«Переработка нефти». Переработка нефти сообщение


«Переработка нефти» - Доклад

Муниципальное образовательное учреждение

средняя общеобразовательная школа № 2

городского округа город Буй

Костромской области

Доклад

по химии

на тему: «Переработка нефти»

Работу выполнил

Ученик 10 «а» класса

Татаринцев Антон

2007-2008 учебный год

1 слайд: «Переработка нефти».

2 слайд: Познакомить с составом нефти; рассмотреть основные способы её переработки; сформировать представление о процессе ректификации нефти; познакомиться с процессом каталитического крекинга.

3 слайд: Нефть – природная сложная смесь углеводородов, в основном алканов линейного и разветвленного строения, содержащих в молекулах от 5 до 50 атомов углерода, с другими органическими веществами. Состав ее зависит от места ее добычи (месторождения). Кроме алканов нефть может содержать циклоалканы и ароматические углеводороды (арены).

4 слайд: Нефть содержит в себе: 83%- углерода; 13% - водорода; 0,2 – 0,3 % - кислорода и азота; 0,1 – 0,7 % - серы; 0,03 % - других химических элементов.

5 слайд: Представляя собой, смесь различных веществ, нефть не имеет постоянной температуры кипения. Каждый ее компонент сохраняет в смеси свои индивидуальные физические свойства, что и позволяет разделить нефть на ее составляющие. Для этого нефть подвергают обработке. Существуют два способа переработки физический и химический.

6 слайд: физический способ разделения смеси компонентов с различными температурами кипения – это фракционная перегонка. Перегонка осуществляется в специальных установках – ректификационных колоннах. В ректификационную колонну поступает нефть, нагретая в трубчатой печи до температуры 320-350 градусов. Ректификационная колонна имеет горизонтальные перегородки с отверстиями, которые называются тарелки. На них происходит конденсация фракций нефти. На более высоких скапливаются легкокипящие фракции, на нижних – высококипящие.

В процессе ректификации нефть разделяют на следующие фракции:

  • Ректификационные газы;

  • Газолиновую фракцию (бензин)

  • Лигроиновую фракцию;

  • Керосиновую фракцию;

  • Дизельное топливо;

  • Остаток перегонки нефти - мазут

7 слайд: Полученные в результате ректификации нефти продукты подвергают химической переработке, которая включает следующие процессы: термический крекинг, каталитический крекинг, пиролиз нефти, риформинг.

8 слайд: крекинг (в переводе с английского - расщеплять) -это переработка нефти и её фракций для получения моторных топлив, а также химического сырья, протекающая с распадом тяжёлых углеводородов. Крекинг изобрёл русский инженер Шухов в 1891 г.

9 слайд: Термический крекинг заключается в расщеплении молекул углеводородов с длинной углеродной цепью на более короткие под действием высоких температур (470-550 градусов). В процессе этого расщепления наряду с алканами образуются алкены. При термическом крекинге можно получить термические бензины, непредельные жидкие углеводороды.

10 слайд: Каталитический крекинг происходит в присутствии катализаторов – природных алюмосиликатов при температуре 450-500 градусов. Осуществление термического крекинга приводит к образованию углеводородов, имеющих разветвленную или замкнутую цепь атом углерода в молекуле. В результате термического крекинга получают высоко качественный бензин.

11 слайд: вашему вниманию представлен процесс каталитического крекинга.

Сырье для крекинга, газойль, поступает в реактор конической формы. Движущийся с большой скоростью газ захватывает частицы катализатора и уносит их в верхнюю часть реактора. Под действием силы тяжести частицы катализатора падают в нижнюю часть, более узкую часть реактора, откуда вновь выносятся вверх. Таким образом, катализатор циркулирует между реактором и генератором, а газообразные продукты крекинга и обжига удаляются из них. Использование катализаторов крекинга позволяет увеличить скорость реакции, уменьшить ее температуру, повысить качество продуктов крекинга.

12 слайд: Риформинг (в переводе с английского — переделывать, улучшать) – это промышленный процесс переработки бензиновых и лигроиновых фракций нефти с целью получения высокооктановых бензинов и ароматических углеводородов. С 40-х гг. 20 в. Риформинг — каталитический процесс, научные основы которого разработаны Н. Д. Зелинским и его школой, а также В. И. Каржевым, Б. Л. Молдавским и др. Впервые этот процесс в промышленном масштабе был осуществлен в 1940 в США. Риформинг проводят в промышленной установке, имеющей нагревательную печь и не менее 3—4 реакторов, при температуре 350—520 °С, в присутствии различных катализаторов: платиновых, платинорениевых и полиметаллических, содержащих платину, рений, иридий, германий и другие металлы. Большое значение имеет риформинг для производства ароматических углеводородов (бензола, толуола, ксилолов).

13 слайд: пиролиз (в переводе с греческого — огонь, жар и разложение, распад) - это высокотемпературный процесс глубокого термического превращения нефтяного и газового сырья. Целевой продукт пиролиза — газ, богатый непредельными углеводородами: этиленом, пропиленом, бутадиеном. На основе этих углеводородов получают полимеры для производства пластических масс, синтетических волокон, синтетических каучуков и др. продуктов.

14 слайд: переработка нефти осуществляется на нефтеперегонных заводах. Самые крупные в России – это Лукойл, Юкос, Сибнефть.

