Первичная подготовка нефти (стр. 3 из 13). Первичная подготовка нефти


Первичная подготовка нефти

Содержание

TOC \o “1-3” Введение PAGEREF _Toc438885702 \h 3

1. Основы подготовки нефти к переработке PAGEREF _Toc438885703 \h 4

1.1. Дегазация нефти PAGEREF _Toc438885704 \h 4

1.2. Стабилизация нефти PAGEREF _Toc438885705 \h 5

1.3. Нефтяные эмульсии PAGEREF _Toc438885706 \h 6

1.4. Способы разрушения нефтяных эмульсий PAGEREF _Toc438885707 \h 9

1.5. Обезвоживание нефти PAGEREF _Toc438885708 \h 10

1.6. Обессоливание нефтей PAGEREF _Toc438885709 \h 10

1.7. Основные виду электрообессоливающих установок PAGEREF_Toc438885710 \h 11

2. Характеристика исходного сырья PAGEREF _Toc438885711 \h 13

3. Технологическая схема первичной подготовки нефти PAGEREF_Toc438885712 \h 17

3.1. Описание технологического процесса установки подготовки нефти (УПН)PAGEREF _Toc438885713 \h 17

3.1.1. Описание технологической схемы PAGEREF _Toc438885714 \h 17

3.1.2. Резервная схема работы PAGEREF _Toc438885715 \h 24

3.1.3. Схема приготовления и закачки реагента-деэмульгатора PAGEREF_Toc438885716 \h 25

3.1.4. Освобождение аппаратов от продуктов и установка заглушекPAGEREF _Toc438885717 \h 25

3.2. Регламент работы установки подготовки нефти PAGEREF _Toc438885718\h 26

3.2.1. Общая характеристика цеха УПН PAGEREF _Toc438885719 \h 26

3.2.2. Нормы технологического режима работы УПН PAGEREF _Toc438885720\h 27

3.2.3. Контроль технологического процесса. Система сигнализации иблокировки УПН PAGEREF _Toc438885721 \h 30

3.2.4. Порядок пуска и остановки УПН PAGEREF _Toc438885722 \h 33

3.3.Основные правила безопасного ведения технологического процессаPAGEREF _Toc438885723 \h 36

3.4. Возможные неполадки технологического процесса. PAGEREF_Toc438885724 \h 38

3.5. Аварийная остановка УПН PAGEREF _Toc438885725 \h 40

3.6. Мероприятия по охране окружающей среды PAGEREF _Toc438885726 \h50

3.6.1. Выбросы в атмосферу дымовых газов, потери от испарения факельныхвыбросов PAGEREF _Toc438885727 \h 41

4. Расчет электродегидратора PAGEREF _Toc438885728 \h 42

4.1. Условия расчета PAGEREF _Toc438885729 \h 42

4.2. Расчет электродегидратора PAGEREF _Toc438885730 \h 42

5. Продукция установки УПН PAGEREF _Toc438885731 \h 45

6. Материальный и тепловой балансы PAGEREF _Toc438885732 \h 45

Заключение PAGEREF _Toc438885733 \h 48

Список сокращений PAGEREF _Toc438885734 \h 49

Список использованных источников PAGEREF _Toc438885735 \h 49

Введение

Один чудак из партии геологов

Сказал мне, вылив грязь из сапога:

“Послал же бог на голову нам олухов!

Откуда нефть – когда кругом тайга?

И деньга вам отпущены – на тыщи те

Построить детский сад на берегу:

Вы ничего в Тюмени не отыщите –

В болото вы вгоняете деньгу”

В. Высоцкий

Нефть – единственное жидкое ископаемое, добываемое с доисторическихвремен. И пожалуй, ни одно из природных веществ не вызвало столькоспоров: по сей день ученые обсуждают, можно ли назвать ее минералом илиотносить к горным породам, высказывают разные предположения о том,сколько нефти в недрах планеты, до какой глубины она встречается, чтопроисходит с ней по истечении времени, как она образовалось – химизмэтих процессов.

Сургутский нефтеносный район представляет из себя крупное подземноеподнятие, а также своды и впадины, окружающие его. Около 30 000квадратных километров приходится на Сургутский свод.

Удивительна история открытия перспективного в Сургутском районеФедоровского месторождения. Северо-восточнее Сургута, в долине ЧернойРечки. В 1963 году на этой площади была открыта нефть в песчаном пласте.По бурению четырех скважин залежь сочли неинтересной, поэтому дальнейшуюразведку признали нецелесообразной, к тому же были другие объекты дляпоисков.

Вернулись к месторождению только в 1971 году. Сейсморазведчики провелидополнительные исследования и показали, что Северо-Сургутская площадьлишь часть, точнее, небольшая часть крупного подземного поднятия. Перваяже скважина дала фонтан нефти, бурение других доказало существованиенового месторождения, которое охватывает Северо-Сургутскую, Федоровскую,Северо-Федоровскую, Моховую и Восточно-Моховую подземные структуры. Внем девять пластов с нефтью, а в двух верхних имеется и газ. Вдальнейшем были открыты Комсомольское, Быстринское и другиеместорождения, но Федоровское оказалось самым крупным из всех.

В 70-е годы месторождения стали разрабатываться и стали появлятьсяпромышленные объекты: дожимно-напорные станции, цеха добычи нефти игаза, цеха предварительной подготовки нефти. Так был построен и цехпервичной подготовки нефти (ЦППН) и на Быстринском нефтегазодобывающемуправлении (НГДУ). Этот ЦППН на сегодняшний день обслуживает шестьместорождений: комарьинское, солкинское, западно-солкинское,быстринское, вачемское, карьяунское.

Быстринскео НГДУ на сегодняшний день является одной из многих частью АО“Сургутнефтегаз”. Нефть, добываемая на этом предприятии, нашла своеприменение в народном хозяйстве. В основном она используется как сырьена нефтехимических предприятиях Ленинградской области. И в последниегоды нефть стали экспортировать за границу.

1. Основы подготовки нефти к переработке

1.1. Дегазация нефти

Нефть, добываемая из земных недр, как правило, содержит газ, называемыйпопутным. На каждую тонну добытой нефти приходится 50-100 м3 попутногогаза. Перед транспортировкой и подачей нефти на переработку газ долженбыть отделен от нефти. Удаление газа из нефти – дегазация проводится спомощью сепарации и стабилизации.

