Теплообменные аппараты и приборы в легкой промышленности. Основная тепловая ценность нефти


Виды топлива и его тепловая ценность

Виды топлива и его тепловая ценность

Топливо для ТЭС может быть твердым и жидким. К твердым видам топлива относятся угли (бурые, каменные, антрациты), торф, горючие сланцы. Жидким топливом является мазут — смесь тяжелых остатков нефти после ее предварительной переработки.

Одной из характеристик топлива является его состав — входящие в него химические элементы и соединения.

Топливо, поступающее на станцию, называется рабочим топливом. Оно включает горючую массу, балласт и влагу.

В состав горючей массы топлива входят углерод С, водород Н, небольшие количества горючей серы S, которая является крайне вредной составляющей вследствие агрессивности продуктов ее горения. При сгорании 1 кг С выделяется 33,6 • 103, Н — 129 • 103 и S — 9 • 103 кДж теплоты.

Балласт составляют инертный азот N, кислород О, минеральные негорючие вещества, которые после сжигания топлива образуют зольный остаток. Зольность топлива А — доля зольного остатка в массе рабочего топлива — зависит от природы топлива, способа и качества его выработки, условий хранения.

Влага в топливе нежелательна, так как из-за нее уменьшается доля горючих компонентов в единице массы топлива, снижается тепловой эффект горения. Влажностью W называют долю влаги в массе рабочего топлива.

Таким образом, элементарный состав рабочей массы топлива Ртопл можно записать в виде:

Содержание углерода в топливе составляет от 50 до 75 % для твердых и от 83 до 85 % для жидких сортов; водорода — от 2 до 10 %, серы — от 0,2 до 4 %. Влажность топлива составляет от 5 до 40 %, зольность — от 10 до 50 %.

При нагревании твердого топлива без доступа воздуха из него выделяются летучие вещества: N2, 02, Н2> СО, СН4, С2Нб и т.д. Выход летучих веществ обозначается V. Чем больше количество летучих веществ, тем легче воспламеняется и устойчивее горит топливо.

Выход летучих веществ Vr различных сортов топлива в зависимости от температуры t составляет:

Характеристика различных видов топлива представлена в табл. 1.

Важнейшим показателем, определяющим тепловую ценность топлива, является удельная теплота сгорания его рабочей массы (2Р, которая характеризует количество теплоты, выделяемой при сгорании 1 кг или 1 м3 топлива. Различают высшую QPB и низшую Qp теплоту сгорания топлива. Различие между ними заключается в том, что в высшую теплоту сгорания топлива входит количество теплоты, которое может быть выделено при конденсации водяных паров, находящихся в продуктах сгорания топлива.

Обычно в расчетах используется Qрн, так как температура дымовых газов выше температуры конденсации водяных паров. Эта теплота меньше теплоты сгорания рабочей массы Qp вследствие наличия в топливе балласта и влаги. При большом количестве балластных примесей Qрн может уменьшаться в 2 — 3 раза по сравнению с Qp.

Для определения низшей теплоты сгорания рабочей массы используют формулу

Как видно из табл. 1, различные виды топлива имеют разную теплоту сгорания. Для облегчения сопоставления удельных расходов топлива и ведения отчетности введено понятие «условное топливо», удельная теплота сгорания которого равна QPH = 29308 кДж/кг. В соответствии с этим для каждого вида топлива установлен свой тепловой эквивалент Эт, определяемый выражением

Тепловой эквивалент может быть больше и меньше единицы. Перевод расхода топлива В (кг/с или кг/ч) в условное топливо Вусп осуществляют по уравнению

 

Смотрите также

teploobmennye-apparaty.ru

Виды и основные характеристики топлива

Топливо – вещество, при сжигании которого выделяется значительное количество теплоты, используемое как источник получения тепловой энергии и как сырье в химической, металлургической и других отраслях промышленности.

Топливо, содержащее органические вещества, называют углеводородным.

Различают естественное и искусственное топливо. К естественным относятся ископаемые и растительные виды топлива, а к искусственным – продукты переработки естественных видов топлива. Все топлива по агрегатному состоянию подразделяются на твердые (ископаемые угли и сланцы, торф, древесина), жидкие (нефть, нефтепродукты) и газообразные (природный и попутный газы и др.).

Основной характеристикой топлива является его теплота сгорания, т.е. количество теплоты, выделяющееся при полном его сгорании. Различают теплоту сгорания удельную (МДж/кг) и объемную (МДж/м3).

По удельной теплоте сгорания (МДж/кг) виды топлива характеризуются следующим образом:

 

Топливо                                                 Уд. теплота сгорания

                                                                           МДж/кг

Дрова                                                                8,3-15,5

Горючий сланец                                              8,4 – 20

Торф                                                                  8,4 – 21

Бурый уголь                                                    10,5 – 21

Каменный уголь                                             ок. 29,4

Антрацит                                                          32,8- 32,6

Природный горючий газ на 1 куб.м            25,2-46,2

Нефть                                                                42

 

По энергетической ценности виды топлива характеризуются следующим образом:

 

Топливо                                        Энергетическая ценность

 кВт ч /кг

Дрова                                                                2,33-4,32

Горючий сланец                                              2,33 – 5,82

Торф                                                                  2,33 – 4,66

Бурый уголь                                                     2,92 -5,82

Каменный уголь                                              ок. 8,15

Антрацит                                                          9,08 – 9,32

Природный горючий газ на 1 куб.м            6,98 – 12,82

Нефть                                                                11,63

 

Различные виды топлива соизмеряются по их удельной теплоте сгорания, т.е. по количеству энергии, виделяющейся при сжигании кило-грамма топлива.

Для исчисления общих запасов топлива различные его виды мысленно заменяют так называемым условным топливом с удельной теплотой сгорания 29,4 МДж/кг. Обозначив удельную теплоту сгорания данного топлива через Q, а его количество ( в килограммах или тоннах) через Т, найдем эквивалентное ему количество Х условного топлива по одной из следующих формул:

 

 Х=ТQ /29,4 или Х=ТQ/ 8,15,

 

в зависимости от того, в каких единицах (МДж/кг или кВт·ч/кг) задана Q.

