Установка для удаления и нейтрализации сероводорода и меркаптанов из продукции нефтяных скважин. Нейтрализатор для нефти


Классификация присадок для мазута и нефти

Внимание! Наша компания не производит и не торгует данным оборудованием, а так же не оказывает услуги, указанные в данной статье. Статья размещена в информационных целях.

Присадки для нефти и мазута позволяют улучшить физико-химические параметры топлива и повысить экологичность и безопасность технологических процессов: добычи, первичной переработки и транспортировки нефти и нефтепродуктов.

    В зависимости от назначения присадки можно разделить на несколько групп:

  1. Активаторы горения.
  2. Депрессорные.
  3. Деэмульгаторы.
  4. Поглотители или нейтрализаторы.
  5. Антикоррозионные.

   Все вышеперечисленные присадки подбираются индивидуально в зависимости от характеристик обрабатываемого сырья.

Свойства и назначение присадок для нефти и мазута

   Активаторы горения меняют реологические свойства мазута – крупные частицы «дробятся» на более мелкие.

    Это улучшает процесс горения при неблагоприятных условиях:

  • низкой температуре окружающей среды;
  • использовании некачественного топлива с повышенной вязкостью, присутствием воды;
  • нестехиометрическом составе топлива, т.е нарушении баланса между количеством горючего и окислителя, который необходим для его полного сгорания;
  • загрязнении и износе форсунок.

   Присутствие активаторов в составе мазута снижает удельный расход топлива, уменьшает количество дыма и сажи в выхлопных газах, позволяет очистить топливные резервуары, форсунки, впускные и выпускные тракты, трубопроводы и камеры сгорания.

   Депрессорные присадки представляют собой синтетические нефтерастворимые соединения. Они способны изменять реологические свойства нефти и мазута с высоким содержанием парафина, в первую очередь вязкость и напряжение сдвига. Депрессорные присадки замедляют кристаллизацию парафина при низких температурах и тем самым способствуют уменьшению отложений в резервуарах и трубопроводах при прокачке и хранении нефтепродуктов.

   Деэмульгаторы – специальные реагенты для обессоливания и обезвоживания нефти.

    В процессе добычи, транспортировки и переработки нефти зачастую образуются устойчивые эмульсии «нефть-вода», которые значительно снижают эффективность производственных процессов:

  • падает производительность насосных установок;
  • возрастает нагрузка на трубопроводы и электродвигатели за счет повышенного давления жидкости;
  • ухудшается качество готового топлива;
  • оборудование изнашивается быстрее вследствие коррозии.

   Решить вышеперечисленные проблемы помогают деэмульгаторы, которые в небольшой концентрации вызывают разрушение эмульсии «нефть-вода» путем вытеснения естественных стабилизаторов. В результате нефтяную фракцию можно легко отделить от водного слоя.

   Поглотители или нейтрализаторы – реагенты для поглощения сероводорода и летучих меркаптанов в нефти и нефтепродуктах. Нейтрализатор вступает в химическую реакцию с токсичными и коррозионно-активными соединениями серы с образованием нелетучих инертных продуктов. Использование нейтрализаторов позволяет продлить срок службы оборудования и получить высококачественное топливо.

   Антикоррозионные присадки используются для защиты трубопроводов и другого оборудования от негативного воздействия воды, механических примесей и сероводорода в составе нефти. Антикоррозионные реагенты создают на поверхности защитную пленку, которая препятствует взаимодействию металла с веществами, вызывающими коррозию.

Присадки для нефти и мазута рекомендуем заказывать в компании «Топливный регион»

Сделать заказ и получить информацию о технических, и эксплуатационных параметрах продукции можно по контактному телефону на сайте. Специалисты компании помогут решить все организационные вопросы, связанные с доставкой партии товара или пробника интересующей вас присадки.

portal.smz.ru

Нейтрализатор сероводорода и способ его использования

Изобретение относится к области нейтрализации сероводорода в нефтепромысловых средах химическими реагентами-нейтрализаторами и может быть использовано в нефтяной и газовой промышленности для нейтрализации сероводорода в нефти, водонефтяной эмульсии, попутном нефтяном и природном газе (в продукции нефтяных и газовых скважин), пластовой и сточной воде, технологических жидкостях на водной основе (жидкости глушения скважин, буферной, промывочной, надпакерной жидкости и т.п.). Нейтрализатор сероводорода содержит 3-36% пиросульфита щелочного металла и остальное - воды. В качестве пиросульфита щелочного металла он преимущественно содержит пиросульфит натрия. Для снижения коррозионной активности нейтрализатора, а также для уменьшения загрязнения очищенного сырья образующейся элементной серой он дополнительно содержит 1-15% щелочного и/или азотсодержащего основного реагента. В качестве щелочного реагента он преимущественно содержит гидроксид, карбонат, фосфат и/или сульфит натрия, а в качестве азотсодержащего основного реагента - аммиак водный и/или водорастворимый органический амин. Описан также способ очистки нефтепромысловых сред с использованием вышеуказанного нейтрализатора. Техническим результатом является повышение эффективности нейтрализации сероводорода в нефтепромысловых средах, а также расширение ассортимента доступных, нетоксичных, стабильных и эффективных химических реагентов - нейтрализаторов, пригодных для нейтрализации сероводорода в водных, водонефтяных и нефтяных средах при температурах 3-90°С и выше. 2 н. и 4 з.п. ф-лы.

 

Изобретение относится к области нейтрализации сероводорода в нефтепромысловых средах химическими реагентами-нейтрализаторами и может быть использовано в нефтегазодобывающей и нефтегазоперерабатывающей промышленности для нейтрализации сероводорода в нефти, водонефтяной эмульсии и попутном нефтяном газе (в продукции нефтяных и газовых скважин), пластовой и сточной воде, технологических жидкостях на водной основе (жидкости глушения скважин, буферной, промывочной, надпакерной жидкости и т.п.).

Известен способ очистки нефти и нефтепродуктов от сероводорода путем обработки исходного сырья эффективным количеством гексаметилентетрамина (уротропина) при температуре 100-350°F. В преимущественном варианте осуществления способа в качестве нейтрализатора сероводорода применяют ˜40%-ный водный раствор гексаметилентетрамина, предварительно полученного взаимодействием ˜37%-ного водного раствора формальдегида (формалина) с аммиаком (пат. США №5213680, C10G 29/20, 1993 г.).

Однако указанный нейтрализатор обладает низкой реакционной способностью по отношению к сероводороду и не обеспечивает эффективную нейтрализацию сероводорода в нефти при обычных температурах, в результате чего требуется проведение процесса при повышенных температурах (выше 80-100°С) и высоком расходе нейтрализатора (до 10 тыс. ppm). Это приводит к повышенным энергозатратам на нагрев исходного сырья и снижению эффективности процесса в целом.

Известен нейтрализатор сероводорода в высокоминерализованных водных средах (пат. РФ №2186737, C02F 1/66, 2002 г.), содержащий следующие компоненты, мас.%:

Смесь моно-, ди-, триэтаноламина и аммиака 30-60
Смесь уротропина и формалина 15-45
Водорастворимый спирт или вода, или их смесь До 100

Недостатком указанного нейтрализатора является его многокомпонентность, высокая стоимость и то, что он содержит токсичный, легколетучий формальдегид с резким неприятным запахом. Кроме того, применение его для нейтрализации сероводорода в воде приводит к загрязнению очищенной воды образующимися сероорганическими соединениями - аминотиолами и аминосульфидами, обладающими стойким неприятным запахом.

Известно применение около 10%-ного водного раствора гипохлорита натрия для нейтрализации сероводорода в промывочной жидкости на водной основе (буровом растворе) при бурении скважин и вскрытии пластов в осложненных условиях сероводородной агрессии (Руководящий документ РД 39-0147276-504-87Р. "Инструкция по применению реагентов для нейтрализации сероводорода при бурении скважин и вскрытии пластов с промывкой аэрированной и технической водой в осложненных условиях сероводородной агрессии". Уфа. БашНИПИнефть. 1987. С.3-14).

К основным недостаткам данного нейтрализатора относятся высокие токсичность (2-ой класс опасности), коррозионная агрессивность и низкая стабильность при транспортировании и хранении.

Известен способ очистки пластовой воды, используемой для технологических нужд нефтедобычи, от сероводорода путем обработки ее водным раствором хлорамина Б. В преимущественном варианте осуществления способа применяемый нейтрализатор сероводорода представляет собой около 5%-ный водный раствор хлорамина Б, который берут из расчета не менее 200 мл на 1 г нейтрализуемого сероводорода, что в пересчете на твердый товарный хлорамин Б составляет не менее 10 г на 1 г сероводорода (Атаджанян Б.П., Везиров Ч.Б., Алиев М.Р. Способ нейтрализации сероводорода в пластовой воде. Ж. "Нефтяное хозяйство". 1984. №9. С.48-51).

Известно также применение водных растворов хлорамина Б для нейтрализации сероводорода в различных технологических жидкостях на водной основе, в частности в жидкости глушения скважин, в продукции которых содержится сероводород. При этом водный раствор хлорамина Б берут из расчета 16 г твердого товарного хлорамина Б на 1 г нейтрализуемого сероводорода (Алиев М.Р. Использование нейтрализующей жидкости для глушения скважин, в продукции которых содержится сероводород. Э.И.Сер. "Техника и технология добычи нефти и обустройства нефтяных месторождений". М.: ВНИИОЭНГ. 1991. Вып.7. С.19-26). Водный раствор хлорамина Б быстро и эффективно окисляет сероводород до элементной серы при обычных и повышенных температурах. Однако в настоящее время применение хлорамина Б (и других хлорсодержащих окислителей типа гипохлоритов) в качестве нейтрализатора сероводорода в нефти, водонефтяных эмульсиях и технологических жидкостях не допускается из-за загрязнения добываемой нефти хлорорганическими соединениями. Кроме того, большой удельный расход (10-16 г/г сероводорода), дефицитность и высокая стоимость, а также токсичность хлорамина Б препятствуют практическому применению его для нейтрализации сероводорода в пластовой и сточной воде.

Известен способ очистки глинистых буровых растворов от сероводорода путем обработки химическим составом, содержащим следующие компоненты, мас.%: диоксид марганца 60-65, едкое кали 3-5 и вода 30-37 (авт. свид. СССР №825579, С09К 7/04, 1981 г.).

Однако указанный нейтрализатор сероводорода недостаточно эффективен, и применение его для очистки водонефтяных и нефтяных сред приводит к загрязнению очищенной нефти нерастворимыми в воде сульфидом марганца и элементной серой.

Известен способ нейтрализации сероводорода в нефтяной скважине (в продукции скважин) путем закачки в призабойную зону скважины расчетного объема нейтрализующей жидкости, в качестве которой используют полиглицерины - продукты отходов производства глицерина в смеси с водным раствором хлористого натрия. В преимущественном варианте применения нейтрализующая жидкость содержит 60-90% полиглицеринов и 10-40% водного раствора хлористого натрия (пат. РФ №2136864, Е21В 43/22, 37/06, 1999 г.).

Однако применяемая нейтрализующая жидкость обладает недостаточно высокой поглощающей способностью по отношению к сероводороду (3,7 объема сероводорода на 1 объем нейтрализатора), в результате чего требуется применение больших объемов нейтрализатора, что приводит к увеличению материальных затрат и снижению эффективности процесса в целом.

Известен также состав для нейтрализации сероводорода и легких меркаптанов в нефтяных средах (пат. РФ №2241018, C10G 27/06, 2004 г.), содержащий следующие компоненты, мас.%:

Нитрит щелочного металла 16-35
Азотсодержащий основной и/или щелочной реагент 3-30
Вода До 100

Однако, как показали проведенные исследования, он обладает невысокой реакционной способностью по отношению к сероводороду при обычных температурах (5-25°С) и не обеспечивает быструю и эффективную нейтрализацию сероводорода в водных и водонефтяных средах - в пресной (технической) и высокоминерализованной пластовой воде, технологических жидкостях на водной основе и водонефтяных эмульсиях (в продукции нефтяных скважин). В связи с этим указанный состав не может быть практически использован для быстрой нейтрализации сероводорода в указанных средах, как правило, имеющих температуру в пределах 5-25°С.

В качестве прототипа был взят способ очистки нефти от сероводорода с применением нейтрализатора, состоящего из пероксида водорода и воды. В преимущественном варианте осуществления способа применяемый нейтрализатор представляет собой 20-50%-ный водный раствор пероксида водорода, который берут из расчета не менее 20 мл (в расчете на 35%-ный раствор h3O2) на 1 г нейтрализуемого сероводорода (пат. ФРГ №3151133, C10G 27/12, 1983 г.).

Основным недостатком указанного нейтрализатора является низкая реакционная (окислительная) способность по отношению к сероводороду, особенно при обычных температурах (5-25°С) и в нефтяных средах, большой расход, пожаровзывоопасность и высокая токсичность пероксида водорода (2-й класс опасности по ГОСТ 12.1.007-76). Кроме того, пероксид водорода является малостабильным продуктом, самопроизвольно разлагающимся на воду и кислород при транспортировании и хранении, поэтому требуется транспортирование и хранение его в специальных, предварительно пассивированных алюминиевых цистернах при температуре не выше +30°С; при работе с ним не допускается использование аппаратуры и трубопроводов из нелегированной и низколегированной стали, чугуна и других конструкционных материалов, являющихся катализаторами разложения пероксида водорода (см. ГОСТ 177-88. Водорода перекись. М.: Изд-во стандартов. 1988. С.2, 3, 5 и 12). Эти недостатки, а также загрязнение очищенной нефти образующейся коррозионной элементной серой, препятствуют практическому применению водных растворов пероксида водорода в качестве нейтрализатора сероводорода для промысловой очистки нефти, водонефтяной эмульсии (продукции нефтяной скважины) и других нефтепромысловых сред от сероводорода.

