Сбор и подготовка скважинной продукции. Растворимость парафина в нефти


Парафин растворимость в нефтяных фракциях

    Характер кристаллизации парафинов (церезинов) при охлаждении топлив и масел зависит от скорости зарождения кристаллизационных центров и скорости роста кристаллов. Чем ниже температура, тем выше скорость зарождения центров кристаллизации, но меньше скорость роста кристаллов. Поэтому обычно при относительно высоких температурах образуется небольшое число крупных кристаллов, а при низких температурах — много мелких. Кроме того, на кристаллизацию оказывают влияние свойства кристаллизующихся компонентов (температура и теплота плавления) и среды (вязкость) их растворимость в данной нефтяной фракции наличие в составе нефтепродукта поверхностно-активных веществ и различных примесей скорость охлаждения нефтепродукта, степень перемешивания и разность между температурой нефтепродукта и температурой насыщения. [c.62]

    Комплексы мочевины могут быть получены различными путями. Методы их получения избираются в зависимости от растворимости и молекулярного веса изучаемого продукта, а также от поставленной задачи. Сюда относится получение высокого выхода комплекса, т. е. максимального выделения н. парафинов из нефтяных фракций и частичного их удаления, для понижения температуры застывания исходного продукта или для получения самого комплекса высокой чистоты. Методы комплексообразования мочевины с органическими соединениями, описанные в литературе, можно разделить на три группы а) применение метанольного раствора мочевины [10, И, 21] б) применение сухой мочевины [14, 22, 23] и в) применение водного раствора мочевины [24, 25]. Различные варианты этих методов описаны в патентной литературе [26—30]. Любой из них имеет своп преимущества и недостатки, которые долн ны быть учтены в каждом конкретном случае. [c.209]

    Растворимость парафина в органических веществах вообще невелика, за исключением сероуглерода, в котором растворяется 12 частей парафина. В легком бензине, кипящем до 75°, растворяется 11,7 частей. Во всех кислородсодержащих растворителях растворимость около 1% и меньше, чем часто пользуются для отделения парафина от более растворимых масел, сопровождающих парафин. Растворимость в нефтяных фракциях падает с увеличением молекулярного веса растворителя. При 20° бензин растворяет около 15,5% парафина, керосин с удельны л весом около 0,80 до 3,5%, и соляровое масло удельного веса от 0,88 до 3,6%. Из всех растворителей при охлаждении выделяются кристаллы парафина ромбической системы. [c.55]

    Минеральное масло. Это вещество, растворимое в стандартном лигроине (бензине-растворителе, к-пентане или изопентане) [12—13] и не удаляемое из раствора такими адсорбентами, как фуллерова земля, активированный уголь или силикагель. Как указано выше, эта нефть, но-видимому, не очень отличается от любой другой циклической нефтяной фракции того же молекулярного веса, содержащей обычные компоненты, включая даже парафины [14—15]. [c.536]

    В масляных фракциях нефти слабо растворяются твердые углеводороды. Они способны выделяться при охлаждении этих фракций в виде кристаллов. Растворимость уменьшается с увеличением молекулярного веса твердых углеводородов, повышением их концентрации и температуры кипения масляных фракций. С повышением температуры растворимость парафинов и церезинов увеличивается и при температуре плавления они смешиваются со всеми нефтяными фракциями во всех соотношениях. [c.90]

    Авторы работы [76], в которой рассмотрена растворимость индивидуальных н-алканов и твердых углеводородов нефти в растворителях разной природы, предлагают расчет растворимости парафинов в нефтяных фракциях проводить по формуле  [c.61]

    При температуре плавления парафин и церезин легко растворяются в любых отношениях во всех нефтепродуктах. Растворимость уменьшается при понижении окружающей температуры и повышении плотности и молекулярного веса нефтяной фракции. [c.367]

    В процессах депарафинизации нефтяных продуктов, особенно в тех, которые осуществляются путем охлаждения и кристаллизации, важнейшую роль играет растворимость парафина как в масле своей фракции, т. е. в масляной части нефтяного продукта, в котором этот парафин содержится, так и в различных растворителях, применяемых в процессах депарафинизации. При этом имеют значение величина растворимости парафина в тех или иных условиях и характер изменения ее с температурой, или температурная кривая растворимости. [c.81]

    Согласно исследованиям ГрозНИИ растворимость парафинов и церезинов в нефтяных фракциях характеризуется следующим основными положениями  [c.75]

    Растворимость парафинов и церезинов падает с увеличением удельного веса и температуры кипения нефтяной фракции. [c.76]

    Освобождение масел от содержащихся в них парафинов и церезинов является важной проблемой технологии производства масел. Согласно исследованиям ГрозНИИ растворимость парафинов и церезинов в нефтяных фракциях характеризуется следующими основными положениями  [c.249]

    Нафтеновые кислоты нефтяных фракций окисляются достаточно легко. Нафтеновые кислоты образуют металлические соли, эфиры, амиды эти соединения повышают активность индуцированных ферментов, окисляющих парафины. Нафтенаты щелочных, щелочноземельных и тяжелых металлов, обладая различной растворимостью в воде и нефтепродуктах, изменяют устойчивость эмульгированных частиц, что влияет на работу биологических окислителей [25 ]. Биохимическая характеристика стоков приведена в табл. 1.3. [c.32]

    Согласно исследованиям ГрозНИИ растворимость парафинов и церезинов в нефтяных фракциях подчиняется общей теории растворимости твердых веществ в жидкости и характеризуется следующими основными положениями  [c.135]

