Поверхностное натяжение. Поверхностное натяжение нефти это


Поверхностное натяжение нефтепродуктов - Справочник химика 21

    Поверхностное натяжение нефтепродуктов изучалось сравнительно давно [1273], но неточность применявшихся методов измерения и близкие значения поверхностного натяжения различных веществ (24—38 дин) снизили значение этого свойства д.пя характеристики нефтепродуктов, однако поверхностное натяжение — [c.182]

    Способность же нефтепродуктов эмульгировать с водой или водными растворами щелочей в значительной степени зависит от поверхностного натяжения нефтепродуктов на границе с указанными жидкостями. [c.115]

    Поверхностное натяжение нефтепродуктов с относительной плотностью =0,60— 0,92 [c.28]

    В значительной степени поверхностное натяжение нефтепродуктов зависит от их химического состава. При.одинаковом числе углеродных атомов в молекуле наибольшим поверхностным натяжением обладают ароматические углеводороды, наименьшим — парафиновые. Нафтеновые углеводороды занимают промежуточное положение. Из нефтепродуктов наименьшее поверхностное натяжение имеют авиационные бензины, наибольшее — смазочные масла. [c.91]

    При работе с пипеткой Доннана-Гурвича конец капилляра погружают в среду, на границе с которой определяют поверхностное натяжение нефтепродукта, и измеряют объем 100 капель этого продукта, вытекающего из капилляра со скоростью одна капля в минуту. [c.115]

    Поверхностное натяжение нефтепродуктов (по Л. Г. Гурвичу) [c.47]

    Этим прибором, как и другими приборами, основанными на принципе капельного метода, целесообразно пользоваться для измерения поверхностного натяжения нефтепродуктов только на границе с жидкой фазой, например с водой или водными растворами щелочей. [c.114]

    Если рычаг 16 был установлен правильно, то отсчет указателя в момент отрыва должен соответствовать величине поверхностного натяжения данной жидкости при температуре опыта. Установив рычаг в нулевом положении, измеряют поверхностное натяжение нефтепродукта следующим образом. [c.119]

    Поверхностное натяжение нефтепродуктов на границе с водными растворами [c.591]

    Поверхностное натяжение нефтепродуктов есть функция температуры [c.28]

    Поверхностное натяжение нефтепродуктов [33] [c.20]

    Поверхностное натяжение нефтепродуктов в интервале температур (243—373) К [c.28]

    Зависимость поверхностного натяжения нефтепродуктов от плотности [c.28]

    Поверхностное натяжение нефтепродуктов может быть также найдено расчетным путем по уравнению [c.134]

    О том, как изменяется поверхностное натяжение нефтепродуктов в зависимости от температуры, дает представление рис В табл. 72 приведено поверхностное натяжение [c.199]

    Поверхностное натяжение нефтепродуктов с удельным весом от 0,71 (бензин) до 0,81 (керосин) изменяется при 20° в пределах от 20 до 27 дин/см. [c.44]

    Зависимость поверхностного натяжения нефтепродуктов от температуры описывается выражением [c.22]

    Действительно, данные табл. 146 показывают, что снижение поверхностного натяжения нефтепродукта на границе с водой прежде всего возрастает по мере накопления в поверхностном слое эмульгатора — нафтенового мыла. Одновременно из той же таблицы видно, что при одной и той же концентрации мыла снижение поверхностного натяжения для системы бензин — вода является наибольшим. Для следующей системы [c.590]

    Поверхностное натяжение нефтепродуктов [c.129]

    Зависимость поверхностного натяжения нефтепродуктов от температуры описывается выражением (3t = 2Ti—(Г—273)-10 , где Т — температура. К. [c.22]

    Поверхностное натяжение нефтепродуктов имеет большое значение при применении смазочных масел и керосина, распылении топлива в форсунках, а также при разрушении эмульсий. [c.19]

    При увеличении температуры надслоевого пространства уменьшается поверхностное натяжение нефтепродукта, утоньшаются пленки, облегчается их разрыв и вынос брызг из пены. Вынос брызг осуществляется также под действием барботажного агента, причем скорость его ограничена из-за возможности механической неполноты сгорания. [c.69]

    Одним из важнейших молекулярно-поверхностных свойств является поверхностное натяжение на границе фаз. Исследуя ряд нефтей, Л. Г. Гурвич [16] установил, что на границе с воздухом влияние поверхностно-активных компонентов нефти проявляется слабо. Значительно более резко проявляются свойства полярных компонентов, в большей степени отражающих их природу, на значениях поверхностного натяжения нефти и нефтепродуктов иа границе раздела их с водой. Было показано [16], что нефтяная смола уже в концентрации 0,1% сильно понижает поверхностное натяжение нефтепродуктов на границе раздела с водой в случае бензина — на 12,6, керосина — на 3,8, веретенного масла — на 2,0 эрг см . П. А. Ребиндер показал, что различия в молекулярноповерхностных свойствах вообще проявляются наиболее отчетливо при измерении поверхностного натяжения на границе раздела фаз. имеющих самую высокую разность полярностей. Граница раздела нефтепродукт/вода является частным случаем этого более общего правила и, надо сказать, наиболее изученной областью, отвечающей практическим интересам. [c.191]

chem21.info

Поверхностное натяжение - это... Что такое Поверхностное натяжение?

Монета, лежащая на воде благодаря силе поверхностного натяжения

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Коэффициент пропорциональности  — сила, приходящаяся на единицу длины контура — называется коэффициентом поверхностного натяжения. Он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии (Дж) на разрыв единицы поверхности (м²). В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

В 1983 году было доказано теоретически и подтверждено данными из справочников (Журнал физической химии. 1983, № 10, с. 2528—2530), что понятие поверхностного натяжения жидкости однозначно является частью понятия внутренней энергии (хотя и специфической: для симметричных молекул близких по форме к шарообразным). Приведенные в этой журнальной статье формулы позволяют для некоторых веществ теоретически рассчитывать значения поверхностного натяжения жидкости по другим физико-химическим свойствам, например, по теплоте парообразования или по внутренней энергии (подробнее о физической природе поверхностного натяжения жидкости см.соотв. статью на викиучебнике или [2] , [3])

В 1985 году аналогичный взгляд на физическую природу поверхностного натяжения, как части внутренней энергии, при решении другой физической задачи был опубликован В. Вайскопфом (Victor Frederick Weisskopf) в США (V.F.Weisskopf, American Journal of Physics 53 (1985) 19-20.; V.F.Weisskopf, American Journal of Physics 53 (1985) 618—619.).

Поверхностное натяжение может быть на границе газообразных, жидких и твёрдых тел. Обычно имеется в виду поверхностное натяжение жидких тел на границе «жидкость — газ». В случае жидкой поверхности раздела поверхностное натяжение правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз.

В общем случае прибор для измерения поверхностного натяжения называется тензиометр.

Проявления

Водомерка на поверхности воды.

Так как появление поверхности жидкости требует совершения работы, каждая среда «стремится» уменьшить площадь своей поверхности:

  • в невесомости капля принимает сферическую форму (сфера имеет наименьшую площадь поверхности среди всех тел одинакового объёма).
  • струя воды «слипается» в цилиндр.
  • маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади жидкости.
  • некоторые насекомые (например, водомерки) способны передвигаться по воде, удерживаясь на её поверхности за счёт сил поверхностного натяжения.
  • На многих поверхностях, именуемых несмачиваемыми, вода (или другая жидкость) собирается в капли.

