Дизельное топливо очистят от серы новым методом. Очистка от серы нефти


Очистка нефти от серы | Аруан

Очистка нефти от серы

О том, что в отечественной нефти очень часто содержится высокий уровень серы, известно всем потребителям, занятым в нефтяной промышленности. Такая нефть не может считаться конкурентоспособной. Соответственно, перед производителями встает задача извлечения серы из нефти. Это в дальнейшем позволит обеспечить нефтепродуктам должное качество. Сегодня очистка нефти от серы производится посредством оборудования Аруан, которое предлагает компания «Союзинтеллект»

Чтобы очистить нефть, требуется удалить серные соединения органического характера. Такую работу осуществляют комплексные установки Аруан. В них применяется новейший способ очистки посредством струнного фильтра. Устройство представляет собой перевитый ультратонкой струной цилиндр. Промышленные фильтры Аруан эффективно избавляют нефть от серосодержащих добавок, задерживая фракции в 1 мк.

Фильтр работает в автоматическом режиме и очищается самостоятельно, не требуя дополнительного сервиса. Установки Аруан могут быть представлены в различных модификациях. Компактные и производительные, фильтры от «Союзинтеллект» доказывают свою эффективность на многих предприятиях нефтедобывающей и перерабатывающей промышленности. Изучите каталог и подберите нужную вам модель!

Схема работы очистительной системы Аруан

  • Больше

    Фильтры ультратонкой механической очистки.

    В фильтре встроены 4 степени очистки. Принцип рабы фильтра Аруан состоит в том, что в нём не нужно менять картриджей. Загрязнения не налипают на фильтрующий элемент, а сливаются в канализацию, тем самым вам не нужно менять картриджи. Срок службы фильтра 15 лет. При помощи тонкости фильтрации 1 микрон (одна тысячная миллиметра), активированного серебра и магнитного преобразователя, которые встроены в фильтр Аруан, вода очищает от бактерий, любых механических примесей; - ржавчины, торфа, глины, песка, железа, накипи, мутности, цветности, привкуса и др.

    Закрыть
  • Больше

    Система Озонации

    Система Озонации вырабатывает озон и кислород, которые проникает в камеру смешиваясь с водой. Происходит химическая реакция, после чего все растворенные тяжелые металлы; - литий, барий, фтор, цинк, железо выпадает в осадок и мгновенно преобразуются в ржавчину. Далее ржавчина очищается фильтром ультратонкой очистки « Аруан» или колонной с засыпками для железа. Так же система Озонации очищают хлор, газы сероводорода и аммиака, нитраты, бактерии, нормализует ph и овп среду.

    Закрыть
  • Больше

    Система электрохимической аэрации

    Обычная система аэрации вырабатывает кислород, который плохо влияет на железо. При помощи новых разработок Российских ученых, мы предлагаем вам новое поколение электрохимической аэрации. В чем его отличие? Он выдает атомарный кислород, а также при помощи электричества постоянный ток проникает в генераторы, которые дают мощные импульсы в воду, меняя их температуру, совместно с кислородом. Всё железо до 30 мг на литр из растворенного вида выпадает в осадок и сливается в канализацию. Тем самым наши технологии способны очищать воду от железа и тяжелых металлов. Так же система Аэрации « Аруан» способна очищать: - хлор, нитраты, нитриты бактерии, сероводород, аммиак.

    Закрыть
  • Больше

    Магнитные преобразователи воды

    Постоянные магнитные поля выделяются от полиградиентных высоко мощных магнитов. Срок службы фильтра составляет от 30 лет и не расходуется. При помощи фильтра вы можете очистить воду от накипи, жесткости, кальция, магния и солей жесткости. Вся сантехника, оборудование, нагревательные приборы, станки не будут зарастать накипью. Если до обработки жёсткость имеет вид под микроскопом как иголки - они легко прилипают на всю сантехнику, то после омагничивания в воде не проявляется накипь, а форма жесткости преобразовывается в форму шарообразного вида, которая не способна налипать как накипь на оборудования и сантехнике, так же вода смягчается и разрушает уже существующую накипь в трубопроводе. Вы можете сэкономить платежи на электроэнергию, так как повышение жёсткости приводит к тому, что нагревание воды требует больше затрат, вместо того что бы нагреть воду, тратиться много электричества, чтобы выработать накипь в воде. Без накипи расходы на электроэнергию сокращаются на 15 %.

    Закрыть
  • Больше

    Засыпные колонны – комплексная доочистка воды.

    Комплексные системы с 10 вариантами загрузок и разными модификациями. В колоннах применяются ряд химических элементов такие как: Ионообменная смола, гранулированный угольный сорбент, кремний, кварцевый песок, и другое, засыпка МВЖ и Birm для железа и тяжелых металлов. Засыпки необходимы для доочистки воды от химии, железа, накипи, бактерий, нефти продукции, газов и других загрязнений. Смеси в колоннах возможно регенерировать и восстанавливать их срок службы для дальнейшей вторичной эксплуатации.

    Закрыть
Каталог продукции Очистка нефти от серы

filtr-aruan.ru

Очистка нефти

Удаление серы из нефти — прибыльно и экологично

 

Проблема качества российской нефти — в сернистости. Топливо, произведенное из нефти с содержанием серы на уровне 3%, сильно загрязняет окружающую среду, выделяя при сгорании опасные для экосферы и жизни человека вещества. Нефтеперерабатывающие заводы тоже предпочитают низкосернистое сырье — оно меньше вредит технологическому оборудованию. Переработка очищенного сырья стоит дешевле, продукция из него дороже, а само предприятие увеличивает размер прибыли. Добиться экспортного качества нефти и нефтепродуктов можно только путем доочистки — удаления лишних примесей, в том числе серы.

 

Производственный кооператив научно-технических инноваций и инвестиций «Гарант» предлагает предприятиям услуги по очистке нефти от серы, парафина и соединений, которые не поддаются традиционным способам очистки.

 

Встроить в технологическую цепочку процесс очистки нефти и при этом реконструировать непрерывно действующее производство — удовольствие затратное. Но благодаря находкам российских ученых процесс обессеривания внедряется даже на малом предприятии без дополнительной реконструкции. Кооператив "Гарант" продвигает на российском рынке технологию очистки нефти и топлива без фильтров и реагентов, при низких энерго- и трудозатратах. Технологический комплекс по очистке нефти и водоподговке «Тритон» очищает до 100 тысяч нефти в год, потребляя минимум киловатт, и удаляет из сырья 45-90% примесей. С помощью этой установки подготовка нефти и нефтепродуктов превращается в доходный проект, а предприятие получает продукцию экспортного качества из нефтяного сырья Поволжья.

 

Технологический комплекс «Тритон»

 

  • снижает содержание серы в сырье до 0,6% и ниже;
  • очищает от серы, парафина и других соединений 100 тысяч тонн нефти в год;
  • потребляет в рабочем цикле до 3 кВт/час;
  • адаптируется к участкам техпроцесса без реконструкции предприятия;
  • дорабатывается индивидуально на промплощадке заказчика в соответствии с требованиями предприятия;
  • обслуживается квалифицированными специалистами весь срок эксплуатации.

 

Очистная установка компактна, поэтому внедряется даже на малых производствах. Энергоэффективный «Тритон» подойдет малоформатным НПЗ, сельскохозяйственным и автотранспортным предприятиям для повышения качества применяемого топлива. Срок окупаемости такой установки составляет 2-3 года. Запуская подобное энергоэффективное оборудование, предприятие заработает на нефти и топливе с содержанием серы менее 0,6% и серасодержащих продуктах, продавая другим предприятиям ля дальнейшей переработки.

 

Процесс внедрения "Тритона" в производство занимает 6-8 месяцев. В этот период разработчики установки обследуют предприятие, готовят документацию, изготавливают оборудование, монтируют его на промплощадке, выполняют пусконаладку.

 

Комплекс «Тритон» входит в базу инновационных проектов Самарской области, поддержанных Правительством Самарской области. Проект занял первое место в номинации «Энергоэффективные технологии» на международном конкурсе высокотехнологичных проектов Russian Startup Tour в 2015 году.

 

На стоимость нефти и нефтепродуктов влияет совершенство технологической подготовки сырья. Поэтому и гонку за качество и прибыль выигрывают предприятия, оперативно внедряющие новое продуктивное оборудование. Модернизируйте и вы промышленный объект с помощью энергоэффективной установки по очистке нефти «Тритон» и продавайте только высококачественные продукты!

investpk.ru

Каталитическая очистка нефтепродуктов от сернистых соединени

    КАТАЛИТИЧЕСКАЯ ОЧИСТКА НЕФТЕПРОДУКТОВ ОТ СЕРНИСТЫХ СОЕДИНЕНИЙ [c.254]

    Каталитическая очистка нефтепродуктов от сернистых соединений. Для каталитической очистки нефтепродуктов от сернистых соединений проводят гидрогенизацию. При этом сера, содержащаяся в жидких нефтепродуктах, выделяется в виде газообразного сероводорода. [c.214]

    Каталитическая гидроочистка - наиболее эффективный способ удаления из нефтепродуктов сернистых соединений всех топлив, однако мощности гидроочистки не всегда обеспечивают возможность очистки всех вырабатываемых на заводах топлив. Иногда целесообразна очистка топлив простыми по технологическому оформлению и дешевыми процессами селективной демеркаптанизации. Кроме того, остается неисследованным такой важный вопрос, как влияние глубины гидроочистки на эксплуатационные свойства топлив, особенно реактивных. Из опыта получения масел широко известно, что масла можно легко переочищать , удаляя из них наряду с вредными составляюш 1ми и природные антиокислители, что приводит к значительному ухудшению стабильности масел. Аналогичные опасения могут возникать и в отношении топлив, так как потребители склонны требовать от нефтепереработчиков наиболее полного удаления из топлив сернистых соединений. Поэтому нельзя оставить без внимания тот факт, что зарубежными стандартами предусматривается более высокое (до 0,3-0,4%), чем у нас (до 0,25%), содержание в реактивных топливах общей серы и допускается возможность введения в топлива антиокислителей и деактиваторов металлов. Установлено также, что дизельные топлива, содержащие 0,2-0,3% общей серы, при отсутствии в них меркаптанов, сероводорода и свободной серы в десятки раз стабильнее полностью обессеренных топлив. [c.152]