    Поскольку растворимость всех компонентов нефтяного сырья по мере утяжеления его фракционного состава снижается, наиболее высококипящему сырью должен соответствовать растворитель с наименьшим содержанием в нем компонента, осаждающего парафин. Содержание в растворителе осаждающего компонента подбирают экспериментально. В растворителях на основе ацетона его содержание в смеси с толуолом или бензолом обычно составляет 30—50 объемн.%, а при переработке легких дистиллятов (фракция 290—430°С) может достигать 55 объемн.%. Для получения парафина из дизельного топлива содержание ацетона в смеси с толуолом может быть до 60—62 объемн.%. [c.137]

    Необходимо помнить, что не все битумы взаимно растворимы битум и каменноугольный пек, например, могут хорошо смешиваться только в ограниченной области концентраций аналогично битумы и нефтяные парафины также образуют несовместимую пару глубоко окисленный битум проявляет тенденцию к загустеванию или к гелеобразованию, если его смешать с фракциями светлых нефтяных дистиллятов с относительно высокой анилиновой точкой. При попытках смешения несмешиваемых (и в этом смысле несовместимых) битумов происходит их загущение, синерезис и выделение в осадок нерастворимых фракций. Если, однако, два хорошо смешивающихся битума расплавить и смешать, то свойства полученной смеси будут близки к средним показателям исходных битумов. [c.100]

    Растворители первой группы являются неполярными соединениями (различные жидкие углеводороды, четыреххлористый углерод и др.) или соединениями, обладающими относительно небольшим дипольным моментом (хлороформ, этиловый эфир и др.). Они смешиваются с углеводородами фракций нефти в любых соотношениях. Общим для растворителей этой группы является то, что притяжение между молекулами растворителя и растворяемых фракций нефти, необходимое для получения раствора, создается в результате дисперсионного эффекта Лондона. Углеводороды нефти с высокой температурой плавления имеют ограниченную растворимость в упомянутых выше растворителях. Согласно исследованиям А. Н. Саханова и Н. Васильева 12] растворимость указанных углеводородов (парафинов и церезинов) в нефтяных [c.159]

    Для вытеснения высококипящих нефтяных углеводородов можно также применять и низшие спирты (такие, как метиловый и этиловый), что и делают многие исследователи, так как эти спирты значительно легче удалить непосредственно отгонкой однако ввиду того, что эти спирты плохо смешиваются с ароматической частью высококипящих нефтяных дестиллатов, для улучшения растворимости прибавляют бензол (25% к метиловому [39] или этиловому [54] или 50% к этиловому [55] спиртам). При анализе путем хроматографической адсорбции высококипящих нефтяных погонов иногда удается выделить узкие фракции, в каждой из которых содержатся углеводороды примерно с одинаковым числом бензольных колец. В этом случае, после вымывания парафино-нафтеновой части парафиновыми углеводородами дальнейшее вымывание хроматограммы осуществляют бензолом [56—59], а вытеснение — низшим спиртом или пиридином [60—62]. [c.50]

    Ацетон, диметилкетон — простейший кетон группы кетонов. Ацетон — бесцветная, легко подвижная жидкость с характерным запахом, слегка напоминающим запах мяты. Обладает сравнительно низкой растворяющей способностью на холоду (при температурах около нуля и ниже) по отношению к ароматическим углеводородам, входящим в состав масляных нефтяных фракций. Еще хуже растворимы в нем парафино -нафтено-вые углеводородЬ и практически нерастворимы твердые углеводороды — парафины и церезины. [c.197]

    Вопросы, касающиеся скорости реакции и механизма ком-плексообразования при взаимодействии нефтяных фракций с водно-этанольно-карбамидным раствором, были рассмотрены Б. В. Кли-менком и Л. Н. Пиркис [12], которые указывают, что реакция комплексообразования протекает на границе раздела двух жидких фаз, точнее, в тонком слое, прилегающем к поверхности раздела фаз. В области малых концентраций этанола (ввиду малой взаимной растворимости фаз) это очень тонкий слой. При больших концентрациях этанола взаимная растворимость фаз увеличивается, вследствие чего увеличивается толщина слоя, в котором происходит взаимодействие н-парафинов и карбамида, что в свою очередь приводит к возрастанию скорости комплексообразования (рис. 9). Скорость реакции комплексообразования возрастает также ири перемешивании и ири появлении микрокристаллической фазы комплекса. Поскольку эта фаза в исходной системе отсутствует и накапливается по мере осуществления реакции, ее действие увеличивается со временем, и, таким образом, реакция носит автокаталитический хдрактер. Этим, в частности, может быть объяснено скачкообразное развитие реакции после индук- [c.28]

    Вондрачек и Достал [1958] показали, что хорошую растворимость ароматических углеродов в феноле можно использовать при очистке парафинов. Чистый гексан можно получить при фракционированной перегонке нефтяной фракции, предварительно проэкстрагированной фенолом. С помощью этого метода были получены также очень чистые препараты 2-метилпентана, метил-циклогексана, гептана, 3-метилпентана и циклогексана. [c.270]

    В нефти парафины находятся в растворенном и взвешенном состоянии. На холоде растворимость их в нефти и нефтяных фракциях невелика, но при нагревании около 40 С парафины неограниче1шо растворяются в них. Так как в недрах Земли повышенная температура, то в нефтях парафины находятся в растворённом состоянии, выделяясь из них в виде твёр- [c.33]

