Углеводороды. Нефть углеводород википедия


Углеводород - Википедия

Поскольку углерод имеет четыре валентных электрона, а водород — один, простейший углеводород — метан (Ch5). При систематизации углеводородов принимают во внимание строение углеродного скелета и тип связей, соединяющих атомы углерода. В зависимости от строения углеродного скелета, углеводороды подразделяют на ациклические и карбоциклические. В зависимости от кратности углерод-углеродных связей, углеводороды подразделяют на предельные (алканы) и непредельные (алкены, алкины, диены). Циклические углеводороды разделяют на алициклические и ароматические.

Углеводороды, как правило, не смешиваются с водой, поскольку атомы углерода и водорода имеют близкую электроотрицательность, и связи в углеводородах малополярны. Для предельных углеводородов характерны химические реакции замещения, а для непредельных — присоединения.

Основные источники углеводородов — нефть, природный и сланцевый газ, каменный уголь.

Характеристика Алканы Алкены Алкины Алкадиены Циклоалканы Арены
Общая формула Cnh3n+2 Cnh3n Cnh3n-2 Cnh3n-2 Cnh3n Cnh3n-6
Строение sp³-гибридизация — 4 электронных облака направлены в вершины тетраэдра под углами 109°28'. Тип углеродной связи — σ-связи sp²-гибридизация, валентный угол 120°.Тип углеродной связи — π-связи. lc-c — 0,134 нм. sp-гибридизация, молекула плоская (180°), тройная связь, lc-c — 0,120 нм. lc-c — 0,132 нм — 0,148 нм, 2 или более π-связей. У каждого атома три гибридные sp²-орбитали. sp³-гибридизация, валентный угол около 100° lc-c — 0,154 нм. Строение молекулы бензола (6 р-электронов, n = 1), Валентный угол 120° lc-c — 0,140 нм, молекула плоская (6 π | σ)
Изомерия Изомерия углеродного скелета, возможна оптическая изомерия Изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная Изомерия углеродного скелета, положения тройной связи, межклассовая Изомерия углеродного скелета, положения двойной связи, межклассовая и цис-транс-изомерия Изомерия углеродного скелета, положения двойной связи, межклассовая и цис-транс-изомерия Изомерия боковых цепей, а также их взаимного положения в бензольном ядре
Химические свойства реакции замещения (галогенирование, нитрирование), окисления, радикальное галогенирование Ch5 + Cl2 → Ch4Cl + HCl (хлорметан), горения, отщепления (дегидрирование) Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация), горения Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация), горения Реакции присоединения Для колец из 3-4 атомов углерода — раскрытие кольца Реакции электрофильного замещения
Физические свойства С Ch5 до C4h20 — газы; с C5h22 до C15h42 — жидкости; после C16h44 — твёрдые тела. С C2h5 до C4H8 — газы; с C5h20 до C17h44 — жидкости, после C18h46 — твёрдые тела. Алкины по своим физическим свойствам напоминают соответствующие алкены Бутадиен — газ (t кип −4,5 °C), изопрен — жидкость, кипящая при 36 °C, диметилбутадиен — жидкость, кипящая при 70 °C. Изопрен и другие диеновые углеводороды способны полимеризоваться в каучук С C3H6 до C4H8 — газы; с C5h20 до C16h42 — жидкости; после C17h44 — твёрдые тела. Все ароматические соединения — твёрдые или жидкие вещества. Отличаются от алифатических и алициклических аналогов высокими показателями преломления и поглощения в близкой УФ и видимой области спектра
Получение Восстановление галогенпроизводных алканов, восстановление спиртов, восстановление карбонильных соединений, гидрирование непредельных углеводородов, Реакция Вюрца. Каталитический и высокотемпературный крекинг углеводородов нефти и природного газа, реакции дегидратации соответствующих спиртов, дегидрогалогенирование и дегалогенирование соответствующих галогенпроизводных Основным промышленным способом получения ацетилена является электро- или термокрекинг метана. Пиролиз природного газа и карбидный метод. Постадийное дегидрирование алканов, дегидрирование спиртов. Гидрирование ароматических углеводородов, отщепление двух атомов галогена от дигалогеналканов Дегидрирование циклогексана, тримеризация ацетилена, выделение из нефти