В основу настоящего изобретения положена задача создания состава нейтрализатора, обладающего высокой реакционной способностью по отношению к сероводороду и обеспечивающего эффективную нейтрализацию сероводорода как при обычных, так и повышенных температурах в различных нефтепромысловых средах - в пресной (технической) и высокоминерализованной пластовой воде, водонефтяных эмульсиях, нефти и технологических жидкостях на водной основе. Задачей изобретения является также расширение ассортимента эффективных, нетоксичных, стабильных и доступных нейтрализаторов сероводорода, пригодных для очистки водных, водонефтяных и нефтяных сред как при обычных, так и повышенных температурах. Другой задачей изобретения является повышение степени очистки исходного сырья от сероводорода, а также уменьшение загрязнения очищенного сырья элементной серой.

Поставленная задача решается тем, что нейтрализатор сероводорода в нефтепромысловых средах, включающий окислитель и воду, в качестве окислителя содержит пиросульфит щелочного металла при следующем соотношении компонентов, мас.%:

Пиросульфит щелочного металла 3-36
Вода Остальное

Для снижения коррозионной активности нейтрализатора, а также уменьшения загрязнения очищенной нефти образующейся коррозионной элементной серой он дополнительно содержит щелочной и/или азотсодержащий основной реагент при следующем соотношении компонентов, мас.%:

Пиросульфит щелочного металла 3-35
Щелочной и/или азотсодержащий основной реагент 1-15
Вода Остальное

В качестве пиросульфита щелочного металла предлагаемый нейтрализатор преимущественно содержит пиросульфит натрия, а в качестве щелочного реагента - гидроксид, карбонат, фосфат и/или сульфит щелочного металла, предпочтительно натрия. В качестве азотсодержащего основного реагента нейтрализатор содержит аммиак водный и/или водорастворимый органический амин, предпочтительно гексаметилентетрамин и/или триэтаноламин.

Поставленная задача повышения степени очистки нефтепромысловых (водных, водонефтяных и нефтяных) сред от сероводорода решается путем обработки исходного сырья нейтрализатором вышеуказанного состава(ов), взятым из расчета не менее 11 г на 1 г нейтрализуемого сероводорода, предпочтительно не менее 14 г/г сероводорода. При этом обработку сырья проводят при температуре 3-90°С.

Заявляемый нейтрализатор представляет собой 3-36%-ный водный раствор пиросульфита щелочного металла, преимущественно натрия, который обладает высокой реакционной способностью по отношению к сероводороду и обеспечивает эффективную нейтрализацию его в различных нефтепромысловых средах при обычных и повышенных температурах (см. примеры 5-8). Однако водные растворы технического пиросульфита натрия (Na2S2O5) и калия (К2S2O5) имеют кислую реакцию среды (рН около 4,1) и, следовательно, сравнительно высокую коррозионную агрессивность по отношению к обычной углеродистой стали, поэтому с точки зрения снижения коррозионной агрессивности целесообразно использование нейтрализатора, дополнительно содержащего щелочной и/или азотсодержащий основной реагент в количестве до 15% для поддержания показателя рН в пределах 5,5-7,5. Таким образом, в преимущественном варианте осуществления нейтрализатор содержит пиросульфит натрия, щелочной и/или азотсодержащий основной реагент и воду в вышеуказанном оптимальном соотношении компонентов.

Предлагаемый нейтрализатор сероводорода в обычных условиях представляет собой однородную подвижную жидкость от слегка желтоватого до желтого цвета с плотностью в пределах 1,03-1,34 г/см3 и величиной водородного показателя рН от 4,1 до 7,5 (в зависимости от содержания щелочного или азотсодержащего основного реагента). Технология приготовления нейтрализатора проста и заключается в растворении найденных оптимальных количеств исходных компонентов в пресной (технической) или минерализованной (пластовой) воде, или в технологической жидкости на водной основе (в жидкости глушения скважин, промывочной жидкости и т.п.). В качестве исходного сырья для приготовления нейтрализатора преимущественно используют пиросульфит натрия технический по ГОСТ 11683 (выпускаемый в крупнотоннажном масштабе для применения в рыбной, пищевой, фармацевтической промышленности, сельском хозяйстве в качестве консерванта и для других целей). В качестве щелочного реагента преимущественно используют натр едкий технический (гидроксид натрия) по ГОСТ 2263 или сульфит натрия безводный по ГОСТ 5644 (или ГОСТ 195), а в качестве азотсодержащего основного реагента - аммиак водный технический по ГОСТ 9 или гексаметилентетрамин (уротропин технический по ГОСТ 1381). Следует указать, что для приготовления нейтрализатора в качестве щелочного реагента может быть использован также щелочной сток производства капролактама (ЩСПК) по ТУ 113-03-488-84. Указанные виды исходного сырья производятся отечественной промышленностью в крупнотоннажном масштабе и являются доступными, недорогими продуктами, т.е. с точки зрения обеспеченности исходным сырьем, предлагаемый нейтрализатор является промышленно применимым.

Согласно результатам проведенных исследований предлагаемый нейтрализатор, в отличие от прототипа, обеспечивает быструю и эффективную нейтрализацию сероводорода в водных и нефтяных средах при обычных и повышенных температурах (3-90°С и выше), поэтому дополнительный нагрев исходного очищаемого сырья не требуется. Давление проведения процесса не оказывает заметного влияния на скорость и степень нейтрализации сероводорода, поэтому процесс может быть осуществлен при обычных и повышенных давлениях (0,1 МПа и выше). Поскольку предлагаемый нейтрализатор является водно-солевым раствором и практически нерастворим в нефти и нефтепродуктах, для улучшения диспергирования его в очищаемой нефти целесообразно дозировать нейтрализатор в поток сероводородсодержащей нефти перед центробежным нефтеперекачивающим насосом, являющимся эффективным смесительным устройством, или вводить в трубопровод в поток нефти с турбулентным движением через эффективное распыливающее устройство (форсунку). Следует указать, что для улучшения диспергирования нейтрализатора в нефти в его состав может быть дополнительно введено эффективное количество (до 1%) водорастворимого ПАВ (эмульгатора) типа сульфонола, неонола, ОП-10 и т.п., а для уменьшения солеотложений в технологическом оборудовании - известного ингибитора солеотложений типа трилона Б (ЭДТА), полифосфата, полиакрилата натрия, калия или аммония и т.п. При этом предлагаемый нейтрализатор для очистки сырья от сероводорода берут из расчета не менее 4 г пиросульфита натрия (Na2S2O5) на 1 г нейтрализуемого сероводорода, предпочтительно 5-8 г/г сероводорода (или не менее 11,2 г 36%-ного водного раствора пиросульфита на 1 г сероводорода, предпочтительно 14-22 г/г сероводорода).

Предлагаемая концентрация пиросульфита (3-36%) является оптимальной, т.к. применение более разбавленного состава (менее 3%) приводит к увеличению затрат на транспортирование и хранение больших объемов нейтрализатора (нейтрализующей жидкости) и увеличению содержания воды в очищенной нефти, а увеличение концентрации выше 36% нецелесообразно из-за выпадения осадка (кристаллизации) при применении нейтрализатора в зимнее время (растворимость пиросульфита натрия в воде составляет ˜40% при 25°С). С точки зрения технологичности для практического применения наиболее оптимальной является концентрация пиросульфита в пределах 10-36%.

Анализ отобранных в процессе поиска известных технических решений показал, что в науке и технике нет объекта, аналогичного по заявляемой совокупности признаков и наличием свойств, что позволяет сделать вывод о соответствии его критериям "новизна" и "изобретательский уровень".

Для доказательства соответствия заявленного объекта критерию "промышленная применимость" ниже приведены конкретные примеры приготовления нейтрализатора (примеры 1-4) и способа его использования для нейтрализации сероводорода в различных нефтепромысловых средах - в воде, водонефтяной эмульсии и нефти, в том числе в высокоминерализованной пластовой воде, жидкости глушения скважин и промывочной жидкости на водной основе (примеры 5-15).

Пример 1. В емкость, снабженную механической мешалкой, загружают 64 г пресной (водопроводной) воды и при перемешивании порциями добавляют 36 г кристаллического пиросульфита натрия технического по ГОСТ 11683, и содержимое перемешивают при комнатной температуре до полного растворения пиросульфита в воде. Полученный состав, представляющий собой 36%-ный водный раствор пиросульфита натрия с плотностью 1,34 г/см3 и величиной показателя рН 4,1, применяют для нейтрализации сероводорода в высокоминерализованной пластовой воде (примеры 5 и 6), "подтоварной" сточной воде (пример 7) и водонефтяной эмульсии (пример 8).

Пример 2. В емкость по примеру 1 загружают 90 г воды и 10 г кристаллического пиросульфита натрия технического по ГОСТ 11683, и содержимое перемешивают при комнатной температуре до полного растворения пиросульфита в воде. Полученный состав, представляющий собой 10%-ный раствор пиросульфита натрия с плотностью 1,11 г/см3 и величиной показателя рН 4,2, применяют для нейтрализации сероводорода в жидкости глушения скважин (пример 9) и в промывочной жидкости (пример 10).

Пример 3. В емкость по примеру 1 загружают 70 г воды и при перемешивании порциями добавляют 30 г кристаллического пиросульфита натрия технического по ГОСТ 11683, а затем - 3 г твердого гидроксида натрия технического по ГОСТ 2263. После полного растворения пиросульфита и гидроксида натрия полученную композицию состава, мас.%: пиросульфит натрия - 29,1, гидроксид натрия - 2,9 и вода - 68,0 с плотностью 1,31 г/см3 и величиной показателя рН 6,0 применяют для нейтрализации сероводорода в пластовой воде (пример 11), глинистом буровом растворе (пример 12), нефти (пример 13) и сероочистки попутного нефтяного газа (пример 14).

Пример 4. В емкость по примеру 1 загружают 74 г воды и при перемешивании добавляют 12 г кристаллического пиросульфита натрия технического по ГОСТ 11683 и 13 г сульфита натрия по ГОСТ 5644, а затем - 1 г гексаметилентетрамина (уротропина технического по ГОСТ 1381). После полного растворения компонентов полученную композицию состава, мас.%: пиросульфит натрия - 12, сульфит натрия - 13, гексаметилентетрамин - 1 и вода - 74 с плотностью 1,25 г/см3 и величиной показателя рН 6,6 применяют для очистки нефти от сероводорода (пример 15).

Пример 5. Использование нейтрализатора по примеру 1 для нейтрализации сероводорода в пластовой воде. В термостатированную реакционную колбу с мешалкой вводят 0,11 мл (0,15 г) нейтрализатора по примеру 1, затем загружают 100 мл (117,5 г) попутно добываемой вместе с сероводородсодержащей нефтью и используемой в системе поддержания пластового давления (ППД) высокоминерализованной пластовой воды с температурой 15°С, плотностью 1,175 г/см3, содержащей 0,09 мас.% (106 мг/л) сероводорода. Массовое соотношение нейтрализатор:сероводород в реакционной смеси составляет 14:1, т.е. удельный расход нейтрализатора, представляющего собой 36%-ный водный раствор пиросульфита натрия, составляет 14 г/г сероводорода, что в пересчете на твердый товарный пиросульфит натрия составляет 5 г/г сероводорода. Реакционную смесь перемешивают при температуре 15°С в течение 1 ч и проводят количественный анализ очищенной пластовой воды на содержание остаточного сероводорода, и рассчитывают степень очистки воды.

Степень очистки пластовой воды от сероводорода составляет 100%, т.е. предлагаемый нейтрализатор обладает высокой реакционной способностью и при температуре 15°С обеспечивает быструю и эффективную нейтрализацию сероводорода в высокоминерализованной пластовой воде.

Пример 6. Испытание нейтрализатора по примеру 1 на эффективность нейтрализации сероводорода в высокоминерализованной пластовой воде, содержащей 0,09 мас.% сероводорода, проводят аналогично и в условиях примера 5, но при температуре 3°С. Степень очистки воды от сероводорода составляет 100%, т.е. нейтрализатор при температуре 3°С обеспечивает эффективную нейтрализацию сероводорода в пластовой воде.

Пример 7. Испытание нейтрализатора по примеру 1 на эффективность нейтрализации сероводорода в "подтоварной" сточной воде, отходящей с установки подготовки высокосернистой карбоновой нефти и содержащей 0,021 мас.% сероводорода, проводят аналогично и в условиях примера 5, но при температуре 25°С. Степень очистки сточной воды от сероводорода составляет 100%.