15 слайд: Итак, в результате переработки нефти мы получаем все виды топлива, масла, гудрон, пластмассы, синтетические волокна, синтетический каучук.

16 и 17 слайды: вашему вниманию предлагается список используемой литературы и сведения об авторе проекта.

refdb.ru

Нефть и переработка нефти

Содержание.

1.Глава 1.Нефть и переработка нефти…………………………………………………….2-4

2Глава 2. Твердые горючие ископаемые…………………………………………………4-7

3.Глава 3.Целлюлоза……………………………………………………………………… 7-8.

4.Глава 3. Озокерит……………………………………………………………………….. 8-9

5.Глава 4 Природные газы и их использование…………………………………………10

6.Список использованной литературы………………………………………………….. 11

Глава 1. НЕФТЬ И ПЕРЕРАБОТКА НЕФТИ.

Сырая нефть представляет собой сложную смесь углеводородов и других соединений. В таком виде она мало используется. Сначала ее перерабатывают в другие продукты, которые имеют практическое применение. Переработка нефти включает: фракционную перегонку, крекинг, риформинг и очистку от серы.

Фракционная перегонка: Сырую нефть разделяют на множество составных частей, подвергая ее простой, фракционной и вакуумной перегонке. Состав получаемых фракций нефти зависят от состава сырой нефти. Из сырой нефти прежде всего удаляют растворенные в ней примеси газов. Затем подвергают первичной перегонке, в результате чего разделяют на газовую, легкую и среднюю фракции и мазут.

1)Газовая фракция - газы, получаемые при переработке нефти, представляют собой простейшие неразветвленные алканы: этан, пропан и бутаны. Эта фракция имеет промышленное название нефтезаводской газ.

2)Бензиновая фракция - эта фракция представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов.

3) Мазут - Эта фракция остается после удаления из нефти всех остальных фракций. Большая его часть используется в качестве жидкого топлива для нагревания котлов.

Крекинг: В этом процессе крупные молекулы высококипящих фракций сырой нефти расщепляется на меньшие молекулы, из которых состоят низкокипящие фракции. Крекинг необходим потому, что потребности в низкокипящих фракциях нефти особенно в бензине часто опережают возможности их получения путем фракционной перегонки сырой нефти.

Существует несколько видов крекинга: термический, каталитический, риформинг.

1)Термический крекинг:

Крупные молекулы углеводородов, содержащихся в тяжелых фракциях нефти, могут быть расщеплены на меньшие молекулы путем нагревания этих фракций до температур, превышающих их температуру кипения. Как и при каталитическом крекинге, в этом случае получают смесь насыщенных и ненасыщенных продуктов:

C16h44 > C8h28 + C8h26 гексадекан октан октилен

Получившиеся жидкие вещества частично могут разлагаться далее, например:

C8h28 – C4h20 + C4H8 октан бутан бутилен

C4h20 – C2H8 + C2h5 бутан этан этилен

Выделившийся в процессе крекинга этилен широко используется в химической промышленности.

Расщепление молекул углеводородов протекает по радикальному механизму:

Ch4 – (Ch3)6 – Ch3:Ch3 – (Ch3)6 – Ch4 > Ch4 – (Ch3)6 – Ch3 + Ch3 –(Ch3)6 – Ch4

Свободные радикалы химически очень активны и могут участвовать в

различных реакциях. В процессе крекинга один из радикалов отщепляет атом

водорода (а), а другой – присоединяет (б):а) CН3 – (СН2)6 – СН2 > СН3 – (СН2)5 – СН=СН2 + Н

1-октен

б) Ch4 – (Ch3)6 – Ch3 + H > Ch4 – (Ch3)6 – Ch4

октан

При температурах 700-1000°С проводят термическое разложение нефтепродуктов, в результате которого получают главным образом легкие алкены – этилен, пропилен и ароматические углеводороды. При пиролизе возможно протекание следующих реакций:Ch4 – Ch4 > Ch3 = Ch3 +h3

Ch4 – Ch3 – CH(Ch4) – Ch4 > Ch3 – CH(Ch4) – Ch4 + Ch5 2)Каталитический крекинг:

Этот метод приводит к образованию смесинасыщенных и ненасыщенных продуктов. Каталитический крекинг проводится при сравнительно невысоких температурах, а в качестве катализатора используется смесь кремнезема и глинозема. Таким путем получают высококачественный бензин и ненасыщенные углеводороды из тяжелых фракций нефти.

Недостатки процесса:

1) постоянное загрязнение катализатора

смолистыми отложениями.

2) образование алкенов, понижающих химическую стабильность продуктов.

Каталитический крекинг проходит по катионному цепному механизму на

поверхности катализатора. При отрыве на катализаторе от молекулы парафинового углеводорода гидрид иона образуется соответствующий карбкатион:

AlX3 + Cn h3n+2 → [HAlX3]– + Cn Н+2n+1

3)Реформинг:

Процессы риформинга приводят к изменению структуры молекул или к их объединению в более крупные молекулы. Риформинге используется в переработке сырой нефти для превращения низкокачественных бензиновых фракций в высококачественные фракции. Процессы риформинга могут быть подразделены на три типа: изомеризация, алкилирование, а также циклизация и ароматизация.

