самовозгоранию пирофорных отложений. Активность пирофорных соединений возрастает с повышением температуры окружающей среды, хотя самовозгорание их возможно при любой, даже самой низкой температуре (отмечены случаи самовозгорания их при температуре воздуха минус 20°С). Это объясняется тем, что пирофорные соединения плохо проводят тепло, и теплота, выделяющаяся при первоначальном медленном окислении, аккумулируется в массе отложения, что приводит к ее разогреву до опасной температуры. [c.234]

    Микроэлементы нефтей. Происхождение и содержание в нефтях [c.190]

    В зависимости от происхождения нефти могут содержать различные количества нафтеновых кислот, однако количества эти во всех случаях очень незначительны. Из нефтей нафтеновые кислоты экстрагируются спиртовой щелочью. Строение нафтеновых кислот во всех нефтях одно и то же и не зависит от происхождения нефти. [c.275]

    Моноэфиры, по-видимому, достаточно прочные в термическом отношении вещества. Возможно, моносульфиды являются продуктом, образующимся из других сернистых соединений с открытой цепью. Дитиоэфиры, или дисульфиды, построены по типу К — 8 — 3 —-Н и представля )т собой также нейтральные вещества с высокими температурами кипения. Дисульфиды легко, восстанавливаются до меркаптанов, на чем основан способ их определения в нефти. Происхождение дисульфидов, по-видимому, связано с окислением меркаптанов. Другой пуТь образования — через меркаптиды и полисульфиДы щелочных металлов  [c.174]

    Тип нефти (происхождение) Индекс [c.47]

    Еще более редки природные горючие газы, содержащиеся под высокими давлениями в земной коре. Различают природные газы, состоящие из смеси метана, этана, пропана и бутана ( мокрые газы) и почти из чистого метана (99,8%) ( сухие газы). Первые сопутствуют нефти происхождение последних до сих пор неизвестно. Крупные промышленные месторождения метана находятся лишь в США, СССР и СРР. Некоторые количества метана выделяются также в угольных шахтах. [c.462]

    Имя самого видного из средневековых алхимиков осталось неизвестным он подписывал свои труды именем Джабира, арабского алхимика, жившего за шесть веков до него. Этот Псевдо-Джабир был, вероятно, испанцем и жил в XIV в. Псевдо-Джабир первым описал серную кислоту — одно из самых важных соединений сегодняшней химии (после воды, воздуха, угля и нефти). Он также описал, как образуется сильная азотная кислота. Серную и сильную азотную кислоты получали из минералов, в то время как все ранее известные кислоты, например, уксусную кислоту, получали из веществ растительного или животного происхождения. [c.24]

    Другим исходным материалом для химической переработки его, имеющиеся пока что в почти неисчерпаемых количествах, является нефть, которая в зависимости от происхождения более или менее пригодна для реакции сульфохлорирования. Однако без предварительной [c.396]

    Алифатические углеводороды, в больших количествах содержащиеся в нефти, не использовались непосредственно для химической переработки, хотя являлись чрезвычайно дешевым сырьем. Это вызывалось двумя причинами. Нефть представляет собой весьма сложную смесь углеводородов, состав которой изменяется в широких пределах в зависимости от происхождения. Высокомолекулярные компоненты или тяжелые фракции нефти сравнительно мало изучены даже в настоящее время. Кроме того, углеводороды нефти лишь с трудом и вместе с тем не однозначно взаимодействуют с реагентами, обычно применявшимися для химической переработки ароматических углеводородов. Поэтому нефть длительное время не привлекала серьезного внимания промышленности органического синтеза. [c.8]

    Известно, что в зависимости от происхождения нефти сильно различаются по составу и представляют собой чрезвычайно сложные смеси углеводородов различных типов. [c.12]

    Такие алициклические хлорпроизводные особенно легко дегидро-хлорируются, превращаясь в олефиновые углеводороды. Так как в нефтях и нефтяных фракциях в зависимости от их происхождения всегда присутствуют большие или меньшие количества нафтеновых углеводородов, легко можно объяснить увеличенное образование олефинов, наблюдаемое при реакциях двойного обмена продукта хлорирования этих видов сырья. [c.205]

    Исходным сырьем для получения синтетических жирных кислот служит парафин либо естественного происхождения, т. е. из нефти или из [c.444]

    Современные представления о происхождении нефти [c.51]

    Основоположник гипотезы минерального происхождения не — фти Д.И. Менделеев (1876 г.) утверждал, что нефть образуется на больших глубинах при высокой температуре вследствие взаимодействия воды с карбидами металлов, [c.51]

    Таким образом, имеющиеся на сегодня результаты химических, геохимических, биологических и космических исследований более чем достаточно, чтобы присудить концепции органического происхождения нефти научно аргументированной теории. Те немногие геологические факты, которые пока трудно объяснимы с позиций этой теории, например, обнаружение нефти вне осадочных пород, следует рассматривать как исключительные, учитывая сложность и многообразие химического синтеза от исходной биомассы до природной нефти и использовать их для установления более полной картины в рамках органической теории происхождения не только нефти, но и каустобиолитов в целом. [c.55]

    Газоперерабатывающие установки. Углеводородные газы являются наряду с нефтью исходным сырьем для получения топливных компонентов, а также для химических синтезов. Извест но, что углеводородные газы нефтяного происхождения можно( разбить на три группы  [c.88]

    Зависимость кристаллической структуры остаточных продуктов от их происхождения, не наблюдаемая у дистиллятных продуктов, может быть объяснена тем, что фракционный состав остаточных продуктов по температурам кипения искусственно ограничивается только началом кипения, в то время как для дистиллятных продуктов он ограничивается также и концом кипения. Поскольку же конец кипения остаточных продуктов, а следовательно, и верхний предел молекулярного веса входящих в них компонентов не ограничивается (при перегонке), то этот предел будет определяться теми наиболее высокомолекулярными веществами, которые первоначально находились в исходной нефти и перешли в остаточный продукт, т. е. будет зависеть от природы исходной нефти. Поэтому от природы исходной нефти будут зависеть также и свойства остаточных продуктов, являющиеся функцией молекулярного веса составляющих их компонентов, в том числе и их кристаллическая структура. [c.33]

    Примечание. Первые четыре баланса относятся к прямогонным дистиллятам, выделенным из нефтей и мазутов. В последней колонке таблицы помещен баланс для сырья вторичного происхождения, чем и объясняется пониженный выход бензина. [c.211]

    В природе нигде не встречаются значительные массы отмерших животных организмов, зато любое каменное угольное месторождение может служить прекрасным примером скопления отмерших растительных организмов. По современным представлениям начало гумусо- вым углям дает торф, механизм образования которого известен достаточно хорошо, так как образование торфа можно наблюдать в настоящее время. Торф превращается в бурые угли, затем в каменные. Запасы угля во много раз превышают запасы нефти. И если хотя бы незначительная часть углей могла превратиться в нефть, происхождение последней не казалось бы загадочным. Гипотеза о происхождении нефти из угля была высказана еще М. В. Ломоносовым в 1759 г. и позднее не раз высказывались и разрабатывались подобные теории. Так как угли не содержат нефтепо- [c.12]