    Фенолы — важнейший класс оксиароматических соединений, характеризуюш,ихся наличием гидроксильной группы, замещающей водород бензольного ядра в зависимости от числа гидроксильных групп различают одноатомный фенол, оксибензол или карболов то кислоту и многоатомные фенолы. Фенол обладает ограниченной способностью растворять в себе нефтепродукты при обычной температуре в феноле хорошо растворяются ароматические соединения и плохо растворимы парафино-нафтено-вые, а также смолистые соединения, входящие в состав нефтепродуктов. Асфальтены при температурах процесса обработки почти не растворимы в феноле. Растворяющая способность фенола по отношению к различным нефтяным фракциям характеризуется следующими значениями критических температур растворения [19]  [c.91]

    Растворимость углеводородов фракций нефти в полярных растворителях зависит от влияния полярных и в еще большей степени дисперсионных сил. Углеводородные радикалы при функциональной группе влияют на действие дисперсионных сил. Растворители, имеющие одинаковую функциональную группу, но различные по длине алкильные цепи углеводородных радикалов, будут по-разному взаимодействовать с углеводородами нефтяных фракций, и при данной температуре растворитель, имеющий более длинный алкильный радикал, будет растворять в большей степени углеводороды фракции вследствие большого влияния дисперсионного эффекта. Например, при О °С растворимость парафина в ацетоне равно 0,09 г на 100 г, метилэтилкетоне 0,17 г на 100 г и в н-ме-тилпропилкетоне 0,35 г на 100 г. [c.103]

    На холоде растворимость парафина в нефтяных фракцижс невелика. Но при нагревании парафины неограниченно растворяются во всех фракциях. Так как нефти в недрах земли имеют повышенную температуру, можно думать, что в таких нефтях парафины находятся в растворённом состоянии, выделяясь из них в виде твёрдой фазы уже после извлечения нефти на поверхность. Кристаллы парафина имеют вид пластинок. [c.16]

    В процессах депарафинизации и обезмасливання нефтяных продуктов, особенно при осуществлении их путем охлаждения и кристаллизации, важнейщую роль играет растворимость парафина в масле своей фракции (т. е. в масляной части нефтяного продукта, в котором этот парафин содержится) и в применяемых растворителях. При этом больщое значение имеет величина раствори- [c.68]

    Частично нефть на земной поверхности подвергается также фотохимическому разложению. В нефтях, богатых легкой фракцией, существенную роль играют и более высокомолекулярные углеводороды (С12-С27), состоящие из нормальных алканов и изоалканов в соотнощении 3 1. Для них характерны изопреновые структуры, общее их содержание в нефти 0,2-3,0%. Углеводороды фракции, кипящей при температуре выше 200 °С, практически нерастворимы в воде, и их токсичность выражена гораздо слабее, чем у более низкомолекулярных. Содержание твердых углеводородов (парафина) в нефти - важная характеристика при изучении нефтяных разливов на почвах. Твердый парафин нетоксичен для живых организмов, но вследствие высоких температур застывания (+18 °С) и растворимости в нефти (в условиях земной поверхности) он переходит в твердое состояние, лишая нефть подвижности. [c.17]

    Выше при рассмотрении методов переработки парафинов было показано, что дробная кристаллизация яв.ляется эффективным способом разделеиия низкокипящего парафина на его компоненты по точкам плавления. Зависимость между точками плавления и растворимостью, представленная графически на фиг. 7, показывает, что применение этого ироцесса к высококипящим фракциям но приводит к снижению избирательности. Было показано, что перегонка низкокипящего иарафина с преобладающим содержанием нормальных алканов, если она осуществляется с достаточной четкостью, дает почти равноценное фракционирование ]ю точкам илавления. Перегонка может использоваться и для переработки высококипящих парафинов, но с увеличением многообразия типов углеводородов, содержащихся в сырье, четкость разделения по точкам плавления резко снижается. Потение как способ фракционирования по точкам плавления оказалось сравнительно мало эффективным даже для низкокипящих парафинов алканового типа и практически совсем не применимо для разделения сложных смесей, содержащихся в вы-сококинящих парафинах. Поэтому фракционирование нефтяных парафинов [c.38]

    При общем рассмотрении вопроса о применимости дробной кристаллизации И перегонки для фракционирования нефтяных парафинов оказалось, что характеризовать парафиновые фракции, получаемые при помощи любого процесса или их сочетания, можно по их точкам плавления и вязкости. Естественно, что в связи с практической важностью точек плавления для потребителей и наличием четкой зависимости между точками плавления и растворимостью, а следовательно, и с возможностью промышленного осуществления дробной кристаллизации выбор был остановлен именпо на этом показателе. [c.39]