1)Изомеризация – в этом процессе молекулы одного изомера подвергаются с образованием другого изомера. Процесс изомеризации имеет важное значение для повышения качества бензиновой фракции, получаемой после первичной перегонки сырой нефти. Бутан можно изомеризовать, превращая его в 2-метил-пропан, с помощью катализатора из хлорида алюминия при температуре 100°С или выше:

2)Алкилирование – в этом процессе алканы и алкены, которые образовались в результате крекинга, воссоединяются с образованием высокосортных бензинов. Процесс проводится при низкой температуре с использованием сильнокислотного катализа, например серной кислоты:

3)Циклизация и ароматизация - риформинг этого типа представляет один из процессов крекинга. Его называют каталитическим риформингоим. В некоторых случаях в реакционную систему вводят водород, чтобы предотвратить полное разложение алкана до углерода и поддержать активность катализатора. В этом случае процесс называется гидроформингом:

Приблизительно 90% всей добываемой нефти используют в качестве топлива. Из продуктов перегонки нефти получают много тысяч органических соединений. Они в свою очередь используются для получения тысяч продуктов, которые удовлетворяют не только насущные потребности современного общества.

Глава 2. ТВЕРДЫЕ ГОРЮЧИЕ ИСКОПАЕМЫЕ.

Твердые горючие ископаемые: Органические происхождения, представляющие собой продукты преобразования остатков растит, или животных организмов под воздействием физико-химических, биологических факторов. Каустобиолиты угольного ряда разделяются:

- ископаемые угли.

- сланцы.

- торф.

Активные угли - пористые углеродные тела, зерненные и порошкообразные, развивающие при контакте с газообразной или жидкой фазами значительную площадь поверхности для сорбционных явлений. По своим структурным характеристикам активные угли относятся к группе микрокристаллических разновидностей углерода - это графитовые кристаллиты, состоящие из плоскостей протяженностью 2-3 нм, которые в свою очередь образованы гексагональными кольцами.

Кроме графитовых кристаллитов активные угли содержат от одной до двух третей аморфного углерода; наряду с этим присутствуют гетероатомы.

Наличие химически связанного кислорода в структуре активных углей, образующего поверхностные химические соединения основного или кислого характера, значительно влияет на их адсорбционные свойства. Пористая структура активных углей характеризуется наличием развитой системы пор, которые классифицируют на:

1)Микропоры - наиболее мелкая разновидность пор, соизмеримая с размерами адсорбируемых молекул.

2)Мезопоры - поры, для которых характерно послойное заполнение поверхности адсорбируемыми молекулами, завершающееся их объемным заполнением по механизму капиллярной конденсации.

3)Макропоры - в процессе адсорбции не заполняются, но выполняют роль транспортных каналов для доставки адсорбата к поверхности адсорбирующих пор.

Производство активных углей:

Для практической реализации любого способа изготовления активных углей пользуются такими общими технологическими приемами, как предварительная подготовка сырья (дробление, рассев, формование), карбонизация (пиролиз) и активация.

1)Предварительная подготовка сырья -- приведение исходного угольного сырья в состояние, удобное для осуществления дальнейшей термической обработки.

2)Карбонизация (пиролиз) - термическая обработка материала без доступа воздуха для удаления летучих веществ. На стадии карбонизации формируется каркас будущего активного угля - первичная пористость, прочность и т.д.

3)Активация водяным паром представляет собой окисление карбонизованных продуктов до газообразных в соответствии с реакцией:

С + Н2О->СО + Н2

или при избытке водяного пара:

С + 2Н2О->-СО2 + 2Н2

В процессе активации развивается необходимая пористость и удельная поверхность, происходит значительное уменьшение массы твердого вещества, именуемое обгаром.

Запасы каменного угля в природе значительно превышают запасы нефти. Поэтому каменный уголь – важнейший вид сырья для химической отрасли промышленности.В настоящее время в промышленности используется несколько путей переработки каменного угля: сухая перегонка (коксование, полукоксование), гидрирование, неполное сгорание, получение карбида кальция.Сухая перегонка угля используется для получения кокса в металлургии или бытового газа. При коксовании угля получают кокс, каменноугольную смолу, надсмольную воду и газы коксования.

Каменноугольная смола содержит самые разнообразные ароматические и другие органические соединения. Разгонкой при обычном давлении ее разделяют на несколько фракций. Из каменноугольной смолы получают ароматические углеводороды, фенолы и др. Газы коксования содержат преимущественно метан, этилен, водород и оксид углерода(II). Частично их сжигают, частично перерабатывают.Гидрирование угля осуществляют при 400–600 °С под давлением водорода до 250 атм в присутствии катализатора – оксидов железа. При этом получается жидкая смесь углеводородов, которые обычно подвергают гидрированию на никеле или других катализаторах. Гидрировать можно низкосортные бурые угли.

Использованиекоксового газа и угля
Карбид кальция СаС2 получают из угля (кокса, антрацита) и извести. В дальнейшем его превращают в ацетилен, который используется в химической отрасли промышленности всех стран во все возрастающих масштабах.

Сланец – полезное ископаемое из группы твёрдых каустобиолитов, дающее при сухой перегонке значительное количество смолы (близкой по составу к нефти).