    Помимо указанных индивидуальных соединений в нефтях присутствует поли-функциональные азотсодержащие соединения, такие как индол- и карбазолхиноли-ны, фенантролины, гидроксибензохиноли-ны, хинолы, пиридоны, бензтиазолы. О порфириновых соединениях см. раздел 1.3.5 ( Микроэлементы нефтей. Происхождение и содержание в нефтях ). [c.182]

    Если проанализировать творческий путь Николая Дмитриевича, сопоставить многочисленные и разнообразные работы его по синтезу и контактным превращениям индивидуальных углеводородов с работами в области нефти, то станет ясно, что все эти исследования взаимно вытекали одни из других, дополняли и разъясняли друг друга, составляя единое целое. По ряду кардинальных вопросов химии нефти происхождения нефти, создания новых методов исследования химического состава нефтей, изыскания новых путей химич-еской и каталитической переработки нефти — Николай Дмитриевич дал оригинальные и принципиальные ответы выдающегося значения. [c.83]

    Однако нефтяные углеводородные фракции с температурой кипения, начиная приблизительно от 100°, представляют собой весьма еоднородные смеси, в которых соотношение различных типов углеводородов (парафиновых, нафтеновых и ароматических) в значительной степени зависит от происхождения исходной нефти. Поэтому успешная химическая переработка подобных продуктов оказывается невозможной без предварительного разделения на отдельные компоненты (главным образом физическими способами) и дополнительной химической очистки парафиновой фракции. [c.13]

    Содержание парафина в сырых нефтях изменяется в зависимости от их происхождения в весьма широких пределах. В пенсильванских нефтях содержится в среднем около 2,- % парафина. Высокопарафини-стые нефти, содерл[c.45]

    Как уже упоминалось, углеводороды ефтей различного происхождения при сульфохлорировании ведут себя различно. Лучше всего ведут себя углеводородные фракции гидрированных пенсильванских нефтей, которые в этом отношении ближе всего подходят к когазину, так как они в осноаном состоят из парафиновых углеводородов. Менее всего пригодны нефти с богатым содержанием асфальто-смолистых веществ, которые содержат большие количества ароматических и нафтеновых углеводородов. [c.397]

    Признаком, характеризующим вероятное поведение какой-либо смеси углеводородов при сульфохлорировании, является удельный вес гидрированного продукта (с учетом его температурных пределов кипения). Так, например, когазин И с температурными пределами кипения 200—370°, который является наиболее падходящим материалом, имеет после очистки гидрированием под высоким давлением удельный вес примерно 0,770 при 20°. Между тем фракция гидрированной нефти с теми же температурными пределами разгонки в зависимости от происхождения нефти имеет обычно удельный вес от 0,815 до 0,830. Чем выше удельный вес углеводородного сырья, тем менее оно пригодно для сульфохлорирования. [c.397]

    Определение равновесного соотношения циклогексана с метилциклопептаном дает величину, по которой можно судить о температуре происхождения сацхенисской нефти она колеблется в пределах 140—150°. [c.177]

    Металлы — мышьяк, свинец, медь, содержание которых поел гпдроочистки очень невелико, накапливаются на катализатор риформинга необратимо. Вступая во взаимодействие с платиной металлы нарушают гидрируюш,ую-дегидрирующую функцию ката лизатора. Накопление металлических примесей приводит к посте пенному старению катализатора. Быстрое отравление катализатор может пметь место при переходе на сырье вторичного происхождения при использовании бензинов, полученных из ловушечной нефти где концентрация металлических примесей вследствие случайны причин может оказаться весьма значительной. Катализатор, отра вленный металлами, весьма быстро закоксовывается и после регене рации не восстанавливает своей активности. [c.26]

    Проблема происхождения горючих ископаемых непосредственно связана с нерешенными до настоящего времени глобальными вопросами происхождения нашей планеты в целом, в том числе ее полезных ископаемых, а также возникновения жизни на Земле. Она всегда привлекала и продолжает привлекать глубокий интерес многих ведущих химиков, геологов, биологов, астрономов, фи иков, экологов, философов и других представителей различных наустранах мира. Естественно, раскрытие сокровеннейших тай 1 природы, связанных с химической эволюцией Земли с момента ее зарождения до сегодняшних дней, позволило бы вести целенап — равленный, следовательно, более эффективный поиск полезных ископаемых и рационально использовать их на благо всего челове — чес 1 ва. Можно надеяться, что в результате начатых ныне интенсив — ных химических исследований будут раскрыты в ближайшем буду — щем многие из важнейших тайн Вселенной. Тем самым принятые на вооружение современные гипотезы о происхождении горючих ископаемых, в том числе нефти и природного газа, превратятся в вес ьма полезные для практики научно обоснованные теории, обла — даК Щие высокой прогнозирующей способностью. [c.41]

    Если по проблеме происхождения твердых горючих ископа — емьсх среди ученых нет разногласий, то такого единства мнений относительно нефти, как ни странно, до сих пор не достигнуто. Со вре лен М.В, Ломоносова (1757 г.) выдаюш.иеся ученые мира пытаются решить эту проблему, но до сегодняшнего дня нет однозначного ответа, нет общепризнанной теории происхождения нефти. Дискуссии ведутся вокруг двух гипотез нефть — биогенного происхождения, т.е. производная от растений и животных, или же нефть [c.51]

    За прошедшие два столетия после М.В. Ломоносова накопилось огромное количество химических, геохимических и геологи — еских данных по проблеме происхождения нефти. В настоящее ьремя преобладающая часть ученых считает наиболее обоснованными представления об органическом генезисе нефти. В пользу органической гипотезы неоспоримо свидетельствуют обнаруженная поразительная генетическая связь между групповыми компонентами нефти, твердых горючих ископаемых и исходных материнских Beuj,e TB (биологический аргумент), а также прямые экспе — )именты по органическому синтезу нефти, подобной природной. Так, в нефтях обнаружен ряд органических соединений, являющихся как бы "биогенными метками" от исходного материнского пещества. К таковым относятся порфирины — структурные фрагменты хлорофилла и гемоглобина животных изопреноидные угле — подороды, например, с одним лишь идентичным природному [c.52]

    Можно считать, чтоу сторонников неорганической концепции на происхождение нефти нет научно обоснованных "алиби", чтобы опровергртуть органиков — оппонентов. В то же время нельзя и полностью игнорировать вероятность неорганического синтеза нефти. Акад. И.М. Губкин признавал возможность такого происхождения нефти, но в ограниченных количествах. Еще в 1927 г. акад. В.И. Вернадский утверждал, что "хотя теории неорганического генезиса неф тей еще существуют и имеют последователей между учеными, но неуклонно становится ясным, что к большим скоплениям и нефтяным областям они не приложимы". [c.55]