    Углубление отбора дистиллятных фракций до 450—500 °С привело к тому, что соединения, входящие в гудрон, имеют минимальную молекулярную массу, равную 400 а. е. м. и содержат минимум тридцать атомов углерода в молекуле. Выделение индивидуальных веществ из остаточных фракций нефти очень сложно. Поэтому химической характеристикой состава тяжелых нефтяных остатков является количественное содержание в них групповых компонентов. Деление гудронов (битумов) на компоненты было предложено еще в начале века И. Ричардсоном, а затем усовершенствовано И. Маркуссоном и с небольшими изменениями используется в наши дни. Оно заключается в отделении асфальтенов осаждением н-алканами (С5 — Св) от растворимых в них мальтенов. Мальтены адсорбционной хроматографией на силикагеле или оксиде алюминия делят еще на 5 компонентов парафино-нафтеновые, моно- и бициклоароматические соединения, толуольные и спиртотолуольные смолы. Парафино-нафтеновые соединения иногд разделяют комплексообразованием с карбамидом и тиокарбамидом на к-алканы, изоалканы и полициклоалканы (полициклонафтены). [c.273]

chem21.info

Растворимость парафина - Справочник химика 21

    Для упрощения нахождения величины растворимости парафина по этому уравнению Дэвис [37] составил номограмму (рис. 12). [c.83]     В процессах депарафинизации нефтяных продуктов, особенно в тех, которые осуществляются путем охлаждения и кристаллизации, важнейшую роль играет растворимость парафина как в масле своей фракции, т. е. в масляной части нефтяного продукта, в котором этот парафин содержится, так и в различных растворителях, применяемых в процессах депарафинизации. При этом имеют значение величина растворимости парафина в тех или иных условиях и характер изменения ее с температурой, или температурная кривая растворимости. [c.81]

    Однако наши исследования и проведенная проверка уравнения Берна показали, что изменение логарифма растворимости парафина по температуре отклоняется от закона прямой, вследствие чего предложенные Берном и Дэвисом уравнение и номограмма могут рассматриваться только как приближенные, приемлемые лишь для ориентировочных расчетов. [c.83]

    Растворимость парафинов в бензиновых фракциях увеличивается с повышением молекулярного веса фракции примерно до 90, после чего снова начинает снижаться. Поэтому особенно пригодны в качестве [c.46]

    Под растворимостью парафинов, так же как и под растворимостью других веществ вообще, подразумевается наибольшее количество вещества, которое способно раствориться в рассматриваемом растворителе при данной температуре. Другими словами, растворимость может быть определена как концентрация вещества, образующая в растворителе при данной температуре насыщенный раствор. Величина растворимости может выражаться в тех же единицах, как и концентрация, например количеством долей растворенного вещества в единице количества раствора. Числовое значение растворимости обычно обозначается буквой х. Часто величина растворимости выражается количеством долей растворенного вещества, приходящегося на единицу чистого растворителя и обозначается в этом случае буквой г. Растворимость может выражаться также молярными долями или х . Пересчет числовых значений растворимости из одной системы и другую проводится по следующим соотношениям  [c.81]

    Растворимость парафина в углеводородных растворителях [c.82]

    В отношении растворимости парафина имеются следующие основные положения  [c.82]

    Эти положения о растворимости парафинов впервые сформулированы и экспериментально доказаны в ГрозНИИ в 1924 г. А. Н. Сахановым и Н. А. Васильевым [35]. При этом был окончательно решен и доказан бывший до того времени спорным вопрос [c.82]

    Необходимо отметить, что растворимость парафина в углеводородных растворителях в значительной мере зависит также и от химической природы растворителя. При этом в алканах в нафтенах парафины растворяются лучше, чем в ароматических углеводородах. [c.83]

    Возрастание растворимости парафина с понижением молекулярного веса углеводородного растворителя наблюдается только [c.83]

    Растворимость парафинов в сжиженном пропане изучал один пз авторов настоящей монографии [40]. Были исследованы растворимости парафинов пл от 35 до 69°, выделенных из 50-градусных фракций от разгонки грозненской парафинистой нефтесмеси в пределах 300—550°. Полученные данные показаны в габл. 12. [c.84]

    Растворимость парафинов различного фракционного состава в пропане [c.85]

    Растворимость парафинов в масле своей [c.85]

    Широко поставленные и обстоятельно выполненные исследования растворимости парафинов с различными температурами плавления в весьма разнообразных растворителях, как углеводородных, так и полярных, провел Пул с сотрудниками [43]. Параллельно исследовали также и растворимости масла. Работы Пула имели целью изыскание для процесса депарафинизации [c.86]

    Растворимость парафинов туймазинской нефти при различных температурах [44] [c.88]

    Для растворителей, применяемых при депарафинизации, весьма важное значение имеет их избирательная растворяющая способность в отношении низкозастывающих и застывающих компонентов обрабатываемого сырья. Под избирательной способностью растворителя подразумевается различие растворимости в нем этих компонентов. От избирательной способности применяемого растворителя в большой мере зависит эффективность того или иного процесса депарафинизации. Для углеводородных и других растворителей, в которых масло растворимо во всех соотношениях при любой температуре, избирательная способность определяется растворимостью в них парафина. При этом, чем выше растворимость парафина, тем хуже избирательная способность. Для растворителей же, в которых масло растворяется ограниченно, избирательная способность выражается разностью растворимостей в них низкозастывающего компонента и парафина или их отношением. [c.89]

    Величина ТЭД зависит от растворимости парафина в данном растворителе при температуре депарафинизации и от кратности разбавления растворителем. Чем выше растворимость парафина, тем больше его будет оставаться в растворенном состоянии в де-парафинированном растворе, а следовательно, и в депарафини-рованном масле, что будет приводить к возрастанию температуры застывания масла, а следовательно, и к понижению ТЭД. То же будет происходить и при увеличении разбавления. [c.102]

    Предположим, что имеется раствор парафина некоторой определенной концентрации х. Растворимость парафина в данном растворителе при темнературе I обозначим х . Растворимость парафина изменяется с изменением температуры, что может быть [c.108]

