Методы определения пластовых и забойных давлений. Карты приведённых давлений. Определить пластовое давление нефти


LB_2_Plastovoe_davlenie

1. Пластовое давление.

Давление, под которым находятся жидкости и газы в пласте, называют пластовым.

Начальное пластовое давление (до начала разработки залежи), как правило, зависит от глубины залегания пласта. Его можно приближённо определить по формуле:

(1.1)

где L - глубина точки пласта, м.

Пласты, для которых приближенно соблюдается это равенство, называют пластами с нормальным (гидростатическим) давлением. Они, так или иначе, свя­заны с поверхностью земли.

Однако существуют пласты с давлением аномальным, обычно превы­шающим гидростатическое давление (Западный Казахстан, Туркмения, Западная Сибирь). Такие пласты не связаны или очень слабо связаны с дневной поверхно­стью и чаще всего встречаются в складчатых районах.

При вскрытии продуктивного пласта скважиной в том случае, когда её ствол заполнен жидкостью до устья, начальное пластовое давление на забое можно более точно определить по формуле:

(1.2)

Здесь рж - плотность жидкости, кг/м3;

g - ускорение свободного падения, м/с2;

ру - давление на устье скважины, Па.

Если уровень жидкости поднялся на некоторую высоту Н в скважине (Рy = 0), то пластовое давление

Установленные по формулам (1.1) и (1.2) пластовые давления одинаковы для всех точек пласта, расположенных на одной горизонтальной плоскости.

В двух точках пласта, не лежащих на этой плоскости, пластовое давление будет отличаться от найденного значения.

1

Расчёт приведённого пластового давления.

Для удобства анализа изменения пластового давления в процессе эксплуатации залежи пластовое давление обычно относят к какой-либо одной условной плоскости, например плоскости ВНК.

Рисунок 1.1 — К примеру, расчета приведённых давлений.

Давление, отнесённое к этой плоскости, называется приведённым пла­стовым давлением. Его определяют по формуле:

РпР =рпл± 0,00981∆Нрн,

где рпл - измеренное пластовое давление в скважине, Па;

∆Н - расстояние точки измерения от условной плоскости (приведения) по вертикали, м.

Знак плюс соответствует случаю, когда точка измерения расположена вы­ше плоскости приведения, знак минус - когда эта точка находится ниже плоско­сти приведения

Задача 1.1 Рассчитать пластовое давление в безводной остановленной скважи­не для следующих условий (табл. 1.1) / 1 /.

Решение. 1) Так как скважина безводная, то после остановки она заполнена только нефтью. Рассчитываем высоту столба нефти по формуле:

hн = LC- hcm = 1870 - 37 = 1833 м.

2

Таблица 1.1.

Наименование параметра

Значение параметра

Варианты заданий

1

2

3

4

5

6

7

8

9

10

11

Глубина скважины Ln м

1870

1920

1710

1750

1780

1870

1880

1890

1900

1910

1880

Статический уровень м

37

46

43

47

34

37

45

41

43

48

47

Плотность дегазированной нефти рнд, кг/м5

870

878

869

891

873

871

870

872

875

878

890

Плотность пластовой нефти рпр кг/м3

805

811

796

834

807

804

805

807

808

799

801

Скважина эксплуатировалась при забойном давлении большем давления насы­щения, м2

2) Вычисляем среднюю плотность нефти:

3) Пластовое давление будет равно:

Pпл=hннg10-6=1833837,59,8110-6=15,06 МПа

Задача 1.2 Определить пластовое давление в остановленной безводной фонтанной скважине для следующих условий (табл 1.2):

Таблица 1.2

Наименование параметра

Значение параметра

Варианты заданий

1

2

3

4

5

6

7

8

9

10

11

Глубина скважины Lc, м

2658

2540

1853

2324

2274

2274

2274

2274

2274

2274

2274

Давление на устье остановленной скважины py МПа

8

8,6

7,4

7,7

9

8

8,9

9,1

7,5

7,3

8,2

Давление насыщения рнас, МПа

11,3

12.9

11.4

8.7

9,3

9,3

11,1

8,6

9,5

11

10

Забойное давление pзаб, МПа

11,3

12,9

11,4

8,7

9,3

9,3

11,1

8,6

9,5

11

10

Температура на устье остановленной скважины

tу °С

20

40

20

40

20

20

40

20

40

20

40

Пластовая температура

tпл °С

70

80

70

80

70

70

80

70

80

70

80

Коэффициент сжимаемости нефти βн10-4 МПа-1

6,5

5,8

6,2

5,4

6,4

6,4

6,5

6,1

6,2

6,3

6,1

3

Зависимость плотности нефти от давления и температуры представлены на рис. 1.2

Решение. Для расчёта пластового давления в данном случае необходимо ис­пользовать формулу:

Pпл =

Рисунок 12 — Зависимость плотности нефти от давления и температуры.

1 - 20°С,

2 - 70°С;

3 -45°С.

Средняя плотность нефти в скважине pn, зависит от давления и температуры.

По существу, решение данной задачи сводится к расчёту pn(p,t).Принимая линейный закон

распределения температуры по глубине остановленной скважины, рассчитаем среднюю температуру:

t=ty+tпл = (20 + 70)/2 = 45°С

4

Используя графические зависимости р, = f (p.t) на рис. 1.2 и принимая линейное изменение плотности нефти от температуры, путём интерполяции строим зависимость плотности нефти при t = 45°С (кривая 3). Полученную кри­вую можно использовать для расчета средней плотности нефти в скважине при изменении давления от ру до pпл. По кривой 3 находим среднюю плотность неф­ти в интервале давлений от ру = 8 МПа до pm = 11,3 МПа; рн = 775 кг/м3.

Рассчитываем пластовое давление:

pпл = 2650775-9,8110-6+ 8 = 28,15 МПа.