Пример 8. Испытание нейтрализатора по примеру 1 на эффективность нейтрализации сероводорода в водонефтяной эмульсии, содержащей 0,5 мас.% эмульсионной воды и 0,025 мас.% (250 ppm) сероводорода, проводят аналогично и в условиях примера 5, но при температуре 22°С и удельном расходе нейтрализатора 8 г пиросульфита натрия на 1 г сероводорода. Остаточное содержание сероводорода в очищенном сырье составляет 0,001 мас.% (10 ppm), т.е. очищенная нефть соответствует нормам ГОСТ Р 51858-2002 по содержанию сероводорода.

Пример 9. Использование нейтрализатора по примеру 2 для нейтрализации сероводорода в задавочной жидкости глушения нефтяной скважины, в продукции которой содержится сероводород. В реакционную колбу по примеру 5 вводят 1 мл (1,1 г) нейтрализатора по примеру 2, затем загружают 100 мл (115 г) задавочной жидкости, представляющей собой ˜20%-ный водный раствор хлористого натрия (NaCl) с плотностью 1,15 г/см3 с содержанием 0,015 мас.% сероводорода. Массовое соотношение нейтрализатор:сероводород в реакционной смеси составляет 60:1, т.е. удельный расход 10%-ного водного раствора пиросульфита натрия составляет 60 г/г сероводорода, что в пересчете на твердый товарный пиросульфит натрия составляет 6 г/г сероводорода. Реакционную смесь перемешивают при температуре 22°С (температура в призабойной зоне продуктивного пласта ремонтируемой скважины) в течение 30 минут и проводят количественный анализ задавочной жидкости на содержание остаточного сероводорода. Степень очистки задавочной жидкости от сероводорода составляет 100%, т.е. предлагаемый нейтрализатор при температуре пласта 22°С обеспечивает быструю и эффективную нейтрализацию сероводорода в жидкости глушения скважины и, следовательно, безопасность труда и охрану окружающей среды при подземном и капитальном ремонте скважин, в продукции которых содержится сероводород.

Пример 10. Испытание нейтрализатора по примеру 2 на эффективность нейтрализации сероводорода в промывочной жидкости, используемой при бурении и вскрытии сероводородсодержащего нефтяного пласта с промывкой технической водой, и содержащей 0,022 мас.% сероводорода, проводят аналогично и в условиях примера 9. Степень очистки промывочной жидкости от сероводорода составляет 100%.

Пример 11. Испытание нейтрализатора по примеру 3 на эффективность нейтрализации сероводорода в высокоминерализованной пластовой воде плотностью 1,175 г/см3 с содержанием 0,09 мас.% сероводорода проводят аналогично и в условиях примера 5. Степень очистки пластовой воды от сероводорода составляет 100%.

Пример 12. Испытание нейтрализатора по примеру 3 на эффективность нейтрализации сероводорода в промывочной жидкости, используемой при бурении и вскрытии сероводородсодержащего нефтяного пласта с промывкой глинистым (10%) раствором, и содержащей 0,032 мас.% сероводорода, проводят аналогично и в условиях примера 9. Степень нейтрализации сероводорода в глинистом буровом растворе составляет 100%.

Пример 13. Испытание нейтрализатора по примеру 3 на эффективность нейтрализации сероводорода в водонефтяной эмульсии с установки подготовки высокосернистой нефти, содержащей 0,5 мас.% эмульсионной воды и 0,025 мас.% (250 ppm) сероводорода, проводят аналогично и в условиях примера 5, но при температуре 60°С. Остаточное содержание сероводорода в очищенном сырье составляет 15 ppm, т.е. очищенная нефть соответствует нормам ГОСТ Р 51858-2002 по содержанию сероводорода.

Пример 14. Использование нейтрализатора по примеру 3 для очистки нефтяного газа от сероводорода. В стеклянный насадочный абсорбер с кольцами Рашига высотой 500 мм и диаметром 20 мм загружают 30 мл (39,3 г) нейтрализатора по примеру 3. Затем при комнатной температуре (23°С) и атмосферном давлении пропускают через абсорбер газ сепарации сероводородсодержащей нефти, содержащий 2,5 об.% сероводорода и 2 об.% диоксида углерода (CO2). Отходящий с верха абсорбера очищенный газ пропускают через склянку Дрекселя с 10%-ным водным раствором едкого натра (щелочи) для поглощения остаточных количеств сероводорода. По окончании опыта раствор щелочи анализируют на содержание сульфидной серы методом потенциометрического титрования и рассчитывают остаточную концентрацию сероводорода в очищенном нефтяном газе и степень очистки газа. Степень очистки газа от сероводорода составляет 99,9%, т.е. предлагаемый нейтрализатор пригоден для селективной очистки нефтяного газа от сероводорода, поскольку содержащийся в газе диоксид углерода практически не поглощается применяемым нейтрализатором.

Пример 15. Использование нейтрализатора по примеру 4 для очистки нефти от сероводорода. Очистку подготовленной (обезвоженной) нефти, содержащей 0,1 мас.% эмульсионной воды и 0,025 мас.% (250 ppm) сероводорода, проводят аналогично и в условиях примера 5, но при температуре 25°С. Остаточное содержание сероводорода в очищенном сырье составляет 18 ppm, т.е. очищенная нефть соответствует нормам ГОСТ Р 51858-2002 по содержанию сероводорода.

Сравнительный эксперимент показал, что при очистке нефти, содержащей 0,1 мас.% эмульсионной воды и 0,025 мас.% сероводорода с применением известного нейтрализатора - 30%-ного водного раствора пероксида водорода, взятого из расчета 25 мл на 1 г сероводорода, (прототип) остаточное содержание сероводорода в очищенном сырье составляет 110 ppm, т.е. известный нейтрализатор и способ его использования не обеспечивают эффективную нейтрализацию сероводорода и получение товарной нефти, соответствующей нормам ГОСТ Р 51858-2002 по содержанию сероводорода.

Пример 16. Испытание нейтрализаторов по примерам 1 и 4 на коррозионную активность. Гравиметрическим методом на автоклавной установке определяют скорость коррозии углеродистой стали Ст3сп в среде свежеприготовленного нейтрализатора по примерам 1 и 4 при температуре 22°С, атмосферном давлении и без перемешивания испытуемой среды, т.е. в условиях хранения нейтрализатора в летнее время. Продолжительность опыта (время испытания) составляла 840 ч. При этом усредненная скорость коррозии стали в среде нейтрализатора по примеру 1 составляет 0,23 мм/год, а нейтрализатора по примеру 4-0,04 мм/год.

Таким образом, сравнительные коррозионные испытания показывают, что нейтрализатор сероводорода, дополнительно содержащий щелочной и азотсодержащий основной реагент в найденных оптимальных количествах, обладает сравнительно низкой коррозионной активностью по отношению к обычной углеродистой стали.

Проведенные эксперименты показывают также, что дополнительное введение в нейтрализатор оптимальных количеств щелочного и/или азотсодержащего основного реагента обеспечивает нейтрализацию сероводорода с образованием водорастворимых продуктов реакции и, следовательно, при очистке нефтяных сред исключается (или уменьшается) загрязнение очищенной нефти коррозионной элементной серой, а при очистке водных сред и нефтяных газов - сероотложения в технологическом оборудовании и трубопроводах.

Данные, представленные в примерах 5-15, показывают, что предлагаемый нейтрализатор обладает более высокой реакционной способностью и обеспечивает эффективную нейтрализацию сероводорода в различных средах как при обычных, так и повышенных температурах. Данные примера 16 показывают, что дополнительное введение в состав нейтрализатора щелочного и азотсодержащего основного реагента обеспечивает снижение скорости коррозии углеродистой стали в 5 и более раз. Кроме того, предлагаемый нейтрализатор, в отличие от известного, является пожаровзрывобезопасным, нетоксичным и стабильным продуктом, что позволяет практически использовать его в промысловых условиях.

1. Нейтрализатор сероводорода в нефтепромысловых средах, включающий окислитель и воду, отличающийся тем, что в качестве окислителя он содержит пиросульфит щелочного металла при следующем соотношении компонентов, мас.%:

Пиросульфит щелочного металла3-36
ВодаОстальное

2. Нейтрализатор по п.1, отличающийся тем, что для снижения коррозионной активности он дополнительно содержит щелочной и/или азотсодержащий основной реагент при следующем соотношении компонентов, мас.%:

Пиросульфит щелочного металла3-35
Щелочной и/или азотсодержащий основной реагент1-15
ВодаОстальное

3. Нейтрализатор по п.1 или 2, отличающийся тем, что в качестве пиросульфита щелочного металла он содержит пиросульфит натрия.

4. Нейтрализатор по п.2, отличающийся тем, что в качестве щелочного реагента он преимущественно содержит гидроксид, карбонат, фосфат и/или сульфит натрия, а в качестве азотсодержащего основного реагента - аммиак водный и/или водорастворимый органический амин.

5. Способ очистки нефтепромысловых сред от сероводорода путем обработки исходного сырья химическим реагентом, отличающийся тем, что в качестве последнего используют нейтрализатор сероводорода по любому из пп.1-4.

6. Способ по п.5, отличающийся тем, что обработку проводят при температуре 3-90°С.

www.findpatent.ru

нейтрализатор сернистых соединений в нефти, нефтепромысловых средах, пластовых водах и буровых растворах - патент РФ 2290427

Изобретение относится к области нейтрализации агрессивных компонентов в различных средах и может быть использовано в процессах нефтедобычи, подготовки и транспорта нефти, нефтехимии. Нейтрализатор представляет собой композицию, содержащую 20-40% моноэтаноламина, 10-50% формалина, 10-40% метанола, спиртовая фракция производства капролактама (СФПК) - остальное. Изобретение позволяет снизить концентрацию сернистых соединений в нефти, а также расширяет арсенал средств для нейтрализации этих соединений в нефтепромысловых средах и средах, применяемых в процессах нефтедобычи. 3 табл.

Изобретение относится к области нейтрализации агрессивных компонентов в различных средах и может быть использовано в процессах нефтедобычи, подготовки и транспорта нефти, нефтехимии.

Известно средство для удаления сероводорода и меркаптанов из газов, нефти, нефтепродуктов, пластовых вод и буровых растворов, предназначенное для их обезвреживания за счет нейтрализации биогенных сернистых соединений и используемое на объектах нефтедобычи, нефтепереработки, нефтехимии. Указанное средство представляет собой 70%-ный водный раствор 1-гидрокси-2-(1,3-оксазетидин-3-ил) этана общей формулы C4H9NO2 (патент РФ №2241684, МПК C 02 F 1/58). Однако данное средство нейтрализует только сероводород биогенного происхождения и не обладает бактерицидными свойствами.

Известен также состав для нейтрализации сероводорода, подавления роста сульфатвосстанавливающих бактерий (СВВ) и ингибирования коррозии в нефтепромысловых средах, включающий продукт взаимодействия моноэтаноламина с формальдегидом, гидроксид натрия или калия и третичный аминоспирт и/или алифатический спирт С2-С4 (патент РФ №2228946, МПК C 10 G 29/20). Данный состав позволяет осуществлять нейтрализацию только легких меркаптанов. При этом наличие в его составе спиртов С2-С4 снижает температуру застывания реагента, способствует нейтрализации сероводорода, но не обеспечивает достаточной нейтрализации меркаптановой серы.

Наиболее близкой по совокупности существенных признаков к предлагаемому изобретению является нейтрализующая жидкость, предназначенная для нейтрализации сероводорода в нефтяной скважине, в качестве которой используют продукт взаимодействия моноэтаноламина с формалином (патент РФ №2187627, МПК Е 21 В 43/22). Указанная нейтрализующая жидкость имеет весьма узкую область применения, поскольку может использоваться только для нейтрализации сероводорода и легких меркаптанов в скважине. При этом состав готовят в виде эмульсии жидкости в нефти, в результате чего снижается нейтрализующая способность реагента.

Встречающиеся в нефти типы сернистых соединений весьма разнообразны. Отдельные нефти содержат свободную серу. В других случаях сера пребывает в нефтях в связанном состоянии, т.е. в виде сероводорода и сераорганических соединений (меркаптанов, сульфидов, дисульфидов, тиофенов, тиофанов). Среди сернистых соединений наиболее коррозионными свойствами обладают сероводород и меркаптаны. В настоящее время сероводородсодержащие нефти в большинстве случаев транспортируются без нейтрализации сероводорода, что приводит к быстрому коррозионному разрушению трубопроводов, частым их порывам, утечкам сероводородсодержащих нефтей и чрезмерному загрязнению окружающей среды высокотоксичными сернистыми соединениями - сероводородом и легкими меркаптанами. Следует также учитывать, что основной объем нефти в стране добывается с применением заводнения нефтяных месторождений природными водами, что невольно привело их к заражению микроорганизмами, активизации микробиологических процессов и интенсивному развитию СВБ, активно продуцирующих сероводород. Биогенной сероводород, образуемый СВБ, не только влияет на коррозию стали, но и ухудшает качество нефти. Согласно действующему в настоящее время ГОСТ Р51858-2002 содержание сероводорода и меркаптанов в товарной нефти не должно превышать 20-100 ppm. Таким образом, снижение концентрации сернистых соединений в нефти, а также расширение арсенала средств для нейтрализации этих соединений в нефтепромысловых средах и средах, применяемых в процессах нефтедобычи, является актуальной задачей как с точки зрения охраны окружающей среды, так и для повышения качества товарной нефти.

