Большая Энциклопедия Нефти и Газа. Процесс обезвоживания нефти


Обезвоживание нефти. Физические основы процесса. Применяемые технологии.

Технологии Обезвоживание нефти. Физические основы процесса. Применяемые технологии.

Количество просмотров публикации Обезвоживание нефти. Физические основы процесса. Применяемые технологии. - 455

 Наименование параметра  Значение
Тема статьи: Обезвоживание нефти. Физические основы процесса. Применяемые технологии.
Рубрика (тематическая категория) Технологии

Обезвоживание и обессоливание нефти – взаимосвязанные процессы, т.к. основная масса солей сосредоточена в пластовой воде и удаление воды приводит одновременно к обессоливанию нефти.

Обезвоживание нефти затруднено тем, что нефть и вода образуют стойкие эмульсии типа "вода в нефти". В этом случае вода диспергирует в нефтяной среде на мельчайшие капли, образуя стойкую эмульсию. Следовательно, для обезвоживания и обессоливания нефти крайне важно отделить от нее эти мельчайшие капли воды и удалить воду из нефти. Для обезвоживания и обессоливания нефти используют следующие технологические процессы: гравитационный отстой нефти, горячий отстой нефти, термохимические методы, электрообессоливание и электрообезвоживание нефти. Наиболее прост по технологии процесс гравитационного отстоя. В этом случае нефтью заполняют резервуары и выдерживают определœенное время (48 ч и более). Во время выдержки происходят процессы коагуляции капель воды, и более крупные и тяжелые капли воды под действием сил тяжести (гравитации) осœедают на дно и скапливаются в виде слоя подтоварной воды.

При этом гравитационный процесс отстоя холодной нефти - малопроизводительный и недостаточно эффективный метод обезвоживания нефти. Более эффективен горячий отстой обводненной нефти, когда за счёт предварительного нагрева нефти до температуры 50 -700С значительно облегчаются процессы коагуляции капель воды и ускоряется обезвоживание нефти при отстое. Недостатком гравитационных методов обезвоживания является его малая эффективность.

Более эффективны методы химические, термохимические, а также электрообезвоживание и обессоливание. При химических методах в обводненную нефть вводят специальные вещества, называемые деэмульгаторами. В качестве деэмульгаторов используют ПАВ. Их вводят в состав нефти в небольших количествах от 5¸10 до 50¸60 г на 1 т нефти. Наилучшие результаты показывают так называемые неионогенные ПАВ, которые в нефти не распадаются на анионы и катионы. Это такие вещества, как дисолваны, сепаролы, дипроксилины и др. Размещено на реф.рфДеэмульгаторы адсорбируются на поверхности раздела фаз "нефть-вода" и вытесняют или заменяют менее поверхностно-активные природные эмульгаторы, содержащиеся в жидкости. Причем пленка, образующаяся на поверхности капель воды, непрочная, что отмечает слияние мелких капель в крупные, ᴛ.ᴇ. процесс коалесценции. Крупные капли влаги легко осœедают на дно резервуара. Эффективность и скорость химического обезвоживания значительно повышается за счёт нагрева нефти, ᴛ.ᴇ. при термохимических методах, за счёт снижения вязкости нефти при нагреве и облегчения процесса коалесценции капель воды.

Наиболее низкое остаточное содержание воды достигается при использовании электрических методов обезвоживания и обессоливания. Электрообезвоживание и электро-обессоливание нефти связаны с пропусканием нефти через специальные аппараты-электродегидраторы, где нефть проходит между электродами, создающими электрическое поле высокого напряжения (20¸30 кВ). Для повышения скорости электрообезвоживания нефть предварительно подогревают до температуры 50¸70°С.

Обезвоживание нефти. Физические основы процесса. Применяемые технологии. - понятие и виды. Классификация и особенности категории "Обезвоживание нефти. Физические основы процесса. Применяемые технологии." 2014, 2015.

referatwork.ru

Процесс - обезвоживание - нефть

Процесс - обезвоживание - нефть

Cтраница 2

Посвящена изучению физико-химического состава нефтей Узеня и Жебытая и исследованиям процесса обезвоживания нефти в промысловых условиях, проведенным в Гипро-востокнефти.  [16]

Для проведения такого эксперимента нами разработаны пилотные установки, позволяющие моделировать процесс обезвоживания нефти в близких к реальному условиях.  [18]

Не менее важное значение имеют мероприятия по снижению эксплуатационных затрат в процессе обезвоживания нефти на действующих установках. Главным из них является применение высококачественных деэмульгаторов. Как известно, на долю реагентов приходится наибольшая часть расходов в себестоимости подготовки нефти на промыслах. Замена малоэффективного НЧК более качественными реагентами дает большое снижение себестоимости и повышает качество подготовки нефти.  [19]

Поскольку при разрушении водонефтяной эмульсии наделяется ос-новвое количество минерализованной пластовой воды, то процесс обезвоживания нефти одновременно является и процессом ее обоссо-ливания.  [20]

Отсюда следует, что разгазирование водо-нефтяной смеси в сочетании с применением реагента-деэмульгатора должно дать значительный эффект при осуществлении процесса обезвоживания нефти.  [21]

Однако их влияние еще недостаточно полно изучено, не выявлены и не систематизированы взаимосвязи между отдельными параметрами с точки зрения совмещения процессов обезвоживания нефти и очистки пластовой воды, т.е. отделения чистой воды при предварительном обезвоживании нефти.  [22]

Различные механические примеси ( глина, песок, сульфид железа и другие неорганические взвеси), неизбежные компоненты продукции обводненных нефтяных скважин, в процессе обезвоживания нефти в результате их оседания постепенно накапливаются в отстойной аппаратуре на границе раздела фаз нефть-вода, образуя так называемый промежуточный слой.  [23]

Используется также процесс комплексной подготовки нефти ( УКПН) - обезвоживание, обессоливание и стабилизация. Процессы обезвоживания нефти на ТХУ и УКПН аналогичны. На УКПН при обессоливании в поток обезвоженной нефти добавляют пресную воду с интенсивным перемешиванием. Образовавшаяся при этом эмульсия поступает в отстойники, где вода отделяется.  [24]

Если процесс обезвоживания нефти ( до остаточного содержания воды - 0 5 - 1 %) с применением эффективных реагентов-деэмульгаторов можно осуществить при относительно низких температурах и простой технологии ( ранний ввод деэмульга-тора [40], использование систем сбора для разрушения эмульсии и подготовки ее к расслоению [41,42], отделение воды в напорных емкостях или резервуарах), то получение товарной нефти с низким содержанием солей ( 40мг / л - 1 группа и не более 300 мг / л - II группа качества) возможно, за редким исключением лишь при относительно высоких температурах ( 60 - 80 С), увеличенных расходов деэмульгаторов и применении двухступенчатой обработки нефти.  [25]

Процесс обессоливания нефти, наряду со схожими элементами с процессом обезвоживания, имеет и некоторые специфические особенности. Так, процесс обезвоживания нефти можно условно разделить на стадии: разрушение бронирующих оболочек на глобулах воды реагентом-деэмульгатором, укрупнение капель, разделение фаз.  [26]

Технология, предусматривающая применение химических реагентов, основана на использовании веществ, обладающих более высокой поверхностной активностью, чем природные эмульгаторы, входящие в состав бронирующих оболочек, и оказывающие на них вытесняющее, дробящее и пептизирующее действие. Для осуществления процесса обезвоживания нефти деэмуль-гатор в нужном количестве вводится в обрабатываемую эмульсию и осторожно ( по прежним представлениям) смешивается с ней, чтобы исключить нежелательное диспергирование глобул пластовой воды. При перемешивании обеспечиваются многократное столкновение глобул пластовой воды с каплями введенного реагента, который разрушает и вытесняет с поверхности бронирующие оболочки, препятствующие взаимному слиянию капель при столкновениях.  [27]