 

Практически при соответствующих расчетах принимают:

1т каменного угля = 1 т условного топлива

1т бурого угля = 0,4 т условного топлива

1т нефти = 1,4 условного топлива

1000 м3 природного газа = 1,3 т условного топлива

 

Несколько сложнее соизмерение топливных и нетопливных энергетических ресурсов. Мощность гидроэнергии, измеряемая в киловаттах, зависит от высоты (напора) воды и ее расхода, т.е. количество воды, протекающей в выбранном створе реки в единицу времени. Ее исчисляют следующим образом.

Вода, падая с высоты, производит работу, равную произведению ее веса на высоту падения. Масса воды пропорциональна ее объему. Обозначив через R ее расход, т.е. количество кубометров воды, падающей за секунду, а через Н – высоту падения, выраженную в метрах, можно вычислить мощность N водного потока в киловаттах по следующей формуле:

 

 N=(1000/102) RH=9,8 RH.

 

В этой формуле 1000 – число килограммов в кубометре воды, а 102 – число килограммометров в секунду, равное одному киловатту мощности.

Принимая средний коэффициент полезного действия гидроустановки равным 0,80-0,85, получаем практическое выражение для потенциальной (теоретической) мощности водного потока:

 

 N= 8RH, кВт.

Понятие условного топлива применяют не только для исчисления общих отходов топлива, но и для исчисления энергетических ресурсов любого вида. Исходной величиной при этом служит среднее количество весовых единиц условного топлива, фактически расходуемых на тепловых электростанциях для получения одного киловатт-часа электроэнергии при данном уровне энергетической техники ( в настоящее время -около 0,35 кг). При помощи этой величины определяют какому количеству условного топлива эквивалентны ресурсы нетопливных источников энергии (количество киловатт-часов электроэнергии, которые можно получить от них за год).

Запасы гидроэнергии на определенной территории представляют сумму потенциальной мощности всех водотоков, умноженную на число часов возможного ее использования за год. Это потенциальные (теоретические) гидроэнергоресурсы. Наряду с ними различают: технически возможные к использованию гидроэнергоресурсы – часть потенциальных, которая при данном уровне техники практически может быть использована; экономически эффективные гидроэнергоресурсы, использование которых при существующих условиях экономически выгодно.

При соизмерении невозобновляющихся и возобновляющихся энергетических ресурсов необходимо учитывать скорость возобновления (прирост древесины, а иногда и торфа).

В состав всех видов топлива входит горючая масса (органическая масса и горючие неорганические вещества: сера, ее соединения и т.д.) и негорючая масса (зола, влага). Чем больше в топливе золы, влаги, тем ниже его теплота сгорания. Чем выше в органической массе содержание углерода и водорода и чем ниже содержание кислорода и азота, тем больше теплота сгорания топлива.

Одним из важнейших видов жидких топлив является нефть, которая содержит в органической части 83-87% углерода и 12-14% водорода. Удельная теплота сгорания нефти колеблется в пределах 35,8-44 МДж/кг.

Природный газ содержит до 98% метана и является наиболее эффективным видом топлива. В пределах Украины имеются практически все виды топлива, в том числе нефть и газ.

kursak.net

Виды топлива и его состав

Паровые котлы ТЭС

Отечественная энергетика развивается за счет строительства электростанций на органи­ческом и ядерном топливе.

Органическим топливом называют горю­чие вещества, способные активно вступать в реакцию с кислородом и обладающие зна­чительным удельным тепловыделением (на единицу массы или объема).

К энергетическим видам топлив относятся такие, которые экономически целесообразно использовать для получения больших коли-, честв теплоты. Запасы их должны быть огром­ны и относительно легко доступны для массо­вого использования. Кроме того, они не долж­ны являться ценным сырьем для других отраслей промышленности. В качестве энерге­тических топлив электростанций наибольшее, значение имеют: твердое — каменные и бурые, угли и отходы их переработки, антрацит и по­луантрацит; жидкое — мазут; газовое — при­родный газ. В меньшей мере используются торф и горючие сланцы, стабилизированная нефть и горючие газы промышленности (до­менный, коксовый), хотя в отдельных районах страны они составляют заметную часть топ­ливного баланса.

В последнее время все возрастающее зна­чение для получения энергии и прежде всего электрической приобретает широкое строи­тельство АЭС, использующих энергию распада радиоактивных ядер атомов тяжелых метал­лов урана (235U) и плутония (239Ри). Самая богатая урановая руда — уранинит — содер­жит 65—90% двуокиси урана UO2, в составе которой радиоактивного 236U содержится всего >0,72%, а остальное составляет обычный 238U. Для повышения содержания 235U в исходном ядерном топливе его подвергают обогащению на газодиффузионных заводах до 1,5—3,5% 235U, после чего загружают в ядерные реакто­ры. При делении 1 кг 235U выделяется около 85 млн. МДж теплоты, что эквивалентно сжи­ганию 3500 т каменного угля с теплотой сго­рания 24,5 МДж/кг.

Из общего потребления органического топ­лива в стране около 40% приходится на долю энергетики. В топливном балансе тепловых электростанций преимущество имеют угли, мазут и природный газ. Доля сжигаемого угля на ТЭС возрастает за счет использования угольных месторождений Сибири и Северного Казахстана. Примерно на таком же уровне находится использование мазута и природного газа. На остальные виды твердого топлива — торф, сланцы приходится всего 6—7% общего расхода топлива электростанциями. Ускорен­ное развитие получит добыча углей в новых месторождениях более дешевым способом — открытым.

Все ископаемые — твердые топлива и нефть по­лучились в процессе длительного преобразования ис­ходной растительной массы и отмерших животных ор­ганизмов под слоем земли или воды, причем этот про­цесс протекал с различной скоростью в направлении постепенного обуглероживания (углефикации) топли­ва, т. е. повышения в нем содержания углерода и уменьшения количества кислорода и водорода (рис. 2.1).

Рис. 2.1. Изменение элементарного состава основных видов топлив.

Степень обуглероживания, характеризующая глуби­ну химических превращений в топливе (так называе­мый химический возраст топлива), не определяется прямо его геологическим возрастом, т. е. длительно­стью во времени процесса углеобразования.