Для решения поставленной задачи предложена композиция на основе продуктов взаимодействия моноэтаноламина с формалином, которая в отличие от прототипа дополнительно содержит метанол и спиртовую фракцию производства капролактама (СФПК) при следующем соотношении ингредиентов, мас.%: моноэтаноламин 20-40, формалин 10-50, метанол 10-40, СФПК - остальное.

Технический результат, получаемый при осуществлении данного изобретения, заключается в следующем. Введение в состав композиции моноэтаноламина, обладающего высокой каталитической активностью как в реакции селективного окисления сероводорода до элементарной серы, так и в реакции окисления меркаптанов образующейся серой до дисульфидов позволяет осуществить одновременную доочистку обрабатываемой среды от остаточных количеств сероводорода, легких меркаптанов и исключает загрязнение товарной нефти образующейся коррозионной элементарной серой. Использование формалина в указанном количестве обусловлено его высокой поглощающей способностью по отношению к сероводороду и легким меркаптанам. Кроме того, формалин обладает бактерицидными свойствами и способствует подавлению СВБ. Использование в составе предложенной композиции метанола обеспечивает усиление нейтрализации меркаптановой серы и, кроме того, снижает температуру застывания композиции до -45°С÷-50°С, что придает ей необходимые технологические свойства для использования в зимнее время. Спиртовая фракция производства капролактама, представляя собой продукт, в состав которого входят амиловые спирты, циклогексанон, циклогексанол, циклопентанол, является хорошим растворителем парафина и асфальтенов и тем самым, как показали проведенные исследования, способствует удалению тяжелых сернистых соединений. Более того, наличие в составе спиртовой фракции циклогексанона и циклогексанола снижает вязкость нефти и усиливает нейтрализацию меркаптановой серы. Полученные экспериментальные данные подтвердили, что динамическая вязкость товарной нефти (УПН Покровское месторождение) после обработки предложенным составом снизилась с 3,88 до 1,44 сП, а динамическая вязкость нефтяной эмульсии (Сорочинско-Никольское месторождение) уменьшилась с 5,21 до 1,73 сП. Таким образом, предложенная совокупность ингредиентов в заявленном количественном соотношении оказывает эффективное комплексное нейтрализующее воздействие на легкие и тяжелые высокопарафинистые нефти с большим содержанием асфальтенов, значительно улучшает качество обрабатываемых сред.

Заявляемая композиция готовится путем тщательного перемешивания в определенной последовательности входящих в ее состав ингредиентов в заданных пропорциях. При этом может быть использован моноэтаноламин, например, выпускаемый в соответствии с ТУ 6-02-915-84 или ТУ 2832-01611291058-96. Формалин (водный раствор формальдегида) является доступным, дешевым продуктом крупнотоннажного производства. Используемый в составе композиции метанол производится согласно ТУ 6-09-14-2192-85, ТУ 6-09-1709-77, ТУ 113-05-323-77, ТУ 113-05-494-85, ТУ 13-05-132-83 или ТУ 6-14-1041-79. СФПК является крупнотоннажным отходом производства капролактама и производится, в частности, в соответствии с ТУ 2433-017-00205311-99.

Испытания заявляемого нейтрализатора проводились в средах Покровского, Горного и Сорочинско-Никольского месторождений ОАО "Оренбургнефть", характеристики которых представлены в таблице 1. При этом следует заметить, что пластовая вода Горного месторождения используется для глушения, ремонта, освоения скважин и для приготовления буровых растворов.

Варианты композиции по количественному составу входящих ингредиентов даны в таблице 2.

Испытания предлагаемой композиции на эффективность нейтрализации сернистых соединений проводили методом потенциометрического титрования UOP-163 (mod). Метод заключается в растворении исследуемой пробы в смеси изоприлового спирта и толуола и потенциометрическом титровании полученной пробы раствором нитрата серебра, используя стеклянный электрод сравнения и серебряный/сульфидсеребряный индикаторный электрод. Содержание легких меркаптанов определялось методом газовой хроматографии на хроматографе "Кристалл-2000" согласно ГОСТ Р50802-95. Определение количества планктонных клеток СВВ осуществлялось методом предельных разведении по РД 39-0147103-350-89. Содержание адгезированных СВБ определялось в соответствии с РД 39-0147-350-89 и РД 03-00147275-67-2001. Контроль содержания диоксида углерода осуществлялся титриметрическим методом в соответствии с РД 52.24.419-95. Результаты испытаний приведены в таблице 3.

Проведенные исследования показали, что при содержании в композиции моноэтаноламина менее 20% не обеспечивается необходимая нейтрализация сероводорода. Увеличение его содержания выше 40% недопустимо снижает концентрацию других ингредиентов. Наличие в композиции формалина в количестве менее 10% не обеспечивает достаточной нейтрализации сернистых соединений и не оказывает бактерицидного воздействия на СВВ. Увеличение содержания формалина свыше 50% приводит к снижению нейтрализующей способности реагента вследствие уменьшения концентрации других необходимых компонентов. Содержание метанола в количестве менее 10% не обеспечивает достаточной нейтрализации меркаптановой серы и не дает заметного снижения температуры застывания композиции. Увеличение содержания метанола свыше 40% также не обеспечивает достаточной нейтрализации сероводорода и не приводит к дальнейшему снижению температуры застывания композиции. Следует также отметить, что заявляемая композиция, как показывают результаты испытаний, кроме нейтрализации сернистых соединений, дополнительно обеспечивает также эффективную нейтрализацию и такого высокоагрессивного компонента как диоксид углерода, часто присутствующего в нефтепромысловых средах и пластовых водах нефтегазовых месторождений.

Предлагаемый нейтрализатор может быть использован путем закачки в нагнетательные, эксплуатационные скважины, в нефтепроводы, водоводы, на установках подготовки нефти.

Таблица1
№ п/пСреда Содержание агрессивных компонентов
h3S, мг/л Меркаптановая сера, мг/лЛегкие меркаптаны, мг/лСО 2, мг/лКоличество СВБ, кл/мл
Планктонная форма Адгезионная форма
1 Товарная нефть (УПН Покровское месторождение) 255,0849,030,0 -- -
2Пластовая вода (Горное месторождение)170,0 --242,0 10410 7
3Нефтяная эмульсия (30% Н2О, Сорочинско-Никольское месторождение)290,0 789,023,0132,0 102 1010
Таблица 2
№ п/пСостав композиции, мас.%
Моноэтаноламин ФормалинМетанолСФПК
120,0 10,010,060,0
225,0 15,015,045,0
330,0 20,020,030,0
425,0 30,040,05,0
535,0 30,030,05,0
630,0 50,015,05,0
740,0 30,025,05,0
835,0 25,020,020,0
935,0 25,025,015,0
1040, 25,25,010,0
Таблица 3
№ составаКонцентрация мл/л Содержание агрессивных компонентов в различных средах после обработки
h3S, мг/л Меркаптановая сера, мг/л Легкие меркаптаны, мг/л СО2, мг/л Количество СВБ, кл/мл
Планктонная формаАдгезионная форма
№ среды № среды№ среды № среды№ среды № среды
1 231 313 232 323
1100 2178993 71752927 204225 --- -
150197 7471 69142820 182720 101-102 10110 5105
200175 6353678 3471112 1712- ---
2100 2047160 68937927 193719 - - -
150160 6253 64133421 132115 101-102 10110 5105
200125 5147621 2711011 1213- ---
3100 1906351 58436925 173415 --- -
150153 5742 55131118 121911 101-102 10110 5105
200115 4639496 26689 108- ---
4100 633841 39135323 152918 - - -
15058 2927 36120714 102111 101-102 10110 5105
20047 2319317 14168 178- ---
5100 573239 28334119 12189 --- -
15039 2722 2372219 897 101-102 10110 5105
20028 1914217 14143 85- ---
Таблица 3 (продолжение)
№ состава Концентрация мл/лСодержание агрессивных компонентов в различных средах после обработки
H 2S, мг/лМеркаптановая сера, мг/лЛегкие меркаптаны, мг/лCO 2, мг/лКоличество СВБ, кл/мл
Планктонная форма Адгезионная форма
№ среды№ среды № среды№ среды № среды№ среды
123 131 323 232 3
6 1004322 27263336 171017 11-- --
150 2717 19204179 9812 7101-10 2101 10510 5
200 181316 1581363 263 --- -
7 1003718 19192320 9617 12-- --
150 2115 13157198 Отс.210 8101-10 2101 10510 5
200 121210 1321174 Отс.42 --- -
8 1002917 19167280 Отс.319 15-- --
150 1110 11141201 Отс.Отс.17 13101-10 2101 10510 4
200 776 129115Отс. Отс.ОтсОтс. --- -
9 1002716 17153201 Отс.Отс.15 11-- --
150 1210 9132141 Отс.Отс.5 3101-10 2101 10510 4
200 785 117100Отс. Отс.ОтсОтс. --- -
10 1002312 9144189 Отс.Отс.12 10-- --
150 99 7121131 Отс.Отс.4 2101-10 2101 10510 4
200 674 10097Отс. Отс.ОтсОтс. --- -

ФОРМУЛА ИЗОБРЕТЕНИЯ

Нейтрализатор сернистых соединений в нефти, нефтепромысловых средах, пластовых водах и буровых растворах, содержащий продукт взаимодействия моноэтаноламина с формалином, отличающийся тем, что он дополнительно содержит метанол и спиртовую фракцию производства капролактама при следующем содержании ингредиентов, мас.%:

Моноэтаноламин20-40
Формалин10-50
Метанол10-40
Спиртовая фракция производства капролактама Остальное

www.freepatent.ru

Нейтрализатор сероводорода

Изобретение относится к химическим реагентам - нейтрализаторам сероводорода и может быть использовано в нефтегазодобывающей, нефтегазоперерабатывающей промышленности для нейтрализации сероводорода и легких меркаптанов в углеводородсодержащих средах. Предложен нейтрализатор сероводорода, включающий гидроксид щелочного металла и/или органическое основание (0,03-15 мас.%), неионогенное ПАВ (0,5-25 мас.%) и гемиформаль(и) низшего алифатического спирта (остальное). В качестве неионогенного ПАВ преимущественно используют полиэфиры простые на основе глицерина (Лапролы) или оксиалкилированные гликоли (Проксанолы), или оксиалкилированный этилендиамин (Проксамины), или оксиэтилированные алкилфенолы (Неонолы) или их смеси. Технический результат - интенсификация процессов получения нейтрализатора и нейтрализации сероводорода в углеводородсодержащих средах, создание реагента комплексного действия, сочетающего в себе свойства нейтрализатора сероводорода и деэмульгатора водонефтяных эмульсий, обладающего низкой коррозионной агрессивностью. Предложенный нейтрализатор-деэмульгатор обладает также бактерицидной активностью к сульфатвосстанавливающим бактериям. 3 з.п., 1 табл., 18 пр.

 

Изобретение относится к области очистки углеводородного сырья от сернистых соединений химическими реагентами, а именно - к нейтрализаторам сероводорода и легких меркаптанов, и может быть использовано в нефтегазодобывающей и нефтегазоперерабатывающей промышленности для нейтрализации сероводорода и легких меркаптанов в углеводородсодержащих средах (нефти, газоконденсате, водонефтяных эмульсиях и нефтепродуктах).

Известно средство для нейтрализации сероводорода и меркаптанов в нефти и нефтепродуктах, представляющее собой продукт взаимодействия алкиленполиамина, преимущественно диэтилентриамина, с формалином в мольном соотношении от 1:1 до 1:14, предпочтительно от 1:1 до 1:3 (US 5284576, 1994 г.).

Однако указанный реагент обладает невысокой нейтрализующей способностью и не обеспечивает эффективную нейтрализацию сероводорода и меркаптанов в нефти. Другими его недостатками являются высокие удельный расход и стоимость (из-за применения для его производства дорогостоящего диэтилентриамина).

Известно применение для очистки нефти, газоконденсата и их фракций от меркаптанов и сероводорода органического реагента-нейтрализатора, представляющего собой метанолэтаноламин, диметанолэтаноламин, метанолдиэтаноламин или их смеси. В преимущественном варианте реагент применяют в виде водного раствора, предварительно полученного взаимодействием моноэтаноламина и/или диэтаноламина с водным раствором формальдегида - формалином в мольном соотношении этаноламин: формальдегид 1:1-2 (RU 2121492, 1998 г.).

Известно также применение аминотриформалей (пергидро-1,3,5-диоксазинов) в качестве органического реагента-нейтрализатора для очистки нефти и нефтепродуктов от сероводорода и легких меркаптанов. В преимущественном варианте реагент применяют в виде водного раствора, предварительно полученного взаимодействием первичного алкиламина или алканоламина с формалином в мольном соотношении 1:2,5-3,5 (RU 2216568, 2003 г.).

Однако указанные реагенты недостаточно эффективны (требуемый удельный расход составляет 4-6 г/г сероводорода) и технологичны для применения в промысловых условиях из-за низкой термохимической стабильности при хранении и недостаточно низкой температуры их застывания.