Математическая теория

Площадь поверхности

С поверхностью жидкости связана свободная энергия

где  — коэффициент поверхностного натяжения,  — полная площадь поверхности жидкости[4]. Так как свободная энергия изолированной системы стремится к минимуму, то жидкость (в отсутствие внешних полей) стремится принять форму, имеющую минимальную площадь поверхности. Таким образом задача о форме жидкости сводится к изопериметрической задаче при заданных дополнительных условиях (начальное распределение, объём и т. п.). Свободная капля принимает форму шара, однако при более сложных условиях задача о форме поверхности жидкости становится исключительно сложной.

Формула Лапласа

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки. Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа:

Здесь  — радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак — если по разную сторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому

Для случая поверхности кругового цилиндра радиуса имеем

Обратите внимание, что должно быть непрерывной функцией на поверхности плёнки, так что выбор «положительной» стороны плёнки в одной точке локально однозначно задаёт положительную сторону поверхности в достаточно близких её точках.

Из формулы Лапласа следует, что свободная мыльная плёнка, натянутая на рамку произвольной формы и не образующая пузырей, будет иметь среднюю кривизну, равную 0.

Зависимость от температуры

С увеличением температуры величина поверхностного натяжения уменьшается и равна нулю при критической температуре. Наиболее известная эмпирическая зависимость поверхностного натяжения от температуры была предложена Лорандом Этвёшом, так называемое правило Этвёша (англ.). В настоящее время получен вывод теоретической зависимости поверхностного натяжения от температуры в области до критических температур, подтверждающей правило Этвёша (журнал «Вестник Санкт-Петербургского университета», 2012, вып. 1, с. 24-28).

Способы определения

Способы определения поверхностного натяжения делятся на статические и динамические. В статических методах поверхностное натяжение определяется у сформировавшейся поверхности, находящейся в равновесии. Динамические методы связаны с разрушением поверхностного слоя. В случае измерения поверхностного натяжения растворов (особенно полимеров или ПАВ) следует пользоваться статическими методами. В ряде случаев равновесие на поверхности может наступать в течение нескольких часов (например, в случае концентрированных растворов полимеров с высокой вязкостью). Динамические методы могут быть применены для определения равновесного поверхностного натяжения и динамического поверхностного натяжения. Например, для раствора мыла после перемешивания поверхностное натяжение 58 мДж/м², а после отстаивания — 35 мДж/м² . То есть поверхностное натяжение меняется. До установления равновесного оно будет динамическое.

Статические методы:

  1. Метод поднятия в капилляре
  2. Метод Вильгельми
  3. Метод лежачей капли
  4. Метод определения по форме висячей капли.
  5. Метод вращающейся капли

Динамические методы:

  1. Метод дю Нуи (метод отрыва кольца).
  2. Сталагмометрический, или метод счета капель.
  3. Метод максимального давления пузырька.
  4. Метод осциллирующей струи
  5. Метод стоячих волн
  6. Метод бегущих волн

Методы

Полностью стандартизованные методы измерений описываются в соответствующих ASTM, ГОСТ и т. д.

Метод вращающейся капли

Сущностью метода является измерение диаметра капли жидкости, вращающейся в более тяжелой жидкости. Этот способ измерения годится для измерения низких или сверхнизких значений межфазного натяжения. Он широко применяется для микроэмульсий, измерения эффективности ПАВ в нефтедобыче, а также для определения адсорбционных свойств.

Метод Дю Нуи (метод отрыва кольца)

Метод является классическим. Сущность метода вытекает из названия. Платиновое кольцо поднимают из жидкости, смачивающей его, усилие отрыва и есть сила поверхностного натяжения и может быть пересчитано в поверхностную энергию. Метод подходит для измерения ПАВ, трансформаторных масел и т. д.

Метод бегущих волн

При возмущении жидкости пластиной «лежащей» на её поверхности, по ней начинает распространяться круг волн. Если просветить кювету с жидкостью импульсным источником света с частотой равной частоте возмущения, то на экран спроецируется «стоячая» волновая картина. Измеряя длину волны на экране и геометрически перерассчитывая её (зная расстояние от источника света до поверхности жидкости и расстояние от поверхности до экрана, а также про подобие треугольников) можно получить величину поверхностного натяжения по формуле:

, где:

Поверхностное натяжение жидкостей на границе с воздухом

Вещество Температура °C Поверхностное натяжение(10−3 Н/м)
Хлорид натрия 6.0M водный раствор 20 82,55
Хлорид натрия 801 115
Глицерин 30 64,7
Олово 400 518
Азотная кислота 70 % 20 59,4
Анилин 20 42,9
Ацетон 20 23,7
Бензол 20 29,0
Вода 20 72,86
Глицерин 20 59,4
Нефть 20 26
Ртуть 20 486,5
Серная кислота 85 % 20 57,4
Спирт этиловый 20 22,8
Уксусная кислота 20 27,8
Эфир этиловый 20 16,9
Раствор мыла 20 40

Проявления

  • Мыльный пузырь.

  • На фотографии виден эффект, получивший название «слезы вина».

  • Капля воды на листе.

  • Навал на границе лужи и сухого асфальта.

  • Вода набегает на сухую поверхность асфальта.

Примечания

  1. ↑ Б. Д. Сумм «Основы коллоидной химии»
  2. ↑ Хайдаров Г.Г., Хайдаров А.Г., Машек А. Ч. Физическая природа поверхностного натяжения жидкости // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия). 2011. Выпуск 1. с.3-8.. Архивировано из первоисточника 25 июня 2012.
  3. ↑ Хайдаров Г.Г., Хайдаров А.Г., Машек А. Ч., Майоров Е.Е. Влияние температуры на поверхностное натяжения // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия). 2012. Выпуск 1. с.24-28.. Архивировано из первоисточника 27 июня 2012.
  4. ↑ Обратите внимание, что плёнка, вроде стенки мыльного пузыря, имеет две стороны, так что площадь поверхности жидкости в два раза больше площади плёнки.

См. также

Тензиометр

Ссылки

Библиография

  • Остроумов С. А., Лазарева Е. В. Поверхностное натяжение водных растворов додецилсульфата натрия в присутствии водных растений — Вода: технология и экология. 2008 № 3 с. 57-60.

dal.academic.ru

Поверхностное натяжение - это... Что такое Поверхностное натяжение?