    В масляных фракциях нефти слабо растворяются твердые углеводороды. Они способны выделяться при охлаждении этих фракций в виде кристаллов. Растворимость уменьшается с увеличением молекулярного веса твердых углеводородов, повышением их концентрации и температуры кипения масляных фракций. С повышением температуры растворимость парафинов и церезинов увеличивается и при температуре плавления они смешиваются со всеми нефтяными фракциями во всех соотношениях. [c.90]

    С учетом изложенного процесс кристаллизации будет протекать следующим образом. По достижении температуры, цри которой растворимость парафина в мелкодисперсном состоянии станет ниже концентрации парафина в растворе, начнут воз- [c.110]

    Имеется общее правило, согласно которому избирательная способность растворителя при повышении его растворяющей способности ухудшается. При понижении температуры избирательная способность растворителя улучшается, поскольку при понижении температуры его общая растворяющая способность уменьшается и растворимость парафина снижается при этом быстрее, чем масел. Избирательная способность растворителя зависит также и от природы обрабатываемого сырья. В отношении легкого масляного сырья с относительно низкими пределами кипения она оказывается более низкой, чем в отношении тяжелого высококипящего сырья. На избирательной способности растворителя сказывается также и хиьшческий состав сырья. [c.89]

    Метод (ГОСТ 11851—66) основан на малой растворимости парафина при низких температурах в определенной группе органических растворителей. [c.192]

    Значительное преимущество метода по сравнению с депарафинизацией с помощью лигроина состоит в более низкой растворимости парафина в смеси, что позволяет получить конечное масло с температурой застывания, близкой к температуре депарафинизации. Если желают получить очищенный парафин обычного типа, фильтрование обычно проводят при довольно высокой температуре (около 0° С), что позволяет получить нужный продукт, а затем повторяют эту операцию с оставшимся маслом, для того чтобы получить смазочное масло с нужной температурой застывания. Парафин, отделенный при втором фильтровании, представляет парафиновый гач сомнительной ценности. [c.527]

    Открытие того, что растворимость парафина в парафинистых лигроинах по мере понижения молекулярного веса лигроина проходит через максимум и снижается до минимальных значений для бутана и пропана, привело к развитию процесса пропановой депарафинизации [99—101]. Масло остается растворенным в пропане при очень низких температурах, в то время как обычные парафины осаждаются в легко поддающейся фильтрованию форме [102] па кристаллическую форму влияют температура, количество растворителя, количество кристаллизуемого вещества и кристаллические яды. [c.528]

    Плохая растворимость парафинов в нитрометане и сравнительно легкая растворимость в нем ароматических углеводородов явилась основанием для применения нитропарафннов в качестве селективного растворителя при рафинировании смазочных масел [151]. [c.317]

    Растворимость парафинов в низкомолекулярных жидких алка-нах изучали Вебер и Дюнлоп [38]. Результаты, полученные для парафина с ian = 56°, помещены в табл. И. [c.83]

    Растворимость парафина с температурой плавления 56° в визкомолекулярных жидких углеводородных растворителях [38] [c.83]

    При процессах депарафинизации особенный интерес представляют температурные кривые растворимости парафинов в масле своей фракции. В частности, величина этой растворимости определяет связь между содержанием парафина в данном продукте и его температурами насыщения и застывания. Температурные кривые растворимости парафинов в масле своей фракции исследованы нами для некоторых парафинистых продуктов различг ного фракционного состава как дистиллятного, так и остаточного происхождения. Полученные данные показаны на рис. 14. Кривая для парафинового дистиллята 1 оказалась в области температур до 25°, близкой к аналогичной кривой, составленной в 1934 г. [c.85]

    Растворимости парафинов, выделенных из туймазинской нефти, с температурами плавления 42—44,6, 51,6 и 58—61° в кетонах и их смесях с бензолом и толуолом исследованы во ВНИИ НП Е. В, Вознесенской, Г. В. Шахсуваровой и Г. Н. Сочевко [44]. Основные результаты показаны в табл. 14. [c.87]

    Назначение растворителей при депарафинизации. Основным назначением растворителей при процессах депарафинизации является снижение вязкости обрабатываемого продукта для облегчения отделения выкристаллизовавшегося парафина от депарафинируемого масла. Чтобы выполнить это назначение, сам растворитель должен иметь достаточно низкую вязкость. Вместе с тем растворитель должен иметь высокую избирательную способность, т. е, хорошо растворять при температуре депараь, финизации низкозастывающие компоненты сырья, обладая при этом минимальной растворяющей способностью в отношении парафинов. Если растворитель при температуре депарафинизации будет не полностью растворять масла, то они, выделяясь вместе с парафином в виде вязкой и клейкой массы, при фильтрации будут создавать непроницаемый осадок, через который дальнейшая фильтрация идти не сможет. При депарафинизации же центрифугированием в петролатум будет уходить часть масла, что снизит выход. Высокая растворимость парафина в растворителе будет препятствовать достаточно глубокому удалению его из депарафинируемого продукта, и потребуются пониженные температуры депарафинизации для достижения нужной температуры застывания целевого масла. Кроме того, растворители [c.99]