Наиболее близким к предлагаемому изобретению является органический реагент для нейтрализации сероводорода и легких меркаптанов в товарной нефти, представляющий собой смеси гемиформаля и углеводородного нитросоединения (RU 2348679, 2009 г.). При этом в качестве углеводородного нитросоединения, ускоряющего реакцию, он содержит нитробензол в количестве до 5 мас.%. Согласно описанию изобретения (с.5 и 6) в качестве гемиформаля нейтрализатор содержит гемиформаль метанола, который получают взаимодействием параформальдегида с метанолом. В указанном техническом решении не конкретизированы условия получения запатентованного нейтрализатора. Из описания изобретения (с.5 и 6) следует, что нейтрализатор получают взаимодействием параформальдегида с метанолом при обычной температуре (20°C) с последующим добавлением в гемиформаль нитробензола в количестве до 5 мас.%. Полученный таким образом нейтрализатор имеет следующий компонентный состав, мас.%: параформальдегид - до 57,5; метанол - 37,5 и нитробензол - 5,0.

Недостатками указанного нейтрализатора являются длительность процесса его получения из-за низкой скорости растворения параформальдегида в метаноле с образованием гемиформалей, коррозионная агрессивность по отношению к углеродистой стали и недостаточно высокая реакционная способность, связанная с невысокой каталитической активностью нитробензола в реакциях нейтрализации сероводорода и меркаптанов, в результате чего требуется обеспечение длительного времени контакта нейтрализатора с очищаемой нефтью, что не всегда осуществимо на действующих установках подготовки нефти. Кроме того, применение в его составе в качестве катализатора нитробензола, хорошо растворимого в нефти и плохо растворимого в воде, приводит к загрязнению товарной нефти нежелательным нитросоединением.

В основу настоящего изобретения положена задача сокращения времени синтеза нейтрализатора и повышения его реакционной способности, т.е. интенсификация процессов получения и нейтрализации. Задачей изобретения является также создание реагента комплексного действия, сочетающего в себе свойства нейтрализатора сероводорода и деэмульгатора водонефтяных эмульсий и обладающего низкой коррозионной агрессивностью по отношению к углеродистой стали.

Поставленная задача решается тем, что нейтрализатор сероводорода и легких меркаптанов, включающий продукт взаимодействия параформальдегида с низшим алифатическим спиртом - гемиформаль(и) и катализатор, в качестве последнего он содержит гидроксид щелочного металла и/или органическое основание, и дополнительно содержит неионогенное поверхностно-активное вещество (НПАВ) при следующем соотношении компонентов, мас.%:

Гидроксид щелочного металла и/или органическое
основание 0,03-15
Неионогенное поверхностно-активное вещество 0,5-25
Гемиформаль(и) низшего алифатического спирта(ов) Остальное

При этом в качестве органического основания предлагаемый нейтрализатор преимущественно содержит третичный амин или смеси третичного амина с первичным(и) и/или вторичным(и) аминами, а в качестве гидроксида щелочного металла - гидроксид натрия или калия. В качестве гемиформаля он содержит гемиформаль(и) алифатических спиртов C1-C4, преимущественно метанола и/или этанола. В качестве неионогенного поверхностно-активного вещества он преимущественно содержит полиэфиры простые на основе глицерина марки Лапрол 6003-2Б-18, Лапрол 5003-2-Б10, 4202-2Б-30, Реапон-4В, Реапон-И или оксиалкилированные гликоли марки Проксанол 305, или оксиалкилированный этилендиамин марки Проксамин 385, Дипроксамин 157, Дипроксамин 157-65М, или оксиэтилированные алкилфенолы марки Неонол АФ 9-12, АФ 9-10 или их смеси.

Следует указать, что большинство из вышеуказанных неионогенных поверхностно-активных веществ являются эффективными деэмульгаторами водонефтяных эмульсий (Рахманкулов Д.Л. и др. Химические реагенты в добыче и транспорте нефти. Справочник. - М.: Химия. 1987. С.65-67 и др.). Предлагаемое их использование в найденных оптимальных соотношениях позволяет получить технологичный и эффективный реагент комплексного действия, сочетающий в себе свойства нейтрализатора сероводорода и деэмульгатора, что практически важно при очистке водонефтяных эмульсий (в том числе, обводненной продукции нефтяных скважин), поскольку при этом одновременно будет происходить нейтрализация сероводорода и деэмульсация, и последующий отстой пластовой или пресной промывочной (подтоварной) воды при выдерживании обработанной нейтрализатором нефти в буферных емкостях-отстойниках или электродегидраторах, или в резервуарах товарной нефти (RU 73799, RU 2349365).

Целесообразность использования в качестве щелочного катализатора именно гидроксида щелочных металлов и/или третичных аминов обусловлена тем, что они, в отличие от первичных и вторичных аминов, не взаимодействуют с формальдегидом, а служат лишь катализатором реакций взаимодействия параформальдегида со спиртами с образованием гемиформалей при синтезе нейтрализатора и взаимодействия гемиформалей с сероводородом и легкими меркаптанами при применении полученного реагента в качестве нейтрализатора. Следует указать, что в качестве эффективного катализатора могут быть использованы также четвертичные аммониевые основания, однако они являются более дорогостоящими продуктами. Возможно также использование в качестве эффективного катализатора смесей третичного амина с первичным и/или вторичным аминами, например смеси моно-, ди- и триэтаноламинов. В этом случае часть параформальдегида реагирует с образованием метилольных производных (метанолэтаноламинов) и аминоэфиров, которые также являются реакционноспособными соединениями по отношению к сероводороду и меркаптанам (RU 2121492, RU 2220756, RU 2349627). Таким образом, в этом случае полученный нейтрализатор будет включать несколько реакционноспособных компонентов и пригоден для применения в качестве эффективного и технологичного нейтрализатора сероводорода и легких меркаптанов.

В преимущественном варианте в качестве сырья для получения предлагаемого нейтрализатора используют товарные технические метанол (ГОСТ 2222) или этанол (ГОСТ 17299, ГОСТ 18300), параформальдегид (ТУ 6-09-141-03-89, ТУ 6-05-930-78), гидроксид натрия (натр едкий по ГОСТ 2263, ГОСТ 11078) и/или триэтаноламин (ТУ 2423-168-00203335-2007) и простые полиэфиры марок Лапрол 6003-2Б-18, Лапрол 5003-2-Б10, 4202-2Б-30, Реапон-4В (ТУ 2226-005-10488057-94) или оксиалкилированный этиленгликоль марки Проксанол 305 (ТУ 2458-158-002033335-2004), или оксиалкилированный этилендиамин марки Проксамин 385 (ТУ 2458-154-002033335-2004), Дипроксамин 157-65М (ТУ 38.1011128-87), или оксиэтилированные алкилфенолы марки Неонол АФ 9-12 (ТУ 2483-077-05766801-98). Указанные виды сырья производятся в промышленных масштабах, т.е. с точки зрения обеспеченности сырьем предлагаемый нейтрализатор является промышленно применимым.

Предлагаемый нейтрализатор в преимущественном варианте получают следующим образом. В термостатированную реакционную колбу, снабженную механической мешалкой, обратным холодильником и термометром загружают расчетное количество алифатического спирта и при перемешивании вводят щелочной катализатор, преимущественно ~ 46%-ный водный раствор гидроксида натрия (например, натр едкий марки РД по ГОСТ 2263) и третичный амин, например триэтаноламин. Затем при перемешивании добавляют расчетное количество кристаллического параформальдегида. При этом спирт и параформальдегид берут в мольных соотношениях 1:0,8-1,6, предпочтительно 1:1-1,5. Включают нагреватель термостата и полученную суспензию перемешивают при температуре 40-70°C до полного растворения параформальдегида с образованием гемиформалей. Затем добавляют расчетное количество неионогенного ПАВ и дополнительно перемешивают до получения однородного продукта. Полученный таким образом продукт используют в качестве комплексного реагента-нейтрализатора без дальнейшей обработки и очистки.

Полученные композиции в обычных условиях представляют собой подвижные жидкости от бесцветного до белого или желтого цвета плотностью в пределах 0,93-1,11 г/см3, с величиной показателя pH от 8 до 13 и температурой застывания ниже минус 40°C.

Изобретение иллюстрируется следующими конкретными, но не ограничивающими его примерами получения нейтрализатора (примеры 1-6), испытания его на эффективность и коррозионную агрессивность.

Пример 1. Получение предлагаемого нейтрализатора сероводорода. В термостатированную колбу, снабженную мешалкой, термометром и обратным холодильником, загружают 47 г метанола и при перемешивании вводят 0,5 г щелочного катализатора - гидроксида натрия в виде 46%-го водного раствора (натр едкий марки РД по ГОСТ 2263). Затем при перемешивании засыпают 49 г кристаллического параформальдегида (параформа) и полученную суспензию перемешивают при температуре 55°C до полного растворения параформа с образованием гемиформалей метанола. Мольное соотношение метанол: формальдегид в реакционной смеси равно 1:1,1. Согласно литературным данным (ЖПХ. 1979. Т.52. №12. С.2722-2730) при взаимодействии формальдегида с метанолом в таком мольном соотношении образуется смесь моно-, ди-, три- и тетра- и пентагемиформалей метанола общей формулы Ch4-O-(Ch3O)nH, где n=1-5. При этом содержание моногемиформаля метанола (метоксиметанола) формулы Ch4-O-Ch3-OH в реакционной смеси составляет более 50%. Затем в полученные гемиформали добавляют 3,5 г неионогенного ПАВ марки Проксамин 385 и дополнительно перемешивают до получения однородного продукта и полученную композицию используют в качестве нейтрализатора сероводорода (пример 9).

Примеры 2-6. Образцы нейтрализаторов №№2-6 получают аналогично примеру 1, но с использованием неионогенных ПАВ других марок и при других соотношениях компонентов, указанных в таблице. При этом в примере 2 в качестве неионогенного ПАВ используют Дипроксамин 157, в примере 3 - простой полиэфир Лапрол 6003-2Б-18, в примере 4 - Реапон-4В, в примере 5 - Проксанол 305, а в примере 6 - Неонол АФ 9-12 и Реапон-4В. В примере 6 качестве спирта используют смесь этанола и метанола. Компонентный состав и условия проведения процесса получения нейтрализатора приведены в таблице.

Пример 7. Получение известного нейтрализатора (прототип).

В реакционную колбу по примеру 1 загружают 37,5 г метанола и при перемешивании засыпают 57,5 г кристаллического параформальдегида. Полученную реакционную смесь перемешивают при комнатной температуре (20-25°C) до полного растворения параформа с образованием гемиформалей метанола. Затем в полученный гемиформаль добавляют 5 г нитробензола, перемешивают до получения однородного продукта и испытывают на эффективность нейтрализации сероводорода в товарной нефти.

Пример 8. Получение известного нейтрализатора (прототип).

В реакционную колбу по примеру 1 загружают 47,5 г метанола и при перемешивании вводят 2,5 г нитробензола. Затем при перемешивании засыпают 50 г кристаллического параформальдегида и перемешивают при температуре 50°C до полного растворения параформа с образованием гемиформалей метанола.

Компонентный состав предлагаемого и известного нейтрализаторов, полученных по примерам 1-8, и результаты определения продолжительности проведения реакции их получения приведены в таблице.

Пример 9. Испытание предлагаемого нейтрализатора на эффективность нейтрализации сероводорода в нефти.

В термостатированную реакционную колбу с мешалкой вводят 0,07 г нейтрализатора по примеру 1, затем загружают 100 мл высокосернистой карбоновой нефти, содержащей 0,031 мас.% (310 ppm) сероводорода. Массовое соотношение нейтрализатор: сероводород в реакционной смеси составляет 2,4:1, т.е. удельный расход нейтрализатора (расходный коэффициент) составляет 2,4 г/г. Затем нефть с введенным нейтрализатором перемешивают при температуре 55°C в течение 1 ч и после охлаждения до комнатной температуры проводят количественный анализ нефти на содержание остаточного сероводорода и рассчитывают степень очистки нефти. Степень очистки нефти от сероводорода составляет 74%.

Примеры 10-16. Испытания нейтрализатора по примерам 2-6 и известного нейтрализатора по примерам 7, 8 проводят аналогично и в условиях примера 9. Результаты определения степени нейтрализации сероводорода в нефти предлагаемым и известным нейтрализаторами приведены в таблице.

Пример 17. Испытание предлагаемого и известного нейтрализаторов на коррозионную активность.

Гравиметрическим методом определяют скорость коррозии углеродистой стали Ст3сп в среде предлагаемого нейтрализатора по примеру 1 и известного нейтрализатора по примеру 7 при температуре 25°C, моделируя хранение реагента в летнее время года в емкости из углеродистой стали. Продолжительность испытаний - 4468 часов. При этом средняя скорость коррозии стали в среде предлагаемого нейтрализатора составляет 0,005 мм/год, а в среде известного нейтрализатора - 0,035 мм/год, т.е. предлагаемый нейтрализатор в сравнении с известным обладает низкой коррозионной агрессивностью по отношению к углеродистой стали.

Пример 18. Испытание предлагаемого и известного нейтрализаторов на эффективность деэмульгирующего действия.