encyclopaedia.bid

Углеводород Википедия

Характеристика Алканы Алкены Алкины Алкадиены Циклоалканы Арены
Общая формула Cnh3n+2 Cnh3n Cnh3n-2 Cnh3n-2 Cnh3n Cnh3n-6
Строение sp³-гибридизация — 4 электронных облака направлены в вершины тетраэдра под углами 109°28'. Тип углеродной связи — σ-связи sp²-гибридизация, валентный угол 120°.Тип углеродной связи — π-связи. lc-c — 0,134 нм. sp-гибридизация, молекула плоская (180°), тройная связь, lc-c — 0,120 нм. lc-c — 0,132 нм — 0,148 нм, 2 или более π-связей. У каждого атома три гибридные sp²-орбитали. sp³-гибридизация, валентный угол около 100° lc-c — 0,154 нм. Строение молекулы бензола (6 р-электронов, n = 1), Валентный угол 120° lc-c — 0,140 нм, молекула плоская (6 π | σ)
Изомерия Изомерия углеродного скелета, возможна оптическая изомерия Изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная Изомерия углеродного скелета, положения тройной связи, межклассовая Изомерия углеродного скелета, положения двойной связи, межклассовая и цис-транс-изомерия Изомерия углеродного скелета, положения двойной связи, межклассовая и цис-транс-изомерия Изомерия боковых цепей, а также их взаимного положения в бензольном ядре
Химические свойства реакции замещения (галогенирование, нитрирование), окисления, радикальное галогенирование Ch5 + Cl2 → Ch4Cl + HCl (хлорметан), горения, отщепления (дегидрирование) Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация), горения Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация), горения Реакции присоединения Для колец из 3-4 атомов углерода — раскрытие кольца Реакции электрофильного замещения
Физические свойства С Ch5 до C4h20 — газы; с C5h22 до C15h42 — жидкости; после C16h44 — твёрдые тела. С C2h5 до C4H8 — газы; с C5h20 до C17h44 — жидкости, после C18h46 — твёрдые тела. Ал