Сырая нефть является смесью органических соеди­нений и включает в себя небольшое количество жидких сернистых и азотных соединений, парафинов и смол. После извлечения легких фракций и масел (бензина, лигроина, керосина, газойля, солярового масла) оста­ются сильновязкие тяжелые фракции — мазут, который и используется как энергетическое жидкое топливо. При этом минеральные примеси, входящие в нефть, концентрируются в мазуте.

Природные газы образуются одновременно с нефтью либо получаются в результате синтеза в при­сутствии воды и карбидов металлов на больших глуби­нах под воздействием высокого давления и темпера­туры. Во многих случаях выход газов сопутствует до­быче нефти. Это так называемые попутные газы, кото­рые также возможно использовать в качестве энергети­ческого топлива.

Использование газообразных и жидких топлив по сравнению с углем не только повы­шает общую культуру эксплуатации электро­станций. но и приводит к ощутимому сниже­нию стоимости основного оборудования, росту к. п. д. установок. Так, при сооружении элек­тростанций, сжигающих газ и мазут, удельные капиталовложения по сравнению с электро­станцией равной мощности на угле снижают­ся на 20—24%, а экономичность газомазутных станций по отпуску электроэнергии на 4% выше, чем работающих на угле.

Однако разведанные запасы природных га­зов и нефти ограничены и составляют около 6% всех мировых запасов органических топ­лив. Кроме того, природные газы и нефть являются ценнейшим сырьем для народного хозяйства. Запасы же угля превышают 71% мировых разведанных ресурсов топлива и являются основным органическим топливом.

Органическая часть твердых и жидких топ­лив состоит из большого количества сложных химических соединений, в состав которых в основном входят пять химических элемен­тов: углерод С, водород Н, кислород О, сера S и азот N. Кроме того, топливо содержит минеральные примеси А, попавшие в исход­ную залежь в основном извне, и влагу W. Поэтому химический состав твердых и жид­ких топлив определяют не по количеству со­единений, а по суммарной массе химических элементов в топливе в процентах от 1 кг, т. е. устанавливают элементарный состав топлива.

Различают следующие пять основных эле­ментарных масс топлива [7]:

Рабочая масса топлива

CP+HP+OP+NP+SP.,+

+ЛР+№>=100%; (2.1)

Аналитическая масса топлива

Ca+Ha+Oa+Na+S%+ +Л а+Wa= 100 % ;

(2-2)

Сухая масса топлива

Cc + Hc + Oc + Nc + S<>-Mc== 100%; (2.3) условная горючая масса топлива

Сг + Нг+Ог + Ыг+5гл= 100%; (2.4) і' Органическая масса топлива

C°-j-H0-f00-f №-f S0—100%. (2.5)

Рабочей считается масса топлива в том виде, в каком она поступает на ТЭС. Расчет расхода топлива и полученных объемов про­дуктов сгорания производится по составу ра­бочей массы. Рабочее топливо, измельченное до порошкообразного состояния и доведенное в лабораторных условиях до воздушно-сухого состояния, теряет внешнюю влагу, и масса его называется аналитической. Оставшуюся влагу W& топлива, связанную с его исходным веще­ством, называют чаще гигроскопической, т. е. Wa=Wril.

Если топливо нагреть до 102—105°С, то испарится вся влага и тогда получится сухая масса топлива. В горючую массу топлива вхо­дят химические элементы исходного органиче­ского вещества; кроме того, сюда причисляют серу минеральных горючих соединений (на­пример, серного колчедана FeS2), поэтому она называется условной горючей массой.

В уравнениях (2.1) — (2.4) через Бд обо­значена летучая сера, представляющая собой сумму колчеданной и органической серы, спо­собной к окислению в топке: Sj4=SK+S°.

Органическая масса отличается от горючей только отсутствием колчеданной серы. Кроме указанных двух видов серы, существует еще сульфатная сера Sc, которая входит в состав высших окислов (например, CaS04) и даль­нейшему окислению не подвергается. Схема элементарного состава различных масс твер­дого топлива приведена на рис. 2.2. В составе топлива различают внешний балласт, состоя­щий из влаги и минеральной части, и внут-

Кексодый остатон

Рис. 2.2. Схема элементарного состава твердого топлива.

Ренний балласт, входящий в исходное орга­ническое вещество топлива. К нему относятся кислород и азот.

Г орючими элементами топлива являются углерод, водород и сера. Углерод является основным горючим элементом топлива. Он имеет высокую теплоту сгорания (34,1 МДж/кг) и составляет большую часть рабочей массы топлива (50—75% в твердых топливах и 83 — 85% в мазутах). Водород имеет высокую теп­лоту сгорания (120,5 МДж/кг), но его коли­чество в твердых топливах невелико (№— =2-^-4%) и несколько больше в жидких (10— 11%). Сера имеет невысокую теплоту сгора­ния (9,3 МДж/кг) и содержится в топливах в малых количествах (Sp=0,3-^4%), поэтому не представляет ценности как горючий эле­мент. Наличие окислов серы в продуктах сго­рания увеличивает опасность коррозии метал­ла поверхностей нагрева и при определенных концентрациях опасно для организмов и ра­стительности, что требует принятия мер для их улавливания. В зависимости от содержания серы различают малосернистый (Sp<0,5%), сернистый (Sp=0,5-5-2%) и высокосернистый (Sp>2%) мазуты.

В отличие от твердого и жидкого топлива газовое топливо представляет собой механи­ческую смесь горючих и негорючих газов. Природные газы преимущественно (до 90 —• 96%) содержат метан СН4, в небольшом ко­личестве тяжелые углеводороды (этан СгНб, пропан СзНв, бутан С4Н10 и др.), которые ча­сто записываются в виде общей формулы CmH„ (1—6%). Кроме того, природный газ содержит негорючие компоненты: немного азо­та N2 (1—4%) и двуокись углерода С02 (0,1-0,2%).