При решении принято, что средняя плотность нефти при t = 45°С в облас­ти давлений от рнас = 11,3 МПа до рм = 28,15 МПа постоянна и равна 775 кг/м3. Фактически, в этой области давлений плотность нефти линейно увеличивается за счет сжимаемости. Рассчитаем плотность нефти при р„ s 28,15 МПа, если плот­ность нефти при рнас = 11,3 МПа равна 772,3 кг/м3 (рис. 1.2 кривая 3).

Коэффициент сжимаемости нефти Д принимаем равным 6,5-10-4/МПа. Таким образом, плотность нефти при пластовом давлении:

или

Средняя плотность нефти в интервале давлений от рнас до рпл,

Рнср= ( 772,5 + 781,1 ) / 2 = 776,8 кг/м3.

5

Таким образом, средние плотности нефти в интервалах давлений от

ру = 8 МПа до Рнас = 11,3 МПа и от Рнас = П,3 МПа до рпл = 28,15 МПа соответственно равны 775 и 776,8 кг/м3. Для данных условий нетрудно рассчитать и сред­нюю плотность нефти в интервале от ру = 8 МПа до рпл = 28,15 МПа, которая равна 775,9 кг/м3.

Вычисляем пластовое давление с учетом изменения плотности нефти при

рпл = 2650776,89,81·10-6 + 8 = 28,19 МПа.

Оценим ошибку δ вносимую а расчет пластового давления, пренебрежением влияния давления на плотность нефти в области р > Рнас:

Таким образом, ошибка составляет всего 0,16%, поэтому в практических расчётах можно пренебрегать влиянием изменения плотности нефти за счет ее сжимаемости в области давлений от Рнас до Рпл.

6

Задача 1.3 Определить приведённые давления на отметке ВНК в скважинах 1, 2 и 3 (рис. 1.1). Давление замерено в точках А, В, С. Исходные данные приведены в табл. 1.3:

Таблица 1.3

Наименование параметра

Абсолютное значение

Варианты заданий

1

2

3

4

5

6

7

8

9

10

11

1. Глубина отметки ВНК НВНК, м

1250

1201

1300

1280

1300

1251

1301

1289

1299

1302

1268

2. Пластовое давление в точках, МПа:

Ра

17,9

16,8

18,9

18,0

19,9

17,9

16,8

18,9

18,0

19,9

18,9

Рв

16,5

15,6

17,3

17,1

18,5

16,5

15,6

17,3

17,1

18,5

18,3

pc

17,2

16,2

18,2

17.6

19,2

17,2

16,2

18,2

17.6

19,2

18,9

3. Глубина замеров пластового давления

в точках, м:

1756

1706

1805

1786

1836

1756

1706

1805

1786

1836

1805

1451

1401

1503

1481

1531

1451

1401

1503

1481

1531

1401

Lc

1535

1485

1582

1561

1615

1535

1485

1582

1561

1615

1485

4. Альтитуда скважин в точках, м:

Ал1

427

411

407

421

441

427

411

407

421

441

440

Ал2

272

268

277

281

301

272

268

277

281

301

300

Ал3

276

279

281

290

310

276

279

281

290

310

311

5. Плотность нефти в пластовых условиях рн, т/м3

0,76

0,78

0,74

0,73

0,75

0,76

0,78

0,74

0,73

0,75

0,76

6 Плотность воды в пластовых условиях рв, т/м3

1,1

1,07

1,09

1,06

1,09

1,1

1,07

1,09

1,06

1,09

1,1

Решение. 1) Определим приведённое давление на отметке ВНК (рвнк) по дан­ным замера давления в т.А. Предварительно находим разницу между отметками точки А и ВНК (hA). Гипсометрическая отметка т.А будет при этом равна:

НА = LA – Aл1 = 1756 - 427 = 1329 м.

9

Из рис. 1.1 видим, что

hA = НА - Hвнк = 1329 - 1250 = 79 м.

7

Так как в интервале между т.А и ВНК пласт насыщен водой, определяем

Рвнк = Ра - 0,00981- hAρв = 17,9 - 0,00981·79·1,1 = 17,05 МПа.

2) Определим рвнк по данным замера давления в т.В. Рассуждая аналогич­но, найдём:

Нв = LB - Ал2 = 1451 - 272 = 1179 м.

Тогда

hB = НBHK – НB = 1250 - 1179 = 71 м.

Замечая, что между т.В и ВНК пласт насыщен нефтью, определим:

РBHK = РB + 0,00981· hBρn = 16,5 + 0,00981710,76= 17,03МПа.

3) Аналогично определим Рвнк по данным замера давления в т.С.

Нс = Lc – Ал3 = 1535 -267 = 1268 м,

hc= 1268- 1250= 18 м,

Рвнк = 17,2 - 0,00981181,1 = 17,01МПа.

Таким образом, значения рассчитанных приведённых давлений по всем трём точкам совпали достаточно точно. Определим среднеарифметическое Рвнк.

Рвнк=

8

studfiles.net

Определение пластового давления

 

Пластовое давление ‑ это давление флюидов против середины перфорированного интервала в длительно простаивающих скважинах и в скважинах действующих, но остановленных на период стабилизации забойного давления. Оно определяется:

1) путем прямых измерений глубинными манометрами;

2) путем пересчета с помощью формул по величине устьевого статического давления;

3) по глубине статического уровня;

4) по величине дроссельной тепловой аномалии работающих пластов.

Различают начальное и текущее пластовые давления. Начальное пластовое давление определяют до начала интенсивной разработки, когда не нарушены начальные термодинамические условия пласта из скважин, не было существенного отбора флюидов. Текущее пластовое давление определяют на определенную дату разработки залежи.

Забойное давление ‑ это давление флюидов в действующих добывающих и нагнетательных скважинах на глубине середины интервала перфорации. Его определяют:

1) прямым измерением глубинными манометрами на забое всех видов скважин, оборудованных для спуска глубинных приборов через затрубное пространство;

2) измерением глубины динамического уровня;

3) измерением давлений на устье скважин.