    В качестве реагентов для химической очистки нефтепродуктов был испробован целый ряд веществ, но лишь немногие из них выдержали испытание временем и нефтезаводской практикой. Наиболее прочно утвердились лишь серная кислота (предложенная для очистки нефтепродуктов еще в 1855 г. [1]), водные растворы щелочей и еще несколько веществ, применяемых для нейтрализации активных сернистых соединений. За последние годы в производстве смазочных масел сернокислотная очистка все больше вытесняется селективной и контактной очисткой. Для очистки более глубокой, чем та, которая достигается нри сернокислотном методе, был применен безводный хлористый алюминий. Гидрогенизационный метод очистки от серы и улучшения качества нефтепродуктов был разработан еще в 1930 г., однако широкое внедрение этого метода в промышленную практику началось примерно в 1955 г., когда появился доступный и дешевый водород с установок каталитического риформинга. [c.222]

    Существуют различные способы очистки нефтяных дистиллятов от сернистых соединений. Среди них широкое применение нашла каталитическая гидроочистка и экстракция сернистых соединений из нефтепродуктов различными экстрагентами. В случае необходимости очистки топлив только от меркаптанов в основном используют способы окислительной демеркаптанизации. [c.10]

    Издавна были известны вредные свойства сернистых соединений как в процессе выработки нефтепродуктов, так и в процессе их использования. Сернистые соединения вызывают интенсивную коррозию аппаратуры, ухудшают условия труда обслуживающего персонала. В связи с этим сернистые нефтепродукты необходимо подвергать дополнительной очистке. Особенно остро стоит этот вопрос при переработке высокосернистых нефтей. Вакуумный газойль, полученный из таких нефтей и используемый в основном в качестве сырья каталитического крекинга, содержит до 3,5 вес. % серы. Поэтому изучение влияния сернистых соединений на результаты процесса представляет несомненный интерес. [c.125]

    Внедрение на НПЗ гидроочистки, гидрокрекинга, каталитического риформинга и других процессов, способствующих существенному улучшению качества нефтепродуктов, особенно вторичного происхождения (прежде всего коксовых дистиллятов, полученных на основе сернистых и высокосернистых нефтей), требует большого расхода водорода. Кроме того, очистка иа НПЗ нефтепродуктов от сернистых соединений обусловливает одновременно н утилизацию последних с получением серы и серной кислоты. Внедрение в схему современного НПЗ блока коксования с облагораживанием получаемого при этом кокса позволяет добиться следующих результатов. [c.285]

    Таким образом, при выборе технологической схемы переработки сернистой или высокосернистой нефти необходимо тщательно изучать распределение серы по продуктам, получаемым в результате термических и каталитических процессов, и исследовать химическую природу соединений серы. Превращение большего количества общей серы, находящейся в нефти, в НаЗ облегчает задачу очистки нефтепродуктов, так как процессы такой очистки хорошо отработаны. Для удаления из продуктов сернистых соединений, термически более стойких, чем сероводород, требуется глубокая и сложная очистка с применением катализаторов и водорода (гидроочистка). В зависимости от термостойкости серы, содержащейся в нефти, ее распределения по продуктам решаются и вопросы предотвращения коррозии, выбор оборудования и аппаратуры для процессов переработки как самой нефти, так и ее дистиллятных продуктов. [c.27]

    Сернистые соединения. Присутствие серы в нефтях крайне нежелательно. Несмотря на то что содержащие серу соединения нефтей до настоящего времени не нашли практического применения, эти соединения постоянно привлекают внимание специалистов. Дело в том, что сернистые соединения, независимо от того, к какому классу они принадлежат, являются сильнейшими каталитическими ядами и, кроме того, активно корродируют металлическую аппаратуру, нефтепроводы, придают нефтям неприятный запах. Катализаторы, применяемые в различных вариантах каталитического крекинга, риформинга и других процессах нефтепереработки, а также катализаторы, используемые для полимеризации олефинов, быстро выводятся из строя сернистыми соединениями. Все это приводит к необходимости разрабатывать методы очистки нефти и нефтепродуктов от соединений серы — методы обессеривания. [c.98]

    Для очистки светлых нефтепродуктов применяются химические методы удаления нежелательных примесей различными реагентами (серной кислотой, щелочами), физико-химические методы (адсорбция глинами, селективное растворение), а также каталитические методы обработки. Кроме того, для очистки газов и жидких продуктов от сернистых соединений существуют различные специальные методы. Переходим к рассмотрению отдельных способов очистки. [c.353]

    Каталитические методы очистки. Вторичная обработка нефтепродуктов в присутствии катализаторов проводится для облагораживания, т. е. улучшения качества этих продуктов. Однако главная задача большинства этих процессов — обессеривание топлив и масел путем превращения сернистых соединений в углеводороды и сероводород.  [c.252]

    Поршневые компрессоры применяются в нефтеперерабатывающей промышленности для сжатия и циркуляции водородосодержащих газов в процессах очистки нефтяных продуктов от сернистых соединений и в процессах каталитического реформинга легких нефтепродуктов для получения высокооктанового бензина и ароматических углеводородов (бензола, толуола и др.). Вместе с тем широко применяются компрессоры в установках для разделения и очистки углеводородных газов, а также для улавливания газового бензина из попутных газов, выделяющихся при добыче нефти. [c.7]

    Каталитический крекинг тяжелых фракций нефти. Наиболее часто крекингу подвергают фракции нефти, конденсирующиеся при 300—500 °С. Первичная переработка нефти состоит в очистке ее от солей и воды, испарении основных фракций в трубчатых печах и разделении на фракции в ректификационных колоннах. Широко применяемый в крекинге алюмосиликатный катализатор (см. стр. 105) отравляется примесями, которые могут находиться в крекируемом нефтепродукте. Сильное, но обратимое отравление алюмосиликатного катализатора происходит при наличии в сырье азотистых соединений. Необратимо отравляется катализатор соединениями щелочных металлов. Снижают активность катализатора соединения никеля, железа, ванадия и других тяжелых металлов. Для крекинга применяют дистилляты нефти, не содержащей значительных количеств катализаторных ядов, или же очищают нефть (или крекируемый дистиллят) от сернистых и азотистых соединений гидрированием. [c.17]

    Нефтепродукты обычно содержат заметное количество сероорганических соединений. При химической переработке таких продуктов в водород методом каталитической конверсии с водяным паром требуется предварительная их очистка от серы, которая способна отравлять катализаторы и загрязнять целевые продукты. Использование сернистого нефтяного топлива приводит к загрязнению атмосферы. В связи с этим в некоторых странах осуществляется очистка не только бензинов, но и мазута, используемого в качестве котельного топлива [1]. [c.151]

    Переработка сернистых и высокосернистых нефтей, особенно если они содержат большое количество солей, сопряжена с интенсивной коррозией оборудования. Для предупреждения коррозии приходится прибегать к использованию дорогостоящего оборудования из легированных сталей и обеспечивать поступление на переработку обессоленной и обезвоженной нефти. Эти меры связаны с большими затратами. Поэтому для выработки высококачественных товарных нефтепродуктов дистилляты, получаемые при первичной переработке нефти, а иногда и остаточные продукты подвергают специальной очистке с применением вторичных процессов (выше уже рассматривались каталитический крекинг и каталитический риформинг). Максимальное же снижение содержания серы в нефтепродуктах достигается в результате гидрогенизационных процессов снижается содержание не только сернистых, но и азотистых и других агрессивных соединений. [c.246]

    Как было указано выше, каталитическая гидроочистка - наиболее эффективный способ удаления из нефтепродуктов сернистых соединений всех типов. Однако процесс гидроочистки требует высоких капитальных и эксплуатационных затрат, и мощности по гидроочистке на НПЗ не всегда обеспечивают очистку всех вырабатываемых на заводах топлив. В ряде случаев выгодна очистка топлив простыми по технологическому оформлению и дешевыми процессами селективной демеркаптанизации. Нельзя оставить без внимания и тот факт, что зарубежными стандартами предусматривается более высокое (до 0,3-0,4 %), чем у нас (до 0,2 %) содержание в реактивных топливах общей серы и допускается возможность введения в топливо антиокислителей и деактнваторов металлов. Установлено, что дизельные топлива, содержащие 0,2-0,3 % общей серы, при отсутствии в них меркаптанов, сероводорода и свободной серы в десятки раз стабильнее полностью обессеренных топлив [1]. [c.19]

    Каталитическая очистка. Для повышения качества нефтепродуктов, полученных при первичной перегонке и вторичных процессах, применяют каталитическую очистку. В промышленной практике распространены следующие методы очистки в присутствии катализаторов а) очистка от сернистых соединений под давлением водорода в присутствии алюмокобальт-молибденовых или алюмоникельмолнбденовых катализаторов (гидроочистка) б) очистка от непредельных углеводородов с помощью алюмосиликатов в) очистка от сернистых соединений с помощью природных бокситов и алюмосиликатных катализаторов г) каталитическая демеркаптанизация (процесс Мерокс). [c.383]

    Поршневые компрессоры применяются в ие( зтедобывающей н в нефте-перерабатываюш,ей промышленностп для сжатия и циркуля[1,ии водородо-содержаш,их газов в процессах очистки нефтяных продуктов от сернистых соединений, а также в процессах каталитического реформинга легких нефтепродуктов для получения высокооктанового бензина и ароматических углеводородов (бензола, толуола и др.). [c.8]