ru-wiki.ru

Углеводороды — Википедия РУ

Характеристика Алканы Алкены Алкины Алкадиены Циклоалканы Арены
Общая формула Cnh3n+2 Cnh3n Cnh3n-2 Cnh3n-2 Cnh3n Cnh3n-6
Строение sp³-гибридизация — 4 электронных облака направлены в вершины тетраэдра под углами 109°28'. Тип углеродной связи — σ-связи sp²-гибридизация, валентный угол 120°.Тип углеродной связи — π-связи. lc-c — 0,134 нм. sp-гибридизация, молекула плоская (180°), тройная связь, lc-c — 0,120 нм. lc-c — 0,132 нм — 0,148 нм, 2 или более π-связей. У каждого атома три гибридные sp²-орбитали. sp³-гибридизация, валентный угол около 100° lc-c — 0,154 нм. Строение молекулы бензола (6 р-электронов, n = 1), Валентный угол 120° lc-c — 0,140 нм, молекула плоская (6 π | σ)
Изомерия Изомерия углеродного скелета, возможна оптическая изомерия Изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная Изомерия углеродного скелета, положения тройной связи, межклассовая Изомерия углеродного скелета, положения двойной связи, межклассовая и цис-транс-изомерия Изомерия углеродного скелета, положения двойной связи, межклассовая и цис-транс-изомерия Изомерия боковых цепей, а также их взаимного положения в бензольном ядре
Химические свойства реакции замещения (галогенирование, нитрирование), окисления, радикальное галогенирование Ch5 + Cl2 → Ch4Cl + HCl (хлорметан), горения, отщепления (дегидрирование) Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация), горения Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация), горения Реакции присоединения Для колец из 3-4 атомов углерода — раскрытие кольца Реакции электрофильного замещения
Физические свойства С Ch5 до C4h20 — газы; с C5h22 до C15h42 — жидкости; после C16h44 — твёрдые тела. С C2h5 до C4H8 — газы; с C5h20 до C17h44 — жидкости, после C18h46 — твёрдые тела. Алкины по своим физическим свойствам напоминают соответствующие алкены Бутадиен — газ (t кип −4,5 °C), изопрен — жидкость, кипящая при 36 °C, диметилбутадиен — жидкость, кипящая при 70 °C. Изопрен и другие диеновые углеводороды способны полимеризоваться в каучук С C3H6 до C4H8 — газы; с C5h20 до C16h42 — жидкости; после C17h44 — твёрдые тела. Все ароматические соединения — твёрдые или жидкие вещества. Отличаются от алифатических и алициклических аналогов высокими показателями преломления и поглощения в близкой УФ и видимой области спектра
Получение Восстановление галогенпроизводных алканов, восстановление спиртов, восстановление карбонильных соединений, гидрирование непредельных углеводородов, Реакция Вюрца. Каталитический и высокотемпературный крекинг углеводородов нефти и природного газа, реакции дегидратации соответствующих спиртов, дегидрогалогенирование и дегалогенирование соответствующих галогенпроизводных Основным промышленным способом получения ацетилена является электро- или термокрекинг метана. Пиролиз природного газа и карбидный метод. Постадийное дегидрирование алканов, дегидрирование спиртов. Гидрирование ароматических углеводородов, отщепление двух атомов галогена от дигалогеналканов Дегидрирование циклогексана, тримеризация ацетилена, выделение из нефти

http-wikipediya.ru

Углеводороды — Википедия

Характеристика Алканы Алкены Алкины Алкадиены Циклоалканы Арены
Общая формула Cnh3n+2 Cnh3n Cnh3n-2 Cnh3n-2 Cnh3n Cnh3n-6
Строение sp³-гибридизация — 4 электронных облака направлены в вершины тетраэдра под углами 109°28'. Тип углеродной связи — σ-связи sp²-гибридизация, валентный угол 120°.Тип углеродной связи — π-связи. lc-c — 0,134 нм. sp-гибридизация, молекула плоская (180°), тройная связь, lc-c — 0,120 нм. lc-c — 0,132 нм — 0,148 нм, 2 или более π-связей. У каждого атома три гибридные sp²-орбитали. sp³-гибридизация, валентный угол около 100° lc-c — 0,154 нм. Строение молекулы бензола (6 р-электронов, n = 1), Валентный угол 120° lc-c — 0,140 нм, молекула плоская (6 π | σ)
Изомерия Изомерия углеродного скелета, возможна оптическая изомерия Изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная Изомерия углеродного скелета, положения тройной связи, межклассовая Изомерия углеродного скелета, положения двойной связи, межклассовая и цис-транс-изомерия Изомерия углеродного скелета, положения двойной связи, межклассовая и цис-транс-изомерия Изомерия боковых цепей, а также их взаимного положения в бензольном ядре
Химические свойства реакции замещения (галогенирование, нитрирование), окисления, радикальное галогенирование Ch5 + Cl2 → Ch4Cl + HCl (хлорметан), горения, отщепления (дегидрирование) Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация), горения Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация), горения Реакции присоединения Для колец из 3-4 атомов углерода — раскрытие кольца Реакции электрофильного замещения
Физические свойства С Ch5 до C4h20 — газы; с C5h22 до C15h42 — жидкости; после C16h44 — твёрдые тела. С C2h5 до C4H8 — газы; с C5h20 до C17h44 — жидкости, после C18h46 — твёрдые тела. Алкины по своим физическим свойствам напоминают соответствующие алкены Бутадиен — газ (t кип −4,5 °C), изопрен — жидкость, кипящая при 36 °C, диметилбутадиен — жидкость, кипящая при 70 °C. Изопрен и другие диеновые углеводороды способны полимеризоваться в каучук С C3H6 до C4H8 — газы; с C5h20 до C16h42 — жидкости; после C17h44 — твёрдые тела. Все ароматические соединения — твёрдые или жидкие вещества. Отличаются от алифатических и алициклических аналогов высокими показателями преломления и поглощения в близкой УФ и видимой области спектра
Получение Восстановление галогенпроизводных алканов, восстановление спиртов, восстановление карбонильных соединений, гидрирование непредельных углеводородов, Реакция Вюрца. Каталитический и высокотемпературный крекинг углеводородов нефти и природного газа, реакции дегидратации соответствующих спиртов, дегидрогалогенирование и дегалогенирование соответствующих галогенпроизводных Основным промышленным способом получения ацетилена является электро- или термокрекинг метана. Пиролиз природного газа и карбидный метод. Постадийное дегидрирование алканов, дегидрирование спиртов. Гидрирование ароматических углеводородов, отщепление двух атомов галогена от дигалогеналканов Дегидрирование циклогексана, тримеризация ацетилена, выделение из нефти

