Принципы промышленной первичной переработки нефти (стр. 5 из 5). Принципы первичной переработки нефти


Принципы промышленной первичной переработки нефти

Влияние водяного пара заключается в следующем:

· интенсивно перемешивается кипящая жидкость, что способствует испарению низкокипящих углеводородов;

· создается большая поверхность испарения тем, что испарение углеводородов происходит внутрь множества пузырьков водяного пара.

Расход водяного пара зависит от количества отпариваемых компонентов, их природы и условий внизу колонны. Для хорошей ректификации жидкой фазы внизу колонны необходимо, чтобы примерно 25% ее переходило в парообразное состояние.

В случае применения в качестве испаряющего агента инертного газа происходит большая экономии тепла, затрачиваемого на производство перегретого пара, и снижение расхода воды, идущей на его конденсацию. Весьма рационально применять инертный газ при перегонке сернистого сырья, т.к. сернистые соединения в присутствии влаги вызывают интенсивную коррозию аппаратов. Однако инертный газ не получил широкого применения при перегонке нефти из-за громоздкости подогревателей газа и конденсаторов парогазовой смеси (низкого коэффициента теплоотдачи) и трудности отделения отгоняемого нефтепродукта от газового потока.

Удобно в качестве испаряющего агента использовать легкие нефтяные фракции — лигроино-керосино-газойлевую фракцию, т.к. это исключает применение открытого водяного пара при перегонке сернистого сырья, вакуума и вакуумсоздающей аппаратуры, и, в то же время, избавляет от указанных сложностей работы с инертным газом.

Чем ниже температура кипения испаряющего агента и больше его относительное количество, тем ниже температура перегонки. Однако чем легче испаряющий агент, тем больше его теряется в процессе перегонки. Поэтому в качестве испаряющего агента рекомендуется применять лигроино-керосино-газойлевую фракцию.

В результате перегонки нефти при атмосферном давлении и температуре 350 — 370°С остается мазут, для перегонки которого необходимо подобрать условия, исключающие возможность крекинга и способствующие отбору максимального количества дистилляторов. Самым распространенным методом выделения фракций из мазута является перегонка в вакууме. Вакуум понижает температуру кипения углеводородов и тем самым позволяет при 410 — 420°С отобрать дистилляты, имеющие температуры кипения до 500°С (в пересчете на атмосферное давление). Нагрев мазута до 420°С сопровождается некоторым крекингом углеводородов, но если получаемые дистилляторы затем подвергаются вторичным методам переработки, то присутствие следов непредельных углеводородов не оказывает существенного влияния. При получении масляных дистилляторов разложение их сводят к минимуму, повышая расход водяного пара, снижая перепад давления в вакуумной колонне и др. Существующие промышленные установки способны поддерживать рабочее давление в ректификационных колоннах 20 мм рт. ст. и ниже.

Рассмотренные методы перегонки нефти дают достаточно четкие разделения компонентов, однако оказываются непригодными, когда из нефтяных фракций требуется выделить индивидуальные углеводороды высокой чистоты (96 — 99%), которые служат сырьем для нефтехимической промышленности (бензол, толуол, ксилол и др.)

Для выделения вышеназванных углеводородов требуются специальные методы перегонки: азеотропная или экстрактивная ректификация. Эти методы основаны на введении в систему постороннего вещества увеличивающего разницу в летучести разделяемых углеводородов, что позволяет при помощи ректификации выделить индивидуальный углеводород высокой чистоты.

Показателем летучести чистых углеводородов является давление их насыщенных паров при данной температуре или температура кипения при атмосферном давлении. Таким образом, чем больше разница в температурах кипения углеводородов, тем легче разделить их обычной перегонкой. Однако если углеводороды отличаются по химическому строению, то можно использовать специальные виды перегонки, изменяющие летучесть этих углеводородов. Летучесть (u 1 ) может быть определена как отношение мольных долей углеводородов в паровой и жидкой фазах:

u 1 =y 1 /х 1

где y 1 и х 1 — мольные доли углеводорода соответственно в паровой и жидкой фазах.

Легкость разделения углеводородов перегонки зависит от их относительной летучести. Относительная летучесть двух углеводородов (a ) определяется соотношением их летучестей (u 1 и u 2 ), т. е.

a= u 1 /u 2 = y 1х 2 /y 2х 1 .