По мере накопления смол, асфальтенов и сульфида железа промежуточный слой существенно увеличивается в объеме ( более 2 раз), содержание связанной воды растет. Для повышения эффективности процесса обезвоживания нефти возникает потребность в периодическом сбросе нижней части этого слоя вместе с дренируемой водой.  [28]

Температура пластовых сточных вод ( обычно от 10 до 70 С) определяется температурой нефтяного пласта, из которого жидкость поступает в скважину, и технологическим режимом подготовки нефти. На установках с предварительным сбросом воды процесс обезвоживания нефти часто проводится без дополнительного ее подогрева и температура пластовой сточной воды в зимнее время может понижаться до 10 С. На установках подготовки нефти, где для процесса глубокого обезвоживания нефть подогревают, температура сбрасываемой пластовой сточной воды может достигать 60 - 80 С, а чаще всего равна 40 - 50 С.  [29]

Дренажная вода по трубопроводу 5 поступает на установку очистки для дальнейшей закачки в пласт. Часть горячей дренажной воды, содержащей реагент-деэмульгатор, может подаваться на прием сепаратора 2 для улучшения процесса обезвоживания нефти.  [30]

Страницы:      1    2    3

www.ngpedia.ru

Процесс - обезвоживание - нефть

Процесс - обезвоживание - нефть

Cтраница 3

Промежуточный слой, образующийся в аппаратах установок комплексной подготовки нефти ( УКПН), существенно влияет на эффективность разрушения нефтяных эмульсий, особенно стабилизированных механическими примесями и сульфидом железа. Слой может структурироваться, и при определенной толщине полностью подавляется переход укрупнившихся глобул пластовой воды в водную фазу, при этом резко ухудшается процесс обезвоживания нефти. После отбора проб и их центрифугирования определяют содержание воды, механических примесей.  [31]

Для ускорения процесса разрушения защитных оболочек частиц воды применяют также и подогрев нефтяной эмульсии. Температура подогрева в значительной степени зависит от свойств нефти и стойкости эмульсии. Высокая температура в электрическом водоотделителе ( дегидраторе), в котором происходит процесс обезвоживания нефти, может привести к выделению газа из эмульсии, наличие которого между электродами снижает эффективность процесса.  [32]

В последние годы разработано и внедрено несколько таких аппаратов. В начальный период эксплуатации месторождения продукция скважин не содержит воды и, следовательно, проведение процессов обезвоживания нефти, а тем более предварительного сброса больших масс воды на месторождении, не требуется.  [33]

В табл. 4 приводятся результаты химического анализа механических примесей, содержащихся в сточной воде, сбрасываемой в систему канализации из деэмульсатора. Химический состав этих механических примесей характеризуется содержанием глин, кварца, карбонатов, соединений железа, бария и кремне-кислоты. Отсюда следует, что механические примеси промышленных сточных вод Отрадненского НСЗ имеют более широкий минералогический состав, чем механические примеси, содержащиеся в сероводородных сточных пластовых водах, полученных в процессе обезвоживания нефти.  [34]

Поэтому создаются условия для поддержания этих веществ в нефти во взвешенном состоянии и транспортирования их на НПЗ. Обезвоживание нефти в небольших объемах ( до 1 - 2 млн. м3 / год) осуществляется в блочных сепараторах-деэмульсаторах и герметизированных резервуарах, встроенных в технологическую схему сбора и транспорта нефти и газа, не выделяемых в самостоятельные объекты и не требующих автономного обслуживания. Обезвоживание нефти в больших объемах ( до 6 млн. м3 / год) проводится на центральных сборных пунктах при комплексном использовании резервуаров, нагревателей-деэмульсаторов. На этих объектах процесс обезвоживания нефти в самостоятельную операцию также не выделяется и является одним из большого числа операций по приему и измерению объемов продукции скважин, сепарации газа высокого и низкого давления, горячей сепарации, осушке газа и отбору пропан-бутановых фракций, их откачке или возврату в нефть, компримированию газа, многоступенчатому сбросу и очистке пластовой воды, ее закачке в пласт или сбросу в океан, осуществляемых на сборном пункте. Обслуживает все эти процессы и операции один и тот же технический персонал. Типовые установки подготовки нефти на месторождениях также не применяются, используются типовое блочное оборудование, входящее в различные схемы. При обустройстве площадок как мелких, так и крупных пунктов сбора продукции скважин, сепарации газа, подготовки нефти и очистки воды железобетонные или кирпичные здания не строятся. Широко используются каркасные конструкции с теплоизолированными листовыми металлическими панелями. Оборудование, как правило, устанавливают на фундаментах или салазках, технологические площадки бетонных покрытий не имеют, широко применяется гравийная отсыпка. В районах с суровыми климатическими условиями ( Аляска) применяются технологические блоки-модули, а щитовые конструкции используются для объединения нагревателей-деэмульсаторов в самообогреваемые производственные блоки, в которых размещаются необходимая контрольно-измерительная и регулирующая аппаратура, насосы, дозаторы и другое оборудование.  [35]

На практике добывают нефть с большим содержание воды. Более того, случается, что добывают даже не нефть с водой, а воду с нефтью, даже воду с небольшим количеством нефти. Например, в Грозном уже давно получали из скважин жидкость, на 99 % состоящую из воды и содержащую только 1 % нефти. Затем главная роль отводится организации процесса обезвоживания нефти, а во многих случаях подобных оиисанному процессу сепарации нефти и воды. Для этого существует специальная техника и технология.  [37]

Способ обезвоживания нефти путем совместного применения тепла и деэмульгатора часто называют тепло - или термохимическим. Под термином термохимия в химической термодинамике понимается экспериментальное изучение тепловых эффектов химических реакций. Это ничего общего не имеет с комбинацией действия тепла, передаваемого источником ( печь, пар) и получаемого при сжигании топлива, и физико-химического действия деэмульгатора на эмульсию. Поэтому термин термохимия, применяемый в наименовании процессов обезвоживания нефти, видимо, нельзя признать удачным. Исходя из этого, мы заменили его термином тепловой, имея в виду, что при этом способе всегда применяют деэмульгаторы.  [38]

Процесс образования эмульсий имеет специфические особенности для различных месторождений и для различных продуктивных пластов. Поэтому для каждого месторождения необходим индивидуальный подход при решении проблемы деэмульсации. В первую очередь это относится к подбору деэмульгаторов. Применение их в сочетании с новой технологией позволяет чрезвычайно упростить процесс обезвоживания нефтей на промыслах.  [39]

Электродегидратор представляет собой металлическую емкость, внутри которой помещены одна или несколько пар электродов. Принцип действия электродегидратора заключается в следующем. К электродам подается высокое напряжение переменного тока, в результате чего между электродами возникает переменное электрическое поле. При этом отрицательно заряженные частицы эмульсии начинают передвигаться по направлению к положительному электроду, а положительно заряженные - к отрицательному. Поскольку электрическое поле меняет свое направление с частотой, соответствующей частоте приложенного переменного тока, то и частицы водонефтяной эмульсии меняют направление своего движения с такой же частотой. При большой частоте перемены направления движения обволакивающая частицы воды нефтяная пленка испытывает большое напряжение и при столкновении отдельных частиц друг с другом разрушается. Частицы воды, освобожденные от нефтяной пленки, соединяются друг с другом в крупные капли и оседают на дно, а обезвоженная нефть поднимается на поверхность. Таким образом в электрических аппаратах - электродегидраторах происходит процесс обезвоживания нефти.  [40]