    Сернистые соединения можно удалять из топлив при помощи селективных растворителей и твердыми адсорбентами. При очистке необходимо учитывать, что во время удаления неразрушенных сернистых соединений различными реагентами (серной кислотой, селективными растворителями, адсорбентами и т. п.) происходят большие потери углеводородной части нефтепродуктов. Наиболее эффективный метод очистки топлив от сернистых соединений — каталитическое гидрирование. При гидроочистке сернистые соединения разрушаются водородом в присутствии катализатора с образованием углеводородов и сероводорода. Большая часть сероводорода удаляется из топлива при перегонке, а остатки его — после щелочной (этаноламинной или фенолятной) очистки. При гидроочистке удаляются кислородные и азотистые соединения. При этом образуются углеводороды, вода и аммиак. [c.123]

    При очистке светлых нефтепродуктов, составляющих обширную группу топлив (к НИМ относятся бензины, керосины, топлива для реактивных двигателей и дизельные топлива), должны быть удалены химические соединения, вызывающие коррозию металлов, нагарообразование на деталях двигателей и детонацию. Светлые нефтепродукты, получаемые в процессах деструктивной переработки нефти (термического и каталитического крекинга), необходимо, кроме того, подвергать химической -стабилизации, чтобы обеспечить возможность, их длительного хранения без потери качества. Для этого из них удалякд сернистые соединения, олефиновые углево-дороды, збыток ароматических углеводородов и смолы. [c.13]

    При каталитической очистке в значительной степени нефтепродукты обессериваются меркаптаны, сульфиды и дисульфиды разлагаются с выделением сероводорода частично происходит полимеризация сернистых соединений. В качестве обессеривающего агента наиболее известны бокситы. [c.283]

    Бензины каталитического крекинга гидроочищеннОго сырья не требуют дополнительной очистки. Бензины каталитического крекинга негидроочищенных газойлей целесообразно гидро-очищать, так как они содержат значительное количество сернистых соединений и нестабильных к окислению непредельных углеводородов, в том числе диолефинов. Условия гвд о-очистки вторичных бензинов отличны от условий гидроочистки других нефтепродуктов - они должны обеспечивать максимальное обессериваиие при минимальном снижёнии октанового числа. Поэтому бензины каталитического крекинга гидрируют при сравнительно низких температурах - до 340-350 °С, [c.10]

    Известно много различных процессов, применяемых для обессеривания нефтепродуктов. В начальный период развития нефтеперерабатывающей промышленности бензиновые дистиллаты обычно подвергались сернокислотной или докторской очисткам и последующей вторичной перегонке. Затем эти процессы были заменены щелочной очисткой. Однако известно, что щелочная очистка не удаляет полностью все сераорганические соединения и эффективна только в случае содержания в очищаемом продукте меркаптанов и сероводорода. Ряд сераорганических соединений, содержащихся в бензинах сульфиды, дисульфиды и тисфены — не затрагиваются щелочью [1]. Эффективность щелочной очистки может быть значительно повышена добавками, в качестве которых могут быть применены, например, ингибиторы крекинг-бензинов [2], но и в этом случае не достигается требуемая полнота удаления сераорганических соединений. Наиболее полное удаление сераорганических соединений из нефтяных дистиллатов может быть достигнуто применением процессов автогидроочистки, гидроочистки и каталитической очистки. Большинство итальянских заводов, работающих на средневосточных сернистых нефтях, обеспечивает высокое качество продуктов прямой перегонки применением каталитической очистки [3]. Методы [c.259]

    Как показано ранее, нефть представляет С06011 сложную смесь парафиновых, нафтеновых и ароматических углеводородов, различных по молекулярному весу и температуре кипения. Кроме того, в нефти содержатся сернистые, кислородные и азотистые органические соединения. Для производства многочисленных продуктов различного назначения и со специфическими свойствами применяют методы разделения нефти на фракции и группы углеводородов, а также изменения ее химического состава. Различают первичные и вторичные методы переработки нефти. К первичным относят процессы разделения нефти на фракции, когда используются ее потенциальные возможности по ассортименту, количеству и качеству получаемых продуктов и полупродуктов. Ко вторичным методам относят процессы деструктивной переработки нефти и очистки нефтепродуктов. Процессы деструктивной переработки нефти предназначены для изменения ее химического состава путем термического и каталитического воздействия. При помощи этих методов удается получить нефтепродукты заданного качества и в больших количествах, при прямой перегонке нефти. [c.198]

    В последние годы особое внимание было обращено на подготовку сырья каталитического крекинга при помощи гидрогенизациопной очистки 122 — 33]. Это стало возможным в результате появления дешевого побочного водорода с установок каталитического риформинга. В результате гидроочистки в нефтепродуктах значительно снижается содержание сернистых и азотистых соединений, смолистых веществ и металлоргапическпх соединений. Поэтому ири каталитическом крекинге сырья, подвергнутого гпдроочистке, выход, бензина и легкого каталитического газойля повышается, а выход кокса и тяжелого каталитического газойля значительно снижается. Кроме того, в результате уменьшения содержания в сырье тяжелых металлов уменьшается необратимое отравление ими катализаторов крекинга. Из других положительных сторон предварительной гидроочистки сырья каталитического крекинга следует отметить следующие  [c.78]

chem21.info

Дизельное топливо очистят от серы новым методом – ПРИРОДА ВЕЛИКИЙ ГЕНИЙ!

В развитых странах лидером среди загрязняющих атмосферу промышленных газов является диоксид серы, или сернистый газ. Мало того, что он весьма токсичен сам по себе, он еще и хорошо растворяется в воде с образованием сернистой кислоты, что, во-первых, приводит к так называемым кислотным дождям, а во-вторых, вызывает интенсивную коррозию оборудования, в котором происходит сжигание топлива.Поэтому многие научные институты активно работают над созданием новых, более совершенных и дешевых методов очистки ископаемых энергоносителей от серы. Насколько актуальна эта проблематика, хорошо видно на примере дизельного топлива для автомобилей. Сегодня оно почти на четверть дешевле бензина, однако уже через 3 года, когда в Европе вступят в силу новые, значительно более жесткие требования к содержанию в нем вредных примесей, в том числе серы, ситуация может разом измениться, поскольку соблюдение этих показателей потребует очень больших расходов. Впрочем, уже и сегодняшние методы очистки дизельного топлива обходятся недешево. Профессор Андреас Йесс, сотрудник кафедры химической технологии Байрейтского университета, поясняет:

– Для этого применяется метод гидрогенизации. Сера вступает в реакцию с водородом, образуя сероводород, газ, который легко может быть удален. Как правило, потом из него получают чистую серу, которая снова используется в химическом производстве. Такая технология требует рабочей температуры 350°С и давления водорода около 50 бар – это в 30 раз выше, чем в автомобильной шине. То есть тут расходуется много энергии, много водорода, и все это функционирует лишь в больших реакторах в присутствии соответствующих катализаторов…

Такой метод позволяет извлекать до 90% содержащейся в нефти серы. Для того же, чтобы довести этот показатель до 99% – а именно такая цифра фигурирует в европейских нормативах, которые вскоре вступят в силу, – потребуются несравненно более высокие расходы. Профессор Йесс разработал более простой, экологичный и в перспективе более дешевый метод очистки дизельного топлива от серы. При этом предложено использовать так называемые ионные жидкости:- Типичным примером ионного соединения может служить поваренная соль – NaCl. Она состоит из положительно заряженного иона натрия и отрицательно заряженного иона хлора. Прочная связь между ионами приводит к тому, что соль плавится лишь при температуре около 800° – это типично для ионных соединений. Однако можно специально подобрать такие пары ионов – это могут быть довольно сложные молекулы, – чтобы полученное соединение находилось уже при комнатной температуре в жидком состоянии.То есть речь идет о низкотемпературных расплавах солей, выполняющих функцию растворителя. Все, что имеет сходную структуру, например сернистые соединения в дизельном топливе, растворяется в этой среде. Профессор Йесс поясняет:

– В принципе такую ионную жидкость добавляют к дизельному топливу, затем все это интенсивно перемешивают и получают эмульсию – дисперсную систему, состоящую из двух жидких фаз, поскольку дизельное топливо на самом деле не смешивается с ионной жидкостью. Одна фаза – это дизельное топливо с пониженным содержанием серы, а другая – ионная жидкость, которая в силу своей химической структуры способна воспринять большое количество сернистых соединений. То есть ионная жидкость оказывается насыщена серой, а топливо, напротив, обеднено. Такую процедуру можно повторять многократно, каждый раз добавляя к частично очищенному топливу свежую порцию ионной жидкости, которая будет поглощать остатки серы, обеспечивая все более и более высокую степень очистки.Такая технология именуется экстракцией, что означает извлечение одного компонента из смеси компонентов.

Экстракционный метод используется, например, при производстве декофеинированного кофе, правда, технология декофеинизации предусматривает применение в качестве растворителей более простых соединений, например воды или двуокиси углерода. Но вернемся к дизельному топливу. Чтобы получить степень очистки, отвечающую будущим строгим нормам, ионную жидкость достаточно добавить к топливу 6-7 раз. К достоинствам метода относится и то, что насыщенная серой ионная жидкость сама поддается регенерации. Профессор Йесс говорит:- Сернистые соединения могут быть извлечены из ионной жидкости посредством дистилляции. В конечном счете остается концентрированный раствор, из которого классическими методами можно получить чистую серу. А она, в свою очередь, является ценным сырьем в химической промышленности, например для производства серной кислоты.

Сегодня профессор Йесс занят оптимизацией своей технологии. Специалисты полагают, что вскоре начнется ее внедрение на нефтеперегонных заводах и что уже в ближайшем будущем она потеснит традиционную гидрогенизацию.