В условиях нефтяного пласта при высоком давлении газы растворены внефти. При подъеме нефти на земную поверхность давление падает ирастворенный газ выделяется. Важно в этот момент уловить его. Существуетнесколько схем отделения газа от нефти на промысле, различающихсяусловиями перемещения нефти и газа. Схемы первой группы характеризуютсятем, что газ отделяют от нефти на кратчайшем расстоянии от скважины.После отделения газа к центральным пунктам сбора перемещается тольконефть. Пример подобной схемы отделения газа от нефти приводится нарис.1а.

Газонефтяная смесь из скважины поступает, в вертикальную емкость С-1,оборудованную устройствами для предотвращения уноса нефти с газом. Этаемкость носит название трапа. Из трапа С-1 газ поступает в газосборныйколлектор, а нефть – в мерник Е-1. По газосборному коллектору попутныйгаз передается для дальнейшей обработки на газобензиновые заводы. Кколлектору подключается до ста и более скважин одного или несколькихблизлежащих нефтяных месторождений. Поскольку давление, при которомпроисходит разделение в трапе, невысокое (1-2 ат), для подачи газа нагазобензиновые заводы его сжимают компрессорами ЛК-1.

Нефть из мерника Е-1 самотеком или насосами подается на нефтесборныйпункт, где подвергается обезвоживанию.

Описанная схема отличается простотой, но не обеспечивает полнотыулавливания попутного газа. После одноступенчатой сепарации в нефтиостается до 40-50% попутного газа. Этот газ, попадая вместе с нефтью вмерники Е-1 и резервуары нефтесборных пунктов, в значительной степениулетучивается в атмосферу. Более эффективны системы многоступенчатойсепарации (рис. 1б).

На устье нефтяной скважины поддерживается повышенное давление. Внепосредственной близости от скважины размещается газоотделитель первойступени сепарации С-1, давление в котором равно 6-7 ат. Этого давлениядостаточно, чтобы без дополнительного сжатия подать газ нагазобензиновый завод. Из газоотделителя первой ступени нефть вместе составшимся в ней растворенным газом самотеком перемещается

ukrreferat.com

Первичная подготовка нефти - часть 2

Газ из Е-1 направляется в топливную сеть. Жидкий продукт - газовый конденсат частично возвращается в колонну К-1 в качестве орошения, а балансовое количество[1] выводится со стабилизационной установки и передается на центральные газофракционирующие установки (ЦГФУ). Эти установки предназначаются для разделения газового конденсата нескольких стабилизационных установок на индивидуальные углеводороды.

С низа стабилизатора уходит стабильная нефть, которая отдает свое тепло поступающему сырью в теплообменнике Т-1 и доохлаждается в холодильнике. Необходимое для ректификации тепло под­водится в нижнюю часть стабилизационной колонны через трубча­тую печь. Содержание газа (углеводородов С1 - С4 ) в стабильной нефти составляет 0,8-1,5%.

При добыче нефти ее почти всегда сопровождает пластовая (буровая) вода. В буровых водах растворены различные соли, чаще всего хлориды и бикарбонаты натрия, кальция, магния, реже карбонаты и сульфаты. Содержание солей в этих водах колеб­лется в широких пределах, от незначительного до 30%.

Наличие в нефти, поступающей на переработку, воды и солей вредно сказывается на работе нефтеперерабатывающего завода. При большом содержании воды повышается давление в аппара­туре установок перегонки нефти, снижается их производительность, расходуется излишнее тепло на подогрев и испарение воды.

Еще более отрицательным действием обладают хлориды. Они откладываются в трубах теплообменников и печей, что приводит к необходимости частой очистки труб, снижает коэффициент теплопередачи. Хлориды, в особенности кальция и магния, гидролизуются с образованием соляной кислоты даже при низких тем­пературах. Под действием соляной кислоты происходит разруше­ние (коррозия) металла аппаратуры технологических установок. Особенно быстро разъедается под действием гидролизовавшихся хлористых солей конденсационно-холодильная аппаратура пере­гонных установок. Наконец, соли, накапливаясь в остаточных нефтепродуктах - мазуте и гудроне, ухудшают их качество. Следовательно, перед подачей нефти на переработку ее необ­ходимо отделить от воды и солей.

Воду и соли удаляют непосредственно после извлечения нефти из земных недр (на промыслах) и на нефтеперерабатывающих за­водах. Существует два типа технологических процессов удаления воды и солей - обезвоживание и обессоливание. В основе обоих процессов лежит разрушение нефтяных эмульсий. Однако при обезвоживании разрушаются природные эмульсии, те, которые образовались в результате интенсивного перемешивания нефти с буровой водой. Обезвоживание проводится на промыслах и явля­ется наряду с дегазацией первым этапом подготовки нефти к транспортировке и переработке.

При обессоливании обезвоженную нефть смешивают с пресной водой, создавая искусственную эмульсию, которая затем разру­шается. Обессоливание нефти проводится на промыслах и нефте­перерабатывающих заводах.

Нефть и вода взаимно плохо растворимы. Поэтому отделение основной массы воды от нефти простым от­стаиванием не представляет большого труда, если при добыче не образовалась водно-нефтяная эмульсия. Но чаще всего такая эмульсия образуется. Перерабатывать обводненную эмульгированную нефть нельзя. Даже если эмульсия не образовалась, то не­значительное количество воды все же остается в нефти в раство­ренном или во взвешенном состоянии. А вместе с водой в нефть попадают и минеральные соли, которые вызывают коррозию нефте­перегонной аппаратуры.

Эмульсией называется такая система двух взаимнонерастворимых или не вполне растворимых жидкостей, в которых одна содер­жится в другой во взвешенном состоянии в виде огромного количества микроскопических капель (глобул), исчисляемых трил­лионами на литр эмульсии. Жидкость, в которой распределены глобулы, называется дисперсной средой, а вторая жидкость, рас­пределенная в дисперсной среде, - дисперсной фазой.

При движении нефти по скважинам она весьма интенсивно перемешивается с пластовой водой. В различных стадиях переработки, например при защелачивании, нефть и ее погоны также тесно соприкасаются с водой. В этих случаях часто и образуются стойкие нефтяные эмульсии. Расслаивание нефтяных эмульсий в естественных условиях иногда наступает по истечении весьма длительного времени. (Описаны эмульсии, не разрушавшиеся годами). Однако чаще всего про­исходит частичное расслаивание, после которого между слоями воды и нефти остается промежуточный эмульсионный слой.

Стойкие эмульсии по внешнему виду представляют собой гус­тые мазеобразйые массы от светло-желтого до темного цвета. Эмульсии, образовавшиеся после водно-щелочной промывки неф­тепродукта, иногда имеют почти сметанообразный вид. Вязкость эмульсий значительно выше вязкости воды и нефти.