В добывающих скважинах рзаб < рпл , в нагнетательных – рзаб > рпл. Основным требованием к определению забойного давления является обеспечение замеров при установившемся режиме работы скважин.

В чисто газовых скважинах пластовое давление рГ не определяют прямыми замерами, а рассчитывают в соответствии с величиной устьевого давления ρу и относительной плотности газа по воздуху δГ по барометрической формуле

,

где Нп ‑ глубина средней точки интервала перфорации; zср ‑ средний коэффициент сверхсжимаемости газа при средних давлении и температуре Тср в стволе скважины.

В газовых скважинах со столбом жидкости на забое пластовое давление определяют по соотношению

,

где ρг ‑ давление газа на глубине статического уровня, рассчитываемое по формуле, МПа; Нст ‑ глубина статического уровня, м; δЖ ‑ средняя плотность жидкости в интервале глубин от Нп до Нст.

Наличие сведений о давлениях в отдельных пластах, разрабатываемых совместно, позволяет устанавливать интервалы повышенного воздействия на них закачиваемых вод и тем самым прогнозировать опережающее обводнение этих интервалов.

Особого подхода требуют исследования малодебитных фонтанирующих скважин (до 40 м3 /сут). По режиму работы их можно разделить на работающие стационарно и периодически (в пульсирующем режиме). В первом случае исследования проводят обычным способом с дополнительным контролем постоянства режима дистанционным манометром. Периодически фонтанирующие скважины должны исследоваться по специальной методике, базирующейся на предварительном изучении режима их работы. Изучение проводится в три цикла.

Первый цикл (в закрытой скважине) предусматривает определение положения забоя, интервала перфорации, башмака насосно-комнрессорных труб, нефтеводораздела и получение фоновых кривых температуры и давления.

Второй цикл включает регистрацию давления и притока при пуске скважины в работу. Комплексный прибор, имеющий датчики расхода и давления, помещают над объектом и снимают их показания по времени после пуска скважины в работу до прекращения ее работы. После этого скважину закрывают для восстановления забойного давления.

Третий цикл исследований проводится после следующего пуска скважины в работу в период стабильного дебита. Регистрируются диаграммы расходометрии и барометрии, затем ‑ индикации притока и состава жидкости, термометрии. Обработка результатов исследований при стабильном режиме работы скважины проводится в обычном порядке.

Пластовые давления в эксплуатируемой многопластовой залежи в каждом отдельном пласте определяют по результатам комплексных исследований расходометрией и забойным манометром, проведенных на разных установившихся режимах работы скважины. Режим работы скважины изменяют путем смены штуцера, который создает разное давление на забое или депрессию. Одновременно с измерением забойного давления в установившемся режиме работы скважины проводят определение профилей притока или приемистости над всеми пластами и каждым из них в отдельности. По результатам этих исследований строят графики зависимости дебита (расхода) пласта Q от величины забойного давления ρзаб – индикаторные диаграммы (рис. 22).

Рис. 22. Индикаторные диаграммы, полученные при исследовании многопластового объекта:

1-3 – индикаторные диаграммы для трех отдельных пластов, 4 - суммарная индикаторная диаграмма;

пластовые давления, МПа: ρ1=15,8; ρ2=15,6; ρ3=16,9;

суммарное давление ρ4 =16,2 МПа

 

Начальный участок индикаторной линии на графике Q =f(ρзаб) часто близок к линейному. Экстраполируя индикаторные линии до нулевого дебита (Q = 0), т.е. до пересечения с осью абсцисс, получают величину пластового давления для каждого пласта в отдельности. Если давления в пластах получают различные, то это указывает на перетоки жидкости между ними в начальный период. Перетоки могут быть продолжительными, если в окружающих скважинах отбор ведется из одного пласта, а закачка - в другой пласт.

Из рис. 22 видно, что индикаторные линии, снятые на четырех режимах работы скважины, имеют линейный вид, что свидетельствует об установившихся режимах их работы. Пластовое давление, определенное по суммарной кривой 4 для всех трех пластов, оказалось меньше пластового давления, найденного по диаграмме для нижнего пласта (кривая 3). Следовательно, в закрытой скважине вероятен переток из нижнего пла­ста в верхние. Для установления перетока расходомер необходимо поместить между пластами и после закрытия скважины снять кривую изменения дебита во времени.

Результаты измерения пластового давления могут использоваться как для построения карт изобар на определенную дату, так и при интерпретации материалов других методов исследования скважин.

 

Контрольные вопросы

1. Какими способами можно измерить пластовое давление?

2. Какими способами измеряется забойное давление?

3. Какие задачи решаются по данным измерения давления?

 



infopedia.su

17.Методы определения пластовых и забойных давлений. Карты приведённых давлений.

Пластовое давление определяет состояние жидкости, а также тот запас естественной энергии, в ре­зультате использования которого пластовые жидкости извлекаются на поверхность. Значения его в различных точках одной и той же залежи неодинаковы. Они меняются также во времени и в процессе разработки.

Под пластовым давлением понимается давление в некоторой точке пласта, не подверженной воздействию воронок депрессии со­седних скважин. Однако в связи с тем, что непосредственный замер пластового давления возможен лишь с помощью скважин, можно считать, что под пластовым давлением фактически понимается статическое забойное давление, т. е. давление на забое остановлен­ной скважины, начиная с того момента, когда после ее остановки в пласте (в районе расположения этой скважины) установилось от­носительное статическое равновесие.