 

Владимир ФРАДКИН, “Немецкая волна”

biogeniy.ru

Способ очистки жидких углеводородов от серы и установка для его осуществления

Использование: в нефтехимической промышленности в процессе обработки жидких углеводородов, в частности нефти и ее продуктов, для очистки от серы. Сущность: жидкие углеводороды подогревают до температуры не более 70°С, затем эмульгируют и подвергают воздействию высоковольтными - напряжением не более 30 кВ, частотой не более 30 Гц, длительностью не более 0,05 мкс и низковольтными - напряжением не более 16 В электрическими импульсами, а очищенные углеводороды и полученную в результате очистки серную кислоту сливают. Установка для очистки жидких углеводородов от серы содержит емкость для обработки жидких углеводородов с системой их подвода и отвода, устройство подогрева жидких углеводородов и возбудитель электромагнитных импульсов, связанный с емкостью для обработки. Возбудитель электромагнитных импульсов представляет собой два генератора однополярных импульсов: высоковольтный с напряжением не более 30 кВ и низковольтный с напряжением не более 16 В. Емкость для обработки представляет собой электролитическую ячейку, разделенную ионопроводящей мембраной на верхнюю камеру очистки жидких углеводородов от серы, содержащую две металлические сетки, и нижнюю камеру сбора удаленной серы в виде серной кислоты и снабженную металлическим электродом. Технический результат - повышение степени очистки нефти и нефтепродуктов, упрощение технологии и конструкции. 2 н.п. ф-лы, 1 ил.

 

Одним из основных показателей нефти, подготавливаемой к дальнейшей транспортировке и переработке, является содержание в ней общей серы. В настоящее время доля добычи высокосернистых нефтей с содержанием серы 3 мас.% и выше достаточно высока. Переработка таких нефтей связана с определенными трудностями и необходимостью либо предварительного ее обессеривания, либо гидроочистки фракций, получаемых при ее переработке. Потребители не заинтересованы в приобретении нефти с высоким содержанием серы, так как это связано с дополнительными затратами при ее переработке.

На сегодняшний день существует множество методов удаления из нефти сероводорода и меркаптанов, но нет ни одного метода селективного удаления общей серы из нефти до ее переработки, который бы с успехом применялся в промышленных масштабах. Интерес исследователей к данной проблеме высок, однако она проработана недостаточно хорошо: каких-либо высокоэффективных методов обессеривания нефти помимо глубокой ее переработки не известно.

В настоящее время существует несколько изобретений, имеющих отношение к исследуемой теме, в них разработаны методы снижения содержания серы в нефти различными методами (физическими и химическими). При этом решаются задачи проведения наиболее эффективного режима обессеривания путем подбора оптимальных условий процесса.

Предлагаемое изобретение относится к средствам обработки жидких углеводородов, в частности нефти и ее продуктов, для их очистки от серы, использования в нефтехимической промышленности. Предлагаемый способ очистки жидких углеводородов от серы заключается в том, что жидкие углеводороды, в частности нефть и ее продукты, перед обработкой подогревают до температуры не более 70°С для увеличения текучести, затем эмульгируют и подвергают одновременному воздействию высоковольтными (напряжением не более 30 кВ, частотой не более 30 Гц, длительностью не более 0,05 мкс) и низковольтными (напряжением не более 16 В) электрическими импульсами, а очищенные углеводороды и полученную в результате очистки серную кислоту сливают.

Наиболее близкими аналогом - прототипом - является способ очистки жидких углеводородов от серы и установка для его осуществления (патент RU №2235114 С1, 14.04.2003, 7 С10G 32/02, В03С 1/005), в котором жидкие углеводороды подогревают до 50°С, затем их подвергают воздействию однополярных электромагнитных импульсов мощностью более 1 МВт, длительностью не менее 1 нс и частотой повторения не менее 1 кГц, в процессе чего происходит импульсный радиолиз жидкости, в которой за счет подогрева значительно уменьшается вязкость и образуются активные реагенты - сольватированные электроны, вызывающие отщепление атомов водорода от молекул углеводородов, что при взаимодействии с нефтью приводит к окислительно-восстановительным реакциям, распаду серосодержащих соединений и выпадению в осадок смол. Затем нефть отстаивают до выпадения осадка и охлаждения. Недостатками способа можно считать его высокую энергозатратность и небольшое уменьшение массовой доли серы в нефти.

В предлагаемом изобретении способ очистки нефти и ее продуктов от серы является гораздо менее затратным, простым технологически и конструкционно, а также позволяет получить готовый продукт - серную кислоту, которую можно использовать в промышленных целях.

Сущность предлагаемого изобретения поясняется чертежом, на котором представлена конструкция установки для очистки жидких углеводородов от серы.

Представленная установка состоит из герметично собранных частей секционного корпуса, выполненных из электроизоляционных и химически стойких материалов. Основой конструкции является электролитическая ячейка с ионопроводящей мембраной, разделяющей ячейку на нижнюю концентрационную камеру 1, которая является сборником удаленной серы и снабжена металлическим электродом (анод), и верхнюю камеру очистки жидких углеводородов от серы 2, которая снабжена двумя нержавеющими сетками, одна из которых является катодом (в), а вторая - электрически нейтральная и является концентратором свободных водородных ионов (с).

Верхняя камера обеспечивается высоковольтным импульсным электрическим полем через дополнительный изолированный электрод (е) и внешней системой электромагнитного излучателя, представляющего собой высоковольтный генератор однополярных импульсов 9 напряжением не менее 30 кВ, частотой не более 30 Гц, длительностью не более 0,05 мкс.

В нижнюю камеру 1 перед началом работы заливается электролит, которым может служить 5% раствор мочевины СО(Nh3)2 или слабый раствор серной кислоты.

Выводы электродов верхней камеры (в) и нижней камеры (а) соединены с низковольтным генератором однополярных импульсов 10 напряжением не более 16 В.

Обе камеры 1 и 2 имеют входные 13, 15 и выходные 14, 16 патрубки, обеспечивающие проток жидких углеводородов (нефти и ее продуктов) через верхнюю камеру и циркуляцию электролита в нижней камере.

Установка обеспечивается эмульгатором 4, насосом 5 для прокачки нефти и ее продуктов из резервуара 6 и нагревателем 8 для их подогрева с целью увеличения текучести, а также циркуляционным насосом 7 низкой производительности для нижней камеры 1. Предусматривается также емкость для слива серной кислоты 12 из нижней камеры 1 и резервуар 11 для очищенной нефти и ее продуктов.

Работа предлагаемой установки осуществляется следующим образом. Жидкие углеводороды (нефти и ее продукты) из резервуара 6 нагреваются до температуры не более 70°С, затем посредством насоса 5 подаются в эмульгатор 4, затем поступают в верхнюю камеру 2 установки через патрубок 13. Эмульгированная нефть и ее продукты в камере 2 подвергаются воздействию импульсного электрического тока. При этом к верхней сетке электрода (b) устремляется атомарный водород, полученный за счет ионизации воды эмульгатора 4, а в момент отсутствия импульса он устремляется к нижней металлической сетке (с) по природе сродства водорода к железу. Одновременно происходит замещение интерметаллических соединений серы обрабатываемых нефти и ее продуктов на водород с образованием серной кислоты, которая при очередном импульсе тока диссоциируется с переходом аниона SO4 через ионообменную мембрану (d) к аноду нижней камеры (а). Таким образом увеличивается концентрация серных соединений в камере 1.

Импульсное электрическое поле в верхней камере 2, действующее в момент отсутствия импульса на основных электродах, образуется за счет заряда-разряда конденсатора, одним из полюсов которого является металлических электрод нижней камеры (а), а второй полюс изолированно расположен над верхней камерой (е), и способствует вытягиванию диполей электролита, что, в свою очередь, увеличивает скорость движения ионов водорода, способных к соединению с серой.

Очищенная нефть и ее продукты через выходной патрубок верхней камеры 14 поступает в резервуар 11. Концентрированная серная кислота из нижней камеры через выходной патрубок 16 поступает в емкость для слива 12.

Предлагаемое изобретение позволяет производить полную очистку нефти и ее продуктов от серы, получить в процессе очистки готовый продукт - серную кислоту, а также способствует упрощению технологии и конструкции с повышением производительности процесса.

Обработка дизельного топлива и мазута на нефтебазах г.Уфы позволила уменьшить содержание серы в два раза (дизтопливо - с 0,4 до 0,2%, мазут - с 2 до 1%).

1. Способ очистки жидких углеводородов от серы, заключающийся в том, что жидкие углеводороды, в частности нефть и ее продукты, подогревают, затем подвергают воздействию электромагнитных импульсов, отличающийся тем, что жидкие углеводороды подогревают до температуры не более 70°С, затем эмульгируют и подвергают воздействию высоковольтными - напряжением не более 30 кВ, частотой не более 30 Гц, длительностью не более 0,05 мкс и низковольтными - напряжением не более 16 В электрическими импульсами, а очищенные углеводороды и полученную в результате очистки серную кислоту сливают.

2. Установка для очистки жидких углеводородов от серы, содержащая емкость для обработки жидких углеводородов с системой их подвода и отвода, устройство подогрева жидких углеводородов и возбудитель электромагнитных импульсов, связанный с емкостью для обработки, отличающаяся тем, что возбудитель электромагнитных импульсов представляет собой два генератора однополярных импульсов: высоковольтный с напряжением не более 30 кВ, и низковольтный с напряжением не более 16 В, емкость для обработки представляет собой электролитическую ячейку, разделенную ионопроводящей мембраной на верхнюю камеру очистки жидких углеводородов от серы, содержащую две металлические сетки, и нижнюю камеру сбора удаленной серы в виде серной кислоты и снабженную металлическим электродом.