Электродегидратор представляет собой металлический резервуар большой вместимости ( несколько десятков или сотен кубических метров), внутри которого помещены несколько пар электродов. Принцип действия электродегидратора заключается в следующем. К электродам подается высокое напряжение переменного тока, в результате чего между электродами возникает переменное электрическое поле. Элементарные частицы залитой в дегидратор водонефтяной эмульсии, попадая в электрическое поле, получают электрические заряды ( отрицательные или положительные) в зависимости от заряда ближайшего электрода. При этом отрицательно заряженные частицы эмульсии передвигаются по направлению к положительному электроду, а положительно заряженные - к отрицательному. Поскольку электрическое поле меняет свое направление с частотой, соответствующей частоте приложенного переменного тока, то и частицы водонефтяной эмульсии меняют направление своего движения с такой же частотой. При большой частоте перемены направления движения обволакивающая частицы воды нефтяная пленка испытывает большое напряжение и при столкновении отдельных частиц одна с другой разрушается. Частицы воды, освобожденные от нефтяной пленки, соединяются в крупные капли и оседают на дно дегидратора, а обезвоженная нефть поднимается на поверхность. Таким образом в электродегидраторах происходит процесс обезвоживания нефти.  [41]

Страницы:      1    2    3

www.ngpedia.ru

Способ обезвоживания нефти | Банк патентов

Изобретение относится к процессам обезвоживания нефти с использованием отстаивания. Способ обезвоживания нефти достигается путем обработки ее реагентом-деэмульгатором при нагревании и отстое с разрушением образующегося на границе "нефть-вода" промежуточного слоя с периодической обработкой его реагентом, в качестве которого используют отход производства втор.-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза. Причем реагент (отход производства втор.-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза) подают в количестве 5-10% от объема промежуточного слоя. Данное изобретение позволяет сократить расход реагента и улучшить качество подготавливаемой нефти и дренажной воды. 1 з.п.ф-лы, 3 табл.

Изобретение относится к области промысловой подготовки нефти, а в частности к процессам обезвоживания нефти с использованием отставания. При обезвоживании нефти в процессе отстаивания в емкостях на границе раздела между нефтью и водой образуется промежуточный слой, представляющий собой нерасслаивающуюся высококонцентрированную эмульсию, содержащую механические примеси. При накоплении на границе раздела фаз промежуточный слой дренируется, что приводит к загрязнению сточных вод, к дополнительными материальным затратам по переработке промежуточного слоя, а также к ухудшению состояния окружающей среды, т.к. промежуточный слой, как правило, сбрасывают в пруды-отстойники. Известен способ обезвоживания нефтяной эмульсии обработкой ее реагентом-деэмульгатором, с нагревом и отстаиванием с разрушением образующегося на границе нефть-вода промежуточного слоя (Мавлютова М.З. Опыт подготовки нефти на промыслах Башкирии. Уфа, 1966). Или известен способ обезвоживания нефти путем ее обработки реагентом-деэмульгатором при нагревании, с последующим отстоем и разрушением образующегося на границе нефть-вода промежуточного слоя периодической обработкой его химическим реагентом (а.с. СССР N 469946, 1975)При этом продукты разрушения эмульсионного слоя сбрасываются в канализацию, чем загрязняют сточные воды. Кроме того, процесс разрушения эмульсионного слоя происходит в течение длительного времени (2 ч). Или известен способ обезвоживания нефти включающий обработку ее реагентом-деэмульгатором, нагрев, отстой и разрушение образующегося слоя, обработкой его реагентом, содержащим компоненты в следующем соотношении, мас.%:Фракция диоксановых спиртов с температурой кипения 170 - 300oC - 40 - 50Соляная кислота - 5 - 10Ароматические углеводороды - 20 - 25Уксусная кислота - ОстальноеПричем, реагент подают в количестве 20% от объема промежуточного слоя (а.с. СССР N 715619, 1980). Или известен способ обезвоживания нефти, включающий обработку ее реагентом-деэмульгатором, нагрев, отстой и разрушение образующегося на границе "нефть-вода" промежуточного слоя периодической обработкой его реагентом, в качестве которого используют отход производства изопропилового спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза (а.с. СССР N 1715825, 1995). Наиболее близким по технической сущности и достигаемому результату является способ обезвоживания нефти, включающий обработку ее реагентом-деэмульгатором, нагрев, отстой и разрушение образовавшегося на границе нефть-вода" промежуточного слоя периодической обработкой его реагентом, в качестве которого используют отход производства изопропилового спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза предварительно обработанного конденсатом со стадии ацидолиза производства оксиэтилидендифосфоновой кислоты в количестве 5 - 10% от объема реагента (Патент N 2057163 (RU), 1996). (прототип)Однако, известное техническое решение не обеспечивает глубины обезвоживания нефти с содержанием промежуточного слоя, кроме того требуется значительный расход реагента (7,5 - 15%). Целью данного изобретения является интенсификация процесса обезвоживания нефти, сокращение расхода реагента и улучшение качества поставливаемой нефти и дренажной воды. Поставленная цель достигается предлагаемым способом обезвоживания нефти путем ее обработки реагентом-деэмульгатором при нагревании и отстаивании с разрушением образующегося на границе "нефть-вода" промежуточного слоя обработкой его реагентом, в качестве которого используют отход производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза. Отход производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза образуется на Орском АО "Орскнефтеоргсинтез" при производстве втор-бутилового спирта, производство которого осуществляется по следующей схеме. Первая стадия. а) Растворение бутилена в серной кислоте происходит при барботировании газа через слой кислоты;б) Взаимодействие растворенного бутилена с водным раствором серной кислоты сопровождается образованием втор-бутилового спирта и моносульфата

При изменении концентрации серной кислоты и бутилена возможно протеканию ряда побочных реакций, одной из наиболее характерных является образование и накопление в реакционной массе ацетона, изопропилового спирта.