    Основу отечественных дизельных топлив составляют прямо — генные дистилляты, причем около половины из них приходится на до/ю гидроочищенных фракций. Дистилляты вторичного происхождения используются в незначительных количествах (в частнос — ти, около 3 % приходится на долю легкого газойля каталитического крекинга). Необходимо отметить, что производство малосернистых сортов топлив с содержанием серы менее 0,2 % масс, сопряжено с пот ерями их ресурсов и значительными энергозатратами на глубо — кую гидроочистку. При гидроочистке одновременно с неуглеводо — родными гетеросоединениями удаляются из топлива имеющиеся в ио одной нефти природные антиокислительные, противоизносные, антикоррозионные и другие присадки. Поэтому при производстве тог арных гидроочищенных дизельных топлив возникает необходи — мо1 ть применения большого ассортимента и в достаточно больших ко 1Ичествах синтетических присадок. [c.277]

    В лабораторной практике и научных исследованиях для определения химического состава нефтепродуктов в дополнение к методам анализа часто используют такие оптические свойства, как цвет, коэффициент (показатель) преломления, оп — гическая активность, молекулярная рефракция и дисперсия. Эти юказатели внесены в ГОСТы на некоторые нефтепродукты. Кроме того, по оптическим показателям можно судить о глубине очистки нефтепродуктов, о возрасте и происхождении нефти. [c.86]

    Паротурбинные установки эксплуатируются в различных областях техники, на электростанциях, морских и речных судах, в железнодорожном транспорте, в насосных и т.д. Топлива для топок судовых и стационарных котельных установок, а также для промыш — ленных печей (мартеновских и других) получают смешением тяжелых фракций и нефтяных остатков, а также остатков переработки углей и сланцев. Наиболее широко применяют котельные топлива нефтяного происхождения. Качество котельных топлив нормируется следующими показателями вязкость — показатель, позволяющий определить мероприятия, которые требуются для обеспечения слива, транспортировки и режима подачи топлива в топочное пространство. От условий распыливания топлива зависит полнота испарения и сгорания топлива, КПД котла и расход горючего. Величина вязкости топлива оценивается в зависимости от его марки при 50 и 80 °С в °ВУ. Температура вспышки определяет условия обращения с топливом при производстве, транспортировке, хранении и применении. Не рекомендуется разогревать топочные мазуты в открытых хранилищах до температуры вспышки. Основную массу котельных топлив производят на основе остатков сернистых и высокосернисгых нефтей. При сжигании сернистых топлив образуются окислы серы, которые вызывают интенсивную юррозию металлических поверхностей труб, деталей котлов и, что Е едопустимо, загрязняют окружающую среду. Для использования в технологических котельных установках, таких, как мартеновские печи, I ечи трубопрокатных и сталепрокатных станов и т.д., не допускается I рименение высокосернистых котельных топлив. [c.128]

    Гилро еароматизапия — каталитический процесс обратного действия по отношению к каталитическому риформингу, предна — значен для получения из керосиновых фракций (преимущественно прямогонных) высококачественных реактивных топлив с ограничен ым содержанием ароматических углеводородов (например, менее 10 % у Т —6). Содержание последних в прямогонных керосиновых фрскциях в зависимости от происхождения нефти составляет 14 — 35 а в легком газойле каталитического крекинга — достигает до 70 . Гидродеароматизация сырья достигается каталитическим гид — рированием ароматических углеводородов в соответствующие на — фтены. При этом у реактивных топлив улучшаются такие показатели, как высота некоптящего пламени, люминометрическое число, склонность к нагарообразованию и др. [c.235]

    При решении проблемы безостаточной переработки нефти в последние годы наблюдается тенденгг,ия к использованию отрабо — те нных в смежной тоггливной отрасли промьггггленности технологии переработки твердых горючих ископаемых. Так, из внедренных на Н13 США, Западной Европы и Японии можно отметить следующие термодеструктивные процессы "угольного" происхождения  [c.262]

    Аналогичные результаты бьши получены в результате экспериментального моделирования процессов нефтеобразования при геохимических исследованиях [15]. В качестве исходных веществ для этих целей были приняты природный кероген и асфальтены. Кероген, как известно, в соответствии с осадочно-миграционной теорией органического происхождения нефти, представляет собой конечный продукт превращений органического вещества в осадочных породах. Это труднорастворимое органическое вещество, находящееся в комплексе с неорганической составляющей, представленной обычно глинистыми минералами и образующее геополимер . По установившимся представлениям из керогена в результате длительных многостадийньи процессов в осадочных поро- [c.19]

    При рассмотрении структуры отдельных частиц асфальтенов следует учитывать их происхождение (нативные, подвергнутые термической деструкции), а также возраст нефти. Асфальтены, выделенные из остатков вакуумной перегонки, характеризуются меньшим содержанием водорода и более высоким содержанием гетероатомов, чем нативные. Нативные асфальтены, вьщеленные из молодых нефтей, характеризуются линейной надмолекулярной структурой, в которой связи между структурными блоками осуществляются метиленовыми цепочками [19]. Асфальтены более старых нефтей, прошедшие стадию глубокого катагенеза, имеют пачечную макроструктуру [25]. По этой модели (рис. 1.6) асфальтены ббразуют трехмерную структуру из ряда монослоев полициклических конденсированных аренов. Монослой (рис. 1.7) имеет М 800-3500, а образованная этими частицами слоистая структура М 5 500—5 900. Ассоциаты, образованные слоистыми частицами, могут иметь М 37 ООО-100 ООО. В настоящее время пйлучило всеобщее признание объяснение высоких значений молекулярной массы асфальтенов склонностью их к ассоциации с образованием коллоидных частиц различных размеров [23, 25]. [c.24]

    В отношении кристаллической структуры парафиново-дистиллятных фракций, выделенных из нефтей различной природы и происхождения, работами ГрозНИИ установлено следующее обстоятельство, имеющее весьма важное прикладное и теоретическое значение. Оказалось, что фракции парафинового дистиллята, полученные при одинаково высокой четкости ректиг фикации из нефтей любого происхождения и состава, выкипающие в одинаковых пределах (325—460°) и охлажденные в равных условиях, дают крупные, хорошо выраженные кристаллические структуры, совершенно одинаковые как по характеру, так и по форме кристаллов. Отличаются эти фракции лишь количеством вьщелившегося парафина. Данное положение было проверено и оказалось действительным не только для нефтей Советского Союза, но и для ряда зарубежных нефтей самого различного происхождения. [c.27]