Нефтяные эмульсии чаще всего представляют собой эмульсии типа вода в нефти, в которых дисперсной средой является нефть, а дисперсной фазой-вода. Такая эмульсия гидрофобна: в воде она всплывает, а в бензине или других растворителях равномерно распределяется.

Реже встречаются эмульсии типа нефть в воде, в которых дис­персной средой служит вода. Такая эмульсия гидрофильна: вводе она равномерно распределяется, а в бензине тонет.

Образование эмульсий связано с поверхностными явлениями. Поверхностный слой жидкости на границе с воздухом или другой жидкостью, как известно, характеризуется определенным поверх­ностным натяжением, т. е. силой, с которой жидкость сопротив­ляется увеличению своей поверхности. Поверхностное натяжение нефти и нефтепродуктов колеблется в пределах 0,02-0,05 н/м (20-50 дн/см). Опыты показывают, что добавление некоторых веществ к чистым нефтяным погонам вызывает понижение их по­верхностного натяжения на границе с водой. Это явление носит общий характер.

Иногда вещества при растворении даже в очень малых кон­центрациях существенно понижают поверхностное натяжение рас­творителя. Вещества, способные понижать поверхностное натя­жение, называются поверхностно-активными. Характерная осо­бенность этих веществ в том, что в их состав входит, как правило, углеводородный радикал (гидрофобная часть молекулы) и какая- либо полярная группа (гидрофильная часть молекулы). Понижение поверхностного натяжения двухфазной жидкой системы на границе раздела фаз в результате воздействия полярных веществ объяс­няется тем, что добавленное вещество распределяется неравномер­но в том компоненте системы, который является по отношению к нему растворителем. Концентрация его у поверхности раздела фаз будет более высокой, чем во всем объеме растворителя. Иными словами, добавленное полярное вещество будет адсорбироваться поверхностным слоем растворителя и тем самым понижать его по­верхностную энергию. В результате на границе раздела фаз обра­зуется адсорбированный слой, который можно рассматривать как пленку молекул поверхностно-активяого вещества на поверхности растворителя.

Всякая эмульсия, в том числе и нефтяная, может образоваться только тогда, когда механическое воздействие на смесь двух взаимно нерастворимых жидкостей будет вызывать диспергирование, т. е. дробление жидкости на очень мелкие частицы. Ясно, что чем меньше поверхностное натяжение жидкостей, тем легче будет идти образование капель, т. е. увеличение общей поверхности жид­кости, так как оно будет требовать меньшей затраты работы. Однако после перемешивания двух чистых, нерастворимых друг в друге жидкостей стойкость полученной эмульсии обычно неве­лика. Более тяжелая жидкость осядет на дно, капельки дисперсной фазы, сталкиваясь друг с другом, объединятся в более крупные. Оба эти процесса и приведут к расслаиванию эмульсии на два слоя. Только при очень высокой степени дисперсности, когда диа­метр капель дисперсной фазы измеряется десятыми долями мик­рона (10-7м) и межмолекулярные силы уравнивают гравита­ционные силы, разрушение эмульсии становится затруднительным.

Иначе обстоит дело, если смесь двух нерастворимых жидкостей находится в условиях, способствующих диспергированию, и в ней присутствует какое-либо поверхностно-активное вещество, пони­жающее поверхностное натяжение за счет образования адсорб­ционного слоя. Во-первых, это способствует дроблению капель, а во-вторых (что имеет решающее значение), капли будут окружены не молекулами дисперсной среды, а прочной пленкой адсообционного слоя. В этом случае образуются стойкие, трудно расслаиваю­щиеся эмульсии, так как капли дисперсной фазы, защищенные своеобразным панцирем - адсорбционной пленкой, не могут сли­ваться друг с другом. В некоторых случаях толщина адсорб­ционной пленки такова, что ее можно рассмотреть в микро­скоп.

Вещества, способствующие образованию и стабилизации эмуль­сий, называются эмульгаторами. Ими являются такие полярные вещества нефти, как смолы, асфальтены, асфальтогеновые кислоты и их ангидриды, соли нафтеновых кислот, а также различные не­органические примеси. Например, по данным Левченко, в состав эмульгаторов арланской и ромашкинской нефти, помимо смол и асфальтенов входит до 50% неорганических веществ. Исследова­ния последних лет показали, что в образовании стойких эмульсий принимают участие также различные твердые углеводороды.

Микрокристаллы парафинов, церезинов и смешанных пара­фина-нафтеновых углеводородов, адсорбируясь на поверхности эмульсионных глобул, образуют своеобразную броню.

Характер эмульсии зависит от свойств эмульгатора. В сырой нефти обыкновенно образуется гидрофобная эмульсия типа вода в нефти, так как эмульгаторами в этом случае являются смолы. Они хорошо растворяются в нефти и не растворяются в воде. Смолы, адсорбируясь на поверхности раздела нефть-вода, по­падают в поверхностный слой со стороны нефти и создают прочную оболочку вокруг частиц воды.

mirznanii.com

Первичная подготовка нефти - часть 3

Алюминиевые, кальциевые, магниевые и железные мыла неф­тяных кислот также хорошо растворимы в нефти и ее дистилля­тах, поэтому они также способствуют образованию гидрофобных эмульсий. Наоборот, натриевые мыла нефтяных кислот (продукт реакции при щелочной очистке) хорошо растворимы в воде и хуже в углеводородах. Поэтому они адсорбируются в поверхностном слое со стороны водной фазы, обволакивают пленкой капельки нефти и таким образом способствуют образованию гидрофильной эмульсии типа нефть в воде.

При наличии эмульгаторов обоих типов возможно обращение эмульсий, т. е. переход их из одного типа в другой. Этим явлением пользуются иногда при разрушении эмульсий.

Механизм разрушения нефтяных эмульсий состоит из нескольких стадий:

1. Столкно­вение глобул (частиц) воды;

2. Слияние глобул в более крупные капли;

3. Выпадение капель.

Для того чтобы разрушить эмульсии, в промышленной прак­тике применяются следующие процессы:

· механические - филь­трование, обработка ультразвуком;

· термические - подогрев и отстаивание нефти от воды, промывка горячей водой;

· электри­ческие - обработка в электрическом поле переменного и постоян­ного тока;

· химические - обработка различными деэмульгаторами.