Согласно законам Рауля и Дальтона

y 1 =P 1x 1 /p и y 2 =P 2x 2 /p ,

где P 1 и P 2 — давление насыщенных паров углеводородов, x 1 и x 2 — мольные доли углеводородов в жидкой фазе, p — общее давление в системе. Отсюда

a =P 1x 1 /px 1 : P 2x 2 /px 2 = P 1 /P 2 .

Таким образом, относительная летучесть углеводородов в идеальном растворе равняется отношению давлений насыщенных паров чистых компонентов при температуре кипящей смеси, и чем ближе она к единице, тем сложнее разделить эти углеводороды перегонкой.

Если вводимый для увеличения разницы в летучести разделяемых углеводородов третий компонент менее летуч, чем исходные углеводороды, то его называют растворителем и вводят сверху ректификационной колонны и выводят снизу вместе с остатком. Такая ректификация называется экстрактивной. Растворитель должен иметь достаточно высокую температуру кипения, чтобы компоненты, полученные с растворителем в виде одной фазы, можно было легко отделить от него при помощи перегонки. Он должен хорошо растворять разделяемые компоненты, чтобы не требовалось чрезмерно большого отношения растворитель/смесь и не образовывалось двух жидких фаз (расслаивание) на тарелке. При экстрактивной ректификации моноциклических ароматических углеводородов в качестве растворителя применяют фенол, крезолы, фурфурол, анилин и алкилфталаты.

Если добавляемое вещество более летуче, чем исходные компоненты, то его вводят в ректификационную колонну вместе с сырьем и выводят из нее вместе с парами верхнего продукта. Такую ректификацию называют азеотропной. В этом случае вводимое вещество образует азеотропную смесь с одним из компонентов сырья. Это вещество называют уводителем.

Последний должен обеспечивать образование постоянно кипящей смеси (азеотропа) с одним или несколькими компонентами разгоняемой смеси. Уводитель образует азеотропную смесь вследствие молекулярных различий между компонентами смеси.

При азеотропной ректификации моноциклических ароматических углеводородов в качестве уводителей применяют метиловый и этиловый спирты, метилэтилкетон (МЭК) и другие вещества, образующие азеотропную смесь с парафино-нафтеновыми углеводородами разделяемой смеси.

Уводитель должен иметь температуру кипения близкую к температуре кипения отгоняемого вещества. Это позволяет получить заметную разницу между температурой кипения азеотропа и других компонентов смеси. Уводитель должен также легко выделяться из азеотропной смеси. Весьма часто разделение бывает более полным, чем этого можно ожидать на основании лишь температурной разницы. Это объясняется большим отклонением системы от идеальной.

Парциональное и общее давления над идеальным раствором при данной температуре отличаются от величин, вычисленных по закону Рауля. Для оценки этого отклонения вводят поправочный коэффициент, который фактически является коэффициентом активности, т. е.

p 1 =j 1P 1x 1 .

Коэффициент активности j является функцией физико-химических свойств всех остальных компонентов смеси и их концентраций. Для некоторых смесей в присутствии разделяющего агента подлежащие ректификации компоненты из-за их различной растворимости по-разному отклоняются от законов идеальных растворов, поэтому их коэффициенты активности различны. Установлено также, что коэффициент активности каждого компонента увеличивается по мере увеличения концентрации от 0 до 100%, однако для различных компонентов смеси в разной степени. Таким образом, для реальных смесей относительная летучесть равна отношению давления насыщенных паров и коэффициентов активности:

a =j 1P 1 /j 2P 2 .

Важное значение в осуществлении экстрактивной и азеотропной ректификаций имеет подготовка сырья, которое должно выкипать в весьма узких пределах, т. е. установке по перегонке с третьим компонентом должна предшествовать установка предварительного разделения смеси посредством обычной ректификации.

2.2. Устройство и действие ректификационных колонн,

их типы

Ректификация простых и сложных смесей осуществляется в колоннах периодического или непрерывного действия.

Колонны периодического действия применяют на установках малой производительности при необходимости отбора большого числа фракций и высокой четкости разделения. Классическая схема такой установки указана на рис. 4.