Монета, лежащая на воде благодаря силе поверхностного натяжения

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Коэффициент пропорциональности  — сила, приходящаяся на единицу длины контура — называется коэффициентом поверхностного натяжения. Он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии (Дж) на разрыв единицы поверхности (м²). В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

В 1983 году было доказано теоретически и подтверждено данными из справочников (Журнал физической химии. 1983, № 10, с. 2528—2530), что понятие поверхностного натяжения жидкости однозначно является частью понятия внутренней энергии (хотя и специфической: для симметричных молекул близких по форме к шарообразным). Приведенные в этой журнальной статье формулы позволяют для некоторых веществ теоретически рассчитывать значения поверхностного натяжения жидкости по другим физико-химическим свойствам, например, по теплоте парообразования или по внутренней энергии (подробнее о физической природе поверхностного натяжения жидкости см.соотв. статью на викиучебнике или [2] , [3])

В 1985 году аналогичный взгляд на физическую природу поверхностного натяжения, как части внутренней энергии, при решении другой физической задачи был опубликован В. Вайскопфом (Victor Frederick Weisskopf) в США (V.F.Weisskopf, American Journal of Physics 53 (1985) 19-20.; V.F.Weisskopf, American Journal of Physics 53 (1985) 618—619.).

Поверхностное натяжение может быть на границе газообразных, жидких и твёрдых тел. Обычно имеется в виду поверхностное натяжение жидких тел на границе «жидкость — газ». В случае жидкой поверхности раздела поверхностное натяжение правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз.

В общем случае прибор для измерения поверхностного натяжения называется тензиометр.

Проявления

Водомерка на поверхности воды.

Так как появление поверхности жидкости требует совершения работы, каждая среда «стремится» уменьшить площадь своей поверхности:

  • в невесомости капля принимает сферическую форму (сфера имеет наименьшую площадь поверхности среди всех тел одинакового объёма).
  • струя воды «слипается» в цилиндр.
  • маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади жидкости.
  • некоторые насекомые (например, водомерки) способны передвигаться по воде, удерживаясь на её поверхности за счёт сил поверхностного натяжения.
  • На многих поверхностях, именуемых несмачиваемыми, вода (или другая жидкость) собирается в капли.

Математическая теория

Площадь поверхности

С поверхностью жидкости связана свободная энергия

где  — коэффициент поверхностного натяжения,  — полная площадь поверхности жидкости[4]. Так как свободная энергия изолированной системы стремится к минимуму, то жидкость (в отсутствие внешних полей) стремится принять форму, имеющую минимальную площадь поверхности. Таким образом задача о форме жидкости сводится к изопериметрической задаче при заданных дополнительных условиях (начальное распределение, объём и т. п.). Свободная капля принимает форму шара, однако при более сложных условиях задача о форме поверхности жидкости становится исключительно сложной.

Формула Лапласа

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки. Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа:

Здесь  — радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак — если по разную сторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому

Для случая поверхности кругового цилиндра радиуса имеем

Обратите внимание, что должно быть непрерывной функцией на поверхности плёнки, так что выбор «положительной» стороны плёнки в одной точке локально однозначно задаёт положительную сторону поверхности в достаточно близких её точках.

Из формулы Лапласа следует, что свободная мыльная плёнка, натянутая на рамку произвольной формы и не образующая пузырей, будет иметь среднюю кривизну, равную 0.

Зависимость от температуры

С увеличением температуры величина поверхностного натяжения уменьшается и равна нулю при критической температуре. Наиболее известная эмпирическая зависимость поверхностного натяжения от температуры была предложена Лорандом Этвёшом, так называемое правило Этвёша (англ.). В настоящее время получен вывод теоретической зависимости поверхностного натяжения от температуры в области до критических температур, подтверждающей правило Этвёша (журнал «Вестник Санкт-Петербургского университета», 2012, вып. 1, с. 24-28).

Способы определения

Способы определения поверхностного натяжения делятся на статические и динамические. В статических методах поверхностное натяжение определяется у сформировавшейся поверхности, находящейся в равновесии. Динамические методы связаны с разрушением поверхностного слоя. В случае измерения поверхностного натяжения растворов (особенно полимеров или ПАВ) следует пользоваться статическими методами. В ряде случаев равновесие на поверхности может наступать в течение нескольких часов (например, в случае концентрированных растворов полимеров с высокой вязкостью). Динамические методы могут быть применены для определения равновесного поверхностного натяжения и динамического поверхностного натяжения. Например, для раствора мыла после перемешивания поверхностное натяжение 58 мДж/м², а после отстаивания — 35 мДж/м² . То есть поверхностное натяжение меняется. До установления равновесного оно будет динамическое.

Статические методы:

  1. Метод поднятия в капилляре
  2. Метод Вильгельми
  3. Метод лежачей капли
  4. Метод определения по форме висячей капли.
  5. Метод вращающейся капли

Динамические методы:

  1. Метод дю Нуи (метод отрыва кольца).
  2. Сталагмометрический, или метод счета капель.
  3. Метод максимального давления пузырька.
  4. Метод осциллирующей струи
  5. Метод стоячих волн
  6. Метод бегущих волн

Методы

Полностью стандартизованные методы измерений описываются в соответствующих ASTM, ГОСТ и т. д.

Метод вращающейся капли

Сущностью метода является измерение диаметра капли жидкости, вращающейся в более тяжелой жидкости. Этот способ измерения годится для измерения низких или сверхнизких значений межфазного натяжения. Он широко применяется для микроэмульсий, измерения эффективности ПАВ в нефтедобыче, а также для определения адсорбционных свойств.

Метод Дю Нуи (метод отрыва кольца)

Метод является классическим. Сущность метода вытекает из названия. Платиновое кольцо поднимают из жидкости, смачивающей его, усилие отрыва и есть сила поверхностного натяжения и может быть пересчитано в поверхностную энергию. Метод подходит для измерения ПАВ, трансформаторных масел и т. д.

Метод бегущих волн

При возмущении жидкости пластиной «лежащей» на её поверхности, по ней начинает распространяться круг волн. Если просветить кювету с жидкостью импульсным источником света с частотой равной частоте возмущения, то на экран спроецируется «стоячая» волновая картина. Измеряя длину волны на экране и геометрически перерассчитывая её (зная расстояние от источника света до поверхности жидкости и расстояние от поверхности до экрана, а также про подобие треугольников) можно получить величину поверхностного натяжения по формуле:

, где:

Поверхностное натяжение жидкостей на границе с воздухом

Вещество Температура °C Поверхностное натяжение(10−3 Н/м)
Хлорид натрия 6.0M водный раствор 20 82,55
Хлорид натрия 801 115
Глицерин 30 64,7
Олово 400 518
Азотная кислота 70 % 20 59,4
Анилин 20 42,9
Ацетон 20 23,7
Бензол 20 29,0
Вода 20 72,86
Глицерин 20 59,4
Нефть 20 26
Ртуть 20 486,5
Серная кислота 85 % 20 57,4
Спирт этиловый 20 22,8
Уксусная кислота 20 27,8
Эфир этиловый 20 16,9
Раствор мыла 20 40

Проявления

  • Мыльный пузырь.

  • На фотографии виден эффект, получивший название «слезы вина».

  • Капля воды на листе.

  • Навал на границе лужи и сухого асфальта.

  • Вода набегает на сухую поверхность асфальта.