Горючий сланец состоит из преобладающих минеральных (кальциты, доломит, гидрослюды, монтмориллонит, каолинит, полевые шпаты, кварц, пирит и др.) и органических частей (кероген), последняя составляет 10—30 % от массы породы и только в сланцах самого высокого качества достигает 50—70 %. Органическая часть является био- и геохимически преобразованным веществом простейших водорослей, сохранившим клеточное строение или потерявшим его в виде примеси в органической части присутствуют измененные остатки высших растений. Горючие сланцы являются самым низкосортным твердым топливом. Обладая высокой теплотворной способностью горючей массы (Q* до 9000 ккал/кг), сланцы из-за высокой зольности (Лр до 70%) представляют малоценное рабочее топливо.

Применение:Используют как местное топливо, сырье для получения жидких топлив, для получения битумов, масел, фенолов, бензола, толуола, ксилолов, нафтолов, ихтиола и др.

Органическая масса горючих сланцев имеет наибольшую аналогию с нефтью, однако низкое содержание органики, а также трудности использования огромных количеств минерального остатка тормозят развитие переработки сланцев.

Торф- горючее полезное ископаемое; образовано скоплением остатков растений, подвергшихся неполному разложению в условиях болот. Для болота характерно отложение на поверхности почвы неполно разложившегося органического вещества, превращающегося в дальнейшем в торф. Слой торфа в болотах не менее 30 см, (если меньше, то это заболоченные земли).

Торф подразделяется на виды по группировке растений и условиям образования, а также на типы:

1)Верхово́й торф — образован олиготрофной растительностью (сосна, пушица, сфагнум, вереск) при переувлажнении, вызванном преимущественно атмосферными осадками. Плохое удобрение, поскольку беден. Содержит зольные элементы 1—5 %, органических веществ — 99—95 %, pH=2.8—3.6. Химический состав: азотистых веществ — 0.9—1.2 %, P2O5 — 0.03—0.2, K2O — 0.05—0.1, CaO — 0.1—0.7, Fe2O3 — 0.03—0.5 %. Окраска изменяется с повышением степени разложения от светло-желтой до темно-коричневой. Используется как топливо или теплоизоляция.

2) Низи́нный торф — образован эутрофной растительностью (ольха, осока, мох) при переувлажнении грунтовыми водами. Зольность 6-18 процентов. Преобладают серые оттенки, переходящие в землисто-серый цвет.

Торф и продукты переработки торфа в зависимости от способа добычи и назначения подразделяются на следующие квалификационные группировки:

-по способу добычи - торф фрезерный

-торф кусковой

-по видам использования - торф топливный

-торф для сельского хозяйства

-брикеты и полубрикеты топливные

Они действительно лучше восстанавливали радионуклиды. Более того, чтобы сделать реакцию «зеленой» при производстве в промышленном масштабе для проведения которой не нужен токсичный формальдегид. В результате получается целый набор обогащенных гуминовых производных с различными электрохимическими свойствами.

Электродный пековый и нефтяной кокс имеют по сравнению с каменноугольным очень низкую зольность, как правило, не выше 0,3% (до 0,8% у нефтяного кокса) Электродный пековый кокс получают коксованием в камерных динасовых печах высокоплавкого каменноугольного пека. Нефтяной кокс образуется также при крекинге и пиролизе продуктов перегонки нефти. Глава 3. ЦЕЛЛЮЛОЗА.

Один из наиб. распространенных биополимеров, входящий в состав клеточных стенок растений и микроорганизмов

Химическая формула целлюлозы, выведенная на основании определения ее элементарного состава и молекулярного веса, имеет вид (С6Н10О5)n, причем n(степень полимеризации) зависит от условий приготовления препарата. Различают средний молекулярный вес целлюлозы, выделенной из растительных материалов в особенно мягких условиях, достигает 10—20 миллионов. Молекулярный вес технической целлюлозы равен 50 000—150 000. Физические свойства и нахождение в природе:

Целлюлоза (C6h20O5)nпредставляет собой высокомолекулярный полисахарид, являющийся главной составной частью клеточных стенок растений. Целлюлоза придает растительной ткани механическую прочность, эластичность и выполняет строительную функцию. В природе целлюлоза никогда не встречается в чистом виде. Волокна хлопка содержат 92—95% целлюлозы, в различных видах древесины содержание целлюлозы колеблется в пределах 40—60%.

По внешнему виду целлюлоза — аморфное вещество. Однако при рентгенографическом исследовании она дает характерные рентгенограммы, указывающие на значительную упорядоченность ее структуры.

Химические свойства:

Целлюлоза почти не обладает восстановительными свойствами и не дает других реакций карбонильной группы, характерных для моносахаридов.