Нормальному (неаварийному) останову котла (блока) предшествует его разгрузка. При останове в резерв на короткое время (на­пример, на ночь) стремятся в наибольшей степени сохранить тепловое состояние обору­дования, в связи с чем …

Рассматриваемые режимы можно разде­лить на три основных этапа: подготовитель­ные операции, собственно растопки котла и повышение нагрузки до заданной. Рассмо­трим их применительно к наиболее современ­ному оборудованию — блочным установкам. В течение …

В соответствии с тепловой схемой АЭС пар выраба­тывается либо непосредственно в ядерных реакторах кипящего типа, либо в парогеиераторах-теплообменни - ках, в которых осуществляется передача теплоты от теп­лоносителя, поступающего из реактора, …

msd.com.ua

Характеристика топлива: классификация и состав

Топливо — это горючие вещества, основной составной частью которых является углерод, применяемые с целью получения при их сжигании тепловой энергии.

Классификация. По физическому состоянию топливо бывает твердое, жидкое, газообразное. Стекловаренные печи работают на жидком и газообразном топливе.

К топливу, используемому для стекловаренных печей, предъявляют ряд требований: при сгорании оно должно выделять значительное количество тепла на единицу своей массы или объема, не должно выделять газов, вредно действующих на здоровье людей, а также отрицательно влияющих на материалы топок и печей, должно быть удобным для транспортирования и сжигания.

Основной характеристикой топлива является его теплотворность Q. Теплотворностью топлива называется количество тепла, выделяемое при полном сгорании единицы массы или объема топлива (1 кг жидкого топлива или 1 м3 газообразного). Теплотворность измеряется в ккал/кг или ккал/м3 (в СИ — кДж/кг, кДж/м3).

Теплотворность различных видов топлива колеблется в широких пределах — от 1000 до 10 000 ккал/кг.

По происхождению топливо подразделяется на естественное и искусственное. Последнее получается в результате переработки естественного топлива. В табл. 3 приводится классификация промышленного топлива.

Таблица 3. Классификация промышленного топлива Происхождение Физическое состояние твердое жидкое газообразное
Естественное ДроваТорфБурые углиКаменные угли АнтрацитыПолуантрациты Горючие сланцы Нефть Природный, попутный и нефтепромысловый газ
Искусственное Древесный угольКоксТопливные брикетыПылевидное топливо БензинМазутДизельное топливоКеросинСоляровое маслоСмолаГудронБензолСпирт Газы: сжиженный, нефтезаводской, коксовый, светильный, полукоксовый, доменный, воздушный, смешанный генераторный, водяной, полуводяной

В промышленности используют твердое, жидкое и газообразное топливо. Различают природное топливо, добываемое на поверхности земли или в ее недрах, и искусственное, получаемое путем переработки природного.

К главным требованиям, предъявляемым к технологическому топливу, относятся: низкая стоимость добычи, низкая стоимость транспортирования, удобство применения, возможность использования с высоким коэффициентом полезного действия, малое содержание вредных примесей.

Различные виды топлива (твердое, жидкое и газообразное) характеризуются общими и специфическими свойствами. К общим свойствам топлива относятся теплота сгорания и влажность, к специфическим — зольность, сернистость (содержание серы), плотность, вязкость и другие свойства.

Теплота сгорания - количество теплоты, которое выделяется при полном сгорании 1 кг или 1 м3 топлива. Энергетическая ценность топлива в первую очередь определяется его теплотой сгорания.

Различают высшую и низшую теплоту сгорания. Низшая теплота сгорания отличается от высшей количеством теплоты, затрачиваемой на испарение влаги, содержащейся в топливе и образующейся при сгорании водорода. Низшую теплоту сгорания учитывают для подсчета потребности в топливе и его стоимости при составлении тепловых балансов и определении коэффициентов полезного действия установок, использующих топливо. При сопоставлении различных видов топлива пользуются понятием условного топлива, характеризующимся низшей теплотой сгорания, равной 29 МДж/кг.

Влажность (содержание влаги) топлива снижает его теплоту сгорания вследствие увеличенного расхода теплоты на испарение влаги и увеличения объема продуктов сгорания (из-за наличия водяного пара).

Зольность - количество золы, образующейся при сгорании минеральных веществ, содержащихся в топливе. Минеральные вещества, содержащиеся в топливе, понижают его теплоту сгорания вследствие уменьшения содержания горючих компонентов (основная причина) и увеличения расхода тепла на нагрев и плавление минеральной массы.

Сернистость (содержание серы) относится к отрицательному фактору топлива, так как при его сгорании образуются сернистые газы, загрязняющие атмосферу и разрушающие металл. Кроме того, сера, содержащаяся в топливе, частично переходит в выплавляемый металл, сваренную стекломассу, снижая их качество. Например, для варки хрустальных, оптических и других стекол нельзя использовать топливо, содержащее серу, так как сера значительно понижает оптические свойства и колер стекла.

Состав топлива. Топливо различных видов, месторождений и шахт различается по своему составу. При рассмотрении твердого и жидкого топлива принято различать следующие его составляющие: углерод, водород, серу, кислород, азот, золу и влагу. Применительно к газообразному топливу под составом понимают в основном: оксид углерода, водород, метан, этан, пропан, бутан, этилен, бензол, сероводород и др. Входящие в состав топлива кислород и азот относят к внутреннему органическому балласту топлива, а золу и влагу - к внешнему.

Состав твердого и жидкого топлива выражают в процентах по массе, газообразного - в процентах по объему.

Твердое и жидкое топливо состоит из горючей и негорючей частей. К горючей части топлива относят углерод, водород, кислород, азот и серу. Кислород и азот не горят; их включают в состав горючей массы условно. Поэтому горючую часть топлива называют условно горючей массой. Негорючая часть топлива — балласт — состоит из влаги и золы. Органическую массу топлива составляют углерод, кислород и азот.

Топливо в том виде, в каком оно поступает в топки печи для сжигания, носит название рабочего топлива. Ввиду того что содержание в нем влаги может колебаться в широких пределах, состав топлива часто характеризуют его сухой массой.