За начальное пластовое давление обычно прини­мается статическое забойное давление первой скважины, вскрывшей пласт, замеренное до нарушения статического равновесия, т. е. до отбора из пласта сколько-нибудь значительного количества пла­стовой жидкости. Естественно, что этот один или несколько замеров характеризуют начальное пластовое давление лишь в определенных точках пласта и не могут быть приняты для залежи в целом. Для определения среднего начального пластового дав­ления полученные замеры по первой скважине (или по первым сква­жинам) должны быть пересчитаны на среднюю точку объема залежи, на середину этажа нефтеносности, или приведены к поверхности начального водо-нефтяного контакта .

Для наблюдения за процессом раз­работки пласта необходимо систематически замерять пластовые давления в эксплуатируемых скважинах. Эти замеры лучше всего производить глубинными манометрами. Существуют глубинные ма­нометры двух типов: 1) максимальные и 2) регистрирующие с не­прерывной записью показаний. Измерение пластовых давлений манометром по стволу скважины дает возможность определить истинную плотность жидкости и газа при данных давлении и температуре с учетом нали­чия растворенного газа в водо-нефтяной, смеси. Это может оказать помощь при по­строении карт изобар.

В тех случаях, когда при фонтанном или компрессорном способе эксплуатации невозможно применить глубинный манометр, пла­стовые (забойные) давления определяют расчетным путем по формулам. Эти формулы позволяют получить величины, приближающиеся к действитель­ным пластовым давлениям.

При глубиннонасосной эксплуатации для определения забойных давлений расчетным путем используют данные о статических уровнях в скважинах. Уровни в скважинах (в затрубном пространстве) замеряют либо специальной желонкой, спускаемой при помощи лебедки Яковлева, либо эхолотом. Знания уровней нефти и воды в скважине дают возможность подсчитать забойное да­вление.

Для наблюдения за поведением пласта в процессе разработки необходимо изучать характер изменения и распределения пластовых давлений. Для этого строят карты изобар, т. е. карты равных пла­стовых давлений. Данными для этого служат замеры давлений в скважинах после их поочередной остановки при работе всех других скважин.

При замерах давления с целью построения карт изобар в каждой скважине должно быть свое время выдержки на забое глубинного манометра, обусловленное системой взаимодействия пласт — сква­жина и физическими свойствами пород и флюидов.

При всем многообразии условий работы пласта и скважин прак­тически не представляется возможным найти универсальные зависи­мости для определения времени выдержки глубинного манометра при замере пластового давления в скважинах. Поэтому можно при­нять такое время выдержки глубинного манометра для каждой сква­жины, в течение которого забойное давление в ней восстановится до среднего значения давления в пределах некоторой прилегающей к скважине области, или же определять непосредственно величину этого среднего давления в пределах участка, примыкающего к сква­жине при работе всех скважин пласта.

При наличии данных о давлениях по скважинам построение карт изобар не вызывает затруднений и методически аналогично построе­нию структурных карт с той лишь разницей, что для них исполь­зуют не приведенные глубины залегания пласта, а величины стати­ческих пластовых давлений по скважинам. При построении карт изобар необходимо учитывать:

  1. наличие, как правило, исходных данных о давлениях на раз­ личные даты и необходимость приведения их на дату построения карты изобар;

  2. зависимость давлений от глубины залегания пласта (давление связано с углом падения пород) и необходимость приведения их

к избранной условной поверхности; 3) отсутствие в пласте статиче­ского равновесия и необходимость применения в связи с этим соответ­ствующих приемов интерполяции и особенно экстраполяции давлений. Рассмотрим особенности построе­ния карт изобар более детально.

Рис. Схема графического

приведения давлений на дату

составления карты изобар.

7 — давления по скважинам; 2 — зредняя (хронологическая) кривая падения давления; 3 — точки давле­ний по рачетным скважинам; 4 — ис­комые давления.

Приведение пластовых давлений по скважинам на дату построения карты изобар проще всего осуще­ствлять графическим методом, кото­рый обеспечивает достаточную для практических целей точность. Сущ­ность метода заключается в следу­ющем. Все замеры пластовых давле­ний на различные даты наносят в виде точек на график (рис. ). По полученным точкам (диаграмме «мушиных» точек) строят среднюю (хронологическую) кривую падения

давления. Затем, полагая, что указанный средний темп падения да­вления характеризует всю залежь, и следуя этому темпу, прибли­женно определяют давление на искомую дату в любой скважине. Например, требуется определить давления в скв. 1 и 2 на дату составления карты изобар (на январь, соответствующего года). В этом случае, следуя параллельно средней кривой падения да­вления, находят искомые давления.

Совершенно очевидно, что предлагаемый метод является прибли­женным. В связи с этим давления следует приводить к искомой дате лишь по близким скважинам, не используя для расчетов данные скважин, полученные задолго (например, за шесть месяцев) до даты, на которую приводятся давления для построения карты изобар. При неравномерных замерах пластовых давлений по скважинам и сосредоточении фактических данных по отдельным локальным участкам пласта более точные результаты при приведении давлений к одной дате достигаются использованием индивидуальных кривых изменения пластовых давлений по скважинам. Метод приведения давлений на искомую дату по индивидуальным кривым отдельных скважин аналогичен изложенному выше методу. Использование сред­ней кривой падения давлений по пласту для приведения давлений по скважинам на определенную дату в случае неравномерных изменений давлений по отдельным скважинам может привести к неточным резуль­татам, так как неравномерный отбор жидкости из скважин и литоло-го-физические особенности коллектора (особенно его проницаемость) создают различный темп падения давления по отдельным скважинам.

Давления необходимо приводить к уров­ню моря во всех случаях, когда изменения давлений вследствие падения пород пре­вышают принятую точность (0,5 кПсм2 карты изобар.

Давления, приведенные к уровню моря, в дальнейшем будем называть приведенными изобарами.

studfiles.net

Методы определения пластовых и забойных давлений. Карты приведённых давлений

Пластовое давление определяет состояние жидкости, а также тот запас естественной энергии, в ре­зультате использования которого пластовые жидкости извлекаются на поверхность. Значения его в различных точках одной и той же залежи неодинаковы. Они меняются также во времени и в процессе разработки.