А) Реакции образования алкоголятов и эфиров целлюлозы. В отличие от низших спиртов целлюлоза при обработке концентрированными растворами едких щелочей образует прочное соединение — щелочную целлюлозу:

Б) Алкоголяты целлюлозы получаются также при действии на целлюлозу растворов щелочных металлов в жидком аммиаке:

2. Получения простых эфиров целлюлозы является действие на щелочную целлюлозу диалкилсульфатов в присутствии избытка щелочи:

или

3. Получение нитрата целлюлозы, часто неправильно получаемые этерификацией целлюлозы смесью азотной и серной кислот где серная кислота служит водоотнимающим средством:

4. Получение уксуснокислых эфиров (ацетаты целлюлозы), часто неправильно называемые ацетилцеллюлозой, в присутствии уксусной кислоты и небольших количеств серной кислоты как катализатора:

5. Ксантогенаты целлюлозы получаются при взаимодействии щелочной целлюлозы с сероуглеродом, При этом CS2 как бы внедряется в положение 2 в среднем в каждый второй глюкозный остаток щелочной целлюлозы:

Ксантогенат целлюлозы представляет собой натриевую соль кислого эфира целлюлозы и дитиоугольной кислоты. Ксантогенаты целлюлозы растворяются в воде или разбавленной щелочи, образуя так называемые вискозные растворы:

Как и другие органические вещества, содержащие в составе молекул нитрогруппу, все виды нитроцеллюлозы огнеопасны. Особенно опасна в этом отношении тринитроцеллюлоза - сильнейшее взрывчатое вещество. Ацетилцеллюлоза используется для получения лаков и красок, она служит так же сырьем для изготовления искусственного шелка. Глава 4.ОЗОКЕРИТ

Озокерит (от др.-греч. ὄζω — пахну и κηρός — воск) (горный воск) — природный углеводород из группы нефти, по другим данным — из группы нефтяных битумов, иногда условно относимый к минералам. Является смесью высокомолекулярных твёрдых насыщенных углеводородов (обычно состоит из 85-87% углерода и 13-14% водорода), по виду напоминает пчелиный воск, имеет запах керосина.

Удельный вес — от 0.85 до 0.95, температура плавления — от 58 до 100°C. Озокерит растворяется в эфире, нефти, бензоле, скипидаре, хлороформе, сероуглероде и в некоторых других веществах. Озокерит, добываемый в Галиции, варьируется по цвету от светло-жёлтого до тёмно-коричневого, также часто встречается зелёный озокерит (такая окраска получается благодаря дихроизму) и плавится при температуре 62°С.

1)Китайский воск вырабатывается червецом. Содержит сложный эфир гексакозановой к-ты СН3(СН2)24СООН и гексадеканового спирта СН3(СН2)15ОН (95-97%), смолу (до 1%), углеводороды (до 1%) и спирты (до 1%).

2)Шеллачный воск содержится в природной. смоле - шеллаке (ок. 5%). В него входят 60-62% сложных эфиров, 33-35% спиртов, 2-6% углеводородов. Выделяют при охлаждении спиртового р-ра шеллака.

3)Воск бактерий покрывает пов-сть кислотоупорных бактерий, напр. туберкулезных и лепры, обеспечивая их устойчивость к внеш. воздействиям. Содержит сложные эфиры миколевой к-ты С88Н172О4 иэйкозанола СН3(СН2)17СНОНСН3, а также октадеканола СН3(СН2)15СНОНСН3.

4)Воск сахарного тростника покрывает тонкой пленкой стебли растений. В него входят сложные эфиры (78-82%), насыщенные С14—С34 и ненасыщенные С15—С37 углеводороды (3-5%), насыщенные жирные к-ты С12—С36 (14%) и спирты С24—С34 (6-7%). При отжиме тростника ок. 60% воска переходит в сок. При очистке последнего воск выпадает в осадок.

Озокерит является ценным сырьем для медицинских целей. Так, его использование лежит в основе одного из видов физиотерапии – озокеритотерапии. Он используется для изготовления свечей и изоляторов, так как имеет большую температуру плавления, чем парафин, а также для приготовления различных смазок и мазей для технических и медицинских нужд; в строительной промышленности.

Глава 5. ПРИРОДНЫЕ ГАЗЫ И ИХ ИСПОЛЬЗОВАНИЕ.

Природные газы, нефть и каменный уголь - основные источники углеводородов. По запасам природного газа первое место в мире принадлежит нашей стране, где известно более 200 месторождений.

В природном газе содержатся углеводороды с небольшой относительной молекулярной массой. Он имеет следующий примерный состав (по объему):

80...90% метана, 2...3% его ближайших гомологов — этана, пропана, бутана и небольшое содержание примесей — сероводорода, азота, благородных газов, оксида углерода (IV) и паров воды. Так, например, газ Ставропольского месторождения содержит 97,7% метана и 2,3% прочих газов, газ Саратовского месторождения—93,4% метана, 3,6% этана, пропана, бутана и 3% негорючих газов.

К природным газам относятся и так называемые попутные газы, которые обычно растворены в нефти и выделяются при ее добыче. В попутных газах содержится меньше метана, но больше этана, пропана, бутана и высших углеводородов. Кроме того, в них присутствуют в основном те же примеси, что и в других природных газах, не связанных с залежами нефти, а именно: сероводород, азот, благородные газы, пары воды, углекислый газ. Разработано много способов переработки природных газов.

Главная задача этой переработки — превращение предельных углеводородов в более активные — непредельные, которые затем переводят в синтетические полимеры (каучук, пластмассы). Кроме того, окислением углеводородов получают органические кислоты, спирты и другие продукты.

Границы взрываемости.

Газовоздушная смесь, имеющая в составе количество газа:

до 5 % - не горит;

от 5 до 15 % - взрывается;

больше 15 % - горит при подаче воздуха.