Наряду с указанными реакциями имеет место, в некоторой степени, связывание бутилена серной кислотой с образованием сульфонов в результате действия кислоты на метильную или соседнюю с двойной связью метиленовую группу. При взаимодействии бутилена с серной кислотой протекают реакции гидро-дегидрополимеризации, заключающиеся в сопряженном протекании процессов полимеризации, гидрирования и дегидрирования. Вторая стадия. Второй стадией получения втор-бутилового спирта является стадия гидролиза втор-бутилового экстракта-продукта взаимодействия бутилена с серной кислотой. Реакция гидролиза протекает по схеме: C4H9HSO4+h3O -> C4H9OH + h3SO4 Гидролиз экстракта в производственных условиях обычно сопровождается побочными реакциями, наличие и интенсивность которых зависит от условий гидролиза. Гидролизат - продукт гидролиза экстракта представляет собой смесь втор-бутилового спирта, изопропилового спирта, ацетона и полимеров. Третья стадия. Отмывка и нейтрализация спирта сырца. Гидролизат подвергают обработке острым паром с целью завершения гидролиза в верхней части отпарной тарельчатой колонны. Четвертая стадия. Ректификация спирта-сырца. Отстоявшийся от полимеров спирт-сырец подают насосами в эпюрационную колонну. С верха колонны уходят пары спиртополимерной фракции и поступают в дефлегматор, где конденсируются. Дистиллят втор-бутилового спирта поступает самотеком после холодильника в емкость спирта-ректификата. Отход производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза (не растворим в воде, удельный вес меньше единицы) самотеком сливают периодически в емкость для хранения. Разделение втор-бутилового спирта и отхода производства втор-бутилового спирта процесса гидратации пропилена в присутствии серной кислоты со стадии гидролиза происходит за счет разности плотностей данных жидкостей. Плотность втор-бутилового спирта при 20oC равна 0,808 г/см3 Плотность отхода производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза при 20oC равна 0,718 г/см3. Свойства (показатели качества) отхода производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза приведены в таблице 1. Краткая характеристика полимеров, входящих в состав отходов производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза. Полимеры - смесь нормального и изостроения, содержат три- и тетрамеры бутилена и другие низкомолекулярные полимеры. Данный продукт в настоящее время образуется на Орском АО ОТ "Орскнефтеоргсинтез" при производстве втор-бутилового спирта. Изобретение осуществляется следующим образом. Эмульсию воды в нефти обрабатывают реагентом-деэмульгатором, сепарируют, нагревают и подвергают отстою при температуре не ниже 20oC. При этом между чистой нефтью и водой образуется промежуточный эмульсионный слой, содержащий механические примеси. При накоплении промежуточного слоя толщиной 20 см в него с помощью насоса через перфорированный маточник вводят отход производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза в количестве 5 - 10% от объема слоя. При этом процесс обезвоживания нефти не прерывают. После введения реагента в эмульсионный слой последний полностью разрушается в течение 7 - 12 мин. Предлагаемый способ позволяет стабилизировать процесс обезвоживания нефти, содержащий механические примеси, сократить объем вводимого реагента, сократить время отстоя воды, улучшить качество дренируемой воды по содержанию механических примесей в нефти. Пример 1. Обезвоживание нефти проводят обработкой эмульсии реагентом-деэмульгатором, с сепарацией от газа и отстаивании при 35oC. При накоплении в межфазной зоне промежуточного слоя, состав которого приведен в таблице 2, толщиной 20 см, в него в помощью насоса через перфорированный маточник вводят реагент (отход производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза в количестве 7,0% от объема слоя, при этом процесс обезвоживания нефти не прерывают. Дренаж воды в ходе закачки реагента и спустя 10 мин после ее окончания не проводят. После обработки реагентом (отход производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза) промежуточный слой отсутствует. Пример 2. Обезвоживание нефти проводят аналогично примеру 1, только реагент (отход производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза) вводят в количестве 5,0% от объема слоя, а дренаж воды в ходе закачки реагента и спустя 12 мин после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 3. Обезвоживание нефти проводят аналогично примеру 1, только реагент (отход производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза) вводят в количестве 10,0% от объема слоя, а дренаж воды в ходе закачки реагента и спустя 7 мин после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 4. Обезвоживание нефти проводят аналогично примеру 1, только реагент (отход производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза) вводят в количестве 5,0% от объема слоя, а дренаж воды в ходе закачки реагента и спустя 10 мин после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 5. Обезвоживание нефти проводят аналогично примеру 1, только реагент (отход производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза) вводят в количестве 7,0% от объема слоя, а дренаж воды в ходе закачки реагента и спустя 7 мин. после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 6. Обезвоживание нефти проводят обработкой эмульсии реагентом-деэмульгатором, с сепарацией от газа и отстаиванием при 35oC. При накоплении в межфазной зоне промежуточного слоя, состав, которого приведен в таблице 2, толщиной 20 см. в него с помощью насоса через перфорированный маточник вводят реагент (отход производства изопропилового спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза) в количестве 10% от объема слоя, предварительно обработанный конденсатом со стадии ацидолиза производства оксиэтилидендифосфоной кислоты при температуре 60oC в течение 1/4 ч в количестве 10% от объема реагента, при этом процесс обезвоживания нефти не прерывают. Дренаж воды в ходе закачки реагента, обработанного по способу-прототипу, и спустя 20 мин после ее окончания не проводят. Пример 7. Обезвоживание нефти проводят аналогично примеру 6, только реагент (отход производства изопропилового спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза) в количестве 7,5% от объема слоя, предварительно обработанный конденсатом со стадии ацидолиза производства оксиэтилидендифосфоновой кислоты при температуре 40oC в течение 1/4 ч в количестве 5,0% от объема реагента, а дренаж воды в ходе закачки реагента, обработанного по способу-прототипу, и спустя 12 мин после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 8. Обезвоживание нефти проводят аналогично примеру 6, только реагент (отход производства изопропилового спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза) в количестве 7,5% от объема слоя, предварительно обработанный конденсатом со стадии ацидолиза производства оксиэтилидендифосфоновой кислоты при температуре 50oC в течение 1/2 ч в количестве 7,5% от объема реагента, а дренаж воды в ходе закачки реагента, обработанного по способу-прототипу, и спустя 18 мин после ее окончания, не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 9. Обезвоживание нефти проводят аналогично примеру 6, только реагент (отход производства изопропилового спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза) в количестве 7,5% от объема слоя, предварительно обработанный конденсатом со стадии ацидолиза производства оксиэтилидендифосфоновой кислоты при температуре 50oC в течение 1,0 ч в количестве 7,5% от объема реагента, а дренаж воды в ходе закачки реагента, обработанного по способу-прототипу, и спустя 18 мин после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 10. Обезвоживание нефти проводят нефти проводят аналогично примеру 6, только реагент (отход производства изопропилового спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза) в количестве 15% от объема слоя, предварительно обработанный конденсатом со стадии ацидолиза производства оксиэтилидендифосфоновой кислоты при температуре 60oC в течение 2 ч в количестве 10% от объема реагента, а дренаж воды в ходе закачки реагента, обработанного по способу-прототипу, и спустя 20 мин после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 11. Обезвоживание нефти проводят аналогично примеру 6, только реагент (отход производства изопропилового спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза) в количестве 15% от объема слоя, предварительно обработанный конденсатом со стадии ацидолиза производства оксиэтилидендифосфоновой кислоты при температуре 40oC в течение 2 ч в количестве 5,0% от объема реагента, в дренаж воды в ходе закачки реагента, обработанного по способу-прототипу, и спустя 12 мин после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 12. Обезвоживание нефти проводят аналогично примеру 6, только реагент (отход производства изопропилового спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза) в количестве 15% от объема слоя, предварительно обработанный конденсатом со стадии ацидолиза производства оксиэтилидендифосфоновой кислоты при температуре 35oC в течение 1/6 ч в количестве 5,0% от объема реагента, а дренаж воды в ходе закачки реагента, обработанного по способу-прототипу, и спустя 12 мин после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 13. Обезвоживание нефти проводят аналогично примеру 6, только реагент (отход производства изопропилового спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза) в количестве 15% от объема слоя, предварительно обработанный конденсатом со стадии ацидолиза производства оксиэтилидендифосфоновой кислоты при температуре 65oC в течение 2,5 ч в количестве 5,0% от объема реагента, а дренаж воды в ходе закачки реагента, обработанного по способу-прототипу, и спустя 12 мин после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 14. Обезвоживание нефти проводят аналогично примеру 6, только реагент (отход производства спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза) к количестве 10% от объема слоя, предварительно обработанный конденсатом со стадии ацидолиза производства оксиэтилидендифосфоновой кислоты при температуре 35oC в течение 1/6 ч в количестве 10% от объема реагента, а дренаж воды в ходе закачки реагента, обработанного по способу-прототипу, и спустя 20 мин после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 15. Обезвоживание нефти проводят аналогично примеру 6, только реагент (отход производства изопропилового спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза) в количестве 10% от объема слоя, предварительно обработанный конденсатом со стадии ацидолиза производства оксиэтилидендифосфоновой кислоты при температуре 65oC в течение 2,5 ч в количестве 10% от объема реагента, а дренаж воды в ходе закачки реагента, обработанного по способу-прототипу, и спустя 20 мин после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 16. Обезвоживание нефти проводят аналогично примеру 6, только реагент (отход производства изопропилового спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза) в количестве 10% от объема слоя, предварительно обработанный конденсатом со стадии ацидолиза производства оксиэтилидендифосфоновой кислоты при температуре 30oC в течение 1/6 ч в количестве 10% от объема реагента, а дренаж воды в ходе закачки реагента, обработанного по способу-прототипу, и спустя 20 мин после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Пример 17. Обезвоживание нефти проводят аналогично примеру 6, только реагент (отход производства изопропилового спирта гидратацией пропилена в присутствии серной кислоты со стадии гидролиза) в количестве 10% от объема слоя, предварительно обработанный конденсатом со стадии ацидолиза производства оксиэтилидендифосфоновой кислоты при температуре 70oC в течение 2,5 ч в количестве 10% от объема реагента, а дренаж воды в ходе закачки реагента, обработанного по способу-прототипу, и спустя 12 мин после ее окончания не проводят. После обработки реагентом промежуточный слой отсутствует. Для получения сравнительных данных обезвоженной нефти проводился контроль содержания воды в нефти до и после обработки. Данные приведены в таблице 3. Кроме того, в таблице 3 приведены данные по обезвоживанию нефти согласно способу-прототипу (примеры 6 - 17) и сравнительные данные обосновывающие границы технологических режимов ведения процесса (примеры 18 - 21). Из данных, приведенных в таблице 3, видно, что предлагаемый способ выгодно отличается от известного. Причем наблюдается улучшение качества как нефти, прошедшей обезвоживание, так и дренажной воды. Так, например, при оптимальных режимах обезвоживания нефти по предлагаемому способу (пример 1) показатели качества нефти и дренажной воды следующие: - остаточное содержание воды в нефти - 0,22%; - остаточное содержание механических примесей в нефти - 0,018%; - остаточное содержание нефти в воде - 16,0 мг/л; - остаточное содержание механических примесей в воде - 35,1 мг/л. В то же время при оптимальных режимах обезвоживания нефти по известному способу (способу-прототипу) (пример 9) показатели качества нефти и воды следующие: - остаточное содержание воды в нефти - 0,55%; - остаточное содержание механических примесей в нефти - 0,028%; - остаточное содержание нефти в воде - 23 мг/л; - остаточное содержание механических примесей в воде - 43,3 мг/л. Таким образом наблюдается снижение остаточного содержания: - воды в нефти на 60%; - механических примесей в нефти на 35,7%; - нефти в воде на 30,4%; - механических примесей в воде на 18,9%. Использование предлагаемого способа обезвоживания нефти с обработкой реагентом промежуточного слоя при отстаивании обеспечивает следующие технические преимущества: - возможность снижения мощности очистных сооружений; - устранение из состава очистных сооружений установки обработки ловушечных нефтей; - значительное снижение загрязнения воздушного бассейна углеводородами и кислыми газами. Источники информации 1. Мавлютова М. З. Опыт подготовки нефти на промыслах Башкирии. Уфа, 1966. 2. Авторское свидетельство СССР N 469946, кл. C 10 G 33/04, 1975. 3. Авторское свидетельство СССР N 715619, кл. C 10 G 33/04, 1980. 4. Авторское свидетельство СССР N 1715825, кл. C 10 G 33/04, 1992. 5. Патент N 2057163 (RU), кл. C 10 G 33/04, опубл. в БИ N 9, 1996. (прототип).