Под пластовым давлением понимается давление в некоторой точке пласта, не подверженной воздействию воронок депрессии со­седних скважин. Однако в связи с тем, что непосредственный замер пластового давления возможен лишь с помощью скважин, можно считать, что под пластовым давлением фактически понимается статическое забойное давление, т. е. давление на забое остановлен­ной скважины, начиная с того момента, когда после ее остановки в пласте (в районе расположения этой скважины) установилось от­носительное статическое равновесие.

За начальное пластовое давление обычно прини­мается статическое забойное давление первой скважины, вскрывшей пласт, замеренное до нарушения статического равновесия, т. е. до отбора из пласта сколько-нибудь значительного количества пла­стовой жидкости. Естественно, что этот один или несколько замеров характеризуют начальное пластовое давление лишь в определенных точках пласта и не могут быть приняты для залежи в целом. Для определения среднего начального пластового дав­ления полученные замеры по первой скважине (или по первым сква­жинам) должны быть пересчитаны на среднюю точку объема залежи, на середину этажа нефтеносности, или приведены к поверхности начального водо-нефтяного контакта .

Для наблюдения за процессом раз­работки пласта необходимо систематически замерять пластовые давления в эксплуатируемых скважинах. Эти замеры лучше всего производить глубинными манометрами. Существуют глубинные ма­нометры двух типов: 1) максимальные и 2) регистрирующие с не­прерывной записью показаний. Измерение пластовых давлений манометром по стволу скважины дает возможность определить истинную плотность жидкости и газа при данных давлении и температуре с учетом нали­чия растворенного газа в водо-нефтяной, смеси. Это может оказать помощь при по­строении карт изобар.

В тех случаях, когда при фонтанном или компрессорном способе эксплуатации невозможно применить глубинный манометр, пла­стовые (забойные) давления определяют расчетным путем по формулам. Эти формулы позволяют получить величины, приближающиеся к действитель­ным пластовым давлениям.

При глубиннонасосной эксплуатации для определения забойных давлений расчетным путем используют данные о статических уровнях в скважинах. Уровни в скважинах (в затрубном пространстве) замеряют либо специальной желонкой, спускаемой при помощи лебедки Яковлева, либо эхолотом. Знания уровней нефти и воды в скважине дают возможность подсчитать забойное да­вление.

Для наблюдения за поведением пласта в процессе разработки необходимо изучать характер изменения и распределения пластовых давлений. Для этого строят карты изобар, т. е. карты равных пла­стовых давлений. Данными для этого служат замеры давлений в скважинах после их поочередной остановки при работе всех других скважин.

При замерах давления с целью построения карт изобар в каждой скважине должно быть свое время выдержки на забое глубинного манометра, обусловленное системой взаимодействия пласт — сква­жина и физическими свойствами пород и флюидов.

При всем многообразии условий работы пласта и скважин прак­тически не представляется возможным найти универсальные зависи­мости для определения времени выдержки глубинного манометра при замере пластового давления в скважинах. Поэтому можно при­нять такое время выдержки глубинного манометра для каждой сква­жины, в течение которого забойное давление в ней восстановится до среднего значения давления в пределах некоторой прилегающей к скважине области, или же определять непосредственно величину этого среднего давления в пределах участка, примыкающего к сква­жине при работе всех скважин пласта.

При наличии данных о давлениях по скважинам построение карт изобар не вызывает затруднений и методически аналогично построе­нию структурных карт с той лишь разницей, что для них исполь­зуют не приведенные глубины залегания пласта, а величины стати­ческих пластовых давлений по скважинам. При построении карт изобар необходимо учитывать:

1) наличие, как правило, исходных данных о давлениях на раз­ личные даты и необходимость приведения их на дату построения карты изобар;

2) зависимость давлений от глубины залегания пласта (давление связано с углом падения пород) и необходимость приведения их

к избранной условной поверхности; 3) отсутствие в пласте статиче­ского равновесия и необходимость применения в связи с этим соответ­ствующих приемов интерполяции и особенно экстраполяции давлений. Рассмотрим особенности построе­ния карт изобар более детально.

Рис. Схема графического приведения давлений на дату составления карты изобар. 7 — давления по скважинам; 2 — зредняя (хронологическая) кривая падения давления; 3 — точки давле­ний по рачетным скважинам; 4 — ис­комые давления.

Приведение пластовых давлений по скважинам на дату построения карты изобар проще всего осуще­ствлять графическим методом, кото­рый обеспечивает достаточную для практических целей точность. Сущ­ность метода заключается в следу­ющем. Все замеры пластовых давле­ний на различные даты наносят в виде точек на график (рис. ). По полученным точкам (диаграмме «мушиных» точек) строят среднюю (хронологическую) кривую падения

давления. Затем, полагая, что указанный средний темп падения да­вления характеризует всю залежь, и следуя этому темпу, прибли­женно определяют давление на искомую дату в любой скважине. Например, требуется определить давления в скв. 1 и 2 на дату составления карты изобар (на январь, соответствующего года). В этом случае, следуя параллельно средней кривой падения да­вления, находят искомые давления.

Совершенно очевидно, что предлагаемый метод является прибли­женным. В связи с этим давления следует приводить к искомой дате лишь по близким скважинам, не используя для расчетов данные скважин, полученные задолго (например, за шесть месяцев) до даты, на которую приводятся давления для построения карты изобар. При неравномерных замерах пластовых давлений по скважинам и сосредоточении фактических данных по отдельным локальным участкам пласта более точные результаты при приведении давлений к одной дате достигаются использованием индивидуальных кривых изменения пластовых давлений по скважинам. Метод приведения давлений на искомую дату по индивидуальным кривым отдельных скважин аналогичен изложенному выше методу. Использование сред­ней кривой падения давлений по пласту для приведения давлений по скважинам на определенную дату в случае неравномерных изменений давлений по отдельным скважинам может привести к неточным резуль­татам, так как неравномерный отбор жидкости из скважин и литоло-го-физические особенности коллектора (особенно его проницаемость) создают различный темп падения давления по отдельным скважинам.