Примечания

  1. ↑ Б. Д. Сумм «Основы коллоидной химии»
  2. ↑ Хайдаров Г.Г., Хайдаров А.Г., Машек А. Ч. Физическая природа поверхностного натяжения жидкости // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия). 2011. Выпуск 1. с.3-8.. Архивировано из первоисточника 25 июня 2012.
  3. ↑ Хайдаров Г.Г., Хайдаров А.Г., Машек А. Ч., Майоров Е.Е. Влияние температуры на поверхностное натяжения // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия). 2012. Выпуск 1. с.24-28.. Архивировано из первоисточника 27 июня 2012.
  4. ↑ Обратите внимание, что плёнка, вроде стенки мыльного пузыря, имеет две стороны, так что площадь поверхности жидкости в два раза больше площади плёнки.

См. также

Тензиометр

Ссылки

Библиография

  • Остроумов С. А., Лазарева Е. В. Поверхностное натяжение водных растворов додецилсульфата натрия в присутствии водных растений — Вода: технология и экология. 2008 № 3 с. 57-60.

dic.academic.ru

Поверхностное натяжение Википедия

Монета, лежащая на воде благодаря силе поверхностного натяжения

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Коэффициент пропорциональности γ{\displaystyle \gamma } — сила, приходящаяся на единицу длины контура — называется коэффициентом поверхностного натяжения. Он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии (Дж) на разрыв единицы поверхности (м²). В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

В 1983 году было доказано теоретически и подтверждено данными из справочников (посмотреть статью: Журнал физической химии. 1983, № 10, с. 2528—2530), что понятие поверхностного натяжения жидкости однозначно является частью понятия внутренней энергии (хотя и специфической: для симметричных молекул близких по форме к шарообразным). Приведенные в этой журнальной статье формулы позволяют для некоторых веществ теоретически рассчитывать значения поверхностного натяжения жидкости по другим физико-химическим свойствам, например, по теплоте парообразования или по внутренней энергии (подробнее о физической природе поверхностного натяжения жидкости см.соотв. статью на викиучебнике или [2] , [3])

В 1985 году аналогичный взгляд на физическую природу поверхностного натяжения, как части внутренней энергии, при решении другой физической задачи был опубликован В. Вайскопфом (Victor Frederick Weisskopf) в США (V.F.Weisskopf, American Journal of Physics 53 (1985) 19-20.; V.F.Weisskopf, American Journal of Physics 53 (1985) 618—619.).

Поверхностное натяжение может быть на границе газообразных, жидких и твёрдых тел. Обычно имеется в виду поверхностное натяжение жидких тел на границе «жидкость — газ». В случае жидкой поверхности раздела поверхностное натяжение правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз.

В общем случае прибор для измерения поверхностного натяжения называется тензиометр.

Проявления

Водомерка на поверхности воды.

Так как появление поверхности жидкости требует совершения работы, каждая среда «стремится» уменьшить площадь своей поверхности:

  • в невесомости капля принимает сферическую форму (сфера имеет наименьшую площадь поверхности среди всех тел одинакового объёма). То же самое происходит с каплей жидкости, помещаемой внутрь другой, несмешивающейся жидкости той же плотности (опыт Плато).
  • струя воды «сливается» в цилиндр, который затем разбивается на шаровидные капли.
  • маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения оказывается уравновешенной силой поверхностного натяжения.
  • некоторые насекомые (например, водомерки) способны передвигаться по воде, удерживаясь на её поверхности за счёт сил поверхностного натяжения.
  • На многих поверхностях, именуемых несмачиваемыми, вода (или другая жидкость) собирается в капли.

Математическая теория

Площадь поверхности

С поверхностью жидкости связана свободная энергия

Esurf=σS{\displaystyle {\mathcal {E}}_{surf}=\sigma S}

где σ{\displaystyle \sigma } — коэффициент поверхностного натяжения, S{\displaystyle S} — полная площадь поверхности жидкости[4]. Так как свободная энергия изолированной системы стремится к минимуму, то жидкость (в отсутствие внешних полей) стремится принять форму, имеющую минимальную площадь поверхности. Таким образом задача о форме жидкости сводится к изопериметрической задаче при заданных дополнительных условиях (начальное распределение, объём и т. п.). Свободная капля принимает форму шара, однако при более сложных условиях задача о форме поверхности жидкости становится исключительно сложной.

Формула Лапласа

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки. Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и задаётся формулой Лапласа:

Δp=σK=σ(1R1+1R2){\displaystyle \Delta p=\sigma K=\sigma \left({1 \over R_{1}}+{1 \over R_{2}}\right)}

Здесь R1,2{\displaystyle R_{1,2}} — радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак — если по разную сторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому

R1=R2=R{\displaystyle R_{1}=R_{2}=R} Δp=2σR{\displaystyle \Delta p={2\sigma \over R}}

Для случая поверхности кругового цилиндра радиуса R{\displaystyle R} имеем

R1=R,   R2=∞{\displaystyle R_{1}=R,~~~R_{2}=\infty } Δp=σR{\displaystyle \Delta p={\sigma \over R}}

Обратите внимание, что Δp{\displaystyle \Delta p} должно быть непрерывной функцией на поверхности плёнки, так что выбор «положительной» стороны плёнки в одной точке локально однозначно задаёт положительную сторону поверхности в достаточно близких её точках.

Из формулы Лапласа следует, что свободная мыльная плёнка, натянутая на рамку произвольной формы и не образующая пузырей, будет иметь среднюю кривизну, равную 0.

Зависимость от температуры

С увеличением температуры величина поверхностного натяжения уменьшается и равна нулю при критической температуре. Наиболее известная эмпирическая зависимость поверхностного натяжения от температуры была предложена Лорандом Этвёшом, так называемое правило Этвёша. В настоящее время получен вывод теоретической зависимости поверхностного натяжения от температуры в области до критических температур, подтверждающей правило Этвёша (журнал «Вестник Санкт-Петербургского университета», 2012, вып. 1, с. 24-28).

Способы определения

Способы определения поверхностного натяжения делятся на статические и динамические. В статических методах поверхностное натяжение определяется у сформировавшейся поверхности, находящейся в равновесии. Динамические методы связаны с разрушением поверхностного слоя. В случае измерения поверхностного натяжения растворов (особенно полимеров или ПАВ) следует пользоваться статическими методами. В ряде случаев равновесие на поверхности может наступать в течение нескольких часов (например, в случае концентрированных растворов полимеров с высокой вязкостью). Динамические методы могут быть применены для определения равновесного поверхностного натяжения и динамического поверхностного натяжения. Например, для раствора мыла после перемешивания поверхностное натяжение 58 мДж/м², а после отстаивания — 35 мДж/м² . То есть поверхностное натяжение меняется. До установления равновесного оно будет динамическое.

Статические методы:

  1. Метод поднятия в капилляре
  2. Метод Вильгельми
  3. Метод лежачей капли
  4. Метод определения по форме висячей капли.
  5. Метод вращающейся капли

Динамические методы:

  1. Метод дю Нуи (метод отрыва кольца).
  2. Сталагмометрический, или метод счета капель.
  3. Метод максимального давления пузырька.
  4. Метод осциллирующей струи
  5. Метод стоячих волн
  6. Метод бегущих волн

Методы

Полностью стандартизованные методы измерений описываются в соответствующих ASTM, ГОСТ и т. д.

Метод вращающейся капли

Сущностью метода является измерение диаметра капли жидкости, вращающейся в более тяжелой жидкости. Этот способ измерения годится для измерения низких или сверхнизких значений межфазного натяжения. Он широко применяется для микроэмульсий, измерения эффективности ПАВ в нефтедобыче, а также для определения адсорбционных свойств.