Для отмывки водорастворимых продуктов нейтрализации сероводорода и хлористых солей в очищенную нейтрализатором по примеру 4 нефть добавляют пресную воду в количестве 10% и после перемешивания встряхиванием (100 качков) ставят на отстой эмульсионной воды при температуре 50°C, моделируя процесс отстоя промывочной воды в отстойнике ступени обессоливания установки подготовки нефти (УПН). Для сравнения ставят опыт в идентичных условиях с нефтью, очищенной известным нейтрализатором по примеру 8, и определяют время отделения воды от очищенной нефти при температуре 50°C. Время полного отделения промывочной воды от очищенной нейтрализатором по примеру 4 нефти составляет 40 минут, а от очищенной известным нейтрализатором по примеру 8 нефти - 70 минут. Таким образом, предлагаемый нейтрализатор, в отличие от известного, обладает эффективным деэмульгирующим действием и его применение позволяет существенно сократить время отделения промывочной воды от очищенной нефти.

Из представленных в таблице данных видно, что использование в качестве катализатора гидроксида щелочного металла и/или органического основания позволяет многократно сократить время синтеза нейтрализатора и обеспечивает получение нейтрализатора, обладающего более высокой реакционной способностью по сравнению с известным (нитробензолом). Таким образом, заявленное изобретение позволяет интенсифицировать процесс получения нейтрализатора и процесс нейтрализации сероводорода в нефти и тем самым повысить производительность реакторов синтеза нейтрализатора и нейтрализации сероводорода в нефти. Приведенные в примере 17 результаты сравнительных коррозионных испытаний показывают, что в сравнении с известным предлагаемый нейтрализатор обладает низкой коррозионной агрессивностью, что позволяет использовать оборудование из углеродистых сталей для хранения и применения нейтрализатора. Приведенные в примере 18 данные показывают, что предлагаемый нейтрализатор обладает эффективным деэмульгирующим действием, т.е. он является реагентом комплексного действия, сочетающим в себе свойства эффективного нейтрализатора сероводорода и деэмульгатора водонефтяных эмульсий. Применение такого реагента позволит существенно сократить время отстоя промывочной воды при последующем обессоливании очищенной нефти и, следовательно, повысить эффективность и производительность ступени обессоливания. Содержащийся в составе предлагаемого нейтрализатора щелочной катализатор - гидроксид щелочного металла и/или органическое основание служит также ингибитором кислотной коррозии нефтепроводов при транспортировании сернистых нефтей и оборудования электрообессоливающих установок при подготовке таких нефтей к переработке на нефтеперерабатывающих заводах.

Кроме того, как показали проведенные испытания, предлагаемый нейтрализатор обладает также высокой бактерицидной активностью по отношению к сульфатвосстанавливающим бактериям (100%-ное подавление роста СВБ при концентрации 50-100 мг/л). Следовательно, он может быть использован и в качестве бактерицида для подавления роста СВБ в нефтепромысловых средах и в заводняемом нефтяном пласте.

1. Нейтрализатор сероводорода, включающий гемиформаль(и) низшего алифатического спирта и катализатор, отличающийся тем, что в качестве последнего он содержит гидроксид щелочного металла и/или органическое основание и дополнительно содержит неионогенное поверхностно-активное вещество при следующем соотношении компонентов, мас.%:

Гидроксид щелочного металла и/или органическое
основание 0,03-15
Неионогенное поверхностно-активное вещество 0,5-25
Гемиформаль(и) низшего алифатического спирта(ов) остальное

2. Нейтрализатор по п.1, отличающийся тем, что в качестве органического основания он преимущественно содержит третичный амин или смесь третичного амина с первичным и/или вторичным аминами.

3. Нейтрализатор по п.1, отличающийся тем, что в качестве неионогенного поверхностно-активного вещества он преимущественно содержит полиэфиры простые на основе глицерина марки Лапрол 6003-2Б-18, Лапрол 5003-2-Б10, 4202-2Б-30, Реапон-4В или оксиалкилированные гликоли марки Проксанол 305, или оксиалкилированный этилендиамин марки Проксамин 385, Дипроксамин 157, Дипроксамин 157-65М или оксиэтилированные алкилфенолы марки Неонол АФ 9-12, АФ 9-10 или их смеси.

4. Нейтрализатор по п.1, отличающийся тем, что в качестве гемиформаля низшего алифатического спирта он преимущественно содержит гемиформали метанола и/или этанола.

www.findpatent.ru

Нефтесинтез | Удаление сероводорода из нефти

Проблема снижения содержания сероводорода (h3S) в нефти и нефтепродуктах в последнее время приобретает все большую остроту.

Для удаления сероводорода из нефти используются следующие подходы:

  • отдувку сероводорода из нефти чистым газом;
  • метод прямого окисления сероводорода в нефти кислородом воздуха в присутствии аммиачного катализаторного комплекса;
  • поглотители - нейтрализаторы сероводорода.

Ключевым недостатком первых двух способов является достаточно высокий уровень потерь товарной нефти, поскольку вместе с сероводородом из нефти сдувается значительное количество легких фракций, что снижает качество нефти.

Недостатками наиболее часто используемых поглотителей - нейтрализаторов является наличие в их составе формальдегида - химического вещества, являющегося токсичным и канцерогенным.

Формальдегид внесён в список канцерогенных веществ ГН 1.1.725-98 (канцероген - это химическое вещество, при воздействие на организм человека повышает вероятность возникновения злокачественных новообразований).

Для сравнения ПДК р.з. формальдегида 0,5 мг/м3, а ПДК сероводорода в 20 раз выше (ПДК р.з. = 10 мг/м3).

Наша компания предлагает катализатор каталитической конверсии сероводорода THIONOL.

О катализаторе THIONOL
  • Катализатор THIONOL выпускается в виде нефтерастворимой добавки – реагента.
  • Катализатор не содержит высокотоксичных и агрессивных компонентов (щелочь, формальдегид, триазин и др.).
  • Катализатор не является горючим и коррозионно активным.
  • Катализатор имеет температуру застывания минус 45 С.
  • Катализатор не оказывает негативного влияния на товарную нефть.
  • Снижение содержания сероводорода и меркаптановой серы осуществляется путем прямой конверсии в дисульфиды.
  • Средний расход катализатора равен 1 ppm катализатора на 1 ppm активной серы.

Предлагаемый катализатор каталитического окисления THIONOL нашёл свое применение как на НПЗ, так и на месторождениях России и Казахстана.

Традиционный поглотитель (нейтрализатор) сероводорода Реагент THIONOL
Способ применения дозирование в поток нефти дозирование в поток нефти
Расход (химии ppm / h3S ppm) 3/1 1/1
Опасные компоненты формальдегид нет
Выбросы в атмосферу формальдегид нет
Отложения в трубах да нет

Необходимость запрета поглотителей на основе формальдегида (триазин).

Для удаления сероводорода и метил-этил меркаптанов часто применяют нейтрализаторы /поглотители сероводорода и метил-этил меркаптанов. На мировом рынке предлагаются несколько типов нейтрализаторов, разработанных для использования в нефти, газовом конденсате, мазуте и светлых дистиллятах. Недостатком применения этих реагентов является то обстоятельство, что нейтрализация сероводорода и меркаптанов требует значительного количества реагентов (обычная дозировка реагента: 3 - 10 ppm на 1 ppm сероводорода или легкого меркаптана). Это делает демеркаптанизацию достаточно дорогой процедурой.

Однако, главным недостатком является образование продуктов взаимодействия сероводорода с формальдегидом, обладающих резким, неприятном запахом. Помимо проблем с запахом, продукты реакции - тиазины склонны к образованию нерастворимых полимеров, образующих трудноудаляемые отложения в трубопроводах и резервуарах.

Для удаления таких отложений необходима специальная обработка с использованием концентрированной серной кислотой.

Если учесть, что в исходной нефти содержание h3S может достигать 500 ppm (0,05%), то несмотря на разные стадии подготовки нефти (обессоливание, ЭЛОУ), значительное количество серосодержащих соединений могут достигать ректификационных колонн первичной переработки нефти на НПЗ. В условиях высоких температур ректификации (360оС и выше) тиазины претерпевают термическую деструкцию. Продуктами распада тиазинов являются различные летучие соединения, которые способны свободно продвигаться по ректификационной колонне и далее накапливаться в погонах. Вследствие своей высокой реакционной способности данные соединения при конденсации легко могут опять полимеризоваться, наращивая цепи. Известны различные реакции разложения тиополимеров: в том числе с образованием меркаптанов и других летучих сераорганических соединений.

Формальдегид является канцерогеном. Наличие этого вещества является очень опасным для персонала, особенно для операторов блока дозирования реагентов. Кроме сказанного выше, продукты реакции формальдегида с сероводородом имеют тиольную природу и острый неприятный запах. Известны множество случаев, когда дистилляты, полученные при разгонке нефти, обработанной такими поглотителями, теряют свое качество и приобретают неприятный запах.

Так же стоит отметить, что применение поглотителей сероводорода на основе производных формальдегида (триазинов) является причиной стойкого зловонного запаха в местах подготовки нефти, что приводит к постоянным жалобам населения исторически расположенного в близи таких ППН.

neftesintez.net

Нейтрализатор сероводорода и меркаптанов

Изобретение относится к области нейтрализации сероводорода и легких меркаптанов в углеводородных средах химическими реагентами-нейтрализаторами и может быть использовано в нефтяной, газовой, нефтегазоперерабатывающей и нефтехимической промышленности.

Нейтрализатор сероводорода и меркаптанов включает, мас.%: уротропин 5-27, моноэтаноламин 3-12, триэтаноламин 1-15, параформальдегид или карбамидоформальдегидный концентрат (КФК) 5-35 и формалин - остальное. Нейтрализатор дополнительно может содержать алифатический спирт и гидроксид и/или карбонат щелочного металла при следующем соотношении компонентов, маc.%: уротропин 5-26, моноэтаноламин 3-10, триэтаноламин 1-13, параформальдегид или КФК 8-35, гидроксид и/или карбонат щелочного металла 0-1%, алифатический спирт 3-20 и формалин - остальное. Технический результат - создание эффективного нейтрализатора, обладающего высокими технологичностью (низкой температурой застывания) и реакционной способностью и обеспечивающего высокую степень очистки нефти, нефтепродуктов и углеводородных газов от сероводорода и легких меркаптанов при низких удельных расходах. Нейтрализатор также обладает бактерицидной активностью к СВБ и может быть использован в качестве бактерицида для подавления роста СВБ в нефтепромысловых средах. 2 з.п. ф-лы, 1 табл., 18 пр.

 

Изобретение относится к области нейтрализации сероводорода и легких меркаптанов в углеводородных средах химическими реагентами-нейтрализаторами и может быть использовано в нефтяной, газовой, нефтегазоперерабатывающей и нефтехимической промышленности для очистки сероводородсодержащих нефтей, газоконденсатов и их фракций, а также попутных нефтяных и природных газов.

Известно использование 20-50%-ного водного раствора пероксида водорода для нейтрализации сероводорода в нефти (в продукции нефтяных скважин), который берут из расчета не менее 20 мл (в расчете на 35%-ный раствор Н2О2) на 1 г нейтрализуемого сероводорода (пат. ФРГ №3151133, C10G 27/12, 1983 г.).

Основными недостатками указанного нейтрализатора являются низкая реакционная способность, большой расход, пожаровзрывоопасность и высокая токсичность пероксида водорода. Кроме того, пероксид водорода является малостабильным продуктом, самопроизвольно разлагающимся на кислород и воду при транспортировании и хранении, поэтому требуется его транспортирование и хранение в специальных пассивированных алюминиевых цистернах при температуре не выше 30°С; при работе с ним не допускается использование аппаратуры и трубопроводов из нелегированной и низколегированной стали, чугуна, являющихся катализаторами разложения пероксида водорода (ГОСТ 177-88. Водорода перекись). Эти недостатки, а также загрязнение сырья образующейся коррозионной элементной серой, препятствуют практическому применению водных растворов пероксида водорода в качестве нейтрализатора сероводорода для промысловой очистки сероводородсодержащих нефтей и газоконденсатов.

Известно средство для нейтрализации сероводорода в нефти и нефтепродуктах, представляющее собой продукт взаимодействия алкиленполиамина, преимущественно диэтилентриамина, с формалином в мольном соотношении полиамин: формальдегид от 1:1 до 1:14, предпочтительно 1:1-3 (пат. США №5284576, C10G 29/20, 1994 г.).

Однако указанный реагент-нейтрализатор обладает невысокой нейтрализующей способностью и не обеспечивает эффективную нейтрализацию сероводорода и меркаптанов в нефти.

Известно также применение около 40%-ного водного раствора гексаметилентетрамина (уротропина) для очистки нефти и нефтепродуктов от сероводорода и меркаптанов (пат. США №5213680, C10G 29/20, 1993 г.).

Однако указанный нейтрализатор обладает низкой реакционной способностью и не обеспечивает эффективную нейтрализацию сероводорода и меркаптанов в нефти при обычных температурах, в результате чего требуется проведение процесса очистки при повышенных температурах (выше 80-100°С) и высоком расходе нейтрализатора. Высокое содержание воды (~ 60%) в его составе и высокий расход на очистку приводят к увеличению содержания воды в обработанной нефти выше уровня современных требований и к необходимости дополнительного обезвоживания очищенной нефти.

Наиболее близким к предлагаемому изобретению является нейтрализатор сероводорода и меркаптанов в нефти и газоконденсате, представляющий собой 3-30%-ный раствор уротропина в смеси формальдегида, метанола и воды (в формалине) или в смеси водного аммиака и формалина. В преимущественном варианте использования известный нейтрализатор представляет собой 10-30%-ный раствор уротропина в формалине или раствор уротропина в смеси водного аммиака и формалина состава, %: формальдегид 20-30, уротропин 3-30, аммиак 0,5-6, метанол 3-10, вода 40-60 (пат. РФ №2269567, C10G 29/20, 2006 г.).