    Среди ранних работ, проведенных по изучению природы и состава твердых углеводородов остаточного происхождения, после известных исследований Залозецкого [271 и Гурвича [28] должны быть отмечены выполненные в ГрозНИИ А. Н. Сахановым, Л. Г. Жердевой и Н. А. Васильевым [29, 10] исследования твердых углеводородов остаточного происхождения ( церезинов ), выделенных из сураханской и грозненской парафинистых нефтей. В результате проведенных исследований авторы пришли к выводу, что эти углеводороды являются в основном алканами, но имеют разветвленное строение. Этим авторы и объяснили отличие их свойств от свойств твердых углеводородов, входяш их в состав парафинов дистиллятного происхождения. Было высказано предположение, что входяпще в состав так называемого церезина твердые углеводороды якобы образуют даже свой самостоятельный гомологический ряд. [c.53]

    Химический состав твердых углеводородов остаточного происхождения изучали далее С. С. Наметкин и С. С. Нифонтова [301. Для исследований были взяты тяжелые твердые углеводороды сураханской нефти, оседаюш,ие при ее хранении и перекачках в виде так называемой пробки , а также углеводороды, выделенные из челекенского озокерита. Химический состав изучал методом нитрования по Коновалову. В результате проведенных исследований они также пришли к выводу, что твердые углеводороды сураханского церезина состоят в основном из алканов изостроения. [c.53]

    Изучение химического состава и свойств гетерооргапи-ческих соединений, присутствующих в нефти, помо кет решению некоторых вопросов происхождения нефти. [c.5]

    Нами был исследован и. с. у. различных компонентов нефти парафино-нафтеновой и нафтено-ароматической фракции, смол и асфальтенов. Было отмечено, что и. с. у. смол всегда тяжелее и. с. у. парафино-нафтеновой фракции, но по отношению к ароматической фракции смолы могут иметь как идентичный, так и более легкий или более тяжелый и. с. у. Нами был сделан вывод, что идентичный и. с. у. аренов и смолистых компонентов свидетельствует об их вторичном происхождении, связанном с окислительными процессами в нефти. Разный и. с. у. имеют смолы первичного происхождения. Смолы с легким и. с. у. могли иметь свои первичные источники образования, возможно, типа лигнина. Смолы с тяжелым и. с. у. представляют собой, по-видимому, остаточную часть сложной гибридной структуры, в результате деградации которой происходило образование нафтеновых циклов и ароматических колец. Внедрение кислорода в эту сложную структуру могло, по мнению А.Ф. Добрян-ского, происходить на ранней стадии нефтегазообразования, когда система не была еще полностью изолирована от влияния кислорода. [c.32]

Химия нефти и газа (1996) -- [ c.38 ]

Общая химическая технология органических веществ (1966) -- [ c.22 ]

Органическая химия (2002) -- [ c.239 ]

Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.48 , c.49 ]

Курс органической химии (1979) -- [ c.78 ]

Курс органической химии (1970) -- [ c.66 ]

Общая химическая технология органических веществ (1955) -- [ c.88 ]

Органическая химия (1972) -- [ c.133 ]

Общие свойства и первичные методы переработки нефти и газа Издание 3 Часть 1 (1972) -- [ c.17 ]

Органическая химия (1972) -- [ c.133 ]

Химия и технология нефти и газа Издание 3 (1985) -- [ c.4 ]

Курс органической химии _1966 (1966) -- [ c.71 ]

Органическая химия Издание 4 (1970) -- [ c.39 ]

chem21.info

Реферат Химия Происхождение нефти

Оглавление 1. Введение._______________________________________________________________ 2. Немного истории о нефти._________________________________________________ 3. Что такое нефть?_________________________________________________________ 4. Классификация нефти.____________________________________________________ 5. Физико-химические свойства.______________________________________________ 6. Происхождение нефти.____________________________________________________ 7. Основные месторождения нефти.___________________________________________ 8. Нахождение нефти в природе.______________________________________________ 9. Нефтяная промышленность._______________________________________________ 10. На это стоит обратить внимание.___________________________________________ 11. Экологические проблемы, связанные с добычей нефти.________________________ 12. Заключение.____________________________________________________________ 13. Список используемой литературы._________________________________________ Основным сырьём для производства органических соединений служит в большинстве случаев нефть. Химической обработкой этого сырья занимается самостоятельная отрасль химической промышленности - нефтехимия. Постоянно вырастающая роль синтетических органических соединений в жизни современного общества вызывает потребность в создании промышленного производства органических материалов, способного производить эти соединения быстро, дешево и в достаточном количестве. Для такого производства необходимы доступные , дешевые и широко распространенные в природе источники сырья , из которого можно было бы получить необходимые соединения сравнительно простыми методами. С течением времени выяснилось, что этим требованиям удовлетворяют 3 ископаемых источника сырья, а именно: каменный уголь, природный газ и нефть. Первое сырье для производства органических материалов было получено из каменного угля. Так продолжалось некоторое время, но с течением времени постоянно возрастало значение природного газа и нефти, как источников химического сырья. Поэтому все шире разрабатывались и усовершенствовались соответствующие химические процессы. В настоящее время из нефти получают свыше 90% всех синтезируемых органических соединений. Нефть - самый важный источник сырья для производства органических соединений. История нефти. В глубокой древности было известно существовании нефти. Знали и слово «нефть». Еще древние греческие летописцы Геродот и Плиний это горючее вещество, использовавшееся, и как цемент называли «нафта». За 6-4 тысяч лет до нашей эры на берегу реки Евфрат (Ирак) велась добыча нефти. К далекому прошлому относятся первые сведения о нефти в Средней Азии. О добыче «черного масла» в Ферганской впадине было известно еще во время похода Александра Великого через Среднюю Азию в Индию. Во время путешествия Колумба в Америку было описано озеро на острове Тринидад, в котором жители собирали асфальт, а из него готовили цемент. В Северной Америке примитивная добыча нефти велась с XVII века. В России в начала XVIII века Петр 1 приказал добывать нефть на Апшеронском полуострове (Азербайджан). Однако намерение Петра 1 не было осуществлено. Только после Бакинского ханства к России, началась кустарная разработка нефтяных источников. Нефть была довольно дорогим товаром. К примеру, в торговой книге, составленной в Москве в 1575-1610 гг., указано, что ведро нефти стоило 3-4 раза дороже, чем ведро вина. Хотя о нефти знали давно, использование ее в течение многих веков было ограниченным. Так, в III тысячелетии до н. э. в Египте, асфальт, как связующие и водонепроницаемое вещество вместе с песком и известью, использовался для изготовления мастики, применяемой при сооружении строений из кирпича и камня, дамб, причалов и дорог. Древние египтяне применяли ее также для бальзамирования трупов, древние греки находили применение горящей нефти в военных целях, как воспламеняющегося вещества вместе с селитрой, серой и смолой для изготовления «огненных стрел» и «огненных горшков». В военных действиях нефть - «греческий огонь» - использовался более 2 тысяч лет назад. Многие народы использовали нефть в медицине, а также для защиты садов и виноградников от вредителей. Еще в XIII веке Марко Поло, описывая иракскую нефть, указывал, что она применялась для освещения и в качестве лекарства от кожных болезней. В XVI-XVII вв. в центральные районы России нефть привозили из Баку. Ее применяли в медицине, живописи и в качестве растворителя для красок, а также в военном деле. Почти до начала XX века нефть употреблялась преимущественно для освещения помещений, смазки колес телег и в немногочисленных механизмах. Постепенно усиливалось ее значение, как топлива. Нефть – «кровь» земли, Нефть – «черное золото». Так ныне называют нефть. И в этом нет ни какого преувеличения. Нефть самое ценное топливо в мире!