wikipedia.green

Углеводороды — википедия фото

Характеристика Алканы Алкены Алкины Алкадиены Циклоалканы Арены
Общая формула Cnh3n+2 Cnh3n Cnh3n-2 Cnh3n-2 Cnh3n Cnh3n-6
Строение sp³-гибридизация — 4 электронных облака направлены в вершины тетраэдра под углами 109°28'. Тип углеродной связи — σ-связи sp²-гибридизация, валентный угол 120°.Тип углеродной связи — π-связи. lc-c — 0,134 нм. sp-гибридизация, молекула плоская (180°), тройная связь, lc-c — 0,120 нм. lc-c — 0,132 нм — 0,148 нм, 2 или более π-связей. У каждого атома три гибридные sp²-орбитали. sp³-гибридизация, валентный угол около 100° lc-c — 0,154 нм. Строение молекулы бензола (6 р-электронов, n = 1), Валентный угол 120° lc-c — 0,140 нм, молекула плоская (6 π | σ)
Изомерия Изомерия углеродного скелета, возможна оптическая изомерия Изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная Изомерия углеродного скелета, положения тройной связи, межклассовая Изомерия углеродного скелета, положения двойной связи, межклассовая и цис-транс-изомерия Изомерия углеродного скелета, положения двойной связи, межклассовая и цис-транс-изомерия Изомерия боковых цепей, а также их взаимного положения в бензольном ядре
Химические свойства реакции замещения (галогенирование, нитрирование), окисления, радикальное галогенирование Ch5 + Cl2 → Ch4Cl + HCl (хлорметан), горения, отщепления (дегидрирование) Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация), горения Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация), горения Реакции присоединения Для колец из 3-4 атомов углерода — раскрытие кольца Реакции электрофильного замещения
Физические свойства С Ch5 до C4h20 — газы; с C5h22 до C15h42 — жидкости; после C16h44 — твёрдые тела. С C2h5 до C4H8 — газы; с C5h20 до C17h44 — жидкости, после C18h46 — твёрдые тела. Алкины по своим физическим свойствам напоминают соответствующие алкены Бутадиен — газ (t кип −4,5 °C), изопрен — жидкость, кипящая при 36 °C, диметилбутадиен — жидкость, кипящая при 70 °C. Изопрен и другие диеновые углеводороды способны полимеризоваться в каучук С C3H6 до C4H8 — газы; с C5h20 до C16h42 — жидкости; после C17h44 — твёрдые тела. Все ароматические соединения — твёрдые или жидкие вещества. Отличаются от алифатических и алициклических аналогов высокими показателями преломления и поглощения в близкой УФ и видимой области спектра
Получение Восстановление галогенпроизводных алканов, восстановление спиртов, восстановление карбонильных соединений, гидрирование непредельных углеводородов, Реакция Вюрца. Каталитический и высокотемпературный крекинг углеводородов нефти и природного газа, реакции дегидратации соответствующих спиртов, дегидрогалогенирование и дегалогенирование соответствующих галогенпроизводных Основным промышленным способом получения ацетилена является электро- или термокрекинг метана. Пиролиз природного газа и карбидный метод. Постадийное дегидрирование алканов, дегидрирование спиртов. Гидрирование ароматических углеводородов, отщепление двух атомов галогена от дигалогеналканов Дегидрирование циклогексана, тримеризация ацетилена, выделение из нефти