    Выделение твердой фазы и снижение концентрации будут-идти на данной стадии процесса кристаллизации двумя путями во-первых, в результате образования новых кристаллических зародышей, во-вторых, вследствие отложения твердой фазы на поверхности уже имеюш,ихся кристаллов. Концентрация napa фина в растворе за счет выделения его на поверхности ранее образовавшихся кристаллов будет снижаться со скоростью, определяемой уравнением (6. III). И если охлаждение раствора будет идти медленно, а следовательно, и растворимость парафина будет снижаться также медленно, то при условиях, вьггекаюш их из уравнения (6. III) и обеспечиваюпщх достаточно высокую скорость выделения из раствора твердой фазы, уменьшение коН центрации раствора может обогнать обусловливаемое охлажде нием уменьшение растворимости, в результате чего степень пре-сыш,ения раствора (х—х ), входящая в уравнение (1. III), может понизиться до нуля, что вызовет прекращение новообразования зародышей. Дальнейшая кристаллизация и выделение из раствора твердой фазы протекает только на поверхности ранее образовавшихся кристаллов, и они растут в размере, не увеличиваясь по количеству. Следовательно, нри медленном охлаждении и условиях, обеспечивающих высокую скорость выделения твердой фазы, в растворе образуется небольшое число крупных кристаллов. [c.111]

    Принцип процесса. Эмульсионное обезмасливание гачей основано на способности парафина, выкристаллизовывающегося из гача в интервале между температурами плавления и перехода (в котором парафин находится в пластичном волокнистом аллотропном состоянии), комковаться при механическом перемешивании, собираясь в крупные комки, и отделяться таким образом от жидкой фазы — оттека. Содержание растворенного парафина в части гача, остающейся в жидком состоянии, будет отвечать растворимости парафина в масле при данной температуре. Выделяющиеся из гача комки не являются чистым парафином, а содержат существенное количество масла. Эти комки концентрата парафина легко могут быть отделены от оттека простейшей фильтрацией через сетку или обработкой на фильтрующей центрифуге. [c.229]

    Прямые соединяющие линии на рис. И не оканчиваются точно на кривой, разграничивающей фазы. Слева эти линии оканчиваются, не доходя до кривой, потому что слой растворителя имеет более высокую концентрацию масла, когда в нем растворены только ароматические компоненты масла, чем в том случае, если бы в нем были растворены менее растворимые парафины (для чего требуется значительно большее количество растворителя). Подобно этому справа соединяющие линии проходят немного за пределы граничной кривой, потому что нерастворсниая парафиновая часть масла представляет собой худший растворитель для метанола, чем всеУмасло в целом. Концы соединяющих линий образуют другую кривую (не показанную на диаграмме), являющуюся бинодальной кривой, положение которой неопределенно, так как оно зависит от соотношения объемов слоев. Такая неясность является результатом того, что сложная смесь рассматривается в качестве одного компонента. [c.174]

chem21.info

Растворимость парафинов - Справочник химика 21

    Растворимость парафинов в бензиновых фракциях увеличивается с повышением молекулярного веса фракции примерно до 90, после чего снова начинает снижаться. Поэтому особенно пригодны в качестве [c.46]     В процессах депарафинизации нефтяных продуктов, особенно в тех, которые осуществляются путем охлаждения и кристаллизации, важнейшую роль играет растворимость парафина как в масле своей фракции, т. е. в масляной части нефтяного продукта, в котором этот парафин содержится, так и в различных растворителях, применяемых в процессах депарафинизации. При этом имеют значение величина растворимости парафина в тех или иных условиях и характер изменения ее с температурой, или температурная кривая растворимости. [c.81]

    Под растворимостью парафинов, так же как и под растворимостью других веществ вообще, подразумевается наибольшее количество вещества, которое способно раствориться в рассматриваемом растворителе при данной температуре. Другими словами, растворимость может быть определена как концентрация вещества, образующая в растворителе при данной температуре насыщенный раствор. Величина растворимости может выражаться в тех же единицах, как и концентрация, например количеством долей растворенного вещества в единице количества раствора. Числовое значение растворимости обычно обозначается буквой х. Часто величина растворимости выражается количеством долей растворенного вещества, приходящегося на единицу чистого растворителя и обозначается в этом случае буквой г. Растворимость может выражаться также молярными долями или х . Пересчет числовых значений растворимости из одной системы и другую проводится по следующим соотношениям  [c.81]

    Растворимость парафина в углеводородных растворителях [c.82]

    В отношении растворимости парафина имеются следующие основные положения  [c.82]

    Эти положения о растворимости парафинов впервые сформулированы и экспериментально доказаны в ГрозНИИ в 1924 г. А. Н. Сахановым и Н. А. Васильевым [35]. При этом был окончательно решен и доказан бывший до того времени спорным вопрос [c.82]

    Для упрощения нахождения величины растворимости парафина по этому уравнению Дэвис [37] составил номограмму (рис. 12). [c.83]

    Однако наши исследования и проведенная проверка уравнения Берна показали, что изменение логарифма растворимости парафина по температуре отклоняется от закона прямой, вследствие чего предложенные Берном и Дэвисом уравнение и номограмма могут рассматриваться только как приближенные, приемлемые лишь для ориентировочных расчетов. [c.83]

    Необходимо отметить, что растворимость парафина в углеводородных растворителях в значительной мере зависит также и от химической природы растворителя. При этом в алканах в нафтенах парафины растворяются лучше, чем в ароматических углеводородах. [c.83]

    Возрастание растворимости парафина с понижением молекулярного веса углеводородного растворителя наблюдается только [c.83]

    Растворимость парафинов в сжиженном пропане изучал один пз авторов настоящей монографии [40]. Были исследованы растворимости парафинов пл от 35 до 69°, выделенных из 50-градусных фракций от разгонки грозненской парафинистой нефтесмеси в пределах 300—550°. Полученные данные показаны в габл. 12. [c.84]