Метод Дю Нуи (метод отрыва кольца)

Метод является классическим. Сущность метода вытекает из названия. Платиновое кольцо поднимают из жидкости, смачивающей его, усилие отрыва и есть сила поверхностного натяжения и может быть пересчитано в поверхностную энергию. Метод подходит для измерения ПАВ, трансформаторных масел и т. д.

Метод бегущих волн

При возмущении жидкости пластиной «лежащей» на её поверхности, по ней начинает распространяться круг волн. Если просветить кювету с жидкостью импульсным источником света с частотой равной частоте возмущения, то на экран спроецируется «стоячая» волновая картина. Измеряя длину волны на экране и геометрически перерассчитывая её (зная расстояние от источника света до поверхности жидкости и расстояние от поверхности до экрана, а также про подобие треугольников) можно получить величину поверхностного натяжения по формуле:

σ=ρλ24π2(2πν2λ−g){\displaystyle \sigma ={\frac {\rho \lambda ^{2}}{4\pi ^{2}}}(2\pi \nu ^{2}\lambda -g)}

где

Поверхностное натяжение жидкостей на границе с воздухом

Вещество Температура °C Поверхностное натяжение(10−3 Н/м)
Хлорид натрия 6.0M водный раствор 20 82,55
Хлорид натрия 801 115
Глицерин 30 64,7
Олово 400 518
Азотная кислота 70 % 20 59,4
Анилин 20 42,9
Ацетон 20 23,7
Бензол 20 29,0
Вода 20 72,86
Глицерин 20 59,4
Нефть 20 26
Ртуть 20 486,5
Серная кислота 85 % 20 57,4
Спирт этиловый 20 22,8
Уксусная кислота 20 27,8
Эфир этиловый 20 16,9
Раствор мыла 20 43

Проявления

  • Мыльный пузырь.

  • На фотографии виден эффект, получивший название «слёзы вина».

  • Капля воды на листе.

  • Навал на границе лужи и сухого асфальта.

  • Вода набегает на сухую поверхность асфальта.

Примечания

  1. ↑ Б. Д. Сумм «Основы коллоидной химии»
  2. ↑ Хайдаров Г.Г., Хайдаров А.Г., Машек А. Ч. Физическая природа поверхностного натяжения жидкости // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия) 2011. Выпуск 1. с.3-8..
  3. ↑ Хайдаров Г.Г., Хайдаров А.Г., Машек А. Ч., Майоров Е.Е. Влияние температуры на поверхностное натяжения // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия). 2012. Выпуск 1. с.24-28..
  4. ↑ Обратите внимание, что плёнка, вроде стенки мыльного пузыря, имеет две стороны, так что площадь поверхности жидкости в два раза больше площади плёнки.

См. также

Ссылки

Ссылки даны на зараженный сайт!

wikiredia.ru

Поверхностное натяжение - это... Что такое Поверхностное натяжение?

Монета, лежащая на воде благодаря силе поверхностного натяжения

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Коэффициент пропорциональности  — сила, приходящаяся на единицу длины контура — называется коэффициентом поверхностного натяжения. Он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии (Дж) на разрыв единицы поверхности (м²). В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

В 1983 году было доказано теоретически и подтверждено данными из справочников (Журнал физической химии. 1983, № 10, с. 2528—2530), что понятие поверхностного натяжения жидкости однозначно является частью понятия внутренней энергии (хотя и специфической: для симметричных молекул близких по форме к шарообразным). Приведенные в этой журнальной статье формулы позволяют для некоторых веществ теоретически рассчитывать значения поверхностного натяжения жидкости по другим физико-химическим свойствам, например, по теплоте парообразования или по внутренней энергии (подробнее о физической природе поверхностного натяжения жидкости см.соотв. статью на викиучебнике или [2] , [3])

В 1985 году аналогичный взгляд на физическую природу поверхностного натяжения, как части внутренней энергии, при решении другой физической задачи был опубликован В. Вайскопфом (Victor Frederick Weisskopf) в США (V.F.Weisskopf, American Journal of Physics 53 (1985) 19-20.; V.F.Weisskopf, American Journal of Physics 53 (1985) 618—619.).

Поверхностное натяжение может быть на границе газообразных, жидких и твёрдых тел. Обычно имеется в виду поверхностное натяжение жидких тел на границе «жидкость — газ». В случае жидкой поверхности раздела поверхностное натяжение правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз.

В общем случае прибор для измерения поверхностного натяжения называется тензиометр.

Проявления

Водомерка на поверхности воды.

Так как появление поверхности жидкости требует совершения работы, каждая среда «стремится» уменьшить площадь своей поверхности:

  • в невесомости капля принимает сферическую форму (сфера имеет наименьшую площадь поверхности среди всех тел одинакового объёма).
  • струя воды «слипается» в цилиндр.
  • маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади жидкости.
  • некоторые насекомые (например, водомерки) способны передвигаться по воде, удерживаясь на её поверхности за счёт сил поверхностного натяжения.
  • На многих поверхностях, именуемых несмачиваемыми, вода (или другая жидкость) собирается в капли.

Математическая теория

Площадь поверхности

С поверхностью жидкости связана свободная энергия

где  — коэффициент поверхностного натяжения,  — полная площадь поверхности жидкости[4]. Так как свободная энергия изолированной системы стремится к минимуму, то жидкость (в отсутствие внешних полей) стремится принять форму, имеющую минимальную площадь поверхности. Таким образом задача о форме жидкости сводится к изопериметрической задаче при заданных дополнительных условиях (начальное распределение, объём и т. п.). Свободная капля принимает форму шара, однако при более сложных условиях задача о форме поверхности жидкости становится исключительно сложной.

Формула Лапласа

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки. Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа:

Здесь  — радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак — если по разную сторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому

Для случая поверхности кругового цилиндра радиуса имеем

Обратите внимание, что должно быть непрерывной функцией на поверхности плёнки, так что выбор «положительной» стороны плёнки в одной точке локально однозначно задаёт положительную сторону поверхности в достаточно близких её точках.

Из формулы Лапласа следует, что свободная мыльная плёнка, натянутая на рамку произвольной формы и не образующая пузырей, будет иметь среднюю кривизну, равную 0.

Зависимость от температуры

С увеличением температуры величина поверхностного натяжения уменьшается и равна нулю при критической температуре. Наиболее известная эмпирическая зависимость поверхностного натяжения от температуры была предложена Лорандом Этвёшом, так называемое правило Этвёша (англ.). В настоящее время получен вывод теоретической зависимости поверхностного натяжения от температуры в области до критических температур, подтверждающей правило Этвёша (журнал «Вестник Санкт-Петербургского университета», 2012, вып. 1, с. 24-28).