Что такое нефть.

Соединения сырой нефти – это сложные вещества, состоящие из пяти элементов – C, H, S, O и N, причем содержание этих элементов колеблется в пределах 82–87% углерода, 11–15% водорода, 2,5–3% серы, 0,1–2% кислорода и 0,01–3% азота. Углеводороды – основные компоненты нефти и природного газа. Простейший из них – метан Ch5 – является основным компонентом природного газа. Все углеводороды могут быть подразделены на алифатические (с открытой молекулярной цепью) и циклические, а по степени ненасыщенности углеродных связей – на парафины и циклопарафины, олефины, ацетилены и ароматические углеводороды. Парафиновые углеводороды (общей формулы Cnh3n + 2) относительно стабильны и неспособны к химическим взаимодействиям. Соответствующие олефины (Cnh3n) и ацетилены (Cn h3n – 2) обладают высокой химической активностью: минеральные кислоты, хлор и кислород реагируют с ними и разрывают двойные и тройные связи между атомами углерода и переводят их в простые одинарные; возможно, благодаря их высокой реакционной способности такие углеводороды отсутствуют в природной нефти. Соединения с двойными и тройными связями образуются в крекинг-процессе при удалении водорода из парафиновых углеводородов во время деструкции последних при высоких температурах. Циклопарафины составляют важную часть большинства нефти. Они имеют то же относительное количество атомов углерода и водорода, что и олефины. Циклопарафины (называемые также нафтенами) менее реакционноспособны, чем олефины, но более чем парафины с открытой углеродной цепью. Часто они представляют собой главную составную часть низкокипящих дистиллятов, таких, как бензин, керосин и лигроин, полученных из сырой нефти. Классификация нефти. Классификации нефти строятся на различной основе. Как правило, это генетические и технологические классификации. Первые из них учитывают состав исходного материала и условия его преобразования, а вторые характеризуют нефть как сырьё для производства тех или иных нефтепродуктов. Генетическая классификация делит нефти на гумитосапропелитовые, сапропелитовые и сапропелито-гумитовые типы по соотношению остатков высших и низших растений в их составе. Типы подразделяются далее на классы и группы по степени преобразования компонентов в анаэробной среде. Принятая в России технологическая классификация делит их на три класса по содержанию серы (I<II<III), три типа по выходу фракций, перегоняющихся до 350лнС (Т1>Т2>Т3), четыре группы по потенциальному содержанию базовых масел (М1>М2>М3>М4), две подгруппы по индексу вязкости (И1>И2) и три вида по содержанию твердого парафина (П1<П2<П3). В целом нефть характеризуется шифром, составляемым последовательно из обозначения класса, типа, группы, подгруппы и вида, которым соответствует данная нефть. Классификация, имеющая признаки и научной, и технологической, была построена на основе группового состава нефти. В соответствии с ней нефти делятся на шесть классов: парафиновые, парафинонафтеновые, нафтеновые, парафино-нафтено- ароматические, нафтеноароматические, ароматические. Каждый класс включает нефти с преобладанием одного - двух компонентов группового состава или с их примерно равным содержанием Промышленнно-генетическая классификация нефти, аналогичная разработанной к настоящему времени для углей, пока отсутствует. Вероятно, это связано с тем, что разнообразие жидких горючих ископаемых намного меньше, чем ТГИ, а их свойства легче стандартизуются по сравнительно просто определяемым кривым ИТК и групповому составу. Принятые в разных странах национальные системы классификаций можно достаточно успешно применять в международной торговле нефтью и нефтепродуктами и с их помощью планировать направления переработки нефти конкретного месторождения. Физико-химические свойства нефти. Нефть представляет собой чрезвычайно сложную смесь переменного состава и говорить о константах нефти невозможно, потому что состав и свойства нефти могут существенно изменятся. Но тем не менее для характеристики нефти определение ряда физико-химических свойств имеет весьма важное значение в отношении ее состава и товарных качеств. Плотность принадлежит к числу наиболее распространенных показателей при исследовании нефти. Особое значение этот показатель имеет при расчёте нефтей, занимающих данный объём или определения объема нефтей. Это важно как для расчетно-конструктивных исследований, так и для практической работы на местах производства, транспортировки и потребления нефтей. Величины плотности у нефти весьма различны, они колеблются в пределах 0,77-2,0, хотя в большинстве случаев они укладываются в более узкие пределы 0,83-0,96. Вязкостью или внутренним трением называется свойство, проявляющееся в сопротивлении, которое нефть оказывает при перемещении одной ее части относительно другой под влиянием действия внешней силы. Различают Динамическую и кинематическую связь нефтей. Значение вязкости при характеристике нефтей чрезвычайно велико. Наибольшее значение вязкость имеет при расчете нефтепроводов, при расчетах, связанных с подачей топлива и т. д. Нефть характеризуется не температурами кипения, температурными пределами начала и конца кипения и выходом отдельных фракций, перегоняющихся в определенных температурных интервалах. По результатам перегонки судят о фракционном составе. Определение температурных пределов кипения отдельных фракций нефти, а также определение процентного содержания этих фракций в составе нефти имеет большое значение для определения характеристик этой нефти. Температура вспышки – это температура, при которой нефть, нагреваемая при определенных условиях, выделяет такой количество паров, которое образует с воздухом смесь, вспыхивающую при поднесении к ней пламени. Температурой воспламенения называется та температура, при которой нагреваемый при определенных условиях нефтепродукт загорается и горит не менее 5 секунд. При понижении температуры часть компонентов нефти становятся более вязкими и малоподвижными, растворенные углеводороды могут выделятся в виде кристаллов. Это весьма осложняет товарно-транспортные операции и эксплуатацию нефти при низких температурах. Эту температуру называют температурой застывания. Происхождение нефти. История науки знает много случаев, когда вокруг какой-нибудь проблемы разгораются жаркие споры. Такие споры идут вокруг проблемы происхождения нефти. 