Формула изобретения

1. Способ обезвоживания нефти путем обработки ее реагентом-деэмульгатором при нагревании и отстое с разрушением образующегося на границе "нефть-вода" промежуточного слоя с периодической обработкой его реагентом, отличающийся тем, что в качестве реагента используют отход производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза. 2. Способ по п.1, отличающийся тем, что отход производства втор-бутилового спирта процесса гидратации бутилена в присутствии серной кислоты со стадии гидролиза подают в количестве 5 - 10% от объема промежуточного слоя.

MM4A Досрочное прекращение действия патента Российской Федерации на изобретение из-за неуплаты в установленный срок пошлины за поддержание патента в силе

Дата прекращения действия патента: 14.08.1999

Номер и год публикации бюллетеня: 28-2002

Извещение опубликовано: 10.10.2002        

bankpatentov.ru

Обезвоживание и обессоливание нефти – взаимосвязанные процессы, т

Обезвоживание и обессоливание нефти

Обезвоживание и обессоливание нефти – взаимосвязанные процессы, т.к. основная масса солей сосредоточена в пластовой воде, и удаление воды, приводит одновременно к обессоливанию нефти. Обезвоживания и обессоливания нефтей производится на установке подготовки нефти (УПН). Поступающая нефть на УПН уже подверглась первичной сепарации и прошла очитку от попутного газа и шлама на ДНС.

В основе процесса обезвоживания лежит дестабилизация (разрушение) нефтяных эмульсий (соединение нефти и воды), образовавшихся в результате закачивания в пласт через нагнетательные скважины воды.

Основные способы обезвоживания и обессоливания условно можно разделить: 1) механические 2) химические, 3) электрические. Все эти методы направлены на различные способы увеличения капель воды и её выделение из нефти.

После процесса обезвоживания и обессоливания, нефть может подвергаться дополнительному глубокому обессоливанию. Процесс дополнительного обессоливания похож на процесс обезвоживания. Очищенную от пластовой воды нефть смешивают с пресной водой, создавая искусственную эмульсию (но с низкой соленостью), которую затем разрушают. Выделившееся вода очищается на установке и может, например, закачивается в пласт для поддержания пластового давления и вытеснения нефти. ^

Фильтры
Фильтрация является самым простым механическим методом обезвоживания и обессоливания нефти. Нестойкие эмульсии можно разделить иногда путём пропускании их через фильтрующий слой. В качестве фильтрующего слоя используют: гравий, битое стекло, древесные и металлические стружки, стекловата и другие материалы.

Фильтры конструктивно выполняются обычно в виде колонн, причем размеры их зависят от объема прокачиваемой эмульсии, её вязкости и скорости движения. Нефтяная эмульсия вводится в колонну по входной линии и проходит через фильтр, где удерживается вода. Нефть свободно пропускается и отводится через линию выхода, а выделившаяся вода сбрасывается через низ колонны.

Обезвоживание нефти фильтрацией применяют очень редко из-за малой производительности, громоздкости оборудования и необходимости частой смены фильтрующего материала. Эффективность очистки нефтей фильтрацией значительно возрастает при сочетании с термохимическими методами.

I II III

Рисунок – Фильтр^ Это основной метод механического обезвоживания нефти – гравитационное отстаивание.

Применяют два вида режимов отстаивания – периодический и непрерывный, которые соответственно осуществляются в отстойниках периодического и непрерывного действия.

В качестве отстойников периодического действия обычно применяют цилиндрические отстойники – резервуары (резервуары отстаивания). Сырая нефть, подвергаемая обезвоживанию, вводится в резервуар при помощи распределительного трубопровода (маточника). Нефть выдерживают в резервуаре определенное время (48 ч и более). В процессе выдержки образуется соединение капель воды. Более крупные и тяжелые капли воды под действием сил тяжести (гравитации) оседают на дно и скапливаются в виде слоя подтоварной воды. Затем нефть собирается в верхней части резервуара. Отстаивание осуществляется при спокойном (неподвижном) состоянии обрабатываемой нефти.

Рисунок – Отстойники непрерывного действия

а – горизонтальны; б – вертикальный; в – наклоненный;

г – конический; 1 – поверхность раздела; 2 – перегородка

Отстойники непрерывного действия делятся на горизонтальные и вертикальные. В свою очередь, горизонтальные отстойники подразделяются на продольные и радиальные. Продольные горизонтальные отстойники в зависимости от формы поперечного сечения могут быть прямоугольные и круглые. В гравитационных отстойниках непрерывного действия отстаивание осуществляется при непрерывном потоке обрабатываемой жидкости. Отделение воды и нефти происходит также как и в отстойниках периодического действия. Эмульсия вводится в резервуар отстойника и расслаивается под действием силы тяжести в результате чего, на выходе получаем нефть и воду.

Однако гравитационный процесс отстоя холодной нефти – малопроизводительный и недостаточно эффективный метод обезвоживания нефти. Более эффективен горячий отстой обводненной нефти, когда её предварительного нагревают до температуры 50 – 70 градусов.