Давления необходимо приводить к уров­ню моря во всех случаях, когда изменения давлений вследствие падения пород пре­вышают принятую точность (0,5 кПсм2 карты изобар.

Давления, приведенные к уровню моря, в дальнейшем будем называть приведенными изобарами.

 

megaobuchalka.ru

Пластовое давление

Билет 1

  1. Пластовое давление и температура.

Вязкость пластовой воды в большинстве нефтяных месторождений меньше вязкости нефти. С повышением температуры вязкость воды уменьшается. Пластовые воды обладают электропроводностью, которая зависит от степени минерализации.

Жидкости и газы находятся в пласте под давлением, которое называется пластовым. Пластовое давление - показатель, характеризующий природную энергию. Чем больше пластовое давление, тем большей энергией обладает пласт.

Начальное пластовое давление - давление в пласте до начала его разработки, как правило, находится в прямой связи с глубиной залегания нефтяного (газового) пласта и может быть определено приближенно по формуле :

Рпл.н=Нg 104 Н

где: Рпл.н - начальное пластовое давление

Н - глубина залегания пласта, м

 - плотность воды, кг/м3

g - ускорение свободного падения (9.81 м/сек2)

104 - переводный коэффициент, Па.

Обычно пластовое давление бывает больше или меньше вычисленного по формуле. Такое его значение определяют при непосредственных замерах глубинным манометром, которым обычно определяют забойное давление - давление на забое работающей или простаивающей скважины.

При эксплуатации скважины важнейшее значение имеет перепад давления на забое, которое является определяющим при работе скважины. Оно представляет собой разницу между пластовым давлением и забойным давлением и называется депрессией.

Перепад давления ∆Р = Рпл. – Рзаб.

Движение нефти начинается с какого – то расстояния, так называемого радиусом дренирования залежи, по мере движения к стволу скважины пластовой жидкости поток ее увеличивается, вследствие чего растет гидродинамическое давление. Наибольшего значения оно достигает в призабойной зоне пласта (ПЗП), равной 0.8 – 1.5 метра. Решающую роль играет забойное давление, чем ниже забойное давление, тем скважина может работать более продуктивно. Наибольший перепад давления в призабойной зоне пласта приводит к различным явлениям, например выпадение в осадок в этой зоне солей, твердых частиц, смол, асфальтенов, может возникнуть турбулентное движение жидкости. Все эти явления уменьшают течение жидкости из пласта и называются скин – эффектом

  1. АГЗУ- групповые замерные установки. Устройство и принцип работы.

АГЗУ предназначена для автоматического учета количества жидкости и газа, добываемых из нефтяных скважин с последующим определением дебита скважины. Установка позволяет осуществлять контроль над работой скважин по наличию подачи жидкости и газа и обеспечивает передачу этой информации, а также информацию об аварии на диспетчерский пункт.

Областью применения установок является нефтегазодобывающие предприятия, имеющие скважины с дебитом до 400 м3\сут и содержанием газа в жидкости при нормальных условиях до 160 м3\м3.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Оборудование групповой установки рассчитывается на подключение и сбор продукции с 8—14 скважин.

Продукция, поступающая со скважины, замеряется периодически для каждой скважины.

Схема измерения дебита скважины на групповой установке показана на рисунке, приведённом ниже(Рис 1) .

Рис 1 - Схема измерения дебита скважины на групповой установке

Продукция скважин по сборным коллекторам (11), через обратные клапана (11) и линии задвижек (18) поступает в переключатель (1) ПСМ (переключатель скважин многоходовой). При помощи переключателя ПСМ продукция одной из скважин направляется через задвижку (28) в сепаратор (5), а продукция остальных скважин направляется в общий трубопровод (12) через задвижку (23).

В сепараторе происходит отделение газа от жидкости. Выделившийся газ при открытой заслонке (17), поступает в общий трубопровод, а жидкость накапливается в нижней емкости сепаратора. При содержании газа в жидкости при нормальных условиях более 160м3\м3 должна применяться заслонка дисковая, которая поставляется по особому заказу.

С помощью регулятора расхода (6) и заслонки (17), соединенной с поплавковым уровнемером (2), обеспечивается циклическое прохождение накопившейся жидкости через турбинный счетчик жидкости ТОР с постоянными скоростями, что обеспечивает измерение дебита скважин в широком диапазоне с малыми погрешностями. Регулятор расхода РР соединен двумя импульсными трубками с сосудом и линией после заслонки (17). При перепаде давления РР обеспечивает выход жидкости из сосуда (5) через счетчик ТОР в общий трубопровод. Из общего трубопровода жидкость движется на ДНС или УПСВ. Для предотвращения превышения давления в сосуде (5) на нем установлен предохранительный клапан СППК (4). СППК срабатывает при давлении в сосуде выше допустимого и жидкость из сосуда (5) поступает в дренажную линию. Он тарируется не реже чем 1 раз в год (давление тарировки Р тар=Р раб.сосуда * 1~1.25).

Счетчик ТОР выдает на блок управления и индикации (БУИ) или пункт контроля и управления импульсы, которые регистрируются электромагнитными счетчиками. Счетчик имеет шкалу и механический интегратор, где суммируется результат измерения.

Управление переключателем скважин осуществляется БУИ по установленной программе или по системе телемеханики, через КП. При срабатывании реле включается электродвигатель гидропривода (3) и в системе гидравлического управления ГП повышается давление. Привод переключателя ПСМ, под воздействием давления гидропривода ГП, перемещает поворотный патрубок переключателя и на замер подключается следующая скважина.