Перемешивание и воздействие электрического поля создают благоприятные условия для увеличения вероятности столкновения глобул воды, тепло способствует увеличению разности плотностей воды и нефти, снижению вязкости нефти, что облегчает быстрый и полный отстой капель воды. Действием деэмульгаторов - специальных поверхностно-активных веществ - ослабляется струк­турно-механическая прочность слоев, обволакивающих капли воды. В качестве деэмульгаторов применяются различные поверхностно- активные вещества. Механизм действия поверхностно-активных веществ на эмульсии весьма сложен и мало изучен.

По характеру поведения в водных растворах деэмульгаторы делятся на ионоактивные и неионогенные. Первые в растворах диссоциируют на катионы и анионы, вторые ионов не образуют. Исследования, проведенные в СССР и за рубежом, показали, что наилучшим деэмульгирующим действием обладают неноногенные вещества. Расход неионогенных деэмульгаторов в несколько де­сятков раз ниже, а эксплуатационные затраты на обессоливание 1 т нефти в пять раз меньше, чем при применении ионогенных веществ.

До последнего времени для разрушения нефтяных эмульсий применялся анионоактнвный деэмульгатор - нейтрализованный черный контакт (НЧК). Этот деэмульгатор применяется на неко­торых установках обессоливания до сих пор.

В настоящее время все шире используются различные неионогенные деэмульгаторы, из числа которых наиболее известны ОЖК и ОП-10. Деэмульгатор ОЖК представляет собой оксиэтилированные жирные кислоты, а ОП-10 оксиэтилированные алкилфенолы. Наиболее распространены термохимические и электрические способы разрушения эмульсий. Под влиянием электрического поля высокого напряжения, заряженные капельки воды перемещаются к электродам. Поскольку частота поля в межэлектродном про­странстве меняется, происходит изменение направления движения капель воды, они сталкиваются друг с другом и сливаются.

Наиболее простой способ удаления воды из нефти на промыслах - термохимическое обезвоживание при атмосферном давлении. К подогретой до 30-50°С нефти добав­ляется деэмульгатор, а затем нефть поступает в резервуар для отстаивания. При такой обработке нефти возможны большие по­тери легких нефтепродуктов во время отстаивания в негерметичных резервуарах. Эти недостатки устраняются при термохимическом отстаивании под давлением (рис. 3). Сырую нефть забирают из Е-1 насосом Н-1, смешивают с деэмульгатором, подаваемым из Е-2, прокачи­вают через теплообменник Т-1 и паровой подогреватель Т-2 в термоотстойник Е-З. В термоотстойнике под давлением »15 ат нефть находится в течение 1-3 ч. Обезвоженная нефть через теплообмен­ник Т-1 направляется в резервуар Е-4. В резервуаре нефть допол­нительно отделяется от воды. Отстоявшаяся вода сбрасывается в нефтеловушку Е-5, а затем закачивается в скважину А-1. Часть сточных вод, удаленных из термостойника, возвращается на прием сырьевого насоса, с целью повторного использования содержащегася в сточной воде деэмульгатора. Нефть из ловушки вновь по­дается на обезвоживание.

При глубоком обезвоживании некоторых нефтей, в пластовой воде которых содержится мало солей, про­исходит почти полное их удаление. Однако большинство нефтей нуждается в дополнительном обессоливании.

В некоторых случаях для обессоливания используется термо­химический метод, но чаще применяется способ, сочетающий термо­химическое отстаивание с обработкой эмульсии в электрическом поле. Установки последнего типа носят название электрообессоливающих (ЭЛОУ).

Технологическая схема установки электрообессоливания нефти приводится на рис. 4. Нефть, в которую введены про­мывная вода, деэмульгатор и щелочь, насосом Н-1 прокачивается через теплообменник 7-1 и пароподогреватель Т-2 в электродегидратор первой ступени Э-1. Здесь удаляется основная масса воды и солей (содержание их снижается в 8-10 раз.) На некоторых установках ЭЛОУ перед Э-1 находится термохимическая ступень. Из Э-1 нефть поступает в электродегидратор второй ступени Э-2 для повторной обработки. Перед Э-2 в нефть вновь подается вода. Общий расход воды на обессоливание составляет 10% от обраба­тываемой нефти. На некоторых установках свежая вода подается только на вторую ступень обессоливания, а перед первой ступенью с нефтью смешиваются промывные воды второй ступени. Так удается снизить расход воды на обессоливание вдвое.

Обессоленная нефть из Э-2 проходит через теплообменник Т-1, холодильник и подается в резервуары обессоленной нефти. Вода, отделенная в электродегидраторах, направляется в нефтеотделитель Е-1 для дополнительного отстоя. Уловленная нефть возвращается на прием сырьевого насоса, а вода сбрасывается в промышленную канализацию и передается на очистку.

Глав­ным аппаратом установки является электродегидратор - емкость, снабженная электродами, к которым подводится переменный ток высокого напряжения. В эксплуатации на промысловых и завод­ских установках ЭЛОУ находятся электродегидраторы различных конструкций: вертикальные, шаровые и горизонтальные.

Вертикальный электродегидратор (рис. 5) представляет собой цилиндрический сосуд диаметром 3 м, высотой 5 м и объемом 30 м3 . Внутри находятся электроды - металлические пластины, подвешенные на фарфоровых изоляторах. Ток подается к электро­дам от двух повышающих трансформаторов мощностью по 5 ква (киловольтампер) каждый. Напряжение между электродами от 15 до 33 кв .

Сырье вводится в электродегидратор через вертикальную, вмон­тированную по оси аппарата трубу, которая на половине высоты дегидратора заканчивается распределительной головкой-Головка устроена так, что через ее узкую кольцевую щель эмульсия нефти и воды вводится в виде тонкой веерообразной горизонтальной струи. Обработанная нефть выводится в центре верхнего днища электродегидратора, а отстоявшаяся вода-через нижнее днище.

Недостатком вертикальных электродегидраторов, приведшим к их вытеснению более современными конструкциями, является низкая производительность, недостаточно высокая температура обессоливания. Из-за низкой производительности на установках ЭЛОУ приходилось соединять параллельно 6-12 аппаратов. На мощных электрообессоливающих установках, построенных в 1955-1970 гг., применяются шаровые электродегидраторы емко­стью 600 м3 и диаметром 10,5 м. Производительность такого дегидратора (рис. 6) равна 300-500 м3 /ч . Принцип его действия тот же, что и вертикального аппарата, но вместо одного стояка с рас­пределительной головкой для ввода сырья и одной пары электро­дов в шаровом электродегидраторе их по три. Шаровые дегидраторы имеют в 10-15 раз большую произво­дительность, чем вертикальные, но они громоздки и трудоемки в изготовлении. Кроме того, они не могут эксплуатироваться при высоком давлении. Повышение расчетного давления электродегидратора привело бы к большому перерасходу металла на аппарат.