Способы определения

Способы определения поверхностного натяжения делятся на статические и динамические. В статических методах поверхностное натяжение определяется у сформировавшейся поверхности, находящейся в равновесии. Динамические методы связаны с разрушением поверхностного слоя. В случае измерения поверхностного натяжения растворов (особенно полимеров или ПАВ) следует пользоваться статическими методами. В ряде случаев равновесие на поверхности может наступать в течение нескольких часов (например, в случае концентрированных растворов полимеров с высокой вязкостью). Динамические методы могут быть применены для определения равновесного поверхностного натяжения и динамического поверхностного натяжения. Например, для раствора мыла после перемешивания поверхностное натяжение 58 мДж/м², а после отстаивания — 35 мДж/м² . То есть поверхностное натяжение меняется. До установления равновесного оно будет динамическое.

Статические методы:

  1. Метод поднятия в капилляре
  2. Метод Вильгельми
  3. Метод лежачей капли
  4. Метод определения по форме висячей капли.
  5. Метод вращающейся капли

Динамические методы:

  1. Метод дю Нуи (метод отрыва кольца).
  2. Сталагмометрический, или метод счета капель.
  3. Метод максимального давления пузырька.
  4. Метод осциллирующей струи
  5. Метод стоячих волн
  6. Метод бегущих волн

Методы

Полностью стандартизованные методы измерений описываются в соответствующих ASTM, ГОСТ и т. д.

Метод вращающейся капли

Сущностью метода является измерение диаметра капли жидкости, вращающейся в более тяжелой жидкости. Этот способ измерения годится для измерения низких или сверхнизких значений межфазного натяжения. Он широко применяется для микроэмульсий, измерения эффективности ПАВ в нефтедобыче, а также для определения адсорбционных свойств.

Метод Дю Нуи (метод отрыва кольца)

Метод является классическим. Сущность метода вытекает из названия. Платиновое кольцо поднимают из жидкости, смачивающей его, усилие отрыва и есть сила поверхностного натяжения и может быть пересчитано в поверхностную энергию. Метод подходит для измерения ПАВ, трансформаторных масел и т. д.

Метод бегущих волн

При возмущении жидкости пластиной «лежащей» на её поверхности, по ней начинает распространяться круг волн. Если просветить кювету с жидкостью импульсным источником света с частотой равной частоте возмущения, то на экран спроецируется «стоячая» волновая картина. Измеряя длину волны на экране и геометрически перерассчитывая её (зная расстояние от источника света до поверхности жидкости и расстояние от поверхности до экрана, а также про подобие треугольников) можно получить величину поверхностного натяжения по формуле:

, где:

Поверхностное натяжение жидкостей на границе с воздухом

Вещество Температура °C Поверхностное натяжение(10−3 Н/м)
Хлорид натрия 6.0M водный раствор 20 82,55
Хлорид натрия 801 115
Глицерин 30 64,7
Олово 400 518
Азотная кислота 70 % 20 59,4
Анилин 20 42,9
Ацетон 20 23,7
Бензол 20 29,0
Вода 20 72,86
Глицерин 20 59,4
Нефть 20 26
Ртуть 20 486,5
Серная кислота 85 % 20 57,4
Спирт этиловый 20 22,8
Уксусная кислота 20 27,8
Эфир этиловый 20 16,9
Раствор мыла 20 40

Проявления

  • Мыльный пузырь.

  • На фотографии виден эффект, получивший название «слезы вина».

  • Капля воды на листе.

  • Навал на границе лужи и сухого асфальта.

  • Вода набегает на сухую поверхность асфальта.

Примечания

  1. ↑ Б. Д. Сумм «Основы коллоидной химии»
  2. ↑ Хайдаров Г.Г., Хайдаров А.Г., Машек А. Ч. Физическая природа поверхностного натяжения жидкости // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия). 2011. Выпуск 1. с.3-8.. Архивировано из первоисточника 25 июня 2012.
  3. ↑ Хайдаров Г.Г., Хайдаров А.Г., Машек А. Ч., Майоров Е.Е. Влияние температуры на поверхностное натяжения // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия). 2012. Выпуск 1. с.24-28.. Архивировано из первоисточника 27 июня 2012.
  4. ↑ Обратите внимание, что плёнка, вроде стенки мыльного пузыря, имеет две стороны, так что площадь поверхности жидкости в два раза больше площади плёнки.

См. также

Тензиометр

Ссылки

Библиография

  • Остроумов С. А., Лазарева Е. В. Поверхностное натяжение водных растворов додецилсульфата натрия в присутствии водных растений — Вода: технология и экология. 2008 № 3 с. 57-60.

biograf.academic.ru

Поверхностное натяжение - это... Что такое Поверхностное натяжение?

Монета, лежащая на воде благодаря силе поверхностного натяжения

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Коэффициент пропорциональности  — сила, приходящаяся на единицу длины контура — называется коэффициентом поверхностного натяжения. Он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии (Дж) на разрыв единицы поверхности (м²). В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

В 1983 году было доказано теоретически и подтверждено данными из справочников (Журнал физической химии. 1983, № 10, с. 2528—2530), что понятие поверхностного натяжения жидкости однозначно является частью понятия внутренней энергии (хотя и специфической: для симметричных молекул близких по форме к шарообразным). Приведенные в этой журнальной статье формулы позволяют для некоторых веществ теоретически рассчитывать значения поверхностного натяжения жидкости по другим физико-химическим свойствам, например, по теплоте парообразования или по внутренней энергии (подробнее о физической природе поверхностного натяжения жидкости см.соотв. статью на викиучебнике или [2] , [3])

В 1985 году аналогичный взгляд на физическую природу поверхностного натяжения, как части внутренней энергии, при решении другой физической задачи был опубликован В. Вайскопфом (Victor Frederick Weisskopf) в США (V.F.Weisskopf, American Journal of Physics 53 (1985) 19-20.; V.F.Weisskopf, American Journal of Physics 53 (1985) 618—619.).

Поверхностное натяжение может быть на границе газообразных, жидких и твёрдых тел. Обычно имеется в виду поверхностное натяжение жидких тел на границе «жидкость — газ». В случае жидкой поверхности раздела поверхностное натяжение правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз.

В общем случае прибор для измерения поверхностного натяжения называется тензиометр.

Проявления

Водомерка на поверхности воды.

Так как появление поверхности жидкости требует совершения работы, каждая среда «стремится» уменьшить площадь своей поверхности:

  • в невесомости капля принимает сферическую форму (сфера имеет наименьшую площадь поверхности среди всех тел одинакового объёма).
  • струя воды «слипается» в цилиндр.
  • маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади жидкости.
  • некоторые насекомые (например, водомерки) способны передвигаться по воде, удерживаясь на её поверхности за счёт сил поверхностного натяжения.
  • На многих поверхностях, именуемых несмачиваемыми, вода (или другая жидкость) собирается в капли.

Математическая теория

Площадь поверхности

С поверхностью жидкости связана свободная энергия

где  — коэффициент поверхностного натяжения,  — полная площадь поверхности жидкости[4]. Так как свободная энергия изолированной системы стремится к минимуму, то жидкость (в отсутствие внешних полей) стремится принять форму, имеющую минимальную площадь поверхности. Таким образом задача о форме жидкости сводится к изопериметрической задаче при заданных дополнительных условиях (начальное распределение, объём и т. п.). Свободная капля принимает форму шара, однако при более сложных условиях задача о форме поверхности жидкости становится исключительно сложной.