Однако указанные растворы уротропина обладают невысокой нейтрализующей способностью и, главное, являются нетехнологичными продуктами для практического применения в промысловых условиях из-за высокой температуры их застывания (от 0 до +25°С в зависимости от концентрации уротропина). Учитывая суровые климатические условия в большинстве нефтедобывающих регионах страны и, соответственно, жесткие требования нефтяной отрасли к химреагентам для нефтедобычи по температуре их застывания (не выше минус 35-40°С), требуется создание нового эффективного и технологичного нейтрализатора с низкой температурой застывания для промысловой очистки добываемых сероводородсодержащих нефтей до уровня современных требований (ГОСТ Р 51858-2002).

В основу настоящего изобретения положена задача создания на основе уротропина и формалина состава нейтрализатора, обладающего технологичностью (низкой температурой застывания) и высокой реакционной (нейтрализующей) способностью по отношению к сероводороду, легким меркаптанам и обеспечивающего эффективную их нейтрализацию при низких удельных расходах реагента-нейтрализатора.

Поставленная задача решается тем, что химический реагент-нейтрализатор сероводорода и/или легких меркаптанов в углеводородных средах, включающий уротропин, формалин и азотсодержащее основание, в качестве последнего он содержит моноэтаноламин и триэтаноламин, и дополнительно содержит параформальдегид или карбамидоформальдегидный концентрат (КФК) - продукт конденсации карбамида с газообразным (мономерным) формальдегидом в мольном соотношении 1:(4-6) при следующем соотношении компонентов, мас.%:

Уротропин 5-27
Моноэтаноламин 3-12
Триэтаноламин 1-15
Параформальдегид или карбамидоформальдегидный концентрат 5-35
Формалин Остальное

В преимущественном варианте выполнения изобретения предлагаемый нейтрализатор дополнительно содержит алифатический спирт и, необязательно, гидроксид и/или карбонат щелочного металла при следующем соотношении компонентов, мас.%:

Уротропин 5-26
Моноэтаноламин 3-10
Триэтаноламин 1-13
Параформальдегид или карбамидоформальдегидный концентрат 8-35
Алифатический спирт 3-20
Гидроксид и/или карбонат щелочного металла 0-1
Формалин Остальное

В качестве алифатического спирта предлагаемый нейтрализатор преимущественно содержит метанол, этанол и/или метанольно-альдегидную фракцию производства бутиловых спиртов, а в качестве гидроксида, карбоната щелочного металла - гидроксид натрия или калия.

Предлагаемые композиции в обычных условиях представляет собой однородную жидкость от бесцветного или светло-желтого до коричневого цвета плотностью в пределах 1,0-1,23 г/см3 и величиной показателя рН от 8 до 12 (в зависимости от содержания щелочного агента). Данное техническое решение позволяет получить по существу новую, более эффективную и всесезонную товарную форму реагента-нейтрализатора на основе уротропина и формалина с температурой застывания минус 35-40°С и ниже, пригодную для применения в промысловых условиях на нефтегазодобывающих предприятиях в регионах с суровыми климатическими условиями, причем в качестве реагента комплексного действия - нейтрализатора сероводорода и легких меркаптанов, бактерицида и ингибитора коррозии в сероводородсодержащих средах.

В качестве исходного сырья для приготовления предлагаемого нейтрализатора преимущественно используют технические уротропин (ГОСТ 1381), формалин (ГОСТ 1625 или ТУ 38.602-09-43-92), моноэтаноламин (ТУ 2423-159-00203335-2004), натр едкий (ГОСТ 2263 или ГОСТ 11078), триэтаноламин (ТУ 2423-168-00203335-2007), параформальдегид (ТУ 6-05-930-78 или ТУ 6-09-141-03-89), или карбамидоформальдегидный концентрат марки «КФК-80», «КФК-85» или «КФК-70» (ТУ 2181-032-00203803-2003 или ТУ 2494-002-52185836-2006 или ТУ 2223-009-00206492-2007, или ТУ У 24.1-33270581-014:2007), метанол (ГОСТ 2222) или метанольно-альдегидную фракцию (ТУ 2421-111-05766575-2003), являющуюся отходом производства бутиловых спиртов и имеющую состав, мас. %: метанол 69,7-76,4, масляные альдегиды 4,6-5,6, вода 1,2-3,4 и эфиры - остальное (пат. РФ №2278145, 2006 г.). Карбамидоформальдегидные концентраты вышеуказанных марок получают каталитическим окислением метанола в формальдегид с последующей абсорбцией формальдегида из контактных газов раствором карбамида. Они используются в качестве исходного сырья (полупродукта) для производства высококачественных и экологичных карбамидоформальдегидных смол (пат. РФ №№2297428, 2305685 и др.), а также в качестве антислеживающей добавки для обработки гранулированных азотных удобрений (карбамида). Для приготовления нейтрализатора может быть использован также карбамидоформальдегидный концентрат, модифицированный на стадии синтеза 1-15% уроновых соединений и содержащий 65-85% формальдегида и его соединений с карбамидом в мольном соотношении (4-6): 1 (пат. РФ №2136703, №2142965).

Выше указанные виды исходного сырья производятся в промышленных масштабах и являются доступными продуктами, т.е. с точки зрения обеспеченности исходным сырьем предлагаемый нейтрализатор является промышленно применимым.

Анализ отобранных в процессе поиска известных технических решений показал, что в науке и технике в данной области нет объекта, аналогичного по заявленной совокупности признаков и наличию свойств, что позволяет сделать вывод о соответствии его критериям «новизна» и «изобретательский уровень».

Для доказательства соответствия заявленного объекта критерию «промышленная применимость» ниже приведены конкретные примеры приготовления нейтрализатора (примеры 1-9) и его использования для очистки жидких и газообразных углеводородов от сероводорода и легких меркаптанов (примеры 10-18).

Пример 1. В емкость, снабженную механической мешалкой и капельной воронкой, загружают 48 г формалина и при перемешивании вводят 15 г триэтаноламина (ТЭА) и 7 г моноэтаноламина (МЭА), а затем 16 г уротропина и 14 г параформальдегида. Смесь перемешивают до полного растворения уротропина и параформальдегида. Полученную композицию используют в качестве нейтрализатора (пример 10).

Пример 2. К 46 г формалина при перемешивании вводят 10 г ТЭА, 10 г МЭА и 21 г уротропина, а затем - 13 г параформальдегида. Смесь перемешивают до полного растворения уротропина и параформальдегида.

Пример 3. К 60 г формалина при перемешивании вводят 10 г ТЭА, 4 г МЭА и 7 г уротропина, а затем - 9 г параформальдегида. Смесь перемешивают до полного растворения уротропина и параформальдегида.

Пример 4. К 50 г формалина при перемешивании вводят 8 г ТЭА и 5 г МЭА, а затем - 16 г уротропина. Смесь перемешивают до полного растворения уротропина, а затем добавляют 5 г этанола, 16 г параформальдегида и смесь перемешивают до полного растворения параформальдегида.

Пример 5. К 40 г формалина при перемешивании вводят 0,5 г едкого натра, 4 г ТЭА и 5 г МЭА, а затем - 5 г уротропина. Смесь перемешивают до полного растворения уротропина, а затем добавляют 20 г метанола и 25,5 г параформальдегида. Смесь дополнительно перемешивают до полного растворения параформальдегида.

Пример 6. К 55 г формалина при перемешивании вводят 12 г ТЭА и 3 г МЭА, а затем - 16 г уротропина. Смесь перемешивают до полного растворения уротропина, а затем добавляют 14 г КФК (марки «КФК - 80») и смесь дополнительно перемешивают до получения однородного продукта.

Пример 7. К 60 г формалина при перемешивании вводят 2 г ТЭА и 4 г МЭА, а затем - 26 г уротропина. Смесь перемешивают до полного растворения уротропина, а затем добавляют 8 г КФК и смесь дополнительно перемешивают до получения однородного продукта.

Пример 8. К 61 г формалина при перемешивании вводят 3 г ТЭА и 5 г МЭА, а затем - 21 г уротропина. Смесь перемешивают до полного растворения уротропина, а затем добавляют 10 г КФК и смесь дополнительно перемешивают до получения однородного продукта.

Пример 9. К 40 г формалина при перемешивании вводят 0,2 г едкого натра, 5 г МЭА и 4,8 г ТЭА, а затем - 5 г уротропина. Смесь перемешивают до полного растворения уротропина, а затем добавляют 35 г КФК, 10 г метанола и смесь перемешивают до получения однородного продукта.

Компонентный состав нейтрализаторов, полученных по примерам 1-9, приведен в таблице.

Полученные композиции испытывают на температуру застывания по стандартной методике (ГОСТ 20287). Результаты испытаний представлены в таблице. Здесь же для сравнения приведен результат испытания на температуру застывания известного нейтрализатора по прототипу.

Полученные композиции в нормальных условиях представляют собой однородные жидкости от светло-желтого до коричневого цвета с характерным запахом формальдегида, плотностью 1,06-1,18 г/см3 и температурой застывания ниже минус 35°С.

Пример 10. Использование нейтрализатора по примеру 1 для нейтрализации сероводорода и легких метил-, этилмеркаптанов в нефти. В реакционную колбу с мешалкой вводят 0,1 г нейтрализатора по примеру 1, затем загружают 100 мл высокосернистой карбоновой нефти, содержащей 0,0248 мас. % (248 ppm) сероводорода и 0,082 мас. % меркаптановой серы, в т.ч. 0,011 мас. % (110 ppm) легких метил-, этилмеркаптанов. Массовое соотношение нейтрализатор: сероводород + метил-, этилмеркаптаны в реакционной смеси составляет 3:1, т.е. удельный расход нейтрализатора (расходный коэффициент) составляет 3 г/г. Реакционную смесь перемешивают при температуре 50°С в течение 3 ч и после охлаждения проводят количественный анализ нефти на содержание остаточных сероводорода и легких меркаптанов. Степень очистки нефти от сероводорода составляет 99% и от легких метил-, этилмеркаптанов - 93%, т.е. предлагаемый нейтрализатор по примеру 1 обладает высокой реакционной способностью и при расходном коэффициенте 3 г/г обеспечивает эффективную нейтрализацию сероводорода и легких метил-, этилмеркаптанов, что позволяет получить товарную нефть, соответствующую нормам ГОСТ Р 51858-2002 по содержанию сероводорода и метил-, этилмеркаптанов.

Пример 11. Испытание нейтрализатора по примеру 2 на эффективность нейтрализации сероводорода и легких метил-, этилмеркаптанов в нефти проводят аналогично и в условиях примера 10, но при удельном расходе (расходном коэффициенте) нейтрализатора 2,6 г/г. Степень очистки нефти от сероводорода составляет 98% и от легких метил-, этилмеркаптанов - 92%, т.е. нейтрализатор по примеру 2 при расходном коэффициенте 2,6 г/г обеспечивает эффективную нейтрализацию сероводорода и легких меркаптанов и позволяет получить товарную нефть по ГОСТ Р 51858.

Пример 12. Испытание нейтрализатора по примеру 3 на эффективность нейтрализации сероводорода и легких метил-, этилмеркаптанов в нефти проводят аналогично и в условиях примера 10, но при удельном расходе нейтрализатора 2,5 г/г. Степень очистки нефти от сероводорода составляет 96% и от легких меркаптанов - 90%, т.е. нейтрализатор по примеру 3 при расходном коэффициенте 2,5 г/г обеспечивает эффективную нейтрализацию сероводорода и легких меркаптанов и позволяет получить товарную нефть по ГОСТ Р 51858.

Пример 13. Испытание нейтрализатора по примеру 5 на эффективность нейтрализации сероводорода и легких метил-, этилмеркаптанов в газоконденсате проводят аналогично и в условиях примера 10, но при температуре 40°С. Степень очистки газоконденсата от сероводорода составляет 97% и от легких меркаптанов - 88%, т.е. нейтрализатор по примеру 5 при расходном коэффициенте 3 г/г обеспечивает эффективную нейтрализацию сероводорода и легких меркаптанов в газоконденсате.

Пример 14. Испытание нейтрализатора по примеру 6 на эффективность нейтрализации сероводорода в мазуте проводят аналогично и в условиях примера 10, но при температуре 70°С. Степень очистки мазута от сероводорода составляет 100%, т.е. предлагаемый нейтрализатор обеспечивает эффективную очистку нефтепродуктов (мазута) от сероводорода.

Пример 15. Испытание нейтрализатора по примеру 7 на эффективность нейтрализации сероводорода и метил-, этилмеркаптанов в нефти проводят аналогично и в условиях примера 10, но при температуре 60°С. Степень очистки нефти от сероводорода составляет 98% и от легких меркаптанов - 94%, т.е. нейтрализатор по примеру 7 при расходном коэффициенте 3 г/г обеспечивает эффективную нейтрализацию сероводорода, легких меркаптанов и позволяет получить товарную нефть по ГОСТ Р 51858.