www.findpatent.ru

Способ очистки нефтепродуктов от примесей серы

Изобретение относится к способам очистки нефтепродуктов (сырая нефть, керосиновая и дизельная и др. фракции) от примесей серы, в частности к способам очистки с применением адсорбентов, и может быть использовано в нефтедобывающей, нефтеперерабатывающей и нефтехимической промышленности. Способ очистки нефтепродуктов от примесей серы, включающий проведение процесса очистки в центробежном поле вращающегося ротора-барабана путем совместного вращения в нем дисперсионной смеси адсорбента и исходных нефтепродуктов при массовом соотношении адсорбента и нефтепродуктов (1,5-2,0):1,0 в роторе-барабане. Процесс очистки продуктов от примесей серы проводят в центробежном поле путем совместного вращения дисперсионной смеси адсорбента и исходных нефтепродуктов в роторе-барабане, при наложении на дисперсионную смесь адсорбента и нефтепродуктов вертикального электрического поля напряженностью Е=1000-15000 В/м, при непрерывном поступлении во вращающийся ротор-барабан адсорбента и нефтепродуктов в указанном массовом соотношении. Число оборотов ротора-барабана равно 60-2500 об/мин. Дисперсионную смесь адсорбента и нефтепродуктов непрерывно сливают через внешнюю сторону ротора-барабана в емкость, из которой дисперсионная смесь идет на выделение нефтепродуктов от адсорбента. Очищенные нефтепродукты направляются потребителю, сорбент - на регенерацию и на повторное применение в очистке нефтепродуктов от примесей серы. Время выдержки поперечного слоя дисперсионной смеси сорбента и нефтепродуктов, двигающегося от центра к периферии ротора-барабана, составляет 10-30 минут. В случаях, когда электропроводность нефтепродуктов более чем на порядок меньше электропроводности природной воды, составляют дисперсионную смесь адсорбента, мелкодисперсного электропроводящего порошка и нефтепродуктов в массовом их соотношении соответственно (1,0-2,0):(0,1-1,0):1,0, процесс очистки нефтепродуктов от примесей серы проводят в центробежном поле путем совместного вращения нефтепродуктов в роторе-барабане и смеси адсорбента, мелкодисперсного электропроводящего порошка. Использованный в процессе очистки электропроводящий порошок вместе с регенерированным сорбентом идут на повторное их применение в процессе очистки нефтепродуктов от примесей серы. Технический результат изобретения - увеличение производительности способа очистки нефтепродуктов от примесей серы, положительное решение проблемы непрерывной очистки сырой нефти непосредственно после ее добычи, проблемы непрерывной очистки керосиновой и дизельной фракции от примесей серы в производственных условиях, удешевление процесса очистки от примесей серы. 2 з.п. ф-лы, 2 ил.

Изобретение относится к способам очистки нефтепродуктов (сырая нефть, керосиновая и дизельная и др. фракции) от примесей серы, в частности к способам очистки с применением адсорбентов, и может быть использовано в нефтедобывающей, нефтеперерабатывающей и нефтехимической промышленности.

Известны адсорбционные способы выделения сероорганических соединений нефти (ССН) из нефтепродуктов - сырой нефти, керосиновой, дизельной фракций, основанные на жидкостной хроматографии, путем пропускания исходного нефтепродукта через неподвижный слой адсорбента, установленный в колонке. В качестве адсорбента применяют силикагель, окись алюминия, активированный уголь, гипс и их смеси (см. Химия сероорганических соединений, содержащихся в нефти и нефтепродуктах, М.: Изд-во АН СССР, 1959, 126-137).

Однако данными способами достигается малая степень очистки нефтепродуктов от серы - всего 30-35% от общего количества серы, присутствующей в исходном сырье. Это объясняется тем, что метод жидкостной хроматографии с использованием чистых адсорбентов не позволяет выделить сернистые соединения, свободные от ароматических углеводородов. Кроме того, к недостаткам относятся: 1) большой расход элюентов как в количественном (их берут в количестве в 4-5 раз больше исходного нефтепродукта), так и качественном (берут 3-4 элюента с разными элюирующими способностями) отношениях; 2) большой расход адсорбента, количество которого превышает количество исходного нефтепродукта в 15-20 раз.

Известен способ выделения ССН из нефтепродуктов при 150-370°С с помощью жидкостной хроматографии на силикагеле и окиси алюминия, обладающих повышенной избирательностью к сероорганическим соединениям (см. Патент РФ 2083640, С10G 25/00, 10.07.97). Повышение избирательности позволило увеличить степень очистки нефтепродуктов от ССН до 70% от общего содержания серы. Такое увеличение степени выделения ССН из нефтепродуктов достигается модифицированием и импрегнированием силикагеля и окиси алюминия ацетатом ртути, нитратом серебра, хлористым палладием, хлоридом цинка, тетрахлоридом олова. Данный способ опробован в лабораторных условиях.

Применение их в промышленности практически не возможно из-за:

1) использования дорогостоящих, дефицитных, токсичных и экологически опасных химических веществ - элюентов; 2) негативного влияния данных веществ на качество самих нефтепродуктов; 3) нетехнологичности операций подготовки адсорбентов и хроматографической колонки.

Известен способ выделения ССН из нефтепродуктов, в частности из керосина, с помощью жидкостной хроматографии с использованием адсорбента, модифицированного диметилформамидом, где адсорбент представляет собой смесь активированного угля и отбеливающей глины (см. А.С. СССР №419545; С10G 25/00, 15.03.74).

Выделение осуществляется при комнатной температуре в стеклянном перколяторе с высотой столба адсорбента 300 мм. Количество исходной фракции (керосина) берут к количеству смеси адсорбентов в соотношении 1:1. Данное количество керосина пропускают самотеком через неподвижный слой адсорбента, модифицированного до 10% диметилформамидом. В результате нетехнологической операции получают адсорбат в количестве 80-82 вес.% и с содержанием остаточной серы от 0,05 до 0,2 вес.%, а также сероароматический концентрат в количестве 15-17 вес.% и с содержанием серы 6,0 - 8,5 вес.%, что составляет степень выделения общей серы 70-80%.

Данный способ также не обладает достаточной эффективностью для его промышленного использования. Во-первых, для модифицирования адсорбентов необходимо использовать дорогостоящие и дефицитные химические вещества. Во-вторых, диметилформамид оказывает негативное влияние на качество адсорбента.

Наиболее близким к предлагаемому изобретению относится способ очистки нефтепродуктов от примесей серы, заключающийся в том, что процесс проводят в центробежном поле путем совместного вращения дисперсионной смеси адсорбента и исходного нефтепродукта в роторе-барабане, при этом количество адсорбента и количество нефтепродукта берут в соотношении (1,5-2,0):1,0, а вращение ротора-барабана устанавливают в пределах 2000-2500 об /мин в течение 30-40 мин. (см. Кадыров М.У., Крупин С.В., Барабанов В.П. Патент RU 2171826 С1. Способ выделения сероорганических соединений нефти из нефтепродуктов). Такое техническое решение позволяет увеличить степень очистки чистыми адсорбентами нефтепродуктов от примесей серы до 90% от ее первоначального содержания, что является существенным прогрессом по сравнению с известными адсорбционными способами. Прогрессивность способа проявляется в том, что при его осуществлении не требуется применение дефицитных дорогостоящих химических веществ - элюентов, количество адсорбента нужно брать в 8-10 раз меньше, чем в аналогичных способах.

Недостатками способа-прототипа являются: низкая производительность способа из-за слишком большого времени процесса поглощения сорбентом примесей серы, из-за необходимости периодической остановки ротора-барабана для слива из него смеси нефтепродуктов и сорбента, необходимости последующей загрузки в ротор-барабан новой порции смеси нефтепродуктов и сорбента, на повторный запуск во вращение ротора требуются большие дополнительные затраты энергии. Способ-прототип поэтому имеет высокую стоимость, не технологичен и не оптимален для очистки от серы нефтепродуктов в промышленных условиях, не применим для непрерывной очистки нефтепродуктов.

Технический результат - увеличение производительности способа очистки нефтепродуктов от примесей серы, положительное решение проблемы непрерывной очистки сырой нефти непосредственно после ее добычи, проблемы непрерывной очистки керосиновой и дизельной и других фракций от примесей серы в производственных условиях, удешевление процесса очистки от примесей серы. Применение предлагаемого способа приведет к существенному увеличению стоимости экспортируемой нефти, к существенному уменьшению загрязненности окружающей среды соединениями серы, исключению опасности выпадения на местности кислотных дождей из-за выхода в атмосферу соединений серы от сгорания нефтепродуктов в различного рода машинах, аппаратах, котельных, ТЭЦ и других установках.

Указанный технический результат при осуществлении предлагаемого способа достигается тем, что составляют дисперсионную смесь адсорбента и нефтепродуктов в массовом их соотношении соответственно (1,0-2,0):1,0, процесс очистки продуктов от примесей серы проводят в центробежном поле путем совместного вращения дисперсионной смеси адсорбента и исходных нефтепродуктов в роторе-барабане, при наложении на дисперсионную смесь адсорбента и нефтепродуктов вертикального электрического поля напряженностью Е=1000-15000 В/м, при непрерывном поступлении во вращающийся ротор-барабан адсорбента и нефтепродуктов в указанном массовом соотношении, при числе оборотов ротора-барабана 60-2500 об/мин, при непрерывном сливе дисперсионной смеси адсорбента и нефтепродуктов через внешнюю сторону ротора-барабана в емкость, из которой дисперсионная смесь идет на выделение нефтепродуктов от адсорбента, очищенные нефтепродукты направляется потребителю, сорбент - на регенерацию и на повторное применение в очистке нефтепродуктов от примесей серы, причем время выдержки поперечного слоя дисперсионной смеси сорбента и нефтепродуктов, двигающегося от центра к периферии ротора-барабана, составляет 10-30 минут. В случаях, когда электропроводность нефтепродуктов более чем на порядок меньше электропроводности природной воды, составляют дисперсионную смесь адсорбента, мелкодисперсного электропроводящего порошка и нефтепродуктов в массовом их соотношении соответственно (1,0-2,0):(0,1-1,0):1,0, процесс очистки нефтепродуктов от примесей серы проводят в центробежном поле путем совместного вращения нефтепродуктов в роторе-барабане и смеси адсорбента, мелкодисперсного электропроводящего порошка, использованный в процессе очистки электропроводящий порошок вместе с регенерированным сорбентом идут на повторное их применение в процессе очистки нефтепродуктов от примесей серы.

Приведенные существенные признаки изобретения, несмотря на значительное понижение по сравнению со способом-прототипом допустимого нижнего предела угловой скорости вращения ротора-барабана с 2000 до 60 об/мин, определяют повышение степени очистки нефтепродуктов от примесей серы адсорбентами до 90-98 вес % за время выдержки в центробежном поле сжатия смеси нефтепродуктов и порошка адсорбента в 2-3 раза менее соответствующего времени в способе-прототипе и обеспечивают возможность непрерывности процесса очистки.