Для обозначения состава, к которому относится содержание того или иного элемента в топливе, применяют индексы о, г, с и р, которые читаются соответственно: о — органическая масса; г — горючая масса; с — сухое топливо; р — рабочее топливо. Например, CO — содержание углерода в органической массе; Sr — содержание серы в условно горючей массе; Ас — содержание, золы в сухом топливе; Wp — содержание влаги в рабочем топливе.

www.stroitelstvo-new.ru

Характеристика систем и источников теплоснабжения

Характеристика систем и источников теплоснабжения

Вид системы теплоснабжения определяется видом теплоносителя. Системы тепловодоснабжения подразделяют на две группы: закрытые и открытые. В закрытых системах горячая вода, циркулирующая в тепловой сети, используется только в качестве греющей среды, в открытых — ее частично или полностью разбирают потребители. Подача горячей воды к потребителю может осуществляться по одному, двум или трем трубопроводам. Однотрубную подачу применяют при полном использовании горячей воды потребителем. Самой распространенной является двухтрубная подача, состоящая из трубопровода, по которому вода подается потребителю, и обратного трубопровода, по которому неиспользованная вода возвращается обратно. Трехтрубные, а иногда четырехтрубные системы применяют там, где рациональнее разделить подачу горячей воды на отопление, водоснабжение, технологические нужды и т. д. В таких системах обратная труба является общей.

Системы пароснабжения могут быть с возвратом конденсата и без него.

Потребители тепловой энергии могут подключаться непосредственно к тепловым сетям или через источники теплоснабжения, или через тепловые пункты. Основным назначением теплового пункта является прием и подготовка теплоносителя, подача его потребителю, а также возврат использованного теплоносителя в тепловую сеть. Преимуществом схемы подключения к тепловому пункту является возможность получать тепловую энергию сразу нескольким потребителям.

Если тепловой пункт предназначен для одного предприятия, он называется местным тепловым пунктом (МТП), а если для нескольких предприятий или группы зданий, — центральным тепловым пунктом (ДТП). Небольшие промышленные предприятия имеют, как правило, один ДТП, на крупных предприятиях их несколько. Схемы ДТП промышленных предприятий различны в зависимости от вида теплоносителя, режимов регулирования, способа нагрева воды и пр.

Если на промышленном предприятии кроме ДТП имеются и МТП, то МТП оборудуют по тем же схемам, что и центральные, но оборудование отличается меньшей производительностью.

При использовании для технологических нужд горячей воды на ДТП применяют различные схемы теплоснабжения (в зависимости от требуемой температуры). Горячая вода может передаваться потребителям по общим отопительным трубопроводам, объединенным с бытовым горячим водоснабжением, или по самостоятельному трубопроводу. Технологической горячей водой может служить конденсат.

На рис. 18 представлена схема ДТП промышленного предприятия с закрытой системой тепловодоснабжения.

На ДТП установлены подмешивающие насосы для поддержания требуемого теплового режима. Подогреватели работают по двухступенчатой схеме. На линии подачи холодной воды имеется водомер, на линии подачи горячей воды — грязевик. Теплосети оборудованы термометрами и манометрами, коллекторами подаваемой 7 и возвращаемой 8 воды.

При снабжении промышленного предприятия паром на ЦТП предусматривается устройство коллекторов, от которых по отдельным паропроводам пар подается в цехи и установки. На паропроводах и коллекторах необходимо устанавливать запорную арматуру, дренажные устройства с конденсатоотводчиками и предохранительные устройства.

В большинстве случаев промышленные предприятия устраивают на ЦТП место сбора конденсата, откуда он после очистки поступает к источнику теплоснабжения.

В зависимости от характера тепловых нагрузок источники теплоснабжения подразделяют на источники, обеспечивающие теплотой отдельное промышленное предприятие; источники, снабжающие теплотой промышленные предприятия, общественные и жилые здания; источники, вырабатывающие как тепловую, так и электрическую энергию для энергоснабжения поселка, города и т.д.

Централизованное теплоснабжение осуществляется на базе теплоэлектроцентрали (ТЭЦ) с крупными котельными установками производительностью 58 тыс. кВт и выше и индивидуальными с теплопроизводительностью до 58 тыс. кВт.

Централизация теплоснабжения приводит к улучшению большинства показателей систем теплоснабжения, экономии топлива, позволяет использовать недефицитные энергоресурсы, включая вторичные, сокращает число обслуживающего персонала, повышает долю квалифицированного труда и уменьшает загрязнение окружающей среды.

В настоящее время основными источниками получения тепловой энергии являются ТЭЦ и котельные, работающие на органическом топливе: газе, мазуте, угле. Предпочтение отдается использованию газового топлива. Его доля в производстве энергии по прогнозам составит в 2050 г. 30%. Использование газового топлива обусловлено успехами в создании высокоэкономичных парогазовых установок с использованием паровых и газовых турбин, имеющих КПД свыше 60 %. Корпорации Siemens, Westingause и другие разработали энергоустановки единичной мощностью до 480 МВт. На следующие 15 — 20 лет в России планируется ввод парогазовых блоков общей мощностью 80 млн кВт.

Запасы газа в России составляют 35 % разведанных мировых запасов и по расчетам специалистов их хватит на 70 — 80 лет для внутреннего потребления и на экспорт. Кроме того, обнаружены большие запасы метан-гидратов под дном океана и если удастся их освоить, то газовая энергетика будет обеспечена сырьем не только в XXI, но и в XXII в.

Доля нефтепродуктов в энергетике составляет более 30 %, и такая тенденция, очевидно, сохранится до 2050 г. Запасов нефти в мире хватит на 100—150 лет.

Использование угля в производстве энергии создает опасные выбросы в атмосферу оксидов серы и азота, образует золоотвалы. Поэтому разрабатываются современные технологии для снижения негативных последствий сжигания угля: утилизация оксидов серы и азота, переработка дымовых газов в кислоты для производства минеральных удобрений, термическая очистка угля и т.д. Разведанных запасов угля хватит на 150 — 200 лет.

Производство энергии на атомных электростанциях мира сокращается, что связано с опасностью атомных реакторов, сложной переработкой ядерного топлива, проблемой радиоактивных отходов, необходимостью защиты биосферы от радионуклидов и т.д.

Смотрите также

teploobmennye-apparaty.ru

Топливно

 

К категории топливно-энергетического сырья относят полезные ископаемые, используемые для производства энергии: нефть, каменные и бурые угли, горючий газ, уран, битуминозные сланцы.