По сравнению с твердым и жидким топливом природный газ выигрывает по многим параметрам:

- относительная дешевизна, которая объясняется более легким способом добычи и транспорта;

- отсутствие золы и выноса твердых частичек в атмосферу;

- высокая теплота сгорания;

- не требуется подготовки топлива к сжиганию;

- облегчается труд обслуживающих работников и улучшение санитарно-гигиенических условий его работы;

- облегчаются условия автоматизации рабочих процессов.

Проникновение в помещение более 20 % газа может привести к удушью, а при наличии его в закрытом объеме от 5 до 15 % может вызвать взрыв газовоздушной смеси.

Список используемой литературы

1.Тюремнов. С. Н., Торфяные месторождения / Тюремнов. С. Н,- М., «Недра», 1976

2.. Судо М. М Нефть и горючие газы в современном мире / Судо М. М – М.: «Недра», 1984

3. Рудзитис Г. Е., Фельдман Ф. Г. Органическая химия: учебник / Рудзитис Г. Е – М.: «Просвещение», 1991.

4 Фримантл. М. Химия в действии. В 2-х ч. Ч.1.: Пер. с англ. / Фримантл М. - М.: Мир, 1991. - 528с.

5. Фримантл М. Химия в действии. В 2-х ч. Ч.2.: Пер. с англ. / Фримантл М. -М.: Мир, 1991. - 622с.

6.. Ивановский Л.Е Энциклопедия восков, пер. с нем., т. 1, Л., 1956; Торфяной воск и сопутствующие продукты, Минск, 1977; - 115-120с.

7. Белькевич П. И., Голованов Н. Г., Воск и его технические аналоги, // Белькевич П. И., Голованов Н. Г., Минск, 1980.-176с

8. Роговин З. А., Химия целлюлозы, / Роговин З. А -М., 1972;84-86с.

9. Непенин Н. Н., Непенин Ю. Н., Технология целлюлозы, 2 изд., т. 1-2, // Непенин Ю. Н -М., 1976-90.

www.coolreferat.com

Переработка нефти

Календарь Октябрь
Пн 1 8 15 22 29
Вт 2 9 16 23 30
Ср 3 10 17 24 31
Чт 4 11 18 25  
Пт 5 12 19 26  
Сб 6 13 20 27  
Вс 7 14 21 28  

Скачать: Переработка нефти

НЕФТЬ, жидкое горючее полезное ископаемое. Залегает обычно в пористых и трещиноватых г.п. (песчаниках, мергелях, известняках) в осн. на глуб. 1,2 - 2 км и более. Маслянистая жидкость от светло-коричневого до темно-бурого цвета со специфич. запахом. Различают Н. легкую (0,65-0,83 г/см3)) среднюю (0,83-0,86 г/см3), тяжелую (0,86-1,05 г/см3). Т-ра кип. выше 28оС, застывания от +26 до -60оС. Теплота сгорания 43,7-46,2 МДж/кг (см. Химия нефти). Н. сложная смесь углеводородов, гл. обр. парафиновых и нафтеновых, в меньшей степ. ароматических. Углеводородный состав Н. разл. нефтяных месторождений колеблется в широких пределах.

Признаки Н. на современной терр. респ. были обнаружены еще в 18 в. В 1753 баш. старшина Надыр Уразметов, его сын Юсуп Надыров, их компаньоны Асля и Хозя Мозяковы из д.Надыровка (бывш. Уфим. у.) заявили о том, что "по Соке реке по обе стороны выше Сергеевска городка вверх ... подле горы Сарт-Ата, при которой маленькое озеро и в том озере имеется нефть черная. ...повыше той речки Козловки земля, на которой удобно построить нефтяной завод". На сохранившейся самой древней карте Урало-Волжского нефт. р-на нанесены пункты нефтедобычи и з-да Уразметовых. В 1760 поступили сообщения от уфим. купца Санеева и баш. старшины Якшембетова об открытии нефт. м-ний на р.Инзер. Через 3 года о Н. на той же реке сообщили баш. старшины Урманчи Минглибаев и Якшимбет Урасов. П.С.Паллас, посетив места, указанные в прошении Надыра Уразметова, писал, что башкиры употребляли "...смолистую воду не только для полоскания и питья во время молочницы во рту и чириев в горле, но и рачительно собирали самую нефть". И.И.Лепехин, осмотрев места, указанные башкирами, обнаружил "небольшой ключик, состоящий из горной нефти", а также "густой асфальт, истекающий в р.Белую".