1 этап - с древнейших времён по 1760 . В этот период представления о происхождении нефти, так или иначе, были связаны с различными представлениями о "флогистоне ", происхождение Земли и др. Первая теория была сформулирована в 950 годы арабским учёным Их - Ван - эс-Сафа. "Вода и воздух - писал он - созревают действием огня и образуют огненную серу и водяную ртуть. Эти два вторичных элемента смешиваются с разным количеством земли и в зависимости от температуры образуют минералы, находящиеся в земле, включая битуминозную субстанцию, такие, как нефть. Поэтому они имеют "высокий" воздух и нефть, сжимается и огнеопасны. " В конце 17 века (1697)итальянский учёный П. С. Бекконе, ссылаясь на мнение англ. учёного В. Чарметона, считая, что янтарь и битумы имеют одинаковое происхождение и нефть образуется "вулканическими силами из земли и серного начала", В качестве доказательства он приводил пример землетрясения 1683 года, которое повлияло на интенсивность нефтепроявлений в Сицилии. Судя по работе французского учёного Н. Лемери, в конце 17 века существовало представление об образовании нефти в результате перегонки янтаря; каменный уголь является остатком этой перегонки. Однако сам Лемери считал, что нефть образуется в результате перегонки битума. Пожалуй, самое интересное предположение высказал в начале 18 века немецкий учёный П. Ф. Генкель. По его мнению, нефть образуется из остатков животных и растений. Существование к 1739 году представления о нефти были обобщены русским академиком И. Вейбрехтом, который, разделяя мнение о нефти как о смеси "огненной", водной и земляной субстанций, в то же время считал, что нефть либо образовалась под влиянием тепла Земли, либо находилась в её недрах изначально. На основании нахождения нефти в теплых странах вблизи морей с соленой водой и длительности ее притоков снизу. Вейбрехт считал, что нефть-" это преобразованная, огненная сущность солей, оставляемая морской водой. При чрезмерном накоплении горючих веществ в одном месте при их воспламенении происходят землетрясения и оседания почвы". Любопытен вывод этого исследования о том, что "масляные части растений близки по своим свойствам к нефтяным маслам". На этом основании делалось предположение: «быть может, огненные и масляные части всех растений происходят от нефти, которую растения вытягивают из земли. «Эти представления завоевывали все большее и большее признание. В 1750 немецкий ученый Шпильман писал, что нефть образуется из растений, преимущественно из ели. Член французской академии наук, химик по специальности П.Ж. Макер в 1758 высказал мнение о том, что битумы образуются в результате взаимодействия "растительных масел " и "кислот". 2 этап (1761-1859).Этот этап продолжался почти 100 лет. Он начался с работы М.В.Ломоносова. В середине 18 века в своем трактате "О слоях земных" великий русский ученый писал: " Выгоняется подземным жаром из приготовляющихся каменных углей бурая и черная масляная материя... и сие есть рождение жидких разного сорта горючих и сухих затверделых материй, каковы суть каменного масла, жидковская смола, нефть. Которые хотя чистотой разнятся. Однако из одного начала происходят" Таким образом, более 200 лет назад была высказана мысль об органическом происхождении нефти из каменного угля. Исходное вещество было одно: органический материал, преобразованный сначала в уголь, а потом в нефть и газ. Родилась органическая гипотеза. М.В.Ломоносов был не единственный, кто высказался по интересующему нас вопросу в 18 веке. Правда, другие гипотезы того времени носили курьёзный характер. Так, один варшавский каноник утверждал, что Земля в райский период была настолько плодотворна, что на большую глубину содержала жировые примеси. После грехопадения этот жир частично испарился, а частично погрузился в землю , смешиваясь с различными веществами. Всемирный потоп содействовал превращению его в нефть. Также известна ещё одна гипотеза. Авторитетный немецкий геолог-нефтяник Г.Гефер рассказывает об одном американском нефтепромышленнике конца прошлого века, считавшим, что нефть возникла из мочи китов на дне полярных морей. По подземным каналам она проникла в Пенсильванию. Немецкий химик К. Райхенбах в 1834 привел перегонку каменного угля с водой и получил 0,0003% масла, очень похожего на скипидар и на нефть Италии. На основании этого он предположил, что нефть "представляет собой скипидар доисторических пиний (итальянских сосен), находилась в углях в готовом виде и выделялась из них под действием теплоты Земли" В 19 веке среди учёных были распространены идеи, близкие к представлениям Ломоносова. Споры велись главным образом вокруг исходного материала :животные или растения?" 3 этап - (1860-1905). Немецкие учёные Г. Гефер и К. Энглер в 1888 поставили опыты, доказавшие возможность получения нефти из животных организмов. Позднее, в 1919 академиком Н.Д.Зелинским был осуществлен опыт, исходным материалом которого был органогенный ил преимущественно растительного происхождения из озера Балхаш. При его перегонке были получены: сырая смола -63,2%, кокс-16% , газы (метан, окись углерода, водород, сероводород.)-20,8%. При последующей переработке смолы из нее извлекли бензин, керосин и тяжелые масла. Итак, опытным путём было доказано, что нефть - производные при разложении органики либо животного, либо растительного происхождения, либо их смеси. Таковой была органическая гипотеза. Но также существовала и неорганическая гипотеза, выдвинутая Д. И. Менделеевым, и получившая название карбидной. Ученый считал, что во время горообразовательных процессов по трещинам, рассекающим земную кору, поверхностная вода просачивалась вглубь Земли к металлическим массам. Взаимодействие ее с карбидами железа приводило к образованию окислов металла и углеводорода. У.В. по тем же трещинам поднимались в верхние слои земной коры и насыщали пористые породы, образуя месторождения. Однажды, побывав в г. Баку, Менделеев от русского учёного Г. В. Абиха узнал, что часто месторождения нефти территориально приурочены к сбросам - особого типа трещинам земной коры. В этом Менделеев видел неоспоримые докозательства своих воззрений. Таким образом, к концу прошлого столетия четко обособились 2 полярных взгляда на проблему происхождения нефти: органическая и неорганическая. 4 этап- (1932-1950). Выход в свет в 1932 книги академика И. М. Губкина "Учение о нефти " положил конец колебаниям между указанными группами представлений, и в течение последующего этапа господствовала гипотеза образования нефти из рассеянного органического вещества, накапливавшегося в значительных количествах в осадках морских бассейнов. 5 этап - (1951 - настоящее время). Этот этап можно смело назвать этапом становления теории органического происхождения нефти, или, как ее правильно назвал Н.Б. Вассоевич, теории осадочно-миграционного происхождения нефти и углеводородных газов. Начало данного этапа следует считать 1950 год потому, что именно этот год почти одновременно с советскими и американскими учёными были обнаружены У.В. в современных осадках. Американские исследователи под руководством П.В.