Оценка современных мировых топливно-энергетических ресурсов производится на мировых энергетических конференциях (МИРЭК), учрежденных в 1924 году. Гидроэнергетический потенциал рек планеты оценивается в 9780 млрд. кВт/час (освоено 21%). Общий энергопотенциал мира оценивается примерно 560млн. Дж. Современное ежегодное потребление различных видов топливного сырья и освоение гидроресурсов в целом составляет 338 тыс. Дж, что в 1000 раз меньше мирового энергопотенциала, и, следовательно, истощения энергоисточников можно не опасаться. Однако разные виды топлива обладают разной доступностью и освоенностью, они не равнозначны для энергетики и распределены очень неравномерно по территории суши.

Самым значительным объемом топливного сырья обладают Евразия и Северная Америка, где сосредоточено около 87% общего потенциала, а на материки южного полушария приходится всего 13%.

Важной характеристикой топливно-энергетического потенциала является его структура, т. е. участие отдельных видов топлива

Доля наиболее эффективных видов топлива - нефти и газа - достаточно высока в общем потенциале и составляет в доказанных запасах 30%. По оценкам МИРЭК основной объем твердого топлива размещен в развитых странах, а жидкого - в развивающихся; запасы природного газа делятся между ними примерно поровну.

Нефть

Ископаемая нефть - наиболее важный и экономически эффективный вид топливного сырья, отличающийся не только высокой калорийностью и теплотворностью, но и низким содержанием загрязняющих соединений. Нефть легко транспортируется, а в процессе переработки дает широкий ассортимент продуктов, находящих разнообразное применение в хозяйстве. Мировые энергетические потребности на 32% удовлетворяются за счет нефти. В ряде отраслей экономики (например, в транспорте) нефть и нефтепродукты незаменимы. Уникальные свойства и высокая ценность нефти способствовали прогрессивному росту ее добычи на протяжении последних десятилетий. Постепенное истощение давно известных и интенсивно эксплуатировавшихся месторождений стимулировало не менее интенсивный поиск новых продуктивных залежей этого сырья на суше и на море.

Ресурсы нефти подразделяются на категории в зависимости от степени разведанности и экономической целесообразности добычи: а) доказанные извлекаемые запасы -установленные и подтвержденные бурением объемы сырья, которые можно добыть существующими техническими средствами с учетом экономической рентабельности добычи; б) разведанные запасы,установленные бурением и технически извлекаемые, но по соображениям экономической конъюнктуры их добыча нецелесообразна; в) дополнительные предполагаемые ресурсы, не извлекаемые современными техническими средствами; г) ресурсы природных аналогов нефти -тяжелая нефть, горючие сланцы, битуминозные песчаники. К началу 80-х годов за весь период нефтеразработки (начиная с 50-х годов XIX столетия) было добыто около 55 млрд. т нефти. Согласно оценкам доказанные и разведанные запасы нефти составляют 166,6 млрд. т; 48 лет назад, в 1950 они не превышали 10 млрд. т. Таким образом, средний прирост запасов составил около 3,5 % в год. Своеобразным полюсом нефтенакопления являются Аравийский полуостров и акватория Персидского залива, где к настоящему времени обнаружено 77 млрд. т нефти, т. е. 62% всего нефтяного запаса мира. Только в Саудовской Аравии находится свыше 43,1 млрд. тонн этого сырья. Далее в порядке убывания объемов запасов (в %) следуют: Северная Америка - 11%, Африка , бывший СССР - 7%, Южная Америка - 9%.

Стремительное увеличение спроса на нефть в 1950-1960 гг. привело к резкому росту ее добычи. Так, если в 1950 г. добывалось 0,5 млрд. т, то в 1980 г. - 3,06, а в 1988 г. - 3,03 млрд. т. Столь высокие масштабы откачки нефти из недр сопровождались лихорадочными поисками продуктивных залежей. Были открыты крупные нефтеносные провинции на суше (Западно-Сибирская, Северо-Африканская, Аравийская) и на шельфе Мирового океана (залив Маракайбо в Венесуэле, Мексиканский залив, Каспийское море, Персидский залив, шельф дальневосточных морей). В 60-х годах открыта Североморская нефтегазоносная провинция Западной Европы и шельф Западной Африки. В 70-х годах усилилась разведка шельфа Южно-Китайского, Карибского морей. Северного Ледовитого океана. Канадского арктического архипелага, Аляски и других районов. В настоящее время поисково-разведочное бурение на нефть и газ ведется на площади шельфовых зон Мирового океана, превышающей 4 млн. кв. км, а всего перспективными признаны 77 млн. кв. км (В.Б. Добрецов, 1980). Достоверные запасы нефти на шельфе оценивались МИРЭК (XII) в 45 млрд. т., из которых 3/4приходится на донные отложения Персидского залива.

Исследования последних лет установили, что перспективны на нефть (и газ) не только мелководные шельфовые зоны морей и океанов. Обнаружены месторождения углеводородного сырья на глубинах более 600, и даже 900 м, т. е. на материковом склоне и на расстояниях в сотни и тысячи километров от побережий. В 80-х годах, например, выявлены обширные перспективные области в заливе Кампече, севернее полуострова Юкатан в Карибском море. Но самым перспективным районом будущей нефтедобычи специалисты считаютакваторию Южно-Китайского моря, шельф Вьетнама, Кампучии, Индонезии. В настоящее время на морские месторождения приходится 25% общемировой добычи нефти.

Существует понятие "кратность запасов",которым определяют степень обеспеченности экономики определенным видом сырья. Кратность запасов - это отношение остаточных запасов к текущей добыче.Мировая кратность запасов нефти к ее добыче равняется 41 году, по отдельным странам она варьирует очень сильно. Так, в странах Персидского залива этот показатель превышает 100 лет, а в США - 11, во Франции - 8 лет и т.д. Практически нет нефти у Японии, во многих европейских странах.