org-wikipediya.ru

Углеводороды — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Углеводоро́ды — органические соединения, состоящие из атомов углерода и водорода. Углеводороды считаются базовыми соединениями органической химии — все остальные органические соединения рассматривают их производными.

Поскольку углерод имеет четыре валентных электрона, а водород — один, простейший углеводород — метан (Ch5). При систематизации углеводородов принимают во внимание строение углеродного скелета и тип связей, соединяющих атомы углерода. В зависимости от строения углеродного скелета, углеводороды подразделяют на ациклические и карбоциклические. В зависимости от кратности углерод-углеродных связей, углеводороды подразделяют на предельные (алканы) и непредельные (алкены, алкины, диены). Циклические углеводороды разделяют на алициклические и ароматические.

Углеводороды, как правило, не смешиваются с водой, поскольку атомы углерода и водорода имеют близкую электроотрицательность, и связи в углеводородах малополярны. Для предельных углеводородов характерны химические реакции замещения, а для непредельных — присоединения.

Основные источники углеводородов — нефть, природный и сланцевый газ, каменный уголь.

Сравнительная таблица углеводородов

Характеристика Алканы Алкены Алкины Алкадиены Циклоалканы Арены
Общая формула Cnh3n+2 Cnh3n Cnh3n-2 Cnh3n-2 Cnh3n Cnh3n-6
Строение sp³-гибридизация — 4 электронных облака направлены в вершины тетраэдра под углами 109°28'. Тип углеродной связи — σ-связи sp²-гибридизация, валентный угол 120°.Тип углеродной связи — π-связи. lc-c — 0,134 нм. sp-гибридизация, молекула плоская (180°), тройная связь, lc-c — 0,120 нм. lc-c — 0,132 нм — 0,148 нм, 2 или более π-связей. У каждого атома три гибридные sp²-орбитали. sp³-гибридизация, валентный угол около 100° lc-c — 0,154 нм. Строение молекулы бензола (6 р-электронов, n = 1), Валентный угол 120° lc-c — 0,140 нм, молекула плоская (6 π | σ)
Изомерия Изомерия углеродного скелета, возможна оптическая изомерия Изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная Изомерия углеродного скелета, положения тройной связи, межклассовая Изомерия углеродного скелета, положения двойной связи, межклассовая и цис-транс-изомерия Изомерия углеродного скелета, положения двойной связи, межклассовая и цис-транс-изомерия Изомерия боковых цепей, а также их взаимного положения в бензольном ядре
Химические свойства реакции замещения (галогенирование, нитрирование), окисления, радикальное галогенирование Ch5 + Cl2 → Ch4Cl + HCl (хлорметан), горения, отщепления (дегидрирование) Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация), горения Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация), горения Реакции присоединения Для колец из 3-4 атомов углерода — раскрытие кольца Реакции электрофильного замещения
Физические свойства С Ch5 до C4h20 — газы; с C5h22 до C15h42 — жидкости; после C16h44 — твёрдые тела. С C2h5 до C4H8 — газы; с C5h20 до C17h44 — жидкости, после C18h46 — твёрдые тела. Алкины по своим физическим свойствам напоминают соответствующие алкены Бутадиен — газ (t кип −4,5 °C), изопрен — жидкость, кипящая при 36 °C, диметилбутадиен — жидкость, кипящая при 70 °C. Изопрен и другие диеновые углеводороды способны полимеризоваться в каучук С C3H6 до C4H8 — газы; с C5h20 до C16h42 — жидкости; после C17h44 — твёрдые тела. Все ароматические соединения — твердые или жидкие вещества. Отличаются от алифатических и алициклических аналогов высокими показателями преломления и поглощения в близкой УФ и видимой области спектра
Получение Восстановление галогенпроизводных алканов, восстановление спиртов, восстановление карбонильных соединений, гидрирование непредельных углеводородов, Реакция Вюрца. Каталитический и высокотемпературный крекинг углеводородов нефти и природного газа, реакции дегидратации соответствующих спиртов, дегидрогалогенирование и дегалогенирование соответствующих галогенпроизводных Основным промышленным способом получения ацетилена является электро- или термокрекинг метана. Пиролиз природного газа и карбидный метод. Постадийное дегидрирование алканов, дегидрирование спиртов. Гидрирование ароматических углеводородов, отщепление двух атомов галогена от дигалогеналканов Дегидрирование циклогексана, тримеризация ацетилена, выделение из нефти