Длительность измерения определяется установкой реле времени в режиме местной автоматики. Время измерения определяется руководством промысла в зависимости от дебита скважин, способов добычи, состояния разработки месторождения и др. Если ЗУ оборудованы системой телемеханики, время замеров выставляется с диспетчерского пульта промысла.

Замерные установки оборудованы электрическим освещением, обогревателями и принудительной вентиляцией. Помещение БУИ или ПКУ имеет естественную вентиляцию и электрические обогреватели.

Все оборудование смонтировано на металлическом основании. На основании, по периметру рамы, крепятся панели укрытия. Внутренняя полость панелей заполняется теплоизоляционным материалом и обшивается металлическими листами.

studfiles.net

Пластовое давление, поровое давление

Обычно прогноз пластового давления основан на предположении о том, что оно изменяется строго пропорционально глубине скважины, причем коэффициент пропорциональности называют часто коэффициентом (индексом) аномальности ka:

pпл = rв glплka , (1.1)

где rв – плотность воды, кг/м3,

lпл– глубина расположения пласта (в наклонно направленных скважинах вместо глубины по стволу берут вертикальную проекцию ствола на данной глубине.), м.

Тогда получается, что для определения пластового давления вполне достаточно знать только величину ka для различных интервалов бурения. Обычно принимают, что для некоторого интервала бурения ka – величина постоянная. Однако то обстоятельство, что для всех интервалов бурения расчет пластового давления ведут с помощью формулы (1.1), представляющей собой уравнение прямой, исходящей их начала координат, означает, во-первых, что линии пластовых давлений являются отрезками прямых, а во-вторых, продолжения этих отрезков образуют лучи, исходящие из устья скважины.

На рис. 1 показаны четыре луча, соответствующие разным значениям индекса пластового давления ka. У луча 0а оно минимально, а у луча 0g – максимально. На глубине Lа изменяется индекс аномальности ka, и линия скачком переходит на другой луч и так далее. В результате образуется ломаная линия 0abcdefghi, включающая горизонтальные участки ab, cd, ef, hg. Известны случаи локального роста пластового давления на некотором интервале бурения (по сравнению с соседними пластами) с последующим возвратом на прежний (или близкий к прежнему) уровень давлений. На рис. 1. этому соответствует участок efghi.

Такой упрощенный, хотя и популярный в практике проектирования скважин, метод прогнозировании пластового давления привносит в расчеты значительные ошибки, особенно в верхних интервалах разреза и при расчетах давления для пластов с аномально высоким пластовым давлением (АВПД). Но прежде чем перейти к обсуждению более точных методов прогнозирования пластовых давлений дадим определение понятия градиент пластового давления qпли сравним его с коэффициентом аномальности ka .

Величина qпл, в строгом смысле, характеризует изменение пластового давления в пределах некоторого интервала бурения или пласта, приходящееся на единицу длины (как правило, это 1 м) и вычисляется по формуле:

qпл = (pпл2 - pпл1)/ (L2 - L1), (1.2)

где pпл2 и pпл1 – пластовые давления соответственно на глубинах L2и L1 (например, в подошве и кровле пласта).

Если обнаружится, что для любых двух глубин в пределах данного интервала бурения (пласта) величина qпл постоянна (одна и та же), то это будет означать, что пластовое давление изменяется по линейному закону.

Но это совсем не означает, что продолжение прямой пройдет точно через устье скважины, как это имеет место на рис. 1. И здесь возможны варианты (рис. 2):

1. Участок 0' a отражает изменение рпл в верхней части разреза, насыщенной пресными или маломинерализованными водами со статическим уровнем пластовой воды в скважине, как правило, ниже уровня земли ("сухой" отрезок 0-0'). Предположим теперь, что каким-то образом удалось замерить пластовые давления в точках a' и a. Вычисляя теперь по формуле (1.1) коэффициенты аномальности ka (при известных давлениях и глубинах), мы бы получили разные величины ka для указанных глубин (прямые 0а и 0а' не совпадают). Но выше мы только что доказали, что наличие линейной связи между давлением и глубиной автоматически означает постоянство градиента давления. В этих условиях применение формулы (1.1) с коэффициентом ka, найденным по глубине La, приведет к завышению рпл для всех глубин, меньших La.

2. Если продолжение прямой линии пластового давления (прямая 0 с на рис. 2) проходит через устье скважины, то имеет место частный случай постоянства ka и qпл на всем интервале бурения. При этом расчеты по формуле (1.1) будут тоже точными.

3. Продолжение прямой пластовых давлений может пройти и выше устья (прямая 0" е на рис. 2). Это может быть, например, в случае, когда высота области питания для данного водоносного горизонта находится намного выше того места, где бурится скважина (геологических причин формирования АВПД множество. Указанная причина - одна из возможных.). Расчет по формуле (1.1) будет отягощен ошибками, как и в случае 1, так как коэффициент аномальности, в отличие от градиента давления, будет переменным по длине интервала бурения.

4. Продуктивная толща газовых месторождений и некоторых, например, Прикаспийских, имеют большую протяженность (несколько сотен метров), и отдельные проницаемые участки (коллектора) имеют между собой гидродинамическую связь в вертикальном направлении. Такие залежи месторождений называют массивными. Пластовое давление в пределах продуктивных пластов распределяется не пропорционально глубине, а в соответствии с плотностью флюида в пластовых условиях. В продуктивной части газового месторождения – в зависимости от плотности сжатого газа, в нефтяных – от плотности нефти в пластовых условиях. На рис. 2 прямая fg иллюстрирует распределение давления в газовой залежи. Считается, что в подошве залежи давление близко к давлению в водоносных пластах на соответствующей глубине, зато в кровле оно существенно больше "нормального" и воспринимается как АВПД. Для таких случаев прогнозный расчет по формуле (1.1) в принципе возможен только для подошвы залежи. Что касается давления в кровле, то оно определяется по формулам (соответственно для газа и нефти):

pкр = pпд /exp[10-4bг(Lпд – Lкр)], (1.3)

pкр = pпд - rнg(Lпд – Lкр), (1.4)

где pпд и pкр – пластовое давление в подошве и в кровле пласта;

bг - относительная сжимаемость природного газа;

rн- плотность нефти в пластовых условиях;

Lпд и Lкр - глубины расположения подошвы и кровли пласта соответственно.