Пример 16. Испытание нейтрализатора по примеру 8 на эффективность нейтрализации сероводорода и метил-, этилмеркаптанов в нефти проводят аналогично и в условиях примера 10. Степень очистки нефти от сероводорода составляет 94% и от легких меркаптанов - 90%, т.е. нейтрализатор по примеру 8 при расходном коэффициенте 3 г/г обеспечивает эффективную нейтрализацию сероводорода, легких меркаптанов и позволяет получить товарную нефть по ГОСТ Р 51858.

Пример 17. Испытание нейтрализатора по примеру 9 на эффективность нейтрализации сероводорода и метил-, этилмеркаптанов в нефти проводят аналогично и в условиях примера 10. Степень очистки нефти от сероводорода составляет 95% и от легких меркаптанов - 90%, т.е. нейтрализатор по примеру 9 при расходном коэффициенте 3 г/г обеспечивает эффективную нейтрализацию сероводорода, легких меркаптанов и позволяет получить товарную нефть по ГОСТ Р 51858.

Пример 18. Использование нейтрализатора по примеру 4 для очистки нефтяного газа от сероводорода. В стеклянный насадочный абсорбер, заполненный кольцами Рашига, диаметром 20 мм и высотой 500 мм загружают 40 мл нейтрализатора по примеру 4. Затем при комнатной температуре и атмосферном давлении пропускают через абсорбер нефтяной газ, содержащий 2,5 об.% сероводорода и 2 об. % диоксида углерода. Отходящий с верха абсорбера очищенный газ пропускают через склянку Дрекселя с 10%-ным водным раствором едкого натра для поглощения остаточного сероводорода. По окончании опыта раствор щелочи анализируют на содержание сульфидной серы методом потенциометрического титрования и рассчитывают остаточную концентрацию сероводорода в очищенном газе и степень очистки газа. Степень очистки газа от сероводорода составляет 99,99%. При этом вспенивания нейтрализатора и образования твердых продуктов реакции не наблюдается. Следовательно, предлагаемый нейтрализатор пригоден для селективной очистки газа от сероводорода, поскольку содержащийся в нефтяном газе диоксид углерода практически не реагирует с применяемым нейтрализатором.

Сравнительный эксперимент показал, что при очистке нефтяного газа в условиях примера 18 с применением известного нейтрализатора (прототип) степень очистки газа от сероводорода составляет 89,6%, т.е. известный нейтрализатор обладает невысокой реакционной способностью и не обеспечивает эффективную очистку нефтяного газа от сероводорода. Сравнительный эксперимент также показал, что при очистке нефти, содержащей 248 ppm сероводорода и 110 ppm легких меркаптанов, аналогично и в условиях примера 10, но с применением известного нейтрализатора (прототип) при удельном расходе 3 г/г степень очистки нефти от сероводорода составляет 60% и от меркаптанов - 56%.

Из приведенных в таблице данных видно, что предлагаемый нейтрализатор, в отличие от известного, имеет низкую температуру застывания (минус 38-40°С и ниже), следовательно, обладает более высокой технологичностью и пригоден для применения в зимнее время в регионах с суровыми климатическими условиями. Представленные в примерах 10-18 данные показывают, что предлагаемый нейтрализатор обладает более высокой реакционной способностью по отношению к сероводороду и легким меркаптанам и обеспечивает эффективную их нейтрализацию в различных углеводородных средах при низких удельных расходах (при расходном коэффициенте 2,5-3 г/г).

Кроме того, согласно результатам испытаний на бактерицидное действие, предлагаемый нейтрализатор обладает достаточно высокой бактерицидной активностью к сульфатвосстанавливающим бактериям (СВБ) и, следовательно, может быть использован в качестве бактерицида для подавления роста СВБ в нефтепромысловых средах.

Таблица
Номер образца Компонентный состав*, мас. % Температура застывания, °С
Уротропин Формалин МЭА ТЭА Параформ КФК NaOH Спирт
1 16 48 7 15 14 - - - ниже минус 40
2 21 46 10 10 13 - - - минус 39
3 17 60 4 10 9 - - - минус 40
4 16 50 5 8 16 - - ЭС-5 минус 40
5 5 40 5 4 25,5 - 0,5 МС-20 ниже минус 40
6 16 55 3 12 - 14 - - ниже минус 40
7 26 60 4 2 - 8 - - минус 38
8 21 61 5 3 - 10 - - ниже минус 40
9 5 40 5 4,8 - 35 0,2 МС-10 минус 39
10 Прототип (16%-ный раствор уротропина в смеси водного аммиака и формалина) 0
* Примечание: МЭА - моноэтаноламин, ТЭА - триэтаноламин, ЭС - этиловый спирт, МС - метиловый спирт, параформ - параформальдегид, КФК - карбамидоформальдегидный концентрат.

1. Нейтрализатор сероводорода и/или легких меркаптанов, включающий уротропин, формалин и азотсодержащее основание, отличающийся тем, что в качестве последнего он содержит моноэтаноламин и триэтаноламин, и дополнительно содержит параформальдегид или карбамидоформальдегидный концентрат (КФК) -продукт конденсации карбамида с газообразным формальдегидом в мольном соотношении 1:(4-6) при следующем соотношении компонентов, маc.%:

Уротропин 5-27
Моноэтаноламин 3-12
Триэтаноламин 1-15
Параформальдегид или карбамидоформальдегидный концентрат 5-35
Формалин Остальное

2. Нейтрализатор по п.1, отличающийся тем, что он дополнительно содержит алифатический спирт и необязательно гидроксид и/или карбонат щелочного металла при следующем соотношении компонентов, мас.%:

Уротропин 5-26
Моноэтаноламин 3-10
Триэтаноламин 1-13
Параформальдегид или карбамидоформальдегидный концентрат 8-35
Алифатический спирт 3-20
Гидроксид и/или карбонат щелочного металла 0-1
Формалин Остальное

3. Нейтрализатор по п.2, отличающийся тем, что в качестве алифатического спирта он преимущественно содержит метанол, этанол и/или метанольно-альдегидную фракцию производства бутиловых спиртов.

www.findpatent.ru

Установка для удаления и нейтрализации сероводорода и меркаптанов из продукции нефтяных скважин

Изобретение относится к подготовке продукции нефтяных и газоконденсатных месторождений и может быть использовано преимущественно для удаления сероводорода и меркаптанов, содержащихся в нефти, газовом конденсате и нефтепродуктах с их последующей нейтрализацией. Изобретение касается установки для удаления и нейтрализации сероводорода и меркаптанов из продукции нефтяных скважин, включающей соединенные успокоительный коллектор, депульсатор, сепараторы, обогреваемый гидроциклон, конденсатор-холодильник, бензосепаратор с массообменной объемной насадкой, насосы откачки, соединенный с гидрозатвором резервуар и отходящую от резервуара линию вывода нефтепродукта, а также включающей линии подачи реагента в линию между гидроциклоном и резервуаром и в бензосепаратор, буферную емкость для отвода воды. Установка дополнительно содержит линию рециркуляции, которая проходит на участке после выхода продукции из резервуара, где данную продукцию направляют рециклом в гидроциклон и линию ввода реагента, который подают на участке между узлом учета конечной продукции и рециклом продукции, выходящей из резервуара. 1 ил.

 

Изобретение относится к нефтяной и газовой промышленности и может быть использовано в нефтедобыче и нефтепереработке для удаления сероводорода и меркаптанов, содержащихся в нефти, газовом конденсате и нефтепродуктах с их последующей нейтрализацией.

Известны технологические процессы для удаления сероводорода и меркаптанов из нефти и газа методами адсорбции твердым адсорбентом и абсорбции жидким абсорбентом (см. [1] с.90-91).

Для нейтрализации сероводорода используют различного рода установки (см. [1] с.103-120), содержащие абсорбер, емкость-каплеуловитель, конденсатор-холодильник, сепаратор, резервуар и насосы с трубопроводной обвязкой. В качестве нейтрализатора сероводорода и меркаптанов применяют щелочи (как правило, NaOH), подаваемые в щелочные емкости при температуре подготовки нефти.

Недостаток - недостаточно качественная очистка нефти от сероводорода и меркаптанов и их нейтрализация.

Наиболее близким техническим решением к предлагаемому изобретению является способ, описанный в [2], заключающийся в том, что выделение сероводорода и меркаптанов осуществляют путем непосредственного нагрева продукции нефтяных скважин в гидроциклоне до температуры 60°С, а выделенные газы вместе с парогазовой смесью обрабатывают избирательным по отношению к сероводороду и меркаптанам реагентом - водным раствором 1-гидрокси-2-[1,3-оксазетидин]-3-илэтана общей формулы C4H9O2N - при охлаждении при температуре не выше 15°С и сепарируют при давлении не менее 1,3 ати.

Установка для реализации способа, включающая успокоительный коллектор, депульсатор, сепараторы, гидроциклон, конденсатор-холодильник, бензосепаратор, насосы откачки, буферную емкость, резервуары, причем емкость очищенного продукта снабжена обогреваемым гидроциклоном с уменьшающимся углом конусности, а выход парогазовой линии из нее соединяется с бензосепаратором, снабженным массообменной объемной насадкой.

Цель изобретения - повышение эффективности очистки нефти от сероводорода и меркаптанов путем неоднократного гидроциклонирования и дополнительной нейтрализации продукции, содержащей сероводород и меркаптаны, реагентом.

Поставленная цель достигается тем, что установка дополнительно содержит линию рециркуляции, которая проходит на участке после выхода продукции из резервуара, где данную продукцию направляют рециклом в гидроциклон и линию ввода реагента, который подают на участке между узлом конечной продукции и рециклом продукции, выходящей из резервуара.

На чертеже приведена принципиальная схема предлагаемой установки.

Установка включает успокоительный коллектор 1, депульсатор 2, сепараторы 3 и 4, обогреваемый гидроциклон 5, накопительную емкость 6 (она же каплеуловитель), конденсатор-холодильник 7, бензосепаратор 8, насосы 9 и 12, резервуар 10, узел учета 11, буферную емкость 13, линию 14, соединяющую линию выхода продукта с входом гидроциклона, и линию 15 для подачи реагента в продукт.

Установка работает следующим образом.

Сероводород и меркаптаны содержащую продукцию нефтяных скважин, которая представляет из себя смесь нефти, воды и газа, направляют в успокоительный коллектор 1, в котором происходит снижение скорости движения этой продукции, и далее в депульсатор 2, где осуществляют предварительный отбор газа. Кроме того, в этом же депульсаторе осуществляют сброс воды. Нефть с остаточным газом, находящимся в свободном состоянии и распределенном в объеме жидкости, вводят в сепаратор первой ступени 3. Газ из сепаратора 3 объединяют с газовым потоком из депульсатора 2 и направляют на установку подготовки газа. В сепараторе 3 также осуществляют сброс остаточной воды в буферную емкость 13, из которой насосом 12 откачивают на кустовую насосную станцию для закачки в пласт. Перед вводом продукции скважин в сепаратор 4, как правило, вводят деэмульгатор - это может быть или ОП-7, или ОП-10, которые вводят для более эффективного отделения остаточного количества воды, в отдельных случаях вводят пресную воду с этой же целью. Промытую и подготовленную продукцию скважин направляют в процессор - гидроциклон специальной конструкции, обеспечивающий процесс гидроциклонирования продукции.

Непосредственный нагрев продукции в гидроциклоне до 60°С дает возможность удаления сероводорода и меркаптанов. Для улавливания капельной жидкости парогазовую смесь направляют в емкость-накопитель 6 и далее в конденсатор-холодильник 7. Стабильную продукцию скважин после удаления из нее некоторой части сероводорода и меркаптанов в результате гидроциклонирования откачивают насосом 9 и далее в резервуар 10 и узел учета, представляющий из себя установку, служащую для замера нефти, оборудованную счетчиками-расходомерами. В конденсаторе-холодильнике 7 тяжелые фракции легких углеводородов выделяются в виде конденсата и поступают вместе с другими газами в бензосепаратор 8, в котором происходит за счет гравитационных сил процесс отделения сероводорода и меркаптанов с сухими газами от жидкости и накопление сконденсировавшихся легких углеводородов в нижней части бензосепаратора 8. Как правило, после проведения процесса нейтрализации сероводорода и меркаптанов в продукции скважин остается некоторое их количество. Поэтому с целью практически полного удаления сероводорода и меркаптанов продукцию направляют на повторную рециркуляцию по линии 14 в гидроциклон 5, а до узла 11 по линии 15 вводят реагент.

Использование предлагаемого изобретения позволило практически полностью удалять сероводород и меркаптаны из продукции скважин.

Установка для удаления и нейтрализации сероводорода и меркаптанов из продукции нефтяных скважин, включающая соединенные успокоительный коллектор, депульсатор, сепараторы, обогреваемый гидроциклон, конденсатор-холодильник, бензосепаратор с массообменной объемной насадкой, насосы откачки, соединенный с гидрозатвором резервуар и отходящую от резервуара линию вывода нефтепродукта, а также включающая линии подачи реагента в линию между гидроциклоном и резервуаром и в бензосепаратор, буферную емкость для отвода воды, отличающаяся тем, что установка дополнительно содержит линию рециркуляции, которая проходит на участке после выхода продукции из резервуара, где данную продукцию направляют рециклом в гидроциклон и линию ввода реагента, который подают на участке между узлом учета конечной продукции и рециклом продукции, выходящей из резервуара.

www.findpatent.ru