Сырье поступает в перегонный куб 1 на высоту около 2/3 его диаметра, где происходит подогрев глухим паром. В первый период работы ректификационной установки отбирают наиболее летучий компонент смеси, например бензольную головку, затем, повышая температуру перегонки, компоненты с более высокой температурой кипения (бензол, толуол и т.д.). Наиболее высококипящие компоненты смеси остаются в кубе, образовывая кубовый остаток. По окончанию процесса ректификации этот остаток охлаждают и откачивают. Куб вновь заполняется сырьем и ректификацию возобновляют. Периодичностью процесса обусловлены больший расход тепла и меньшая производительность установки. Далее на рисунке: 2 — ректификационная колонна, 3 — конденсатор-холодильник, 4 — аккумулятор, 5 — холодильник, 6 — насосы.

mirznanii.com

Принципы промышленной первичной переработки нефти

В зависимости от давления в ректификационных колоннах трубчатые установки подразделяются на атмосферные (АТ). Вакуумные (ВТ) и атмосферно-вакуумные (АВТ).

По числу ступеней испарения (количеству ректификационных колон) различают трубчатые установки

· однократного испарения — на одной ректификационной колонне получает все дистилляты — от бензина до вязкого цилиндрового. Остатком перегонки является гудрон.

· двукратного испарения — сначала при атмосферном давлении нефть перегоняется до мазута, который потом перегоняется в вакууме до получения в остатке гудрона. Эти процессы идут в двух колоннах.

· трехкратного испарения — используются две атмосферные колонны и одна вакуумная. В первой колоне из нефти отбирают только бензин, во второй — отбензиненая нефть перегоняется до мазута, в третей — мазут до гудрона.

· четырехкратного испарения — установка с доиспарительной вакуумной колонной для гудрона в концевой части.

Широкое распространение нашла комбинация ЭЛОУ-АВТ-комплекс вторичной переработки. Технологическая схема комбинированной установки ЭЛОУ-АВТ приведена на рис. 11.Подогретая в теплообменниках — 1 нефть с температурой 120—140°С поступает в комплекс дегидраторов — 2, где подвергается термохимическому и электрообезвоживанию и обессоливанию в присутствии воды, деэмульгатора и щелочи. Подготовленная таким образом нефть снова дополнительно подогревается в теплообменниках и с температурой 220°С поступает в колонну — 3. Сверху этой колонны отбирается фракция легкого бензина и выводится через теплообменник и сепаратор — 4, откуда частично изымается для орошения колонны. Остаток снизу колонны подается в печь — 5, где нагревается до 330°С, и поступает в качестве дополнительной горячей струи в колонну — 3 и как сырье в колонну — 6. Сверху колонны — 6

отбирается тяжелый бензин и выводится через теплообменник и газосепаратор — 8, частично возвращаясь в качестве оросителя назад в колонну.Сбоку колонны отбираются промежуточные фракции, для чего служат корректоры температуры и отпарные колонны — 7, где отбираются фракции 140-240°С, 240-300°С, 300-350°С. Мазут снизу колонны — 6 подается в печь —9 , где нагревается до температуры 420°С, и поступает в вакуумную колонну —10, работающую при остаточном давлении 40 мм рт. ст. Водяные пары, газообразные продукты разложения и легкие пары сверху колонны поступают в барометрический конденсатор —12, несконденсировавшиеся газы отсасываются эжектором —11. Сбоку колонны отбирают боковые продукты вакуумной колонны, остаток снизу — гудрон. Бензины получаемые в колоннах —3 и 6 поступают в стабилизатор —13. Газ из газосепараторов —4, 8 и 14 подается в абсорбер —15, орошаемый стабильным бензином из колонны —13. А получаемый сверху колонны —15 сухой газ сбрасывается к форсункам печей.

Материальный баланс переработки нефти на комбинированной установке ЭЛОУ-АВТ приведен ниже:

3. Заключение

Компоненты, полученные после первичной переработки обычно не используются как готовый продукт. Легкие фракции проходят дополнительно крекинг, реформинг, гидрогенизационное облагораживание, целью которых является получение невысокой ценой наибольшего объема конечных продуктов с наиболее точными удовлетворительными качественными показателями. Тяжелые фракции после перегонки перерабатывают дополнительно на битумных, коксующих и других установках.

В процессе подготовки настоящего материала была использована следующая литература:

1. «Технология переработки нефти и газа», Гуревич И.Л., М: «Химия», 1979г.