Сущность изобретения поясняется чертежом, где на фиг.1 изображено устройство, состоящее из ротора-барабана 1, его периферийного пространства 2, предназначенного для дисперсионной смеси сорбента, мелкодисперсного электропроводящего порошка и нефтепродукта, которая прижимается к внешней стенке вращающегося ротора-барабана 1 под действием центробежной силы привода 3, вращающего ротор-барабан 1, загрузочного устройства 4 для заливки данной дисперсионной смеси в ротор-барабан 1, отверстий 5 на внешней стенке ротора-барабана 1 для выгрузки обработанной дисперсионной смеси, емкости 6, предназначенной для слива в нее обработанной дисперсионной смеси, отверстий 7 для слива из емкости 6 обработанной дисперсионной смеси для разделение ее на нефтепродукт, адсорбент, мелкодисперсный электропроводящий порошок, причем верхняя крышка и дно ротора-барабана 1 находятся под электрическим напряжением, электрические потенциалы на них подаются через скользящие контакты 8 и 9, все устройство находится в защитном чехле 10, и на фиг.2, где изображено устройство, состоящее из ротора-барабана 1, его периферийного пространства 2, предназначенного для дисперсионной смеси сорбента, мелкодисперсного электропроводящего порошка и нефтепродукта, которая прижимается к внешней стенке вращающегося ротора-барабана 1 под действием центробежной силы привода 3, вращающего ротор-барабан 1, загрузочного устройства 4 для заливки данной дисперсионной смеси в ротор-барабан 1, отверстий 5 на внешней стенке ротора-барабана 1 для выгрузки обработанной дисперсионной смеси, емкости 6, предназначенной для слива в нее обработанной дисперсионной смеси, отверстий 7 для слива из емкости 6 обработанной дисперсионной смеси для разделение ее на нефтепродукт, адсорбент, мелкодисперсный электропроводящий порошок, причем верхняя крышка и дно ротора-барабана 1 находятся под электрическим напряжением, электрические потенциалы на них подаются через скользящие контакты 8 и 9, все устройство находится в защитном чехле 10 и диэлектрической перегородки 11, разделяющей внутреннее пространство ротора-барабана на две части, в верхней из которой происходит очистка.

Указанные в формуле изобретения пределы параметров выбирают исходя из следующих соображений.

В зависимости от величины сорбирующей способности адсорбента выбирается соответствующее соотношение количества адсорбента к количеству нефтепродукта: чем более активен адсорбент, тем меньшее его количество требуется для составления дисперсионной смеси. Например, обладающий относительно высокой сорбирующей способностью цеолит смешивают с нефтепродуктом в соотношении 1,0:1,0, а амфотерные материалы, обладающие меньшей сорбирующей способностью, чем цеолит, например монтмориллонит, смешивают с нефтепродуктом в соотношении 2,0:1,0. В диапазоне соотношения мелкодисперсного электропроводящего порошка и нефтепродуктов (0,1-1,0):1,0 нижний предел 0,1:1,0 выбирается для предельно малых размеров частиц порошка - для пудры, верхний предел 1,0:1,0 - для обычных порошков, выпускаемых промышленностью. Нижний предел угловой скорости вращения ротора 60 об/мин выбирается для обеспечения очистки нефтепродуктов от примесей серы при максимальном дебите нефти из отработанных скважин (до 100 т/месяц), для чего необходимо иметь максимально возможные по величине диаметры роторов-барабанов, при этом величина электрического поля принимается максимальной в допустимых в формуле пределах Е=15000 В/м. Верхний предел угловой скорости вращения ротора 2500 об/мин выбирается при минимальном дебите нефти из отработанной скважине (˜10 т/месяц), для чего допускаются минимальные диаметры ротора-барабана 1, при этом величина электрического поля принимается минимальной в допустимых в формуле пределах Е=1000 В/м.

Способ осуществляют следующим образом.

Пример 1. Порошок монтмориллонита (амфотерный материал) смешивают с сырой необезвоженной нефтью, обладающей электропроводностью по порядку величины такой же, как и электропроводность природной воды, в массовом соотношении 2,0:1,0, полученную дисперсионную смесь загружают в ротор-барабан 1, эта смесь под действием центробежных сил вращающегося ротора-барабана 1 концентрируется в периферийном пространстве 2 ротора-барабана, который приводится во вращение с угловой скоростью 1000 об/мин приводом 3, загружают дисперсионную смесь в ротор-барабан 1 через загрузочное устройство 4, через отверстия 5 обработанную смесь адсорбента и нефтепродуктов сливают в емкость 6, из которой через отверстия 7 сливают обработанную дисперсионную смесь для разделения на адсорбент, нефтепродукты, очищенные от примесей серы, электропроводящий порошок, на верхнюю крышку 9 ротора-барабана 1 подают через скользящие контакты 10 и 11 электрическое напряжение постоянного электрического поля, создающее напряженность Е=8000 В/м, при этом время выдержки поперечного слоя смеси адсорбента и нефтепродуктов составляет 20 минут.

Пример 2. Порошок монтмориллонита (амфотерный материал), смешанный наполовину с порошком природного цеолита Холинского месторождения, смешивают с сырой обезвоженной нефтью, обладающей электропроводностью по порядку величины равной электропроводности природной воды, в массовом соотношении 1,5:1, полученную дисперсионную смесь загружают в ротор-барабан 1 через загрузочное устройство 4, эта смесь под действием центробежных сил вращающегося ротора-барабана 1 концентрируется в периферийном пространстве 2 ротора-барабана 1, который приводится во вращение с угловой скоростью 1000 об/мин приводом 3, на верхнюю крышку 9 ротора-барабана 1 подают через скользящие контакты 10 и 11 электрическое напряжение постоянного электрического поля, создающее на дисперсионной смеси напряженность Е=8000 В/м, при этом время выдержки поперечного слоя смеси адсорбента и нефтепродуктов составляет 20 минут, через отверстия 5 обработанную дисперсионную смесь адсорбента и нефтепродуктов сливают в емкость 6, из которой через отверстия 7 сливают дисперсионную смесь для разделения на нефтепродукты, очищенные от примесей серы, и адсорбент для его повторного применения в процессе очистки нефтепродуктов.

Пример 3. Порошок монтмориллонита, смешанный наполовину с порошком цеолита, алюминиевую пудру смешивают с сырой обезвоженной нефтью, обладающей электропроводностью, на полтора порядка меньшей, чем электропроводность природной воды, в массовом соотношении 1,5:0,1:1, полученную дисперсионную смесь загружают в ротор-барабан 1, далее повторяют все операции, изложенные в примере 1, получают те же результаты, что и в примере 1.

Таким образом, изложенные данные свидетельствуют о выполнении при использовании заявленного изобретения следующей совокупности условий:

- средство, воплощающее заявленный способ при его осуществлении, предназначено, в частности, для использования в нефтедобывающей, нефтеперерабатывающей и нефтехимической промышленности с целью увеличения производительности способа очистки нефтепродуктов от примесей серы, для положительного решения проблемы непрерывной очистки сырой нефти непосредственно после ее добычи, проблемы непрерывной очистки керосиновой и дизельной фракций от примесей серы в производственных условиях, удешевления процесса очистки от примесей серы; применение предлагаемого способа приведет к существенному увеличению стоимости экспортируемой нефти, к существенному уменьшению загрязненности окружающей среды соединениями серы, исключению опасности выпадения на местности кислотных дождей из-за выхода в атмосферу соединений серы от сгорания нефтепродуктов в различного рода машинах, аппаратах, котельных, ТЭЦ и других установках, а именно для увеличения производительности и удешевления способа очистки нефтепродуктов от примесей серы, для положительного решения проблемы непрерывной очистки сырой нефти непосредственно после ее добычи, проблемы непрерывной очистки керосиновой и дизельной фракций от примесей серы в производственных условиях;

- для заявленного способа в том виде, как он охарактеризован в независимом пункте изложенной формулы изобретения, подтверждена возможность его осуществления с помощью описанных в заявке средств и методов.

Следовательно, заявленное изобретение соответствует условию «промышленная применимость».

Формула изобретения

1. Способ очистки нефтепродуктов от примесей серы, включающий проведение процесса очистки в центробежном поле вращающегося ротора-барабана путем совместного вращения в нем дисперсионной смеси адсорбента и исходных нефтепродуктов при массовом соотношении адсорбента и нефтепродуктов (1,5-2,0):1,0 в роторе-барабане, отличающийся тем, что процесс очистки нефтепродуктов от примесей серы проводят в центробежном поле путем совместного вращения дисперсионной смеси адсорбента и исходных нефтепродуктов при их массовом соотношении (1,0-2,0):1,0 в роторе-барабане при наложении на смесь адсорбента и нефтепродуктов вертикального электрического поля напряженностью Е=1000-15000 В/м, при непрерывном поступлении во вращающийся ротор-барабан адсорбента и нефтепродуктов в указанном массовом соотношении, при числе оборотов ротора-барабана 60-2500 об/мин, при непрерывном сливе адсорбента и нефтепродуктов через внешнюю сторону ротора-барабана в емкость, из которой очищенные нефтепродукты направляют потребителю, а адсорбент - на регенерацию и на его повторное применение, причем время выдержки поперечного слоя смеси сорбента и нефтепродуктов, двигающегося от центра к периферии ротора -барабана, составляет 10-30 мин.

2. Способ по п.1, отличающийся тем, что в случаях, когда электропроводность нефтепродуктов более чем на порядок меньше электропроводности природной воды, составляют смесь адсорбента, мелкодисперсного электропроводящего порошка и нефтепродуктов в массовом их соотношении соответственно (1,5-2,0):(0,1-1,0):1, процесс очистки нефтепродуктов от примесей серы проводят в центробежном поле путем совместного вращения нефтепродуктов в роторе-барабане и смеси адсорбента, мелкодисперсного электропроводящего металлического порошка, использованный в процессе очистки мелкодисперсный электропроводящий металлический порошок вместе с регенерированным сорбентом идут на повторное их применение в процессе очистки нефтепродуктов от примесей серы.