Такие методы могут применяться только в случае содержания воды в нефти в свободном состоянии или в состоянии крупнодисперсной нестабилизированной эмульсии.^ Химические методы основаны на использовании деэмульгаторов. Деэмульгаторы – это поверхностно-активные вещества, которые адсорбируются на поверхности глобул воды и образуют адсорбционный слой со значительно меньшей механической прочностью, что облегчает слияние капель и способствует разрушению нефтяных эмульсий. Иначе говоря эти вещества предназначены для слияния и выделения капель воды из нефти.

Эффект деэмульсации зависит от интенсивности перемешивания деэмульгатора с эмульсией и температуры смеси. Подача деэмульгаторов проводится дозировочными насосами.

Деэмульгатор должен выполнять следующие требования:

  • быть высокоактивным при малых удельных его расходах;
  • хорошо растворяться в воде или нефти;
  • быть дешевым и транспортабельным;
  • не ухудшать качества нефти;
  • не менять своих свойств при изменении температуры.

^ Этот метод был разработан довольно давно. Принцип внутритрубной деэмульсации самый простой и состоит в следующем. В межтрубное пространство эксплуатационных скважин или в начало сборного коллектора дозировочным насосом (в количестве 15 – 20 г на тонну нефтяной эмульсии) подается деэмульгатор, который сильно перемешивается с эмульсией в процессе её движения от забоя до УПН и разрушает её.

Эффективность внутритрубной деэмульсации зависит от, например, эффективности самого деэмульгатора, интенсивности и длительности перемешивания эмульсии с деэмульгаторами, количества воды, содержащейся в эмульсии, и температуры смешивания транспортируемой эмульсии.^ Холодный отстой заключается в том, что в нефть вводят деэмульгатор и в результате отстоя в сырьевых резервуарах из нефтн выделяется свободная вода. Этот метод аналогичен гравитационному методу обезвоживания, только с применением деэмульгаторов.

Характерная особенность процесса – отсутствие расхода тепла на указанный процесс. Но стоит отметить, методы деэмульсации нефти без применения тепла недостаточно эффективны. ^ В настоящее время для обезвоживания и обессоливания нефти в основном применяют обработку на топлохимических установках. Широкое применение этого метода обеспечивается благодаря возможности обрабатывать нефть с различным содержанием воды без замены оборудования и аппаратуры, простоте установки, возможности легко менять деэмульгатор в зависимости от свойств поступающей эмульсии. Однако теплохимнческий метод имеет ряд недостатков, например большие затраты на деэмульгаторы и повышенный расход тепла. На практике обессоливание и обезвоживание ведутся при температуре 50—100 градусов.

Термохимическое обезвоживание и обессоливание основано на нагреве эмульсии и химическом воздействии на неё деэмульгаторов. При нагреве эмульсии ее вязкость снижается, что облегчает отделение воды.

Рассмотрим следующую схему термохимического обезвоживания и обессоливания.

Нефть поступает в сырьевой резервуар (1), откуда насосом (3) перекачивается в теплообменники (4). В теплообменнике осуществляется нагрев нефти до температуры 40-60 градусов. Далее она поступает в паровой подогреватель (5), где происходит дополнительный нагрев паром до температуры 70-100 градусов.

Дозировочный насос (7) непрерывно из резервуара (6) подкачивает деэмульгатор через смеситель (2) к эмульсии.

Обработанная деэмульгатором и подогретая эмульсия направляется в отстойник (9) (сепаратор). Здесь вода отделяется от нефти и отводится в виде сточных вод. Из отстойника (9) обезвоженная, обессоленная и нагретая нефть через теплообменники (4) и холодильники (8) поступает в товарные резервуары (10), а затем направляется на переработку по нефтепроводу. В теплообменниках (4) нагретая нефть отдает тепло холодной нефти.

В рассмотренной схеме могут применятся комбинированные аппараты, в которых совмещены процессы подогрева, регенерации тепла нефти и отстоя при обезвоживании и обессоливании нефти.

Рисунок – Схема термохимического обезвоживания и обессоливания

Основные элементы: 1 – сырьевой резервуар; 2 – смеситель; 3 – насос; 4 – теплообменник; 5 – паровой подогреватель; 6 – резервуара с деэмульгатором; 7 – дозировочный насос; 8 – холодильники; 9 – отстойник; 10 – товарные резервуары.

^

Электрообработка эмульсий
Электрическое обезвоживание и обессоливание основано на следующем процессе. Между двумя электродами, при токе высокого напряжения (переменный 50 Гц, 15...44кВ), пропускают нефтяную эмульсию. В результате этого на противоположных концах каждой капли воды появляется разноименный электрический заряд. Благодаря этому капли воды будут взаимно притягиваться, а также плёнка нефти между этими каплями будет разрушаться. Иначе говоря, в результате действия электрического поля происходит укрупнение капель воды и оседание на дне сосуда.

На практике применяют также установки, объединяющие термохимическое обезвоживание с электрическим. Рассмотрим принцип работу одной из таких схем.

Рисунок – Схема термохимического обезвоживания и обессоливания

Основные элементы: 1 – насос; 2 – теплообменник; 3 – подогреватель; 4 – отстойник; 5 – электродегидратор; 6 – промежуточную емкость для обессоленной нефти; 7 – насос.

Сырьевая нефть вместе с деэмульгатором поступает на прием насоса (1) и через теплообменник (2) и подогреватель (3) направляется в отстойники (4) (термохимической части установки), откуда под остаточным давлением поступает в электродегидратор (его работа будет рассмотрена далее) (5). Перед попаданием в электродегндратор (5) в нефть вводятся деэмульгатор и пресная вода. В электродегидраторе (5) происходят разрушение эмульсий и выпадение освобожденной воды в процессе отстоя. Затем обессоленная нефть направляется в промежуточную емкость (6), а отсюда насосом (7) через теплообменники (где происходит отдача тепла сырой нефти) (2) отправляяется в товарные резервуары. Вода из отстойников (4) и электродегпдраторов (5) сбрасывается в виде сточных вод.

Для более глубокого обезвоживания и обессоливания устанавливают несколько электродегпдраторов, которые по форме могут быть горизонтальными, вертикальными, сферическими и др.

Электрообработка редко применяется на нефтепромыслах, не смотря на высокое качество отделения воды и солей от нефти.

Электродегидратор
Электродегидратор является основным элементом в процессе электрообработки нефти.

Рассмотрим для примера одно из возможных устройство электродегидраторов.

Рисунок – Электродегидратор

Основные элементы: 1, 2 – электроды; 3 – маточник.

Данное устройство имеет два электрода. Электроды подвешены горизонтально друг к другу, имеют форму прямоугольных рам, занимающих все продольное сечение электродегидратора. Эмульсия подается в электродегидратор через маточник (3), обеспечивающий равномерное поступление её по всему горизонтальному сечению аппарата.

В горизонтальных электродегидраторах, нефтяная эмульсия проходит через три зоны обработки. В первой зоне эмульсия проходит слой отстоявшейся воды, уровень которой поддерживается автоматически на 20—30 см выше маточника (3). В этой зоне нефтяная эмульсия подвергается водной промывке, в результате которой она теряет основную массу пластовой воды. Затем эмульсия, поднимаясь в вертикальном направлении с небольшой скоростью, последовательно подвергаясь обработке сначала в зоне слабой напряженности электрического поля между уровнем отстоявшейся воды и нижним электродом (2), а затем в зоне сильной напряженности, между электродами (2) и (1).