2. «Перегонка и ректификация в нефтепереработке»: Александров И.А., М: «Химия»,1981г.

mirznanii.com

Принципы промышленной первичной переработки нефти (Курсовая работа)

АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА

КОНТРОЛЬНАЯ РАБОТА

по предмету «Системы технологий»

на тему: «Принципы промышленной первичной переработки нефти»

Группа: Ф-13

Студент: Натан В.В.

Руководитель: Риторина О.В.

г.Тернополь

1997г.

Содержание

  1. Подготовка нефти к переработке………………………………………..

    1. Сокращение потерь при транспортировке и хранении нефти, стабилизация нефти……………………………..

    2. Сортировка нефти………………………………………………….

    3. Выбор направления переработки нефти………………….

    4. Очистка нефти от примеси…………………………………….

  2. Принципы первичной переработки нефти………………………….

    1. Перегонка нефти с однократным, многократным и постепенным испарением………………………………………..

    2. Устройство и действие ректификационных колонн, их типы……………………………………………….………………….

    3. Комплексы ректификационных колонн, виды их подключения…………………………………………………………..

    4. Промышленные установки по первичной переработке нефти…………………………………………………..

3. Заключение………………………………………………………………………..

3

4

5

5

8

10

11

19

24

26

30

  1. Подготовка нефти к переработке

Добываемая на промыслах нефть, помимо растворенных в ней газов, содержит некоторое количество примесей – частицы песка, глины, кристаллы солей и воду. Содержание твердых частиц в неочищенной нефти обычно не превышает 1,5%, а количество воды может изменяться в широких пределах. С увеличением продолжительности эксплуатации месторождения возрастает обводнение нефтяного пласта и содержание воды в добываемой нефти. В некоторых старых скважинах жидкость, получаемая из пласта, содержит 90% воды. В нефти, поступающей на переработку, должно быть не более 0,3% воды. Присутствие в нефти механических примесей затрудняет ее транспортирование по трубопроводам и переработку, вызывает эрозию внутренних поверхностей труб нефтепроводов и образование отложений в теплообменниках, печах и холодильниках, что приводит к снижению коэффициента теплопередачи, повышает зольность остатков от перегонки нефти (мазутов и гудронов), содействует образованию стойких эмульсий. Кроме того, в процессе добычи и транспортировки нефти происходит весомая потеря легких компонентов нефти (метан, этан, пропан и т.д., включая бензиновые фракции) – примерно до 5% от фракций, выкипающих до 100°С.

С целью понижения затрат на переработку нефти, вызванных потерей легких компонентов и чрезмерный износ нефтепроводов и аппаратов переработки, добываемая нефть подвергается предварительной обработке.

Для сокращения потерь легких компонентов осуществляют стабилизацию нефти, а также применяют специальные герметические резервуары хранения нефти. От основного количества воды и твердых частиц нефть освобождают путем отстаивания в резервуарах. Разрушение нефтяных эмульсий осуществляют механическими, химическими и электрическими способами. Важным моментом является процесс сортировки и смешения нефти.

    1. Сокращение потерь при транспортировке и хранении нефти, стабилизация нефти

Потери легких компонентов в основном происходят в резервуарах при так называемых «больших и малых дыханиях» — выброс воздуха, содержащего испарения нефти, при заполнении пустого резервуара или незначительные по объему выбросы, вызываемые колебаниями уровня в резервуаре и изменениями плотности при перепаде температур. Устранение потерь дыхания резервуаров осуществляют посредством их герметизации и применения дышащих крышек, дышащих баллонов, и др. Суть применяемых дышащих аппаратов заключается в их способности изменять объем под давлением вытесняемой из резервуара воздушной смеси. Таким образом дыхательные аппараты увеличивают или уменьшают объем резервуара сохраняя на время вытесненную из резервуара воздушную смесь. Такие аппараты применяют для сокращений потерь при малых дыханиях резервуаров.

Для сокращения потерь от испарения и улучшения условий транспортирования нефть подвергают стабилизации, т.е. удалению низкомолекулярных углеродов (метана, этана и пропана), а также сероводорода на промыслах или на головных перекачивающих станциях нефтепроводов.