Во 2-й пол. 19 в. самарский помещик И.Я.Малакиенко и амер. промышленник Л.Шандор бурили скважины и строили шахты по берегам Волги, Сока и Шешмы на терр. нынешней Самарской обл., а Никеров и Попов - в р-не д.Нижне-Буранчино в Башкирии. Однако эти поиски велись без учета геол. строения р-нов и закончились полной неудачей. В кон. 19 в. частные предприниматели арендовали земли для поисков Н. вблизи дд.Кусяпкулово, Ишимбаево, Нижне-Буранчино. Стерлитамакский городской голова А.Ф.Дубинин в 1900 обратился в Горный департамент с просьбой рассмотреть вопрос "о возможности поставки за счет казны разведок на Н. в р-не д.Ишимбаево". В 1901, после проверки результатов разведочных работ возле д.Нижне-Буранчино, геолог А.А.Краснопольский пришел к выводу "о невозможности глубоким бурением получить в Нижне-Буранчино нефтяной фонтан". В 1911-14 промышленник А.И.Срослов арендовал земли от д.Ишимбаево до д.Кусяпкулово с целью разведки нефт. залежей. Заложенная им шахта глуб. 12,7 м пересекла 2 слоя насыщенных Н. пород. Однако в 1916 геолог А.П.Замятин, осмотревший р-н д.Ишимбаево, подтвердил вывод Краснопольского о полной бесполезности поисков Н. в этом р-не. В 1910-14 нек-рые р-ны Урало-Поволжья были объектом пристального внимания нефт. фирмы "Нобель". Представители фирмы объезжали р-ны и заключали договора с крестьянскими сел. обществами о запрещении ими каких бы то ни было геол. и горн. работ на их землях. И.М.Губкин пришел к убеждению, что на склонах Уральского хр. есть залежи нефти. Его прогноз подтвердил - нефт. фонтан из скважин, пробуренных на калийную соль в р-не Верхне-Чусовских городков Пермской обл. в апр. 1929. В р-н д.Ишимбаево была организована эксп. под рук. А.А.Блохина для изучения геол. строения р-на. В авг. 1931 были получены первые нефтепроявления, а 16 мая 1932 из скв. 702 ударил фонтан, выбросивший на поверхность в теч. 4 ч. ок. 50 т нефти. В 1933 геол. партия под рук. геолога К.Р.Чепикова проводила съемочные работы в Туймазинском р-не, была выявлена обширная антиклинальная структура, названная "Муллинской". Чепиков указывал, что эта структура является наиб. отчетливой для вост. периферии Сокского р-на. В 1936 на этой пл. были заложены 3 глубокие скважины, одна из к-рых в 1937 вскрыла нефтенасыщенные песчаники визейского яруса нижнекам.-уг. возраста. В 1939 пром. приток Н. был получен из нижележащих известняков турнейского яруса ниж. карбона. В дек. 1937 вблизи южн. склона вост. массива в Ишимбаево была заложена разведочная скважина, назначение к-рой состояло в том, чтобы закончить оконтуривание вост. массива. В янв. 1938 скважина показала наличие подъема поверхности артинских известняков, принадлежащего новому нефтеносному массиву, получившему назв. "Южный". В мае 1937 в Туймазинском р-не респ. была обнаружена Н. на глуб. 1150 м в более древних отложениях (низ кам.-уг. системы), чем в Ишимбаево (сакмарский ярус и артинский ярус перми). Добыча Н. из залежей нижнекам.-уг. возраста на м-нии составляла ок. 250 т/сутки. Значит. ее ч. сжигалась в котельных на буровых. В 1938 геологом И.В.Бочковым была предпринята попытка бурения на глуб. отложений девонского периода. Однако при забое 1500 м бурение было прекращено, хотя для вскрытия огромных по запасам залежей девонской нефти оставалось пробурить всего 150 м. Большой вклад в открытие девонской Н. внес М.В.Мальцев. В 1943 была заложена скважина - 100, открывшая в сент. 1944 залежи в песчаных пластах Д-I и Д-II Туймазинского м-ния. Открытие девонской Н. коренным образом изменило перспективу не только Туймазинского м-ния, но и всей вост. окраины европейской ч. страны. Был резко увеличен объем глубокого поисково-разведочного бурения на нефть и газ. Открыли м-ния: Бавлинское (1946), Серафимовское (1949), Шкаповское (1953), Арланское (1955) и т.д. Всего в респ. открыто ок. 200 нефт. и 10 газовых м-ний. Добыча Н. ведется в 27 р-нах респ., достигла максимума в 1967 - 47,8 млн. т. (см. Нефтегазодобывающая промышленность). Пробурено ок. 40 тыс. скважин разл. глуб. (до 5112 м) и назначения. В связи с выработкой запасов осн. высокопродуктивных м-ний добыча нефти и газа постепенно снижается (16,5 млн. т в 1995). Большой вклад в открытие м-ний внесли геологи Блохин, Р.С.Билалов, А.Я.Виссарионова, Мальцев, Т.М.Золоев, Н.И.Мешалкин, Ф.С.Куликов, А.А.Трофимук, К.Р.Тимергазин, Г.П.Ованесов, Н.И.Ключников, Н.Н.Лисовский, К.С.Баймухаметов, геофизики Н.К.Юнусов, С.Н.Миролюбов; буровики Ф.Г.Ефремов, С.И.Кувыкин и др.

Техника и технология нефтепереработки.