См. также

<imagemap>: неверное или отсутствующее изображение

В этой статье не хватает ссылок на источники информации.Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете [http://o-ili-v.ru/wiki/index.php?title=%D0%A3%D0%B3%D0%BB%D0%B5%D0%B2%D0%BE%D0%B4%D0%BE%D1%80%D0%BE%D0%B4%D1%8B&action=edit отредактировать] эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 15 мая 2011 года.
[[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found.)]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found.)]][[К:Википедия:Статьи без источников (страна: Ошибка Lua: callParserFunction: function "#property" was not found.)]]Ошибка Lua: callParserFunction: function "#property" was not found.УглеводородыОшибка Lua: callParserFunction: function "#property" was not found.УглеводородыОшибка Lua: callParserFunction: function "#property" was not found.Углеводороды

Напишите отзыв о статье "Углеводороды"

Отрывок, характеризующий Углеводороды

Помню, как однажды, после очередного «душевного смятения», я сидела одна в саду под своей любимой старой яблоней и мысленно пыталась «разложить по полочкам» свои сомнения и ошибки, и была очень недовольна тем, какой получался результат. Моя соседка, Леокадия, под своим окном сажала цветы (чем, с её недугом было очень трудно заниматься) и могла прекрасно меня видеть. Наверное, ей не очень понравилось моё тогдашнее состояние (которое всегда, несмотря на то, хорошее или плохое, было написано на моём лице), потому что она подошла к забору и спросила – не хочу ли я позавтракать с ней её пирожками? Я с удовольствием согласилась – её присутствие всегда было очень приятным и успокаивающим, так же, как всегда вкусными были и её пирожки. А ещё мне очень хотелось с кем-то поговорить о том, что меня угнетало уже несколько дней, а делиться этим дома почему-то в тот момент не хотелось. Наверное, просто иногда мнение постороннего человека могло дать больше «пищи для размышлений», чем забота и неусыпное внимание вечно волновавшихся за меня бабушки или мамы. Поэтому я с удовольствием приняла предложение соседки и пошла к ней завтракать, уже издали чувствуя чудодейственный запах моих любимых вишнёвых пирожков. Я не была очень «открытой», когда дело касалось моих «необычных» способностей, но с Леокадией я время от времени делилась какими-то своими неудачами или огорчениями, так как она была по-настоящему отличным слушателем и никогда не старалась просто «уберечь» меня от каких либо неприятностей, что, к сожалению, очень часто делала мама и, что иногда заставляло меня закрыться от неё намного более, чем мне этого хотелось бы. В тот день я рассказала Леокадии о своём маленьком «провале», который произошёл во время моих очередных «экспериментов» и который меня сильно огорчил. – Не стоит так переживать, милая, – сказала она. – В жизни не страшно упасть, важно всегда уметь подняться. Прошло много лет с того чудесного тёплого завтрака, но эти её слова навсегда впечатались в мою память и стали одним из «неписанных» законов моей жизни, в которой «падать», к сожалению, мне пришлось очень много раз, но до сих пор всегда удавалось подняться. Проходили дни, я всё больше и больше привыкала к своему удивительному и такому ни на что не похожему миру и, несмотря на некоторые неудачи, чувствовала себя в нём по-настоящему счастливой. К тому времени я уже чётко поняла, что не смогу найти никого, с кем могла бы открыто делиться тем, что со мной постоянно происходило, и уже спокойно принимала это, как