    1. Сортировка нефти

Различные нефти и выделенные из них соответствующие фракции отличаются друг от друга физико-химическими и товарными свойствами. Так, бензиновые фракции некоторых нефтей характеризуются высокой концентрацией ароматических, нафтеновых или изопарафиновых углеводородов и поэтому имеют высокие октановые числа, тогда как бензиновые фракции других нефтей содержат в значительных количествах парафиновые углеводороды и имеют очень низкие октановые числа. Важное значение в дальнейшей технологической переработке нефти имеет серность, масляничность смолистость нефти и др. Таким образом, существует необходимость отслеживания качественных характеристик нефтей в процессе транспортировки, сбора и хранения с целью недопущения потери ценных свойств компонентов нефти.

Однако раздельные сбор, хранение и перекачка нефтей в пределах месторождения с большим числом нефтяных пластов весомо осложняет нефтепромысловое хозяйство и требует больших капиталовложений. Поэтому близкие по физико-химическим и товарным свойствам нефти на промыслах смешивают и направляют на совместную переработку.

    1. Выбор направления переработки нефти

Выбор направления переработки нефти и ассортимента получаемых нефтепродуктов определяется физико-химическими свойствами нефти, уровнем технологии нефтеперерабатывающего завода и настоящей потребности хозяйств в товарных нефтепродуктах. Различают три основных варианта переработки нефти:

  • топливный,

  • топливно-масляный,

  • нефтехимический.

По топливному варианту нефть перерабатывается в основном на моторные и котельные топлива. Топливный вариант переработки отличается наименьшим числом участвующих технологических установок и низкими капиталовложениями. Различают глубокую и неглубокую топливную переработку. При глубокой переработке нефти стремятся получить максимально возможный выход высококачественных и автомобильных бензинов, зимних и летних дизельных топлив и топлив для реактивных двигателей. Выход котельного топлива в этом варианте сводится к минимуму. Таким образом, предусматривается такой набор процессов вторичной переработки, при котором из тяжелых нефтяных фракций и остатка — гудрона получают высококачественные легкие моторные топлива. Сюда относятся каталитические процессы — каталитический крекинг, каталитический риформинг, гидрокрекинг и гидроочистка, а также термические процессы, например коксование. Переработка заводских газов в этом случае направлена на увеличение выхода высококачественных бензинов. При неглубокой переработке нефти предусматривается высокий выход котельного топлива.

По топливно-масляному варианту переработки нефти наряду с топливами получают смазочные масла. Для производства смазочных масел обычно подбирают нефти с высоким потенциальным содержанием масляных фракций. В этом случае для выработки высококачественных масел требуется минимальное количество технологических установок. Масляные фракции (фракции, выкипающие выше 350°С), выделенные из нефти, сначала подвергается очистке избирательными растворителями: фенолом или фурфуролом, чтобы удалить часть смолистых веществ и низкоиндексные углеводороды, затем проводят депарафинизацию при помощи смесей метилэтилкетона или ацетона с толуолом для понижения температуры застывания масла. Заканчивается обработка масляных фракций доочисткой отбеливающими глинами. Последние технологии получения масел используют процессы гидроочистки взамен селективной очистки и обработки отбеливающими гланами. Таким способом получают дистиллятные масла (легкие и средние индустриальные, автотракторные и др.). Остаточные масла (авиационные, цилиндровые) выделяют из гудрона путем его деасфальтизации жидким пропаном. При этом образуется деасфальт и асфальт. Деасфальт подвергается дальнейшей обработке, а асфальт перерабатывают в битум или кокс.

Нефтехимический вариант переработки нефти по сравнению с предыдущими вариантами отличается большим ассортиментом нефтехимической продукции и в связи с этим наибольшим числом технологических установок и высокими капиталовложениями. Нефтеперерабатывающие заводы, строительство которых проводилось в последние два десятилетия, направлены на нефтехимическую переработку. Нефтехимический вариант переработки нефти представляет собой сложное сочетание предприятий, на которых помимо выработки высококачественных моторных топлив и масел не только проводится подготовка сырья (олефинов, ароматических, нормальных и изопарафиновых углеводородов и др.) для тяжелого органического синтеза, но и осуществляются сложнейшие физико-химические процессы, связанные с многотоннажным производством азотных удобрений, синтетического каучука, пластмасс, синтетических волокон, моющих веществ, жирных кислот, фенола, ацетона, спиртов, эфиров и многих других химикалий.

topref.ru