За последние годы в нашей стране и за ее пределами получили распространение горизонтальные электродегидраторы. Конструк­ция такого аппарата, рассчитанного на давление до 18аг и тем­пературу процесса 140-160°С, приведена на рис. 7. Горизонталь­ные электродегидраторы имеют диаметр 3-3,4 н и объем 80 и 160 м3 . Повышение расчетного давления и температуры играет большую роль, так как позволяет проводить глубокое обезвожи­вание и обессоливание трудно обессоливаемых нефтей.

Электроды в горизонтальном электродегидраторе расположены почти посредине аппарата. Они подвешены горизонтально друг над другом. Расстояние между ними составляет 25-40 см.

Ввод сырья в горизонтальный электродегидратор осуществля­ется через-расположенный вдоль аппарата горизонтальный маточ­ник. Поступая в аппарат, нефть попадает в слой отстоявшейся воды, а затем - в зону под электродами, в межэлектродное про­странство, и, наконец, в зону над электродами. В верхней части дегидратора располагаются выкидные коллекторы обработанной нефти. Достоинством этой конструкции является большой путь движения нефти и время ее пребывания в аппарате, так как ввод сырья расположен значительно ниже, чем в других электродегидраторах. При этом улучшаются условия отстаивания воды.

mirznanii.com

Первичная подготовка - нефть - Большая Энциклопедия Нефти и Газа, статья, страница 2

Первичная подготовка - нефть

Cтраница 2

При любом методе промыслового сбора нефти и попутного газа, при любой технологии первичной подготовки нефти должны быть обеспечены герметичность всего тракта движения нефти от устья скважины до товарного резервуарного парка и заданная точность измерения дебита как по каждой скважине, так и по всему нефтедобывающему предприятию в целом. В некоторых нефтяных районах применяют групповую систему сбора нефти и попутного газа. При такой системе газонефтяная смесь от нескольких скважин поступает на групповую установку ( ГУ), где сепарируется нефть и газ и измеряется дебит каждой скважины в отдельности.  [16]

Современное нефтепромысловое хозяйство представляет собой замкнутый технологический комплекс, осуществляющий добычу, транспортировку и первичную подготовку нефти, газа и воды, используемой для поддержания пластового давления. Непрерывность функционирования, тесная взаимосвязанность, разнотипность и значительная удаленность объектов друг от друга и от баз управления требуют большой надежности их работы при минимальном количестве обслуживающего персонала. Именно таким условиям должно отвечать оснащение промысловых объектов телемеханической системой дистанционного контроля и регулирования.  [17]

Современное нефтепрЪмысловое хозяйство представляет собой замкнутый технологический комплекс, осуществляющий добычу, транспортировку и первичную подготовку нефти, газа и воды, используемой для поддержания пластового давления. Непрерывность функционирования, тесная взаимосвязанность, разнотипность и значительная удаленность объектов: друг от друга и от баз управления требуют большой надежности их работы при минимальном количестве обслуживающего персонала. Именно таким условиям должно отвечать оснащение промысловых объектов телемеханической системой дистанционного контроля и регулирования.  [18]

Современное нефтепромысловое хозяйство представляет собой замкнутый технологический комплекс, осуществляющий добычу, разработку, транспортировку и первичную подготовку нефти, газа и воды, используемой для поддержания пластового давления. Непрерывность доункционирования, тесная взаимосвязь, разнотипность и значительная удаленность объектов друг от друга и от баз управления требуют большой надежности их работы при минимальном количестве обслуживающего персонала. Именно таким условиям должно отвечать оснащение промысловых объектов телемеханической системой дистанционного контроля и регулирования.  [19]

Гидроциклонная установка стабилизации нефти по четкости отбора индивидуальных компонентов уступает ректификационной установке, однако, перед промысловыми установками первичной подготовки нефти в условиях постоянного изменения качественного состава сырья и пульсации потока, в отличие от процессов нефтеперерабатывающих заводов, не ставится задача по доведению продукции до определенного фракционного состава. ГОСТ 9965 - 86 лишь регламентирует показатель ДНП. Эти обстоятельства, а также то, что вырабатываемый нестабильный бензин для газоперерабатывающих заводов, согласно технических условий, может иметь фракционный состав, изменяющийся в достаточно широких пределах ( а при использовании его для нужд НГДУ фракционный состав не имеет большого значения), позволяют применять на промыслах гидроциклонные нефтестабилизационные установки.  [20]

Нефтедобывающая промышленность включает в себя ряд последовательно осуществляемых технологических этапов: разведку, бурение, эксплуатацию - нефтяных месторождений, первичную подготовку нефти на промыслах.  [21]

На производственных объектах нефтяной и газовой промышленности используются мощные ультразвуковые установки для очистки сточных вод, интенсификации технологических процессов по первичной подготовке нефти и газа, очистке, сварке и обработке деталей и др. Эти установки излучают опасный для обслуживающего персонала поток ультразвуковых колебаний, который влияет на организм человека, нарушает биохимические процессы обмена веществ, изменяет состав и свойства крови, структуру клеток, состояние нервной системы, оказывает, как и шум, вредное воздействие на здоровье и работоспособность.  [22]

В ГУ замеряется дебит по каждой скважине, проводится сепарация I ступени для отделения нефтяного газа, а иногда и некоторые другие операции по первичной подготовке нефти.  [23]

Цель практики - изучение студентами наземного и подземного оборудования скваяин, способов эксплуатации, техйртш, технодогиг-ческих процессов, применяемых в нефтедобыче, сбора и первичной подготовки нефти, воды и газа к транспорту, а также предварительное ознакомление сорганизацией труда, хозяйственно деятельностью охраной труда я техникой безопасносы, автоматизацией, электрификацией к т.п., что облегчает изучение студентами ояда дисциплин, читаемых в последующие семестрах, и будет способетв эвть глубоко-му освоению студентами теоретических основ разработки и эксплуатации нефтяных месторовденик.  [24]

На разработанной ИМС исследовано влияние различных параметров температуры, давления, числа сепараторов в установке, физико-химических свойств сырья, обводненности, концентрации химического реагента на технологические показатели установок первичной подготовки нефти. При этом установлено, что температура и давление являются основными управляющими параметрами процесса сепарации.  [25]