Формула Лапласа

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки. Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа:

Здесь  — радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак — если по разную сторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому

Для случая поверхности кругового цилиндра радиуса имеем

Обратите внимание, что должно быть непрерывной функцией на поверхности плёнки, так что выбор «положительной» стороны плёнки в одной точке локально однозначно задаёт положительную сторону поверхности в достаточно близких её точках.

Из формулы Лапласа следует, что свободная мыльная плёнка, натянутая на рамку произвольной формы и не образующая пузырей, будет иметь среднюю кривизну, равную 0.

Зависимость от температуры

С увеличением температуры величина поверхностного натяжения уменьшается и равна нулю при критической температуре. Наиболее известная эмпирическая зависимость поверхностного натяжения от температуры была предложена Лорандом Этвёшом, так называемое правило Этвёша (англ.). В настоящее время получен вывод теоретической зависимости поверхностного натяжения от температуры в области до критических температур, подтверждающей правило Этвёша (журнал «Вестник Санкт-Петербургского университета», 2012, вып. 1, с. 24-28).

Способы определения

Способы определения поверхностного натяжения делятся на статические и динамические. В статических методах поверхностное натяжение определяется у сформировавшейся поверхности, находящейся в равновесии. Динамические методы связаны с разрушением поверхностного слоя. В случае измерения поверхностного натяжения растворов (особенно полимеров или ПАВ) следует пользоваться статическими методами. В ряде случаев равновесие на поверхности может наступать в течение нескольких часов (например, в случае концентрированных растворов полимеров с высокой вязкостью). Динамические методы могут быть применены для определения равновесного поверхностного натяжения и динамического поверхностного натяжения. Например, для раствора мыла после перемешивания поверхностное натяжение 58 мДж/м², а после отстаивания — 35 мДж/м² . То есть поверхностное натяжение меняется. До установления равновесного оно будет динамическое.

Статические методы:

  1. Метод поднятия в капилляре
  2. Метод Вильгельми
  3. Метод лежачей капли
  4. Метод определения по форме висячей капли.
  5. Метод вращающейся капли

Динамические методы:

  1. Метод дю Нуи (метод отрыва кольца).
  2. Сталагмометрический, или метод счета капель.
  3. Метод максимального давления пузырька.
  4. Метод осциллирующей струи
  5. Метод стоячих волн
  6. Метод бегущих волн

Методы

Полностью стандартизованные методы измерений описываются в соответствующих ASTM, ГОСТ и т. д.

Метод вращающейся капли

Сущностью метода является измерение диаметра капли жидкости, вращающейся в более тяжелой жидкости. Этот способ измерения годится для измерения низких или сверхнизких значений межфазного натяжения. Он широко применяется для микроэмульсий, измерения эффективности ПАВ в нефтедобыче, а также для определения адсорбционных свойств.

Метод Дю Нуи (метод отрыва кольца)

Метод является классическим. Сущность метода вытекает из названия. Платиновое кольцо поднимают из жидкости, смачивающей его, усилие отрыва и есть сила поверхностного натяжения и может быть пересчитано в поверхностную энергию. Метод подходит для измерения ПАВ, трансформаторных масел и т. д.

Метод бегущих волн

При возмущении жидкости пластиной «лежащей» на её поверхности, по ней начинает распространяться круг волн. Если просветить кювету с жидкостью импульсным источником света с частотой равной частоте возмущения, то на экран спроецируется «стоячая» волновая картина. Измеряя длину волны на экране и геометрически перерассчитывая её (зная расстояние от источника света до поверхности жидкости и расстояние от поверхности до экрана, а также про подобие треугольников) можно получить величину поверхностного натяжения по формуле:

, где:

Поверхностное натяжение жидкостей на границе с воздухом

Вещество Температура °C Поверхностное натяжение(10−3 Н/м)
Хлорид натрия 6.0M водный раствор 20 82,55
Хлорид натрия 801 115
Глицерин 30 64,7
Олово 400 518
Азотная кислота 70 % 20 59,4
Анилин 20 42,9
Ацетон 20 23,7
Бензол 20 29,0
Вода 20 72,86
Глицерин 20 59,4
Нефть 20 26
Ртуть 20 486,5
Серная кислота 85 % 20 57,4
Спирт этиловый 20 22,8
Уксусная кислота 20 27,8
Эфир этиловый 20 16,9
Раствор мыла 20 40

Проявления

  • Мыльный пузырь.

  • На фотографии виден эффект, получивший название «слезы вина».

  • Капля воды на листе.

  • Навал на границе лужи и сухого асфальта.

  • Вода набегает на сухую поверхность асфальта.

Примечания

  1. ↑ Б. Д. Сумм «Основы коллоидной химии»
  2. ↑ Хайдаров Г.Г., Хайдаров А.Г., Машек А. Ч. Физическая природа поверхностного натяжения жидкости // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия). 2011. Выпуск 1. с.3-8.. Архивировано из первоисточника 25 июня 2012.
  3. ↑ Хайдаров Г.Г., Хайдаров А.Г., Машек А. Ч., Майоров Е.Е. Влияние температуры на поверхностное натяжения // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия). 2012. Выпуск 1. с.24-28.. Архивировано из первоисточника 27 июня 2012.
  4. ↑ Обратите внимание, что плёнка, вроде стенки мыльного пузыря, имеет две стороны, так что площадь поверхности жидкости в два раза больше площади плёнки.

См. также

Тензиометр

Ссылки

Библиография

  • Остроумов С. А., Лазарева Е. В. Поверхностное натяжение водных растворов додецилсульфата натрия в присутствии водных растений — Вода: технология и экология. 2008 № 3 с. 57-60.

3dic.academic.ru

Поверхностное натяжение - это... Что такое Поверхностное натяжение?

Монета, лежащая на воде благодаря силе поверхностного натяжения

Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. Коэффициент пропорциональности  — сила, приходящаяся на единицу длины контура — называется коэффициентом поверхностного натяжения. Он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии (Дж) на разрыв единицы поверхности (м²). В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

В 1983 году было доказано теоретически и подтверждено данными из справочников (Журнал физической химии. 1983, № 10, с. 2528—2530), что понятие поверхностного натяжения жидкости однозначно является частью понятия внутренней энергии (хотя и специфической: для симметричных молекул близких по форме к шарообразным). Приведенные в этой журнальной статье формулы позволяют для некоторых веществ теоретически рассчитывать значения поверхностного натяжения жидкости по другим физико-химическим свойствам, например, по теплоте парообразования или по внутренней энергии (подробнее о физической природе поверхностного натяжения жидкости см.соотв. статью на викиучебнике или [2] , [3])

В 1985 году аналогичный взгляд на физическую природу поверхностного натяжения, как части внутренней энергии, при решении другой физической задачи был опубликован В. Вайскопфом (Victor Frederick Weisskopf) в США (V.F.Weisskopf, American Journal of Physics 53 (1985) 19-20.; V.F.Weisskopf, American Journal of Physics 53 (1985) 618—619.).

Поверхностное натяжение может быть на границе газообразных, жидких и твёрдых тел. Обычно имеется в виду поверхностное натяжение жидких тел на границе «жидкость — газ». В случае жидкой поверхности раздела поверхностное натяжение правомерно также рассматривать как силу, действующую на единицу длины контура поверхности и стремящуюся сократить поверхность до минимума при заданных объёмах фаз.