3. Способ по п.1 или 2, отличающийся тем, что процесс очистки нефтепродуктов от примесей серы проводят в верхней части ротора барабана, разгороженной от нижней его части диэлектрической перегородкой.

bankpatentov.ru

Очистка от серы - Справочник химика 21

    Требуемая применительно к современным процессам каталитического риформинга глубина очистки от серы до остаточного ее содержания в гидрогенизате 1-10 для прямогонных бензинов с исходным содержанием серы (200— 1000) млн составит 99,8 %. Таким образом, для обеспечения таковой глубины гидрогенолиза требуется проведение процесса при температурах ниже 350 °С. [c.207]     Искусственные газы на нефтеперерабатывающих заводах подвергают очистке от серы и вредных газообразных неуглеводородных примесей, влияющих на качество получаемых продуктов, разделению на фракции и индивидуальные углеводороды методами абсорбции, адсорбции, ректификации, хемосорбции, полимеризации, а также алкилированию. [c.89]

    Далее диизобутилен должен подвергнуться четкой ректификации с целью выделения целевой фракции и в случае необходимости — очистке от серы, содержание которой не должно превышать 0,01%. [c.108]

    Природный газ, пропан и бутан подвергаются очистке от серы [c.123]

    Очистка от серы до некоторой степени рассматривается в гл. IV. Очистка нефтяных дистиллятов от меркаптанов щелочными реагентами представляет определенный интерес. [c.32]

    В качестве реагентов для химической очистки нефтепродуктов был испробован целый ряд веществ, но лишь немногие из них выдержали испытание временем и нефтезаводской практикой. Наиболее прочно утвердились лишь серная кислота (предложенная для очистки нефтепродуктов еще в 1855 г. [1]), водные растворы щелочей и еще несколько веществ, применяемых для нейтрализации активных сернистых соединений. За последние годы в производстве смазочных масел сернокислотная очистка все больше вытесняется селективной и контактной очисткой. Для очистки более глубокой, чем та, которая достигается нри сернокислотном методе, был применен безводный хлористый алюминий. Гидрогенизационный метод очистки от серы и улучшения качества нефтепродуктов был разработан еще в 1930 г., однако широкое внедрение этого метода в промышленную практику началось примерно в 1955 г., когда появился доступный и дешевый водород с установок каталитического риформинга. [c.222]

    Цеолиты эффективно очищают от серы не только углеводородные газы, но и жидкие фракции — на газобензиновых заводах, газофракционирующих установках и т. д. Примером широкого применения цеолитов для очистки от серы углеводородов в жидкой фазе может служить очистка пропана. Особенно высокие требования по содержанию серы предъявляются к углеводородам, подвергаемым каталитической переработке, полимеризации и т. п. Применение цеолитов позволяет вдвое снизить содержание сернистых соединений в циклогексане, используемом в качестве растворителя при полимеризации. Не меньшее значение имеет обессеривание и для углеводородов, входящих в состав бензинов. [c.112]

    Дизельные топлива имеют высокие цетановые числа (52—54). Содержание серы в дистиллятах дизельного топлива высокое во фракции 200—350°С—1,93% серы. Дистиллят с содержанием серы менее 1 % можно получить только облегченного фракционного состава (фракция 180—270°С), но уже в дистилляте, выкипающем от 180 до 300°С, содержание серы доходит до 1,46%. Такой дистиллят после гидроочистки отвечает нормам на дизельное топливо типа зимнее (по ГОСТ 305-62). Для получения товарных дизельных топлив типа летнее также требуется очистка от серы соответствующих дистиллятов. [c.22]

    Керосиновые дистилляты и дистилляты дизельного топлива характеризуются высоким содержанием серы (1,76—2,8%). Из кумертауской нефти без очистки от серы нельзя получить товарный керосин и дизельное топливо. [c.170]

    При прямой перегонке первой группы нефтей могут быть получены компонент автобензина, сырье для гидроформинга, дизельное топливо летней марки и смазочные масла. Дизельные топлива требуют специальной очистки от серы. Из нефтей второй группы—компонент автобензина и топочные мазуты. [c.76]

    Таким образом, дизельные топлива из этих нефтей требуют специальной очистки от серы. [c.79]

    Сроки службы катализаторов зависят от условий эксплуатации, для полиметаллических катализаторов серии КР они достигают 6—7 лет. Вместе с тем реализация преимуществ полиметаллических катализаторов требует более тщательной подготовки сырья очистки от серы, азота и других ядов, осушки от следов влаги, правильного выбора фракционного состава. Большое значение имеет поддержание оптимальных концентраций хлора в катализаторе и влаги в зоне реакции. [c.127]

    Технологические схемы. Все виды сырья до подачи на риформинг подвергаются гидрогенизационной обработке на алюмокобальтмолибденовых или алюмоникельмолибденовых катализаторах для очистки от серы, азота и других примесей, а в случае использования бензинов вторичных процессов — и для насыщения непредельных углеводородов. Гидрогенизат отпаривают для исчерпывающего удаления влаги, сероводорода, аммиака, хлор-водорода. Технологическая схема блока гидроочистки приведена на рис. 2.19. [c.127]

    В двухстадийном варианте процесса (рис. 2.28) нагретое сырье и циркулирующий водородсодержащий газ смешивают и пропускают через реактор первой стадии для очистки от серы, азота и частично от ароматических углеводородов, после чего газосырьевая смесь вместе с рециркулирующим остатком и добавочным количеством водорода поступает во второй реактор для контакта с катализатором гидрокрекинга. Продукты, выходящие из второго реактора, отдают тепло сырьевой смеси и поступают в сепаратор высокого давления. Последующее движение продуктов реакции не отличается от предшествующей схемы. [c.153]

    Дополнительные выгоды для нефтеперерабатывающих предприятий заключаются в том, что по существующим требованиям почти все продукты, выходящие с заводов, нужно подвергать очистке от серы. В результате на большом числе заводов США построены установки по обессериванию. Аналогичное положение, несомненно, сложится и в большинстве других стран. Гидроочистка является основным процессом по извлечению серы, а главным продуктом этой очистки является сероводород. Установки по превращению сероводорода в серу в составе нефтеперерабатывающего завода невелики по производительности — до 4 т в сутки, правда имеется и установка мощностью 375 т в сутки [34] (по оценкам [35], в 1980 г. сера, полученная с нефтеперерабатывающих заводов, должна составить 10% от общего количества серы, добытой в капиталистических странах). [c.256]

    Мазут (очистка от серы на 75%)............1,0 [c.303]

    Гудрон (очистка от серы на 70%)..........1,0 [c.303]

    Легкий газойль (фракция 195—350°С) имеет плотность 0,89—0,94 и состоит на 40—80% из ароматических соединений. Цетановое число колеблется от 45 до 24. Легкий газойль с высоким цетановым числом попользуется ка,к компонент дизельного топлива, с низким цетановым число М — как разбавитель мазута. И бензин, и легкий газойль, полученные из сернистого сырья, нуждаются в очистке от серы. [c.230]

    Средние дистилляты (керосиновый и дизельный) подвергаются облагораживанию и очистке от серы на установках гидроочистки. Благодаря гидроочистке получают реактивное топливо высокого качества и малосернистое дизельное топливо. Часть очищенного дизельного топлива подвергается депарафинизации с получением жидкого парафина и зимнего дизельного топлива. [c.410]

    Обычно в результате стабилизации гидрированием и очистки от серы бензин становится более летучим, почти лишенным серы и оле- [c.382]

    В последующем нормы на содержание серы ужесточались, а вышеуказанная схема ие могла обеспечить получение в конечном продукте содержание серы, как правило, менее 1,0%. Появилась необходимость в очистке от серы непосредственно и остатков. При решении этой сложной задачи сложился ряд вариантов. В основе прежде всего лежит характеристика перерабатываемого сырья. Она определяется исходной нефтью и глубиной отбора дистиллятных фракций. Это становится понятным, так как содержащиеся в различных количествах в разных нефтях металлы (ванадий и никель), отравляющие катализатор, концентрируются в остатках от перегонки нефти. Были попытки ввести градацию в содержание металлов в сырье и определение, исходя из этого, типа технологии его гидрообессеривания. При содержании металлов в исходном сырье менее 25 г/т процесс может быть осуществлен с высокими технико-экономическими показателями в реакторе со стационарным слоем одного вида катализатора, характеризующегося высокой гидрообессеривающей активностью и относительно небольшой металлоемкостью. При содержании металлов 25-50 г/т более эффективно использование системы из двух видов катализаторов, причем первый должен характеризоваться высокой металлоемкостью, при этЬм допустима невысокая гидрообессеривающая активность. Другой катализатор должен быть высокоактивным в реакции гидрообессеривания. При содержании в сырье металлов более 75 г/т фирма бЬеИ считает предпочтительнее использовать системы с движущимся слоем и непрерьтной заменой катализатора. По другим данным предельным содержанием металлов в сырье [c.151]

    Согласно действующему ГОСТу, абсолютированный изопропа-йол должен содержать не более 0,5% вес. воды. Технический изопропанол выпускается 85%-ной концентрации. Весьма жесткими являются требования ГОСТа к содержанию примесей в изопро-паноле. В частности, требуется отсутствие сернистых соединений. Указанные обстоятельства обусловливают необходимость тщательной очистки от серы исходной пропан-пропиленовой фракции, а также четкой ректификации спирта-сырца. [c.45]

    Любые виды сырья до подачи на блок риформинга подвергают каталитической гидрогенизации для очистки от серы, азота и других примесей. В отпарных колоннах блока предварительной гидроочистки (ПГО) происходит исчерпывающее удаление из сырья сероводорода, аммиака, хлороводо-рода и снижение содержания воды до уровня 2-10 мг/кг. Независимо от вида сырья гидрогенизат должен отвечать требованиям, обусловленным свойствами катализатора риформинга. [c.82]