Характерными особенностями развития нефтяной промышленности за последние 20 - 25 лет являются: открытие и ввод в разработку крупнейших нефтяных месторождений, внедрение интенсивных систем разработки с внутриконтурным и законтурным заводнением, комплексная автоматизация и механизация технологических процессов и внедрение прогрессивных схем сбора, транспорта и первичной подготовки нефти, газа и воды. Все это позволило резко повысить уровень добычи нефти и занять нефтяной отрасли нашей страны ведущее место среди крупнейших нефтедобывающих стран мира. В то же время интенсификация ввода и разработки нефтяных месторождений производились на базе относительно старой технологии и техники добычи нефти, особенно это относится к скважинному и внутрискважинному оборудованию и технологическим операциям, проводимым с помощью этого оборудования.  [26]

Не менее серьезные коррозионные проблемы возникают и в технологических процессах по переработке нефти. Хотя при первичной подготовке нефти применяются меры к глубокому ее обессоли-ванию и обезвоживанию, вода и хлориды все же попадают в нефть. При дальнейшей переработке нефти вследствие гидролиза хлоридов магния и кальция, попадающих в нефть из пластовой воды, в системе появляется хлористый водород, отличающийся сильными агрессивными свойствами.  [28]

Не менее серьезные проблемы возникают при проведении технологических процессов по переработке нефти. Хотя при первичной подготовке нефти проводятся обессоливание и обезвоживание, хлориды и вода все же попадают в нефть. При дальнейшей переработке нефти вследствие гидролиза хлорида магния и кальция, попадающих в нефть из пластовой воды, в системе появляется хлористый водород, характеризующийся сильными агрессивными свойствами.  [29]

Обвязка устьев нагнетательных скважин, где предусмотрена закачка газа и воды, исключает попадание газа на КНС. На КСП осуществляется двухступенчатая сепарация и первичная подготовка нефти. Газ 1 - й ступени сепарации с давлением 0 5 МПа подается на прием КС.  [30]

Страницы:      1    2    3

www.ngpedia.ru

Первичная подготовка нефти - страница 3

1.1. Дегазация нефти

Нефть, добываемая из земных недр, как правило, содержит газ, называемый попутным. На каждую тонну добытой нефти приходится 50-100 м3попутного газа. Перед транспортировкой и подачей нефти на переработку газ должен быть отделен от нефти. Удаление газа из нефти - дегазация прово­дится с помощью сепарации и стабилизации.

В условиях нефтяного пласта при высоком давлении газы рас­творены в нефти. При подъеме нефти на земную поверхность дав­ление падает и растворенный газ выделяется. Важно в этот момент уловить его. Существует несколько схем отделения газа от нефти на про­мысле, различающихся условиями перемещения нефти и газа. Схемы первой группы характеризуются тем, что газ отделяют от нефти на кратчайшем расстоянии от скважины. После отделения газа к центральным пунктам сбора перемещается только нефть. Пример подобной схемы отделения газа от нефти приводится на рис.1а.

Газонефтяная смесь из скважины поступает, в вертикальную емкость С-1, оборудованную устройствами для предотвращения уноса нефти с газом. Эта емкость носит название трапа. Из трапа С-1 газ поступает в газосборный коллектор, а нефть - в мерник Е-1. По газосборному коллектору попутный газ передается для дальнейшей обработки на газобензиновые заводы. К коллектору подключается до ста и более скважин одного или нескольких близлежащих нефтяных месторождений. Поскольку давление, при котором происходит разделение в трапе, невысокое (1-2 ат), для подачи газа на газобензиновые заводы его сжимают компрессо­рами ЛК-1.

Нефть из мерника Е-1 самотеком или насосами подается на нефтесборный пункт, где подвергается обезвоживанию.

Описанная схема отличается простотой, но не обеспечивает полноты улавливания попутного газа. После одноступенчатой сепа­рации в нефти остается до 40-50% попутного газа. Этот газ, попадая вместе с нефтью в мерники Е-1 и резервуары нефтесборных пунктов, в значительной степени улетучивается в атмо­сферу. Более эффективны системы многоступенчатой сепарации (рис. 1б).

На устье нефтяной скважины поддерживается повышенное давление. В непосредственной близости от скважины размещается газоотделитель первой ступени сепарации С-1, давление в котором равно 6-7 ат. Этого давления достаточно, чтобы без дополнитель­ного сжатия подать газ на газобензиновый завод. Из газоотделителя первой ступени нефть вместе с оставшимся в ней растворенным газом самотеком перемещается на центральный сборный пункт. На этом пункте собираются потоки от большого числа скважин. В результате снижения давления на центральном сборном пункте вновь происходит выделение газа в сепараторе С-2. Этот газ подается на газобензиновый завод компрессорами.  Преимущества многоступенчатой схемы сепарации:

·        более полное отделение газа от нефти;

·        сокращение уноса капель нефти с газом;

·        уменьшение расхода электроэнергии на сжатие газа.

1.2. Стабилизация нефти

            Даже после многоступенчатой промысло­вой сепарации в нефти остается весьма значительное количество углеводородов С1-С4. Значительная часть этих углеводородов может быть потеряна при перекачках из резервуара в резервуар, при хранении и транспортировке нефти. Вместе с газами теряются ценные легкие бензиновые фракции.

Чтобы ликвидировать потери газов и легких бензиновых фрак­ций, предотвратить загрязнение воздуха, уловить ценные газо­образные компоненты, необходимо максимально извлечь углево­дороды С1-С4 из нефти перед тем, как отправить ее на нефтеперерабатывающие заводы. Эта задача решается на уста­новках стабилизации нефти, расположенных обычно в непосред­ственной близости от места ее добычи. Методы стабилизации нефти могут быть различными. Для большинства нефтей стабилизация производится на установках с применением ректификации.

Схема типовой стабилизационной установки приводится на рис. 2. Нефть, поступающая с промысловых установок сепарации, проходит через теплообменники Т-1, где подогревается уже стабилизированной нефтью, и паро­вые подогреватели Т-2. Подо­гретая нефть поступает в рек­тификационную колонну-ста­билизатор К.-1. Уходящие с верха стабилизатора легкие уг­леводороды конденсируются в конденсаторе холодильнике ХК-1 и поступают в емкость Е-1. С верха стабилизатора уходят углеводороды от С1 до С5 включительно. При охлаж­дении оборотной промышлен­ной водой в конденсаторе-хо­лодильнике конденсируется не весь продукт, уходящий с вер­ха колонны. Поэтому в емко­сти Е-1 происходит разделение смеси, поступившей из кон­денсатора, на газ и жид­кость.