Для многопластовых месторождений нефти, когда каждый нефтеносный пласт может рассматриваться как самостоятельная залежь малой мощности (единицы метров) с собственным водонефтяным контактом, в пределах нефтеносной части распределение тоже будет по закону, описанному формулой (1.4). Однако, в связи с малой мощностью пластов, описанным эффектом аномальности в кровле пренебрегают, и пластовые давления определяют либо по формуле (1.1), либо через градиент давления qпл, если известно давление для одной из глубин в пределах рассматриваемого интервала бурения.

На линии пластовых давлений выделяются горизонтальные площадки, что свидетельствует о скачкообразном изменении пластового давления при достижении определенных глубин. Если подходить формально, то получается, что в одной точке пласта существуют два давления, что абсурдно. Все дело в том, что в реалии переход от одного давления к другому происходит не сразу, а на некотором, относительно коротком (в несколько метров) интервале. Вследствие малости интервала переход на новое давление показывают в виде ступенек.

Существует еще один способ оценки пластового давления и его изменения, суть которого сводится к определению эквивалентной плотности жидкости, которая, находясь (условно) в скважине от рассматриваемой точки пласта на глубине Li до устья, создает гидростатическое давление, численно равное пластовому на данной глубине:

rэкв = рпл.i /(Lig) (1.5)

Понятие "эквивалентная плотность" применяется не только к пластовому давлению, но используется и для описания всех других давлений, представленных в ТПД: гидростатического, давления гидроразрыва и горного. Вычисляются они по формуле (1.5) с заменой числителя на значения соответствующих давлений.

А теперь сравним размерности и величины параметров ka , qпл , rэкв , которые служат исключительно для оценки уровня давлений и их изменения с глубиной скважины.

Из формулы (1.1) следует, что коэффициент ka - величина безразмерная. Он призван показать, во сколько раз пластовое давление превышает давление столба воды на той же глубине в предположении, что скважина полностью ею заполнена (условно, конечно). Нередко величина ka превышает 1,8, что требует применения утяжеленных растворов соответствующей плотности.

Предположим, что в кровле пласта на глубине 2000 м пластовое давление оказалось равным 21,6 МПа, а в подошве, на глубине 2500 м – 27 МПа.

Тогда:

- коэффициент аномальности ka = 21,6*106/ (1000*9,81*2000)=1,1 (на глубине 2000 м),

- коэффициент аномальности ka = 27*106/ (1000*9,81*2500)=1,1 (на глубине 2500 м),

- градиент пластового давления в интервале 2000-2500 м: qпл = (27-21,6)/ (2500-2000) = 0,0108 МПа/м,

- эквивалентная плотность по пластовому давлению на глубине 2500 м: rэкв = 27*106/ (9,81*2500) = 1100 кг/м3.

По величинам kaиrэкв можно заключить, что пластовые давления в указанном интервале на 10 % превышают давление воды с плотностью 1000 кг/м 3.

Обобщим изложенное:

Приближенный, но весьма распространенный метод прогнозирования пластового давления, предполагает использование формулы (1.1).

Более строгий метод расчета пластового давления предусматривает точное знание давления на одной из глубин в пределах пласта (интервала бурения), например, прямым измерением глубинными манометрами, и расчет давления для других глубин с использованием величины градиента давления(По определению пластовое давление – фактор природный, и его величина в принципе не может зависеть от человека. Однако бывает пластовое давление "рукотворным". Например, в результате добычи нефти имеет место уменьшение давления в продуктивных пластах. При закачке в пласт жидкости или газа для восстановления пластовой энергии оно, наоборот, увеличивается и может превысить первоначальное давление. ).

Изменение пластового давления в зависимости от глубины можно отобразить с помощью графика "глубина - эквивалентная плотность".

petrolibrary.ru

Нефть, Газ и Энергетика: Определение пластовых давлений

 

Горное давление и формула для его определения. Горным называется давление, создаваемое весом залегающих над газом пород.

,                         (2.1)

где  — горное давление в кгс/см2;  —средний удельный вес горных пород всех вышележащих пластов с учётом насыщающих их жидкостей в гс/см3  или тс/м3 ;  —глубина, считая от поверхности земли до точки пласта, в которой определяется горное давление в м. При ориентировочных расчётах принимается  гс/см3.

Пластовое давление и методы его определения. Давление газа в газовой залежи (пластовое давление) всегда меньше горного. Определяют его по давлению на забое закрытой скважины. Учитывая, что углы наклона пластов незначительны, для большинства газовых месторождений можно считать, что начальное пластовое давление одинаково во всех точках залежи. При значительных этажах газоносности залежи значения этого давления могут значительно отличаться по различным скважинам при одинаковых давлениях на устье. На своде их значения будут меньше, чем на крыльях.

На практике пластовое давление  принимается равным гидростатическому, т.е. примерно глубине скважины  [м], умноженной на удельный вес воды  [кг м/ с2]. При этом учитывается возможное отклонение от данного значения с помощью введения коэффициента несоответствия , изменяющегося в пределах 0.8 – 1.2

 [МПа].                     (2.2)

Причины аномальности пластового давления. Причины аномальности лежат в геологических особенностях сообщаемости горизонтов, величинах горного давления. Аномально высокие давления имеют замкнутые пласты без выходов на поверхность при высоких этажах газоносности и уплотнённых породах.

 

 

www.tehnik.top