Каковы перспективы обнаружения новых месторождений нефти и увеличения мировых ресурсов углеводородов? Как считают участники последних конгрессов МИРЭК, и континенты, и особенно Мировой океан еще таят в своих недрах крупные, до сих пор не обнаруженные запасы нефти и газа. На материках выявлено около 600 перспективных осадочных бассейнов; из них обследовано только 400. Слабо изучены многие районы Африки, Аляски, Южной Америки, совершенно не исследована Антарктида. Активизируется в последнее время поиск в зонах столкновения литосферных плит, где согласно новой гипотезе создаются особенно благоприятные условия для армирования залежей углеводородов.

Увеличение запасов связывают и с более полным освоением нефтяных пластов, в том числе на больших глубинах (до 6-10 км) и в уже отработанных месторождениях. С помощью глубинного бурения открыто более 1000 новых месторождений углеводородов, в основном газовых. Только с 1986 по 1988 г. запасы нефти в мире возросли с 94,5 до 123,6 млрд. т.

Крупные запасы нефти таятся в нефтеносных песках и горючих сланцах, в битуминозных породах, которые содержат так называемую тяжелую нефть. Их общие запасы огромны: по подсчетам, геологические ресурсы тяжелой нефти в мире оцениваются в 800 млрд. т. (в России, Канаде, Венесуэле). Но освоить эти запасы в промышленных масштабах пока не удается.

Природный газ.Общие запасы природного газа, по оценкам МИРЭК (XIII), составляют примерно 271 трлн. куб. м. (10,5 млн. Дж), из них разведанные на 1995 г. запасы - 139,4 трлн. куб. м. За весь период добычи газа извлечено из недр около 30 трлн. куб. м. и ежегодный объем добычи в конце 80-х годов достиг 1,9 трлн. куб. м. Таким образом, кратность общих извлекаемых запасов газа составляет - свыше 130 лет. Мировые резервы газа продолжают увеличиваться благодаря усиленной разведке на шельфе Мирового океана и в глубинных слоях земной коры. Газ распределяется в недрах еще более неравномерно, нежели нефть. В зарубежных странах самой значительной является концентрация газа в странах Ближнего и Среднего Востока, где выявлено более 31 трлн. куб. м этого сырья. Особенно велики ресурсы в Иране, Саудовской Аравии, на акватории Персидского залива. В США найдено 5,7 трлн. куб. м, в Северо-Африканской нефтегазоносной провинции (Алжир, Ливия, Нигерия) - 8,9 трлн. куб. м, около 3,6 трлн. куб. м - в Венесуэле. В Европе, в Североморской газонефтяной провинции сконцентрировано более 5,5 трлн. куб. м газа. Уникальны месторождения Западной Сибири (Россия по ресурсам газообразного топлива занимает первое место в мире).

Кроме Персидского залива и морей России эксплуатируемыми и перспективными на газ районами морской добычи являются Канадский арктический архипелаг, море Бофорта, континентальный шельф у западного побережья Северной Америки, Мексиканский залив, шельф Бразилии, Нигерии, Камеруна и ЮАР, Средиземного моря, Южно-Китайского и Японского морей, Северное море, шельф у северо-западного побережья Австралии.

В мировом энергетическом балансе на долю природного газа приходится 17%, но в ряде стран (в Западной Европе, США, Японии) его вес выше. По докладам XIV Мирового газового конгресса (Мюнхен, 1985), до конца текущего столетия мировое хозяйство израсходует около 45 трлн. куб. м газа, т, е. около 50% известных извлекаемых запасов. Потребности в газе до 2020 г, оцениваются в 60 трлн. куб. м, которые тоже могут быть покрыты за счет существующих ресурсов. По прогнозам в 2000 г. извлекаемые ресурсы природного газа могут составить 260 трлн. куб. м, а в 2020 г. - 204,5 трлн. куб. м (с учетом добычи). В отличие от нефти газовый потенциал увеличивается быстрее добычи (примерно в два раза), кроме того, до сих пор более • половины площади шельфа еще не исследовано в отношении газоносности, а на подводные газопромыслы уже приходится 15% общемировой добычи газа. Даже на суше изучены лишь 30% перспективных на это сырье тектонических структур. Еще один резерв - газосбережения.

Таблица 1. Доказанные запасы нефти и природного газа по регионам и странам мира, 1995 г.

Регион Нефть, млрд. тонн Природный газ, трлн. куб. м
Зарубежная Европа 3,1 6,0
Зарубежная Азия 117,1 53,4
Африка 10,4 9,6
Америка 26,2 14,0
Австралия и Океания 0,3 1,1
Весь мир 166,6 139,4
В т.ч. страны-члены ОПЕК 128,4 57,0
Страны СНГ 9,5 55,4
Саудовская Аравия 41,1 5,1
Ирак 16,7 3,1
ОАЭ 16,2 5,3
Кувейт 15,7 1,5
Иран 14,9 20,7
Венесуэла 10,7 3,6
Мексика 8,5 1,9
Китай 4,0 1,6
США 3,8 4,5
Ливия 3,8 1,3
Нигерия 3,0 4,0
Норвегия 1,6 2,0
Алжир 1,5 3,6
Индонезия 0,9 1,8
Индия 0,9 0,7
Канада 0,8 2,2
Малайзия 0,7 1,9
Великобритания 0,7 0,6
Катар 0,6 7,0
Нидерланды 0,01 1,8

Угли. Общие ресурсы ископаемых углей в недрах планеты огромны; по материалам МИРЕК (XIII) (1986г) они достигают 14810 млрд. т. Доказанные извлекаемые с учетом развития горнодобывающей техники и рентабельности по экономическим соображениям для разработки запасы углей оцениваются в 1239 млрд. т., из которых 808 млрд. т. приходится на каменные угли, 431 млрд. т. - на бурые угли. При сохранении объема ежегодной добычи (около 3 млрд. т. каменного и 1 млрд. т. бурого угля) извлекаемых запасов может хватить на 218 лет.

Угленосные бассейны размещены неравномерно по территории земного шара; их основная часть приурочена к территории четырех стран; бывшего СССР, США, Китая. На их долю приходится более 80% общих и свыше 90% извлекаемых ресурсов каменных углей. Крупными запасами обладают также Польша, Германия, Австралия, Великобритания и ряд других стран.