    Растворимость парафинов различного фракционного состава в пропане [c.85]

    Растворимость парафинов в масле своей [c.85]

    Широко поставленные и обстоятельно выполненные исследования растворимости парафинов с различными температурами плавления в весьма разнообразных растворителях, как углеводородных, так и полярных, провел Пул с сотрудниками [43]. Параллельно исследовали также и растворимости масла. Работы Пула имели целью изыскание для процесса депарафинизации [c.86]

    Растворимость парафинов туймазинской нефти при различных температурах [44] [c.88]

    Для растворителей, применяемых при депарафинизации, весьма важное значение имеет их избирательная растворяющая способность в отношении низкозастывающих и застывающих компонентов обрабатываемого сырья. Под избирательной способностью растворителя подразумевается различие растворимости в нем этих компонентов. От избирательной способности применяемого растворителя в большой мере зависит эффективность того или иного процесса депарафинизации. Для углеводородных и других растворителей, в которых масло растворимо во всех соотношениях при любой температуре, избирательная способность определяется растворимостью в них парафина. При этом, чем выше растворимость парафина, тем хуже избирательная способность. Для растворителей же, в которых масло растворяется ограниченно, избирательная способность выражается разностью растворимостей в них низкозастывающего компонента и парафина или их отношением. [c.89]

    Величина ТЭД зависит от растворимости парафина в данном растворителе при температуре депарафинизации и от кратности разбавления растворителем. Чем выше растворимость парафина, тем больше его будет оставаться в растворенном состоянии в де-парафинированном растворе, а следовательно, и в депарафини-рованном масле, что будет приводить к возрастанию температуры застывания масла, а следовательно, и к понижению ТЭД. То же будет происходить и при увеличении разбавления. [c.102]

    Предположим, что имеется раствор парафина некоторой определенной концентрации х. Растворимость парафина в данном растворителе при темнературе I обозначим х . Растворимость парафина изменяется с изменением температуры, что может быть [c.108]

    С учетом изложенного процесс кристаллизации будет протекать следующим образом. По достижении температуры, цри которой растворимость парафина в мелкодисперсном состоянии станет ниже концентрации парафина в растворе, начнут воз- [c.110]

    Метод (ГОСТ 11851—66) основан на малой растворимости парафина при низких температурах в определенной группе органических растворителей. [c.192]

    Значительное преимущество метода по сравнению с депарафинизацией с помощью лигроина состоит в более низкой растворимости парафина в смеси, что позволяет получить конечное масло с температурой застывания, близкой к температуре депарафинизации. Если желают получить очищенный парафин обычного типа, фильтрование обычно проводят при довольно высокой температуре (около 0° С), что позволяет получить нужный продукт, а затем повторяют эту операцию с оставшимся маслом, для того чтобы получить смазочное масло с нужной температурой застывания. Парафин, отделенный при втором фильтровании, представляет парафиновый гач сомнительной ценности. [c.527]

    Открытие того, что растворимость парафина в парафинистых лигроинах по мере понижения молекулярного веса лигроина проходит через максимум и снижается до минимальных значений для бутана и пропана, привело к развитию процесса пропановой депарафинизации [99—101]. Масло остается растворенным в пропане при очень низких температурах, в то время как обычные парафины осаждаются в легко поддающейся фильтрованию форме [102] па кристаллическую форму влияют температура, количество растворителя, количество кристаллизуемого вещества и кристаллические яды. [c.528]

    В масляных фракциях нефти слабо растворяются твердые углеводороды. Они способны выделяться при охлаждении этих фракций в виде кристаллов. Растворимость уменьшается с увеличением молекулярного веса твердых углеводородов, повышением их концентрации и температуры кипения масляных фракций. С повышением температуры растворимость парафинов и церезинов увеличивается и при температуре плавления они смешиваются со всеми нефтяными фракциями во всех соотношениях. [c.90]

    Плохая растворимость парафинов в нитрометане и сравнительно легкая растворимость в нем ароматических углеводородов явилась основанием для применения нитропарафннов в качестве селективного растворителя при рафинировании смазочных масел [151]. [c.317]

    Растворимость парафинов в низкомолекулярных жидких алка-нах изучали Вебер и Дюнлоп [38]. Результаты, полученные для парафина с ian = 56°, помещены в табл. И. [c.83]

    Растворимость парафина с температурой плавления 56° в визкомолекулярных жидких углеводородных растворителях [38] [c.83]

    При процессах депарафинизации особенный интерес представляют температурные кривые растворимости парафинов в масле своей фракции. В частности, величина этой растворимости определяет связь между содержанием парафина в данном продукте и его температурами насыщения и застывания. Температурные кривые растворимости парафинов в масле своей фракции исследованы нами для некоторых парафинистых продуктов различг ного фракционного состава как дистиллятного, так и остаточного происхождения. Полученные данные показаны на рис. 14. Кривая для парафинового дистиллята 1 оказалась в области температур до 25°, близкой к аналогичной кривой, составленной в 1934 г. [c.85]

    Растворимости парафинов, выделенных из туймазинской нефти, с температурами плавления 42—44,6, 51,6 и 58—61° в кетонах и их смесях с бензолом и толуолом исследованы во ВНИИ НП Е. В, Вознесенской, Г. В. Шахсуваровой и Г. Н. Сочевко [44]. Основные результаты показаны в табл. 14. [c.87]