Совр. высокопроизводительные нефтегазоперерабат. произ-ва оснащены кр. и сложными по конструкции аппаратами и машинами, способными функционировать в условиях низких т-р, глубокого вакуума и высоких давлений (до 20 Мпa при гидрокрекинге нефт. сырья) и часто в агрессивных средах. Пром. переработка нефти на совр. НПЗ осуществляется путем сложной многоступенчатой физ. и хим. переработки на отд. или комбинированных технолог. установках, предназначенных для получения большого ассортимента нефтепродуктов. Перед переработкой поступающая с промыслов нефть с содержанием солей 100-700 мг/л и воды менее 1% масс. подвергается на НПЗ глубокой очистке от солей до содержания менее 3 мг/л и от воды до менее 0,1% масс. на электрообессоливающих установках (ЭЛОУ). Технолог. процессы НПЗ подразделяются на физ. (т. н. первичные) и хим. (вторичные). Физическими процессами достигается разделение нефти на составляющие компоненты (топливные и масляные фракции) или удаление из фракций или остатков нефти нежелательных групповых хим. компонентов. В химических процессах переработка нефт. сырья осуществляется путем хим. превращений с получением новых продуктов. Хим. процессы на совр. НПЗ подразделяются: 1) по способу активации хим. реакций - на термич. и каталитич.;2) по типу протекающих в них хим. превращений - на деструктивные, гидрогенизац. и окислительные. Головным процессом переработки нефти (после ЭЛОУ) является атмосферная перегонка, на к-рой отбираются топливные фракции (бензиновые, осветительного керосина, реактивного и дизельного топлив) и мазут, используемый либо как компонент котельного топлива, либо как сырье для последующей глубокой переработки. Топливные фракции атмосферной перегонки далее подвергаются облагораживанию (гидроочистке от гетероатомных соед.), а бензины - каталитич. риформингу с целью повышения их качества или получения индивид. ароматич. углеводородов-сырья нефтехимии: бензола, толуола, ксилолов и др. Из мазута путем вакуумной перегонки получают широкую фракцию (350-500оС) вакуумного газойля - сырья для последующей переработки на установках каталитич. крекинга или гидрокрекинга с получением компонентов моторных топлив, узкие дистиллятные масляные фракции, направляемые далее на последующие процессы очистки (селективная очистка, депарафинизация и др.). Остаток вакуумной перегонки - гудрон - служит при необходимости для остаточных масел или как сырье для глубокой переработки с получением дополнит. кол-ва моторных топлив, нефт. кокса, дорожного и строит. битума или же в качестве компонента котельного топлива. Из хим. процессов наиб. распространение получили гидроочистка, риформинг и каталитич. крекинг. Гидроочистка используется для повышения качества моторных топлив путем удаления (гидрогенолиза) сернистых, азотистых и кислородных соед. и гидрирования олефинов сырья в среде водорода на алюмокобальт- или никельмолибденовых катализаторах (при т-ре 300-400оС и давлении 2-4 Мпа). В процессе каталитич. ри-форминга, проводимого при т-ре 500оС, давлении 1-4 Мпа в среде водорода на алюмоплатиновом катализаторе, осуществляются преим. хим. превращения нафтеновых и парафиновых углеводородов в аромат., в результате существенно повышается октановое число (достигая до 100 пунктов) продукта. Каталитич. крекинг, проводимый при т-рах 500-550оС без давления на цеолитсодержащих катализаторах, является наиб. эффективным, углубляющим нефтепереработку процессом, поскольку позволяет из высококипящих фракций мазута (вакуумного газойля) получить до 40-60% высокооктанового компонента автобензина, 10-25% жирного газа, используемого, в свою очередь, на установках алкилирования или произ-вах эфиров для получения высокооктановых компонентов авиа- или автобензинов.

Вклад в разработку теор. основ, совершенствование и техн. перевооружение технолог. процессов и аппаратов, создание и внедрение высокоинтенсивных ресурсо- и энергосберегающих технологий, активных и селективных катализаторов, в решение проблем углубления переработки нефти и оптимизации качества нефтепродуктов внесли ученые Уфим. гос. нефтяного технического университета, Баш. н.-и. института проблем нефтепереработки и НПЗ республики. В нач. развития нефтехимпереработки Башкортостана (50-60-е гг.) комплексные иссл. по разл. аспектам теории и технологии термодеструктивных процессов глубокой переработки нефти (термич. крекинга и коксования) проводились А.Ф.Красюковым, М.Е.Левинтером и З.И.Сюняевым. В последующие годы н.-и. работы по проблеме углубления нефтепереработки продолжили Р.Н.Гимаев, С.А.Ахметов, Ю.М.Абызгильдин, Г.Г.Валявин и М.М.Ахметов. Иссл. по разработке новых сортов и рациональному использованию нефтепродуктов проводились Сюняевым, П.Л.Ольковым и Л.В.Долматовым. Вклад в разработку теории и в совершенствование технологии каталитич. процессов и катализаторов нефтепереработки внесли Р.М.Масагутов, Левинтер, Ж.Ф.Галимов, М.А.Танатаров, Н.Х.Валитов и А.Ф.Ахметов. На основании многолетних иссл. Б.К.Марушкиным, А.А.Кондратьевым, М.З.Максименко, К.Ф.Богатых были разработаны и внедрены в нефтегазопереработку респ. и страны ресурсо- и энергосберегающие процессы ректификации и экстракции, а также эффективные контактные устройства массообменных процессов. По внедрению достижений науки в произ-во и техн. перевооружению технолог. процессов нефтегазопереработки значительный вклад внесли производственники-нефтепереработчики Д.Ф.Варфоломеев, Г.Г.Теляшев, И.В.Егоров, Р.М.Усманов и А.Ф.Махов.

Литература:
  1. Башкирская нефть. М., 1982.
  2. Левинтер М.Е., Ахметов С.А. Глубокая переработка нефти. М., 1992.

  © Реферат плюс

Поиск

referatplus.ru