В общем случае прибор для измерения поверхностного натяжения называется тензиометр.

Проявления

Водомерка на поверхности воды.

Так как появление поверхности жидкости требует совершения работы, каждая среда «стремится» уменьшить площадь своей поверхности:

  • в невесомости капля принимает сферическую форму (сфера имеет наименьшую площадь поверхности среди всех тел одинакового объёма).
  • струя воды «слипается» в цилиндр.
  • маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади жидкости.
  • некоторые насекомые (например, водомерки) способны передвигаться по воде, удерживаясь на её поверхности за счёт сил поверхностного натяжения.
  • На многих поверхностях, именуемых несмачиваемыми, вода (или другая жидкость) собирается в капли.

Математическая теория

Площадь поверхности

С поверхностью жидкости связана свободная энергия

где  — коэффициент поверхностного натяжения,  — полная площадь поверхности жидкости[4]. Так как свободная энергия изолированной системы стремится к минимуму, то жидкость (в отсутствие внешних полей) стремится принять форму, имеющую минимальную площадь поверхности. Таким образом задача о форме жидкости сводится к изопериметрической задаче при заданных дополнительных условиях (начальное распределение, объём и т. п.). Свободная капля принимает форму шара, однако при более сложных условиях задача о форме поверхности жидкости становится исключительно сложной.

Формула Лапласа

Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки. Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и даётся формулой Лапласа:

Здесь  — радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак — если по разную сторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому

Для случая поверхности кругового цилиндра радиуса имеем

Обратите внимание, что должно быть непрерывной функцией на поверхности плёнки, так что выбор «положительной» стороны плёнки в одной точке локально однозначно задаёт положительную сторону поверхности в достаточно близких её точках.

Из формулы Лапласа следует, что свободная мыльная плёнка, натянутая на рамку произвольной формы и не образующая пузырей, будет иметь среднюю кривизну, равную 0.

Зависимость от температуры

С увеличением температуры величина поверхностного натяжения уменьшается и равна нулю при критической температуре. Наиболее известная эмпирическая зависимость поверхностного натяжения от температуры была предложена Лорандом Этвёшом, так называемое правило Этвёша (англ.). В настоящее время получен вывод теоретической зависимости поверхностного натяжения от температуры в области до критических температур, подтверждающей правило Этвёша (журнал «Вестник Санкт-Петербургского университета», 2012, вып. 1, с. 24-28).

Способы определения

Способы определения поверхностного натяжения делятся на статические и динамические. В статических методах поверхностное натяжение определяется у сформировавшейся поверхности, находящейся в равновесии. Динамические методы связаны с разрушением поверхностного слоя. В случае измерения поверхностного натяжения растворов (особенно полимеров или ПАВ) следует пользоваться статическими методами. В ряде случаев равновесие на поверхности может наступать в течение нескольких часов (например, в случае концентрированных растворов полимеров с высокой вязкостью). Динамические методы могут быть применены для определения равновесного поверхностного натяжения и динамического поверхностного натяжения. Например, для раствора мыла после перемешивания поверхностное натяжение 58 мДж/м², а после отстаивания — 35 мДж/м² . То есть поверхностное натяжение меняется. До установления равновесного оно будет динамическое.

Статические методы:

  1. Метод поднятия в капилляре
  2. Метод Вильгельми
  3. Метод лежачей капли
  4. Метод определения по форме висячей капли.
  5. Метод вращающейся капли

Динамические методы:

  1. Метод дю Нуи (метод отрыва кольца).
  2. Сталагмометрический, или метод счета капель.
  3. Метод максимального давления пузырька.
  4. Метод осциллирующей струи
  5. Метод стоячих волн
  6. Метод бегущих волн

Методы

Полностью стандартизованные методы измерений описываются в соответствующих ASTM, ГОСТ и т. д.

Метод вращающейся капли

Сущностью метода является измерение диаметра капли жидкости, вращающейся в более тяжелой жидкости. Этот способ измерения годится для измерения низких или сверхнизких значений межфазного натяжения. Он широко применяется для микроэмульсий, измерения эффективности ПАВ в нефтедобыче, а также для определения адсорбционных свойств.

Метод Дю Нуи (метод отрыва кольца)

Метод является классическим. Сущность метода вытекает из названия. Платиновое кольцо поднимают из жидкости, смачивающей его, усилие отрыва и есть сила поверхностного натяжения и может быть пересчитано в поверхностную энергию. Метод подходит для измерения ПАВ, трансформаторных масел и т. д.

Метод бегущих волн

При возмущении жидкости пластиной «лежащей» на её поверхности, по ней начинает распространяться круг волн. Если просветить кювету с жидкостью импульсным источником света с частотой равной частоте возмущения, то на экран спроецируется «стоячая» волновая картина. Измеряя длину волны на экране и геометрически перерассчитывая её (зная расстояние от источника света до поверхности жидкости и расстояние от поверхности до экрана, а также про подобие треугольников) можно получить величину поверхностного натяжения по формуле:

, где:

Поверхностное натяжение жидкостей на границе с воздухом

Вещество Температура °C Поверхностное натяжение(10−3 Н/м)
Хлорид натрия 6.0M водный раствор 20 82,55
Хлорид натрия 801 115
Глицерин 30 64,7
Олово 400 518
Азотная кислота 70 % 20 59,4
Анилин 20 42,9
Ацетон 20 23,7
Бензол 20 29,0
Вода 20 72,86
Глицерин 20 59,4
Нефть 20 26
Ртуть 20 486,5
Серная кислота 85 % 20 57,4
Спирт этиловый 20 22,8
Уксусная кислота 20 27,8
Эфир этиловый 20 16,9
Раствор мыла 20 40

Проявления

  • Мыльный пузырь.

  • На фотографии виден эффект, получивший название «слезы вина».

  • Капля воды на листе.

  • Навал на границе лужи и сухого асфальта.

  • Вода набегает на сухую поверхность асфальта.

Примечания

  1. ↑ Б. Д. Сумм «Основы коллоидной химии»
  2. ↑ Хайдаров Г.Г., Хайдаров А.Г., Машек А. Ч. Физическая природа поверхностного натяжения жидкости // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия). 2011. Выпуск 1. с.3-8.. Архивировано из первоисточника 25 июня 2012.
  3. ↑ Хайдаров Г.Г., Хайдаров А.Г., Машек А. Ч., Майоров Е.Е. Влияние температуры на поверхностное натяжения // Вестник Санкт-Петербургского университета. Серия 4 (Физика, химия). 2012. Выпуск 1. с.24-28.. Архивировано из первоисточника 27 июня 2012.
  4. ↑ Обратите внимание, что плёнка, вроде стенки мыльного пузыря, имеет две стороны, так что площадь поверхности жидкости в два раза больше площади плёнки.

См. также

Тензиометр

Ссылки

Библиография

  • Остроумов С. А., Лазарева Е. В. Поверхностное натяжение водных растворов додецилсульфата натрия в присутствии водных растений — Вода: технология и экология. 2008 № 3 с. 57-60.

dvc.academic.ru