Равномерность поступления эмульсии по всему горизонтальному сечению аппарата, при движении потока вертикально вверх, и ступенчатое повышение напряженности электрического поля между электродами (2) и (1) от нуля до максимальной величины, позволяют в данном электродегидраторе эффективно обрабатывать нефтяную эмульсию любой обводнённой.

www.velikol.ru

Обезвоживание и обессоливание нефти – взаимосвязанные процессы, т

Обезвоживание и обессоливание нефти

Обезвоживание и обессоливание нефти – взаимосвязанные процессы, т.к. основная масса солей сосредоточена в пластовой воде, и удаление воды, приводит одновременно к обессоливанию нефти. Обезвоживания и обессоливания нефтей производится на установке подготовки нефти (УПН). Поступающая нефть на УПН уже подверглась первичной сепарации и прошла очитку от попутного газа и шлама на ДНС.

В основе процесса обезвоживания лежит дестабилизация (разрушение) нефтяных эмульсий (соединение нефти и воды), образовавшихся в результате закачивания в пласт через нагнетательные скважины воды.

Основные способы обезвоживания и обессоливания условно можно разделить: 1) механические 2) химические, 3) электрические. Все эти методы направлены на различные способы увеличения капель воды и её выделение из нефти.

После процесса обезвоживания и обессоливания, нефть может подвергаться дополнительному глубокому обессоливанию. Процесс дополнительного обессоливания похож на процесс обезвоживания. Очищенную от пластовой воды нефть смешивают с пресной водой, создавая искусственную эмульсию (но с низкой соленостью), которую затем разрушают. Выделившееся вода очищается на установке и может, например, закачивается в пласт для поддержания пластового давления и вытеснения нефти. ^

Фильтры
Фильтрация является самым простым механическим методом обезвоживания и обессоливания нефти. Нестойкие эмульсии можно разделить иногда путём пропускании их через фильтрующий слой. В качестве фильтрующего слоя используют: гравий, битое стекло, древесные и металлические стружки, стекловата и другие материалы.

Фильтры конструктивно выполняются обычно в виде колонн, причем размеры их зависят от объема прокачиваемой эмульсии, её вязкости и скорости движения. Нефтяная эмульсия вводится в колонну по входной линии и проходит через фильтр, где удерживается вода. Нефть свободно пропускается и отводится через линию выхода, а выделившаяся вода сбрасывается через низ колонны.

Обезвоживание нефти фильтрацией применяют очень редко из-за малой производительности, громоздкости оборудования и необходимости частой смены фильтрующего материала. Эффективность очистки нефтей фильтрацией значительно возрастает при сочетании с термохимическими методами.

I II III

Рисунок – Фильтр^ Это основной метод механического обезвоживания нефти – гравитационное отстаивание.

Применяют два вида режимов отстаивания – периодический и непрерывный, которые соответственно осуществляются в отстойниках периодического и непрерывного действия.

В качестве отстойников периодического действия обычно применяют цилиндрические отстойники – резервуары (резервуары отстаивания). Сырая нефть, подвергаемая обезвоживанию, вводится в резервуар при помощи распределительного трубопровода (маточника). Нефть выдерживают в резервуаре определенное время (48 ч и более). В процессе выдержки образуется соединение капель воды. Более крупные и тяжелые капли воды под действием сил тяжести (гравитации) оседают на дно и скапливаются в виде слоя подтоварной воды. Затем нефть собирается в верхней части резервуара. Отстаивание осуществляется при спокойном (неподвижном) состоянии обрабатываемой нефти.

Рисунок – Отстойники непрерывного действия

а – горизонтальны; б – вертикальный; в – наклоненный;

г – конический; 1 – поверхность раздела; 2 – перегородка

Отстойники непрерывного действия делятся на горизонтальные и вертикальные. В свою очередь, горизонтальные отстойники подразделяются на продольные и радиальные. Продольные горизонтальные отстойники в зависимости от формы поперечного сечения могут быть прямоугольные и круглые. В гравитационных отстойниках непрерывного действия отстаивание осуществляется при непрерывном потоке обрабатываемой жидкости. Отделение воды и нефти происходит также как и в отстойниках периодического действия. Эмульсия вводится в резервуар отстойника и расслаивается под действием силы тяжести в результате чего, на выходе получаем нефть и воду.

Однако гравитационный процесс отстоя холодной нефти – малопроизводительный и недостаточно эффективный метод обезвоживания нефти. Более эффективен горячий отстой обводненной нефти, когда её предварительного нагревают до температуры 50 – 70 градусов.

Такие методы могут применяться только в случае содержания воды в нефти в свободном состоянии или в состоянии крупнодисперсной нестабилизированной эмульсии.^ Химические методы основаны на использовании деэмульгаторов. Деэмульгаторы – это поверхностно-активные вещества, которые адсорбируются на поверхности глобул воды и образуют адсорбционный слой со значительно меньшей механической прочностью, что облегчает слияние капель и способствует разрушению нефтяных эмульсий. Иначе говоря эти вещества предназначены для слияния и выделения капель воды из нефти.

Эффект деэмульсации зависит от интенсивности перемешивания деэмульгатора с эмульсией и температуры смеси. Подача деэмульгаторов проводится дозировочными насосами.

Деэмульгатор должен выполнять следующие требования:

  • быть высокоактивным при малых удельных его расходах;
  • хорошо растворяться в воде или нефти;
  • быть дешевым и транспортабельным;
  • не ухудшать качества нефти;
  • не менять своих свойств при изменении температуры.

^ Этот метод был разработан довольно давно. Принцип внутритрубной деэмульсации самый простой и состоит в следующем. В межтрубное пространство эксплуатационных скважин или в начало сборного коллектора дозировочным насосом (в количестве 15 – 20 г на тонну нефтяной эмульсии) подается деэмульгатор, который сильно перемешивается с эмульсией в процессе её движения от забоя до УПН и разрушает её.

Эффективность внутритрубной деэмульсации зависит от, например, эффективности самого деэмульгатора, интенсивности и длительности перемешивания эмульсии с деэмульгаторами, количества воды, содержащейся в эмульсии, и температуры смешивания транспортируемой эмульсии.^ Холодный отстой заключается в том, что в нефть вводят деэмульгатор и в результате отстоя в сырьевых резервуарах из нефтн выделяется свободная вода. Этот метод аналогичен гравитационному методу обезвоживания, только с применением деэмульгаторов.

Характерная особенность процесса – отсутствие расхода тепла на указанный процесс. Но стоит отметить, методы деэмульсации нефти без применения тепла недостаточно эффективны. ^ В настоящее время для обезвоживания и обессоливания нефти в основном применяют обработку на топлохимических установках. Широкое применение этого метода обеспечивается благодаря возможности обрабатывать нефть с различным содержанием воды без замены оборудования и аппаратуры, простоте установки, возможности легко менять деэмульгатор в зависимости от свойств поступающей эмульсии. Однако теплохимнческий метод имеет ряд недостатков, например большие затраты на деэмульгаторы и повышенный расход тепла. На практике обессоливание и обезвоживание ведутся при температуре 50—100 градусов.

Термохимическое обезвоживание и обессоливание основано на нагреве эмульсии и химическом воздействии на неё деэмульгаторов. При нагреве эмульсии ее вязкость снижается, что облегчает отделение воды.

Рассмотрим следующую схему термохимического обезвоживания и обессоливания.

Нефть поступает в сырьевой резервуар (1), откуда насосом (3) перекачивается в теплообменники (4). В теплообменнике осуществляется нагрев нефти до температуры 40-60 градусов. Далее она поступает в паровой подогреватель (5), где происходит дополнительный нагрев паром до температуры 70-100 градусов.

Дозировочный насос (7) непрерывно из резервуара (6) подкачивает деэмульгатор через смеситель (2) к эмульсии.

Обработанная деэмульгатором и подогретая эмульсия направляется в отстойник (9) (сепаратор). Здесь вода отделяется от нефти и отводится в виде сточных вод. Из отстойника (9) обезвоженная, обессоленная и нагретая нефть через теплообменники (4) и холодильники (8) поступает в товарные резервуары (10), а затем направляется на переработку по нефтепроводу. В теплообменниках (4) нагретая нефть отдает тепло холодной нефти.