Газ из Е-1 направляется в топливную сеть. Жидкий продукт - газовый конденсат частично возвращается в колонну К-1 в качестве орошения, а балансовое количество[1] выводится со стабилизационной установки и передается на центральные газофракционирующие установки (ЦГФУ). Эти установки предназначаются для разделения газового конденсата нескольких стабилизационных установок на индивидуальные углеводороды.

С низа стабилизатора уходит стабильная нефть, которая отдает свое тепло поступающему сырью в теплообменнике Т-1 и доохлаждается в холодильнике. Необходимое для ректификации тепло под­водится в нижнюю часть стабилизационной колонны через трубча­тую печь. Содержание газа (углеводородов С1 - С4) в стабильной нефти составляет 0,8-1,5%.

    продолжение

www.coolreferat.com

Первичная подготовка нефти - часть 4

Кроме того, в горизонтальном электродегидраторе крупные частицы воды выпадают из нефти еще до попадания в зону силь­ного электрического поля, расположенную в межэлектродном про­странстве. Поэтому в нем можно обрабатывать нефть с большим содержанием воды, не опасаясь чрезмерного увеличения силы тока между электродами.

Сравнение эффективности электродегидраторов различной кон­струкции показывает несомненные преимущества горизонтальных аппаратов. Удельная производительность последних в 2,6 раза больше, чем шаровых, а удельный расход металла - на 25% меньше.

Режим обессоливания. Температура и давление про­цесса обессоливания во многом зависят от конструкции аппарата. Большое значение имеют свойства обессоливаемой нефти. Многие нефти хорошо обессоливаются при 70-90°С. Однако для таких нефтей, как ромашкинская, особенно в тех случаях, когда они поступают с промыслов плохо подготовленными, приходится повы­шать температуру обессоливания до ПО-160°С. Повышение тем­пературы обессоливания увеличивает электрическую проводимость и силу тока, усложняет условия работы изоляторов.

Важное значение имеет равномерная подача в нефть деэмульгатора. Расход деэмульгаторов на ЭЛОУ составляет: НЧК-ог 500 до 5000 а/т, ОЖК-от 20 до 60 а/г. ОП-10 - от 35 до 50 г1т нефти. Деэмульгатор НЧК подается в нефть в чистом виде, а неионогенные деэмульгаторы - в виде 2-5%-ных водных растворов.

В нефть также подается щелочь, которая необходима для созда­ния при обессоливании нейтральной или слабощелочной среды. В такой среде ускоряется процесс деэмульсации, уменьшается сила тока в электродегидраторах и коррозия аппаратуры. Расход щелочи составляет до 50 г/т нефти.

Добываемая из скважин эмульсия представляет собой многофазную систему, состоящую из нефти, пластовой воды и попутных нефтяных газов. Нефть представляет собой химически сложную компонентную смесь, состоящую из метановых, нафтеновых, ароматических групп углеводородов.

Физико-химические свойства нефтей. Таблица 1.

Физико-химические свойства попутных газов. Таблица 2

Физико-химические свойства пластовых вод. Таблица 3

В нефти содержатся в небольших количествах смолы, асфальтены и растворенные в них в разных количествах газы: азот, сероводород, окись углерода и другие, а также пластовая вода в зависимости от обводненности нефтяной эмульсии с растворенными в ней минеральными солями. По внешнему виду нефть представляет собой маслянистую жидкость от светло-коричневого до почти черного цвета. Содержание тех или иных компонентов могут различаться даже в несколько десятков раз, поэтому нефти добываемые с разных месторождений смешиваются. И таким образом получается сырье с почти постоянными физико-химическими свойствами.

Физико-химические свойства нефтей Комарьинского, Солкинского, Западно-Солкинского, Быстринского, Вачимского, Карьяунского месторождений представлены в таб. 1. Физико-химические свойства газов и пластовых вод преведены в таб.2 и таб.3.

3.1.1. Описание технологической схемы

Технологический процесс установки подготовки нефти (УПН) осуществляется по следующей схеме (рис 8). Частично обезвоженная нефть с обводненностью до 20%, температурой 35-45 °С и под давлением 0,14-0,2 МПа с установки УПСВ”Б” поступает в сепараторы С1-С3 для разгазированния нефти.

mirznanii.com

Первичная подготовка нефти - часть 7

Нефть с электродегидраторов ЭГ1, ЭГ2 поступает в сепараторы С1-С3, а с электродегидраторов ЭГ3-ЭГ4 в сепараторы С4-С6, где происходит разгазирование нефти.

С сепараторов С1-С6 нефть поступает в товарные резервуары РВС-10000 № 1,3 УПН и РВС-5000 №1, №2 УПСВ”Б”, откуда насосами внешней откачки ЦНС 300х360 через узел учета нефти откачивается на ЦКПН НГДУ “ФН”.

3.1.3. Схема приготовления и закачки реагента-деэмульгатора

Для подачи реагента-деэмульгатора в поток нефти на установке УПН используются четыре блока БР-25-УI , оборудованные емкостями объемом V=6 м3 для хранения реагента каждый. Для хранения отечественного реагента-деэмульгатора на установке смонтированы три емкости объемом по V=50 м3 . Блоки БР-25-УI оборудованы дозировочными насосами типа НД I-2,5\40 – 2 шт, НД 2,5-1000\10 – 1 шт. и шестеренчатым насосом Ш 5-25-3,6\1Б-1 – 1 шт.

Шестеренчатый насос Ш 5-25-3,6\1Б-1 предназначен для закачки рагента-деэмульгатора в емкости для хранения, приготовления смеси реагентов в самих емкостях и опорожнения емкостей.

Реагент на установку завозится:

· отечественный автоцистернами и скачивается шестеренчатым насосом Ш 5-25-3,6\1Б-1 в емкости объемом V=50 м3 ;

· импортный в металлических бочках объемом V=216 л и закачивается в емкости объемом V=6 м3 .

В нефтепроводы реагент подается в смеси с нефтью. Приготовление смеси реагента и его подача осуществляется по следующей схеме:

1. Нефть с трубопроводов перед буферными емкостями БЕ1-БЕ4 подается на прием нефтяных дозировочных насосов НД 2,5-1000\10 реагентных блоков №1-№4. Насосами НД 2,5-1000\10 нефть подается в смесители объемом V=1 л.