Смита открыли углеводороды в современных осадках Мексиканского залива, прикалифорнийской части Тихого океана, а также некоторых пресноводных бассейнов. И хотя дальнейшие исследования показали, что углеводороды, содержащиеся в современных осадках, существенно отличаются от нефти, значение указанных открытий трудно переоценить. Они показали, во-первых, что углеводороды образуются в осадках из остатков растительных и животных организмов. Тем самым был положен конец продолжавшейся в течение более двух столетий дискуссии о том, какое органическое вещество может быть исходным для образования нефти. Во-вторых, оказалось, что процессы нефтегазообразования могут развиваться почти в любых субаквальных осадках и что для этого не требуется каких-то особых экстраординарных условий. Основные месторождения. Мировой запас нефти оценивается в 840 млрд. тонн условного топлива, из них 10% — достоверные и 90% —вероятные запасы. Основной поставщик нефти на мировой рынок — страны Ближнего и Среднего Востока. Они располагают 66 % мировых запасов нефти, Северная Америка — 4 %, Россия — 8-10 %. Отсутствуют месторождения нефти в Японии, ФРГ, Франции и многих других развитых странах. К 2000 г. объем ввоза нефти в США будет в два раза превышать уровень ее добычи. Экспорт из России предполагается к 2000 г. до 7,0 млн. баррелей в сутки. Прогнозируется рост спроса на нефть — 1,5 % в год. РОССИЙСКАЯ ФЕДЕРАЦИЯ. Западная Сибирь Это наша богатейшая кладовая и одна из величайших нефтегазоносных провинций в мире (так называют территории, где располагаются сразу несколько десятков, а то и сотен месторождений). Здесь их открыто уже более двухсот. Они таят в себе около 4 млрд. тонн нефти. В 60-е года 20-го века в Среднем Приобье, прямо посередине этой огромной заболоченной равнины, обнаружили целую «россыпь» нефтяных месторождений. Среди них Самотрол – один из 4-х нефтяных гигантов (2,6 млрд.т.), который разрабатывается с 1969 года. Он имеет 10 залежей нефти, одна из которых с газовой шапкой. Нефть находится в песчаниках нижнего мела и верхней юры на глубине 1610-2350м. Среди других нефтяных месторождений Западной Сибири. Выделяется Федоровское (400 млн. т.), Варьеганское (200 млн. т.) Усть-Балыкское (170 млн. т.) Волго-Уральский район Волго-Уральский район – второй по значимости в России. Здесь разведано несколько миллиардов тонн нефти. Открыто с выше 100 нефтяных месторождений, содержащих более 1400 залежей нефти; 2/3 запасов нефти уже добыто. В 1948 году в этом районе было открыто крупное Ромашкинское месторождение (3 млрд. т.). Оно расположено в Татарии, в 70 км. К западу от города Альметьевска, в пределах крупного пологого поднятия осадочных пород. Разрабатывается с 1952 года. Здесь уже добыли 1,4 млрд. т. нефти. Северный Прикаспий. Эта нефтегазоносная провинция охватывает Южное Поволжье и прилегающие с юго- востока районы, в основном в пределах прикаспийской низменности: частью в Росси частью в Казахстане. Это огромная чаша, заполненная рыхлыми осадками огромной мощности в 17-20 км. В них выделяются две нефтегазовые толщи, разделённые мощным пластом соли. Тимано-Печёрский район. Тимано-Печёрский район занимает северо-восток европейской части России. Здесь нефть есть во всех палеозойских и ниже – в мезозойских отложениях, а они располагаются на большой площади. В начале 60-х годов XX века открыто крупное месторождение – Усинское нефтяное. Оно разрабатывается с 1973 года. Восточная Сибирь и Дальний Восток. Здесь открыты Енисейско-Анабарское нефтегазоносная, Ленно-Тунгусское нефтегазоносная, Ленно-Вилюская нефтегазоносная, Охотская нефтегазоносная провинции. Одним из старейших районов нефтедобычи в России является остров Сахалин, Первые нефтяные месторождения – Охинское и Катанглинское – открыты здесь в 1923-1926 годах. К настоящему времени на острове их несколько десятков. Здесь нефтегазоносны молодые неогеновые отложения. В последние годы нефть получают из недр сахалинского шельфа. Томская область. Впервые нефть была получена у города Колпашево в 1953 .16 августа 1962было открыто второе месторождение в Александровском районе в деревне Соснино. Позднее были открыты Советское, Стрежевское, Малореченское, Северное, Лугинское и т. д. Глубина залегающих нефтяных пластов от 1500 до 2000 метров. Нефтяная промышленность Нефтедобыча - отрасль нефтяной промышленности, осуществляющая извлечение нефти и сопровождающего ее газа из недр с помощью буровых скважин или, в отдельных случаях, шахт и других выработок. Задачами нефтедобычи являются: рациональная разработка нефтяных залежей наиболее совершенными способами, обеспечивающими извлечение подземных запасов нефти в заданные сроки, с минимальными затратами энергии и труда; организация сбора и предварительной обработки (очистки) добытой продукции с наименьшими потерями нефти и газа. Почти вся добываемая в мире нефть извлекается из нефтяных скважин, проходимых бурением с земной поверхности или со дна морских водоемов. Лишь весьма незначительная часть нефти добывается через мелкие скважины , закладываемые в подземных горных выработках. Применительно к неглубоким истощенным залежам, эксплуатация которых с помощью скважин малоэффективна, начинает в единичных случаях использоваться способ открытой разработки нефтяных месторождений. По размерам нефтедобычи Россия находится на одном из первых мест в мире. Крекинг. Крекинг изобрёл русский инженер Шухов в 1891 г. В 1913 г. изобретение Шухова начали применять в Америке. В настоящее время в США 65% всех бензинов получается на крекинг-заводах. Аппаратура крекинг-заводов в основном та же, что и заводов для перегонки нефти. Это – печи, колонны. Но режим переработки другой. Другое и сырьё. Слово “крекинг” означает расщепление. На крекинг-заводах углеводороды не перегоняются, а расщепляются. Процесс ведётся при более высоких температурах (до 600о), часто при повышенном давлении. При таких температурах крупные молекулы углеводородов раздробляются на более мелкие. Мазут густ и тяжёл, его удельный вес близок к единице. Это потому, что он состоит из сложных и крупных молекул углеводородов. Когда мазут подвергается крекингу, часть составляющих его углеводородов раздробляется на более мелкие. А из мелких углеводородов как раз и составляются лёгкие нефтяные продукты - бензин, керосин. Мазут – остаток первичной перегонки. На крекинг-заводе он снова подвергается переработке, и из него, так же как из нефти на заводе первичной перегонки, получают бензин, лигроин керосин. При первичной перегонки нефть подвергается только физическим изменениям. От неё отгоняются лёгкие фракции, т. е. отбираются части её, кипящие при низких температурах и состоящие из разных по величине углеводородов. Сами углеводороды остаются при этом неизменёнными. При крекинге нефть подвергается химическим изменениям. Меняется строение углеводородов. В аппаратах крекинг- заводов происходят сложные химические реакции. Эти реакции усиливаются, когда в аппаратуру вводят катализаторы. Одним из таких катализаторов является специально обработанная глина. Эта глина в мелком раздробленном состоянии – в