До 60-х годов ископаемые угли представляли собой главный вид топлива в мировой экономике; на его долю приходилась почти половина производства первичных энергоресурсов.Переориентация энергетики на жидкое и газообразное топливо сократила эту долю до 28% в начале 80-х годов. Нестабильность мирового нефтяного рынка возвращает интерес к "забытому топливу" 60-х годов. Многие строящиеся и действующие мазутные ТЭС переводятся на более дешевое твердое топливо. За счет углей в 1988 г. произведено уже 30% энергии в мире.

Таблица 2. Угольные ресурсы по регионам и странам мира, 1980 г.

Регион Общие запасы, млрд. т Разведанные запасы, млрд. т
всего в т.ч. каменный уголь всего в т.ч. каменный уголь
Америка 4263 1548 422 226
Африка 341 337 72 71
Австралия и Океания 787 659 83 47
СССР 6806 4649 281 171
США 3600 1286 397 214
Китай 1465 1425 102 99
Австралия 783 659 83 48
Канада 582 207 16 6
Германия* 287 227 84 44
Великобритания 190 189 90 90
Польша 174 151 25 22
ЮАР 133 133 65 65
Индия 115 112 23 21
Ботсвана 100 100 7 7
Азия 8072 5876 345 233
Европа 1347 1020 317 231
Мир в целом 14810 9440 1239 808

*Только западные земли

Уран. Ресурсы современной топливной базы для ядерной энергетики определяются стоимостью добычи урана при затратах, не превышающих 80 долларов за 1 кг урана. В настоящее время извлекаемые ресурсы урана по этой цене в зарубежных странах оцениваются в 1,6 млн. т, а мировые геологические ресурсы (по разным источникам)- от 5 до 20 млн. т. Это ядерное сырье может быть использовано на легководных реакторах с тепловыми нейтронами. Производство энергии на строящихся АЭС с реакторами на быстрых нейтронах (реакторами-размножителями) мало зависит от стоимости сырья. При этом ресурсы ядерного топлива возрастают во много раз. В будущем в реакторах на быстрых нейтронах (бридерах) будет использоваться не только уран, но и торий, запасы которого в земной коре в три раза превышают запасы урана. Однако специалисты полагают, что массовое производство энергии в бридерах начнется не ранее 2000 г.

Свыше 28% ресурсов ядерного сырья приходится на США и Канаду, 23% - на Австралию, 14% - на ЮАР, 7% - на Бразилию. В остальных странах запасы урана незначительны. Ресурсы тория (при затратах до 75 долларов/кг) оцениваются примерно в 630 тыс. т, из которых почти половина находится в Индии, а остальная часть - в Австралии, Бразилии, Малайзии и США.

Нетрадиционные энергоресурсы планеты

Помимо ископаемого топливно-энергетического сырья существуют на земном шаре иные источники производства энергии - солнечная, ветровая, приливная, геотермальная, биологическая, энергия температурного градиента океанских вод. В настоящее время они используются мало из-за технологических трудностей освоения и высокой стоимости производимой энергии, но на эти виды приходится значительная часть общего энергетического потенциала планеты. Солнечная энергия - самый крупный энергетический источник на Земле. Выше уже отмечалось, что количество тепла, поступающего на 1 кв. м поверхности Земли в год, оценивается в 3,16х109КДж. Общее количество солнечной энергии в 20 тыс. раз превышает современное потребление энергии мировым хозяйством. Но плотность солнечного излучения на поверхности суши столь мала (даже в тропических пустынях днем она равна 5-6 кВт ч/ кв.м. в день, а в умеренном поясе - всего 3-4 кВт ч/кв.м.), что ее трудно технически освоить. Сейчас используют солнечные печи для получения низкотемпературного топлива, однако производство энергии на гелиотермальных ЭС в широких масштабах – дело будущего. Предполагают, что к 2020 г. за счет солнечной энергии мировые потребности в электроэнергии будут удовлетворяться на 15-20%.

Ветровая энергия используется с незапамятных времен в Англии, Голландии, Франции и других странах, но в очень небольших масштабах. Общие ресурсы ветровой энергии Земли огромны, хотя и строго локализованы. Для получения 1 единицы электрической мощности за счет ветровой энергии требуется в среднем в 4-5 раз больше площади, чем для гелиоустановок. Технические трудности очень велики, но общий потенциал ветровой энергии Земли примерно равен 300 млрд. кВт/час в год.

Приливная энергия морских волн оценивается величиной от 8,7 до 10,8 млрд. Дж. В настоящее время можно использовать менее 2% этого потенциала (Энергетика мира, 1979). Трудность заключается в преобразовании ударной силы волны в гравитационную, тепловую и электрическую формы энергии. По оценкам в мире имеется свыше 25 участков морских побережий с высокими приливами (не менее 7 м высотой) и соответствующей топографией, пригодных для строительства ПЭС. Пока в мире действуют две ПЭС – в России (Кислогубская) и во Франции, в устье Гаронны.

Биоконверсионная энергия – энергия, аккумулированная в биомассе. Количество энергии, заключенной в фитомассе лесов мира, оценивается величиной 180 тыс. Дж. Древесина служила источником топлива еще с первобытных времен, и до сих пор она (вместе с навозом и прочими отходами сельскохозяйственного производства) дает около 3,6 тыс. Дж энергии, потребляемой главным образом населением развивающихся стран. Существуют опытные разработки по получению биогаза из отходов сельского хозяйства, но в промышленных масштабах этот процесс еще не разработан.

Геотермальная энергия - внутренняя энергия Земли. Нормальный температурный градиент Земли - 3° на 100 м глубины, в отдельных местах этот показатель может повышаться до 5° на 100 м и даже до 1 на 5 м глубины. Если ограничить глубину 5 км, то по данным академика Кириллина условный запас геотермальной энергии составляет величину, имеющую примерно тот порядок, и что и ресурсы всех видов минерального топлива на Земле - 880 млрд. т. у.т. Геотермальные ЭС действуют в Италии, США, Японии, Исландии и др.; всего в мире их насчитывается 188 общей мощностью в 4760 МВт. Предполагают, что в будущем их основное назначение будет заключаться в производстве тепла, а не электричества, так как температуры источников все же низкие.



biofile.ru