должное, больше не огорчаясь и не пытаясь кому-то что-то доказать. Это был мой мир и, если он кому-то не нравился, я не собиралась никого насильно туда приглашать. Помню, позже, читая одну из папиных книг, я случайно наткнулась на строки какого-то старого философа, которые были написаны много веков назад и которые меня тогда очень обрадовали и несказанно удивили: «Будь, как все, иначе жизнь станет невыносимой. Если в знании или умении оторвёшься от нормальных людей слишком далеко, тебя перестанут понимать и сочтут безумцем. В тебя полетят камни, от тебя отвернётся твой друг»… Значит уже тогда (!) на свете были «необычные» люди, которые по своему горькому опыту знали, как это всё непросто и считали нужным предупредить, а если удастся – и уберечь, таких же «необычных», какими были они сами, людей!!! Эти простые слова, когда-то давно жившего человека, согрели мою душу и поселили в ней крохотную надежду, что когда-нибудь я возможно и встречу кого-то ещё, кто будет для всех остальных таким же «необычным», как я сама, и с кем я смогу свободно говорить о любых «странностях» и «ненормальностях», не боясь, что меня воспримут «в штыки» или, в лучшем случае, – просто безжалостно высмеют. Но эта надежда была ещё настолько хрупкой и для меня невероятной, что я решила поменьше увлекаться, думая о ней, чтобы, в случае неудачи, не было бы слишком больно «приземляться» с моей красивой мечты в жёсткую реальность… Даже из своего короткого опыта я уже понимала, что во всех моих «странностях» не было ничего плохого или отрицательного. А если иногда какие-то из моих «экспериментов» и не совсем получались, то отрицательное действие теперь проявлялось уже только на меня, но не на окружающих меня людей. Ну, а если какие-то друзья, из-за боязни быть вовлечёнными в мои «ненормальности», от меня отворачивались – то такие друзья мне были просто не нужны… И ещё я знала, что моя жизнь кому-то и для чего-то видимо была нужна, потому, что в какую бы опасную «передрягу» я не попадала, мне всегда удавалось из неё выйти без каких-либо негативных последствий и всегда как-будто кто-то неизвестный мне в этом помогал. Как, например, и произошло тем же летом, в момент, когда я чуть было не утонула в нашей любимой реке Нямунас...

Был очень жаркий июльский день, температура держалась не ниже +40 градусов. Накалившийся «до бела» воздух был сухим, как в пустыне и буквально «трещал» в наших лёгких при каждом вздохе. Мы сидели на берегу реки, бессовестно потея и ловили ртами воздух, как выброшенные на сушу перегревшиеся караси… И уже почти что полностью «поджарившись» на солнышке, тоскующими глазами смотрели на воду. Привычной влаги абсолютно не чувствовалось и поэтому всей ребятне дико хотелось как можно быстрее окунуться. Но купаться было немножко боязно, так как это был другой, не привычный нам берег реки, а Нямунас, как известно, издавна была той глубокой и непредсказуемой рекой, с которой шутки шутить не советовалось. Наш старый любимый пляж был на время закрыт для чистки, поэтому мы все временно собрались на месте более или менее кому-то знакомом, и все пока что дружно «сушились» на берегу, никак не решаясь купаться. У самой реки росло огромное старое дерево. Его длинные шелковистые ветви, при малейшем дуновении ветра, касались воды, тихо лаская её нежными лепестками, а мощные старые корни, упираясь в речные камни, сплетались под ним в сплошной «бородавчатый» ковёр, создавая своеобразную, нависающую над водой, бугристую крышу.

o-ili-v.ru