2. Чистый реагент из емкости объемом V=6 м3 поступает на прием дозировочных насосов НД 1-25\40. Насосами реагент подается в смесители,где смешивается с нефтью. Расход реагента-деэмульгатора регулируется ходом плунжера насоса в зависимости от необходимой дозы.

3. С смесителей смесь реагента-деэмульгатора с нефтью подается в нефтепроводы перед буферными емкостями БЕ1-БЕ4.

3.1.4. Освобождение аппаратов от продуктов и установка заглушек

Освобождение от нефти сепараторов С1-С3, электродегидраторов ЭГ1-ЭГ2, буферных емкостей БЕ1-БЕ2, насосов ЦНС 300х120 №1-№5 для проведения ремонтных работ, а также дренаж утечек сальниковых уплотнений насосов осуществляется в подземные емкости ЕП2, ЕП3 по отдельной дренажной системе (рис. 8).

Освобождение от нефти сепараторов С4-С6, электродегидраторов ЭГ3-ЭГ4, буферных емкостей БЕ3-БЕ4, насосов ЦНС 300х120 № 6-10 для проведения ремонтных работ, а также дренаж утечек сальниковых уплотнений насосов осуществляется в подземные емкости ЕП10, ЕП11 по отдельной дренажной системе.

Освобождение от нефти змеевиков печей-нагревателей ПТБ-10 осуществляется:

· ПТБ-10 № 1-2 в подземную емкость ЕП-1;

· ПТБ-10 № 3-4 в подземную емкость ЕП-9.

Освобождение от жидкости газосепаратора ГС-4 осуществляется в подземную емкость ЕП-8.Освобождение от нефти газосепараторов ГС1, ГС2 осуществляется:

· ГС-1 в подземную емкость ЕП-4;

· ГС-2 в подземную емкость ЕП-12.

Освобождение от газового конденсата газосепаратора ГС-3 производится в подземную емкость ЕП-13. Дренаж утечек сальниковых уплотнений насосов ЦНС 180х170 №1-№3 и освобождение насосов от жидкости для проведения ремонтных работ производится в подземные емкости ЕП 5.

Освобождение резервуаров от жидкости РВС-10000 №1-№4 осуществляется в систему дренажных колодцев по которым жидкость попадает в подземные емкости ЕП14, ЕП15

Установка стандартных заглушек на нефтегазосепаратрах, газосепараторах, печах, электродегидраторах, резервуарах, буферных емкостях и насосах, после освобождения от жидкости, осуществляется на приемо-раздаточных патрубках аппаратов. Схема дренажных трубопроводов, с нумерацией запорной арматуры, установленной на них, совмещена с технологической схемой установки.

Схема установки заглушек и пропарки аппаратов, а также схема дренажной канализации установки прилагается к регламенту.

3.2.1. Общая характеристика цеха УПН

Годы строительства: I очередь- 1987-1988 гг.

II очередь - 1989-1990 гг.

Годы ввода в эксплуатацию: I очередь - 1989 г.

II очередь - 1990 г.

Строительство осуществлялось по проекту института “Гипровосток-нефть” г.Самара.

Генподрядчики: СУ-81 треста “Сургутнефтепромстрой”,

Субподрядчики: СУ-4 треста “Тюменьнефтегазмонтаж”,

МУ-6 треста “Сургутнефтегазэлектромонтаж”,

ПМК-3 объединения “Сибкомплектмонтаж”,

СУ-7 треста “Газмонтажавтоматика”,

СУТиР треста “Спецнефтегазстрой”.

Производительность УПН по обезвоженной нефти – 8,0 млн. т/год.

На установке предусматривается:

· обезвоживание и обессоливание поступающей нефти до содержания в ней воды 0,2% - 0,5% масс. и содержания солей не выше 40 мг/л;

· концевая ступень сепарации нефти при давлении до 0,0105 МПа и температуре свыше 40°С;

· обеспечение суточного запаса сырья и товарной продукции, а также сбор некондиционной нефти;

· аварийный сброс и сжигание газов на факелах высокого и низкого давления.

Аппаратное оформление УПН.

1. Буферные емкости: V=100 м3 – 4 шт.

2. Печи-нагреватели: ПТБ-10 – 4 шт.

3. Электродегидраторы: ЭГ-200-10-09Г2С “ХЛ” – 4 шт.

4. Сепараторы концевой ступени сепарации: НГС-II-6-3000-09Г2С – 6 шт.

5. Резервуары: РВС-10000 – 4 шт.

6. Нефтяная насосная, блочная: ЦНС-300х120 – 10 шт.

7. Насосная внутрипарковой перекачки, блочная: ЦНС-180х170 – 3 шт.

8. Реагентное хозяйство: блок БР-25-У1 – 4 шт.

9. Емкости для хранения реагента :V=50 м3 – 3 шт.

10. Газосепараторы: V=16 м3 – 1 шт.

11. Газосепараторы :V=80 м3 – 2 шт.

12. Насосная пено-водотушения, блочная.

13. Емкость хранения пенообразователя: V=100 м3 – 2 шт.

14. Противопожарные резервуары: РВС-700 – 2 шт.

15. Компрессорная блочная: компрессора 4ВУ-5\9 – 2 шт.

16. Факельное хозяйство: факел низкого давления ФНД, факел высокого давления ФВД.

Здания и сооружения:

1. Административно-бытовой корпус.

2. Операторная.

3. Склад пожарного инвентаря, блочный.

Резервуары установки оборудованы пенокамерами ГВПС-2000, кольцами орошения.

Установка оборудована стационарной системой пено-водотушения.

Установка оборудована системой противопожарной сигнализации, на вторичные приборы которой, выведена сигнализация о пожаре в БР, нефтяных насосных блоках, на РВС.

На установке имеется запас пенообразователя в объеме 100 м3 .

3.2.2. Нормы технологического режима работы УПН

Нормы технологического режима работы установки подготовки нефти определены документами входящими в состав регламента. Нормы включают в себя все условия работы агрегатов и установок, а также технологических условий различных процессов условий (таб. 4).

Технологическая карта установки подготовки нефти. Таблица 4

3.2.3. Контроль технологического процесса. Система сигнализации и блокировки УПН

Для аналитического контроля ведения технологического процесса установок периодически отбираются пробы нефти, для определения обводненности, на входе на установку, выходе с отстойников или электродегидраторов, узла учета нефти (УУН) после установок, а также отбор проб пластовой воды, для определения остаточного содержания нефтепродуктов после очистных резервуаров, на выкиде насосов 200Д90. Для определения загазованности территории установок производится отбор проб газо-воздушной среды по производственным площадкам и помещениям.

mirznanii.com