    Процессы гидроочистки бензинов, дизельных и остаточных топлив I широко используют в промышленности. Их осуществляют в ст ционарном слое катализатора под давлением водорода.1 К.атализа-тор активирует гидрогенолиз С—8-связей и удаление серы из жидких углеводородов в виде сероводорода, которой затем абсорбируется соединениями основного характера. fTieoб XoдИмo ть гл бокой очистки от серы (например, современные катализаторы платформинга эффективны при содержании серы в сырье около 1%) заставляет проводить процесс гидроочистки в жестких усло- [c.155]

    ЦКХ осветительным керосинам, очистка от серы также необходима. Дизельные фракции большинства нефтей удовлетворяют требованиям ГОСТ иа дизельные топлива летних н зимних марок, одиако многие из них также нужно очищать от серы. Кроме того, из большинства нефтей Куйбышевской области можно получать мазуты основных марок, отвечающие требованиям ГОСТ, Суммарный выход базовых масел с ИВ 85 составляет 16,4—28,07о (на нефть). [c.15]

    Процессы гидроочистки бензинов, дизельных и остаточных топлив широко используются в промышленности. Их осуществляют также в неподвижном слое катализатора под давлением водорода. Катализатор активирует гидрогенолиз С—8-связей и удаление серы из жидких углеводородов в виде Но8, который затем абсорбируется соединениями основного характера. Необходимость глубокой очистки от серы (нанример, современные катализаторы платформинга эффективны нри содержании серы в сырье около 1 /оо) заставляет осуществлять процесс гидроочистки в жестких условиях, так что он обязательно сопровождается гидрокрекингом, т. е. гидрогенолизом С—С-связей. Это указывает ыа необходимость учета гидрокрекинга при моделировании процессов гидроочистки. В нефтяных фракциях присутствуют различные сероорганические соединения, причем по скорости удаления их можно разложить в ряд меркаптаны > сульфиды >тиофены [42]. Кроме того, скорость гидрогенолиза зависит и от молекулярной массы сероорганического соединения высокомолекуля )ные соединения подвергаются гидрогенолизу со скоростями, во много раз меньшими, чем низкомолекулярные, так что необходимо ужесточение режима при переходе к более тяжелому сырью. [c.364]

    В зависимости от назначения и месторасположения на магистральном газопроводе различают головные и промежуточные ко М1преосорные станции. Головные компрессорные станции (ГКС) устанавливают в начальном пункте газопровода. Промежуточные компрессорные станции (ПКС) располагают по трассе газопровода на расстоянии 100—200 км. Принципиалыные технологические схемы ГКС и ПКС одинаковы, за исключением установок по подготовке газа к дальнему транспорту. На ГКС эта подготовка осуществляется полностью, т. е. проводится пылеулавливание, - обезвоживание, очистка от серы, механических примесей, конденсата и других жидкостей. На ПКС подготовка газа к транспорту ограничивается очисткой от механических примесей, конденсата и воды. [c.130]

    Для наиболее распространенного вида сырья — лигроинов прямой перегонки нефти, подвергаемых каталитичеакаму риформингу, основной задачей является глубокая очистка от серы и азота, небольшое дегидрирование парафинов и циклопарафинов и гидрокрекинг значения не имеют. Чтобы обеопечить максимальную скорость очистки, можно применять м аксимальные температуры 400—420 °С. При очистке авиационных керосинов недопустимо образование олефиновых и ароматических углеводородов, а иногда необходимо и неглубокое гидрирование последних (нафталинов). При применяемых обычно парциальных давлениях водорода термодинамически возможный выход нафталина при дегидрировании декалина и тетралина резко возрастает при температурах выше 370 °С, и очистку обычно проводят при 350—360 °С. Фракции, используемые в качестве дизельного топлива, можно очищать при температурах до 400—420 °С, при дальнейшем повышении температуры в результате дегидрирования би- и полициклических нафтенов снижается цетановое число, растет выход продуктов гидрокрекинга — газа и бензина и в результате реакций гидрокрекинга резко возрастает расход водорода. Нижний предел температуры очистки определяется в этом случае возможностью конденсации тяжелых фракций сырья появление жидкой фазы резко замедляет гидрирование из-за ограничения скорости транспортирования водорода к поверхности катализатора скоростью диффузии через пленку жидкости. [c.269]

    При одинаковом фракционном составе очистка от серы продуктов вторичного происхождения (коксования, каталитического крекинга) происходит значительно труднее. Связано это с тем, что подвергшиеся крекингу продукты содержат гетероатомы в структуре наиболее термически стабильных, трудно гидрирующихся соединений. Кроме того, продукты вторичного происхождения содержат много ароматических и непредельных углеводородов, обладающих высокой адсорбируемостью на катализаторе и тормозящих в результате гидрирование гетероорганичеоких соединений. [c.272]

    Процесс . Процесс Пиротол , разработанный фирмой Ооиполучение бензола, обладает рядом преимуществ по сравнению с процессом МНС и поэтому получил более широкое распространение. Процесс объединяет стадии гидрирования, гидрокрекинга неароматических, очистки от серы и гидродеалкилирования алкилбензола с получением 99,9% (масс.) бензола с температурой кристаллизации 5,5 С при селективности 98%. [c.113]

    Наибольшее распространение получила технология, разработанная проектнотехнической компанией Linde (США). По этой схеме сырье смешивается с циркулирующей двуокисью углерода и отхрдящим газом, проходит стадию очистки от серы и нагревается до 450 °С. [c.117]

    Перед проведением окислительной регенерации установку следует прогревать водородсодержаш,им циркулирующим газом с целью тщательной очистки от серы. В противном случае образующийся при регенерации катализатора серный ангидрид будет реагировать с активной окисью алюминия, давая основной сульфат алюминия и вызывая существенные изменения катализатора. [c.165]

    Смешанный газ сначала подвергается грубой очистке от серы, а затем тонкому обессериванию (последнее осуществляют при 100° пропусканием газа над сухим бурым углем). Катализатор просеивается на зерна размером 2—4 мм и восстанавливается водородом. Последний процесс производится при 450° большим избытком водорода (2000 л водорода на 1 л катализатора и час). Водород находится в циркуляционной системе. Образующаяся при восстановлении вода осаждается при помощи холодильника, после чего водород высушивается силикагелем. Время восстановления — 50 час. Контакт охлаждается в токе водорода и сохраняется под водородом. Перед включением печи водород над катализаторной емкостью заменяется СОз как запц1тным газом углекислотой заполняются также печь и все коммуникации в целях полного удаления кислорода воздуха. Заполнение это должно производиться с большой осторожностью, чтобы не повредить и пе вывести из строя контакт. В случае повреждения катализатор делается непригодным к работе при желаемых низких температурах. Прп правильном восстановлении и подготовке катализатора синтез начинается при 170° и достаточно удовлетворительно идет при 180°. Превра-гцение исходной газовой смеси определяется как температурой г.интеза, так и скоростью газового потока. Чем ниже рабочая температура и выше скорость потока, тем больше образуется воды вместо углекислоты в продукте реакции. Заводские опыты ироводились лишь в условиях однократного пропуска (опыты в циркуляционной аппаратуре еще не были осуществлены). Длительность жизни катализатора более 3 мес. Для удаления высококипящей парафиновой части продукта с поверхности катализатора целесообразно проводить экстракцию парафина бензином. [c.201]

    В состав органической части пефти входят также сера (до 3%), азот (до 0,3%) и кислородХдо 1%) [2, с. 21]. В процессе переработки нефти стремятся получить продукты, не содержащие этих элементов, поэтому их переводят в неорганические соединения с водородом (НзЗ, ]ЧНз, НзО). Стехиометрический расход Нг на очистку от серы, азота и кислорода невелик, практически же процессы очистки требуют значительного расхода водорода. [c.11]

    Способ каталитической сервочистки практически осуществим на цромышленвых установках каталитического крекинга, на алюмосиликат-ных или цеолитсодержащих катализаторах. При этсм достигается степень очистки от серы на 20-30 при некотори снижении октанового числа. Выход компонента товарного бензина, в зависимости от принятой глубины очистки, составляет 75-85 мае. [c.27]

    В США, Канаде и некоторых других странах широко распроотране-. ны методы очистки от серы на активированном угле с получением серы высокой степени чистоты. [c.83]

    Дизельная фракция. Перегоняется в пределах 180—350 °С. Ранее дизельную фращию называли атмосферным газойлем. Фракция используется как топливо для дизельных двигателей, установленных на автомобилях, тракторах, тепловозах, судах морского и речного флота. Дизельная фракция, полученная из сернистых нефтей, нуждается в очистке от серы, которая проводится с применением гидрогенизациОнного метода (см. 56). [c.125]

    Хорошие результаты крекинга достигаются на предварительно гидроочищенном сырье. При гидроочистке значительно снижаются содержание серы, азота и металлов в сырье, а также его коксуемость. Крекинг подготовленного сырья приводит к уменьшению выхода кокса и газа и увеличению выхода бензина. Улучшается качество полученных продуктов повышается октановое число бензина, содержа1Ние серы в жидких продуктах крекинга снижается настолько, что эти продукты не нуждаются в последующей очистке от серы. Положительный эффект дает также предварительное удаление смолисто-асфальтеновых веществ из сырья методом деасфальтизации бензином или сжиженным пропаном. [c.227]

    Первое сообщение о процессе коксования в псевдоожиженном слое ( флюидкокинг ) появилось в 1953 г. (фирма Стандарт ойл Девелопмент). С 1955 по 1970 г. в США, Канаде и Мексике было построено 11 установок общей мощностью около 24700 т/сут, в том числе гигантские установки по 6680 т/сут на НПЗ в Делавере и Эйвоне, США. После некоторого затишья в 1978 г. началось новое оживление в проектировании и строительстве установок. Толчком к строительству послужили общая тенденция к углублению переработки нефти, более высокий выход жидких продуктов по сравнению с другими формами термической переработки нефтяных остатков, возможность переработки наиболее тяжелых гудронов и природных битумов, включая высокосернистые, а также возможность очистки от серы всех получаемых продуктов. [c.206]

chem21.info