виде пыли – вводится в аппаратуру завода. Углеводороды, находящиеся в парообразном и газообразном состоянии, соединяются с пылинками глины и раздробляются на их поверхности. Такой крекинг называется крекингом с пылевидным катализатором. Этот вид крекинга теперь широко распространяется. Катализатор потом отделяется от углеводородов. Углеводороды идут своим путём на ректификацию и в холодильники, а катализатор – в свои резервуары, где его свойства восстанавливаются. Катализаторы – крупнейшее достижение нефтепереработки. На крекинг-установках всех систем получают бензин, лигроин, керосин, соляр и мазут. Главное внимание уделяют бензину. Его стараются получить больше и обязательно лучшего качества. Каталитический крекинг появился именно в результате долголетней, упорной борьбы нефтяников за повышение качества бензина. Переработка нефти. Основным способом первичной обработки нефти является фракционная перегонка сырой нефти. Это приводит к ее разделению на фракции , кипящие в широком температурном интервале ,а именно: · углеводородный газ (пропан, бутан) · бензиновая фракция (температура кипения до 200 градусов) · керосин (температура кипения 220-275 градусов) · газойль или дизельное топливо (температура кипения 200-400 градусов) · смазочные масла (температура кипения выше 300 градусов) · остаток (мазут) В состав бензиновой фракции обычно входят петролейный эфир (температура кипения 20-60градусов) и так называемый экстракционный бензин (температура кипения 60-120 градусов). Фракция, кипящая при температурах от 40- 200 градусов, называется бензином и относится к наиболее ценным нефтепродуктам, поскольку служит топливом для двигателей внутреннего сгорания. В бензине преимущественно содержатся углеводороды С6--С9 . Керосин, содержащий углеводороды С9--С16 , применяется в небольших отопительных установках, а также служит топливом для турбинных двигателей; пиролизуется до низших углеводородов. Газойл, или дизельное топливо, имеет подобное применение, но главным образом, используется, как топливо для дизельных двигателей. Смазочные масла, содержащие углеводороды С20--С50 , очищаются и применяются в качестве смазочных материалов. Это такие масла, как: цилиндровое, подшипниковое, низкозастывающее, турбинное, компрессорное, автомобильное, авиационное, изоляционное. Применение этих масел связано с их названием. Остаток после перегонки мазут, используется, как топливо или подвергается вакуумной перегонке, в результате которой получают следующую высококипящую углеводородную фракцию. Остатком является асфальт, служащий для покрытия мостовых и как изоляционный, влагозащитный материал. Точно такое же применение находит природный асфальт, добываемый на о. Тринидад. Основными способами переработки высококипящих фракций нефтепродуктов, полученных при перегонке парафинистой и нафтеновой нефти, являются крекинг и ароматизация. Крекинг заключается в том, что высшие алканы нагреваются до высоких температур без доступа кислорода. При этом происходит их расщепление на низшие алканы и алкены. При обычной перегонки нефти удаётся получить не больше 15-20% бензина. Крекинг позволяет повысить кол-во этого топлива в несколько раз. В технике используется 2 вида крекинга - термический и каталитический. Термический крекинг - нагревание нефтепродуктов под давлением при температуре до 400--600 градусов; этот процесс имеет радикальный механизм; так крекинг мазута и гудрона при 400--500 градусах дает примерно 15% бензина, керосина, солярового масла, крекинг солярового масла и газойля при 500--600 градусах дает до 50% бензина. При термическом крекинге образуется довольно много непредельных соединений, плохо выдерживающих хранение. Поэтому крекинг - бензины часто подвергают дополнительной химической обработке - процессам гидрирования. Помимо термического крекинга в промышленности широко используется каталитический крекинг, то есть нагревание нефтепродуктов до 300-500 в присутствии катализатора(AlCl3) и алюминий силикаты). Этот вид крекинга идет по ионному механизму. При каталическом крекинге получается гораздо меньшее кол-во непредельных углеводородов, а среди предельных преобладают углеводороды с разветвленным углеродным скелетом молекул. Такие соединения обычно обладают более низкими температурами кипения и являются более ценным топливом для двигателей внутреннего сгорания. Другим способом переработки нефтепродуктов, полученных при перегонке парафинистой и нафтеновой нефти, служат процесс ароматизацией. Большое значение как топливо и химическое сырье имеют попутные газы и газы крекинга нефти. Попутные газы состоят из пропана и бутанов и выделяются из нефти. Попутные газы и газы крекинга обычно подвергают перегонке, выделяя из них индивидуальные У.В.Пропан - бутановая фракция используется в виде сжиженного газа, как топливо и служит ценным хим. сырьем. Кроме того, пропан и бутан подвергают хлорированию, окислению и др. хим. превращениями, что дает разнообразные хим. реактивы и растворители. На это стоит обратить внимание. В начале человек не задумывался, что таит в себе интенсивная добыча нефти и газа. Главным было выкачать их как можно больше. Но вот в начале 40-х гг. прошлого столетия появились первые настораживающие симптомы. В 1939 г. Жители городов Лос-Анджелес и Лонг-Бич почувствовали довольно сильные сотрясения земной поверхности – началось проседание грунта под месторождением. В сороковые годы интенсивность этого процесса усилилась. В период с1949 до1961 год было зарегистрировано 5 крупных землетрясений. Напуганные этими событиями власти Лонг-Бич прекратили разработку до разрешения возникшей проблемы. К 1954 году было доказано, что наиболее эффективным средством борьбы с проседанием является закачка в пласт воды. Это сулило увеличение нефтедобычи. Первый этап работ по заводнению был начат в 1958 году, когда на южном крыле структуры стали закачивать в продуктивный пласт без малого 60 тыс. м3 воды в сутки. Через 10 лет интенсивность закачки возросла в два раза и составила 122 тыс. м3/сутки. Проседание практически прекратилось. Месторождение вновь вступило в эксплуатацию, при этом на каждую тонну нефти приходилось 1600 литров воды. Заключение. Природное полезное ископаемое - нефть - представляет лишь исходный материал, из которого на заводах и фабриках получают разнообразные вещества, необходимые для развития областей природного хозяйства, а также веществ, применяемых в домашнем обиходе. Нефть ценна не только, как источник энергии, но и в большей степени, как сырье для производства пластических масс, синтетических волокон, каучуков и др. Список используемой литературы. 1."Химический энциклопедический словарь" 1983г. 2. Справочник школьника "Химия" 3."Пособие по химии для поступающих в ВУЗы". Москва:1974г.-382с. 4. "Органическая химия " Й. Пацак, изд-во "Мир"; Москва;1986-366с.

tarefer.ru