В рассмотренной схеме могут применятся комбинированные аппараты, в которых совмещены процессы подогрева, регенерации тепла нефти и отстоя при обезвоживании и обессоливании нефти.

Рисунок – Схема термохимического обезвоживания и обессоливания

Основные элементы: 1 – сырьевой резервуар; 2 – смеситель; 3 – насос; 4 – теплообменник; 5 – паровой подогреватель; 6 – резервуара с деэмульгатором; 7 – дозировочный насос; 8 – холодильники; 9 – отстойник; 10 – товарные резервуары.

^

Электрообработка эмульсий
Электрическое обезвоживание и обессоливание основано на следующем процессе. Между двумя электродами, при токе высокого напряжения (переменный 50 Гц, 15...44кВ), пропускают нефтяную эмульсию. В результате этого на противоположных концах каждой капли воды появляется разноименный электрический заряд. Благодаря этому капли воды будут взаимно притягиваться, а также плёнка нефти между этими каплями будет разрушаться. Иначе говоря, в результате действия электрического поля происходит укрупнение капель воды и оседание на дне сосуда.

На практике применяют также установки, объединяющие термохимическое обезвоживание с электрическим. Рассмотрим принцип работу одной из таких схем.

Рисунок – Схема термохимического обезвоживания и обессоливания

Основные элементы: 1 – насос; 2 – теплообменник; 3 – подогреватель; 4 – отстойник; 5 – электродегидратор; 6 – промежуточную емкость для обессоленной нефти; 7 – насос.

Сырьевая нефть вместе с деэмульгатором поступает на прием насоса (1) и через теплообменник (2) и подогреватель (3) направляется в отстойники (4) (термохимической части установки), откуда под остаточным давлением поступает в электродегидратор (его работа будет рассмотрена далее) (5). Перед попаданием в электродегндратор (5) в нефть вводятся деэмульгатор и пресная вода. В электродегидраторе (5) происходят разрушение эмульсий и выпадение освобожденной воды в процессе отстоя. Затем обессоленная нефть направляется в промежуточную емкость (6), а отсюда насосом (7) через теплообменники (где происходит отдача тепла сырой нефти) (2) отправляяется в товарные резервуары. Вода из отстойников (4) и электродегпдраторов (5) сбрасывается в виде сточных вод.

Для более глубокого обезвоживания и обессоливания устанавливают несколько электродегпдраторов, которые по форме могут быть горизонтальными, вертикальными, сферическими и др.

Электрообработка редко применяется на нефтепромыслах, не смотря на высокое качество отделения воды и солей от нефти.

Электродегидратор
Электродегидратор является основным элементом в процессе электрообработки нефти.

Рассмотрим для примера одно из возможных устройство электродегидраторов.

Рисунок – Электродегидратор

Основные элементы: 1, 2 – электроды; 3 – маточник.

Данное устройство имеет два электрода. Электроды подвешены горизонтально друг к другу, имеют форму прямоугольных рам, занимающих все продольное сечение электродегидратора. Эмульсия подается в электродегидратор через маточник (3), обеспечивающий равномерное поступление её по всему горизонтальному сечению аппарата.

В горизонтальных электродегидраторах, нефтяная эмульсия проходит через три зоны обработки. В первой зоне эмульсия проходит слой отстоявшейся воды, уровень которой поддерживается автоматически на 20—30 см выше маточника (3). В этой зоне нефтяная эмульсия подвергается водной промывке, в результате которой она теряет основную массу пластовой воды. Затем эмульсия, поднимаясь в вертикальном направлении с небольшой скоростью, последовательно подвергаясь обработке сначала в зоне слабой напряженности электрического поля между уровнем отстоявшейся воды и нижним электродом (2), а затем в зоне сильной напряженности, между электродами (2) и (1).

Равномерность поступления эмульсии по всему горизонтальному сечению аппарата, при движении потока вертикально вверх, и ступенчатое повышение напряженности электрического поля между электродами (2) и (1) от нуля до максимальной величины, позволяют в данном электродегидраторе эффективно обрабатывать нефтяную эмульсию любой обводнённой.

velikol.ru

Процесс - предварительное обезвоживание - нефть

Процесс - предварительное обезвоживание - нефть

Cтраница 1

Процесс предварительного обезвоживания нефти предусмотрен при обводненности поступающей продукции не менее 15 - 20 % и осуществляется, как правило, без ее дополнительного нагрева с применением деэмульгаторов, высокоэффективных при умеренных и низких температурах.  [1]

Для повышения эффективности процесса предварительного обезвоживания нефти разработана технология и технические решения, позволяющие в короткие сроки с высоким технико-экономическим эффектом осуществить внедрение процесса предвартельного сброса.  [2]

Для аппаратуры и трубопроводов, обеспечивающих проведение процесса предварительного обезвоживания нефти, с целью сокращения потерь тепла должна предусматриваться тепловая изоляция.  [3]

Несмотря на единичные примеры успешного применения методов и средств очистки сточных вод в процессе предварительного обезвоживания нефти, работы в этой области еще далеки от завершения. Проведенных исследований для определения всех условий и возможностей их применения еще явно недостаточно.  [4]

Институтами ШИИСПТнефть и ТатНИИнефтемаш разработан аппарат АСП-6300 / 6 для очистки пластовой воды в процессе предварительного обезвоживания нефти.  [5]

Рассмотренный нами выше метод введения деэмульгаторов в рабочую жидкость ГПНУ и промывка поднимаемой из скважины смеси жидкостей через слой пластовой воды позволяет чрезвычайно упростить процесс предварительного обезвоживания нефти.  [6]

ПДК - в условиях ДНС и ГЗНУ и 320 13 млн. м3 ( или 8 %) качественных пластовых вод получено на ЦПС в процессе предварительного обезвоживания нефти.  [8]

Если количество добавляемой промывочной воды достаточно для обращения фаз, то основное количество воды выделяется из эмульсии сразу после турбулентного перемешивания практически без отстоя. Обезвоживание термохимическим методом дез обращения фаз возможно только при значительно большем времени отстоя эмульсии. Таким образом, технологию с обращением фаз следует рекомендовать как достаточно эффективное средство интенсификации процессов предварительного обезвоживания нефти. Как и в случае коалесцентного укрупнения обратной эмульсии, в технологии с обращением фаз сущзетвует оптимальная интенсивность турбулентного перемешивания, которая увеличивается с уменьшением времени перемешивания, увеличинием вязкости нефтяной фазы, уменьшением дисперсности капель внутренней фазы эмульсии. Расчет линейной скорости движения эмульсии в трубопроводе по данным, полученным в сосуде с мешалкой на основе моделирования [5], показывает, что оптимальная интенсивность турбулентного перемешивания эмульсии в технологии с обращением фаз имеет большее значение, чем в процессах трубной деэмульсации. Увеличение длительности турбулентного перемешивания эмульсии с обращением фаз ( рис. 3) увеличивает глубину обезвоживания эмульсии при длительном отстое и одновременно уменьшает количество дренажной воды, которая отделяется при минимальном времени отстоя эмульсии. По-видимому, при этом образуются более стойкие прямые эмульсии и одновременно усиливаются процессы коалесцентного укрупнения капель. Глубина обезвоживания нефти по технологии с обращением фаз ( рис. 4) увеличивается с увеличением размеров капель внутренней фазы обратной эмульсии. Чем больше размеры - капель обратной эмульсии, тем с меньшей интенсивностью и с большей глубиной может быть осуществлена технология с обращением фаз, что имеет немаловажное значение для совместной подготовки воды и нефти при интенсивном перемешивании.  [9]

Страницы:      1

www.ngpedia.ru