    Имеется общее правило, согласно которому избирательная способность растворителя при повышении его растворяющей способности ухудшается. При понижении температуры избирательная способность растворителя улучшается, поскольку при понижении температуры его общая растворяющая способность уменьшается и растворимость парафина снижается при этом быстрее, чем масел. Избирательная способность растворителя зависит также и от природы обрабатываемого сырья. В отношении легкого масляного сырья с относительно низкими пределами кипения она оказывается более низкой, чем в отношении тяжелого высококипящего сырья. На избирательной способности растворителя сказывается также и хиьшческий состав сырья. [c.89]

    Назначение растворителей при депарафинизации. Основным назначением растворителей при процессах депарафинизации является снижение вязкости обрабатываемого продукта для облегчения отделения выкристаллизовавшегося парафина от депарафинируемого масла. Чтобы выполнить это назначение, сам растворитель должен иметь достаточно низкую вязкость. Вместе с тем растворитель должен иметь высокую избирательную способность, т. е, хорошо растворять при температуре депараь, финизации низкозастывающие компоненты сырья, обладая при этом минимальной растворяющей способностью в отношении парафинов. Если растворитель при температуре депарафинизации будет не полностью растворять масла, то они, выделяясь вместе с парафином в виде вязкой и клейкой массы, при фильтрации будут создавать непроницаемый осадок, через который дальнейшая фильтрация идти не сможет. При депарафинизации же центрифугированием в петролатум будет уходить часть масла, что снизит выход. Высокая растворимость парафина в растворителе будет препятствовать достаточно глубокому удалению его из депарафинируемого продукта, и потребуются пониженные температуры депарафинизации для достижения нужной температуры застывания целевого масла. Кроме того, растворители [c.99]

    Выделение твердой фазы и снижение концентрации будут-идти на данной стадии процесса кристаллизации двумя путями во-первых, в результате образования новых кристаллических зародышей, во-вторых, вследствие отложения твердой фазы на поверхности уже имеюш,ихся кристаллов. Концентрация napa фина в растворе за счет выделения его на поверхности ранее образовавшихся кристаллов будет снижаться со скоростью, определяемой уравнением (6. III). И если охлаждение раствора будет идти медленно, а следовательно, и растворимость парафина будет снижаться также медленно, то при условиях, вьггекаюш их из уравнения (6. III) и обеспечиваюпщх достаточно высокую скорость выделения из раствора твердой фазы, уменьшение коН центрации раствора может обогнать обусловливаемое охлажде нием уменьшение растворимости, в результате чего степень пре-сыш,ения раствора (х—х ), входящая в уравнение (1. III), может понизиться до нуля, что вызовет прекращение новообразования зародышей. Дальнейшая кристаллизация и выделение из раствора твердой фазы протекает только на поверхности ранее образовавшихся кристаллов, и они растут в размере, не увеличиваясь по количеству. Следовательно, нри медленном охлаждении и условиях, обеспечивающих высокую скорость выделения твердой фазы, в растворе образуется небольшое число крупных кристаллов. [c.111]

    Принцип процесса. Эмульсионное обезмасливание гачей основано на способности парафина, выкристаллизовывающегося из гача в интервале между температурами плавления и перехода (в котором парафин находится в пластичном волокнистом аллотропном состоянии), комковаться при механическом перемешивании, собираясь в крупные комки, и отделяться таким образом от жидкой фазы — оттека. Содержание растворенного парафина в части гача, остающейся в жидком состоянии, будет отвечать растворимости парафина в масле при данной температуре. Выделяющиеся из гача комки не являются чистым парафином, а содержат существенное количество масла. Эти комки концентрата парафина легко могут быть отделены от оттека простейшей фильтрацией через сетку или обработкой на фильтрующей центрифуге. [c.229]

    Прямые соединяющие линии на рис. И не оканчиваются точно на кривой, разграничивающей фазы. Слева эти линии оканчиваются, не доходя до кривой, потому что слой растворителя имеет более высокую концентрацию масла, когда в нем растворены только ароматические компоненты масла, чем в том случае, если бы в нем были растворены менее растворимые парафины (для чего требуется значительно большее количество растворителя). Подобно этому справа соединяющие линии проходят немного за пределы граничной кривой, потому что нерастворсниая парафиновая часть масла представляет собой худший растворитель для метанола, чем всеУмасло в целом. Концы соединяющих линий образуют другую кривую (не показанную на диаграмме), являющуюся бинодальной кривой, положение которой неопределенно, так как оно зависит от соотношения объемов слоев. Такая неясность является результатом того, что сложная смесь рассматривается в качестве одного компонента. [c.174]

chem21.info

Химические методы борьбы с отложениями парафина

13.5. ХИМИЧЕСКИЕ МЕТОДЫ БОРЬБЫ С ОТЛОЖЕНИЯМИ ПАРАФИНА

Химические методы борьбы с отложениями парафина развиваются и создаются по двумосновным направлениям:

  • предотвращение отложения парафина применением химпродуктов, ингибирующих процесс формирования смолопарафиновых отложений.

Такая классификация способов борьбы с oтложeниями парафина построена на основе практическихприемов удаления или предотвращения образования отложений, поэтому является формальной.

Исходя из основных положений механизма парафинизации промыслового оборудования, все способы борьбы с отложениями парафина целесообразно классифицировать на основе учета решающих физико-механических свойств взаимодействующих фаз (нефть–парафин-поверхность оборудования): 1) растворимости парафина в нефти: 2) особенностей структуры и прочности парафиновых отложений; 3) энергии взаимодействия кристаллов парафина, взвешенных в объеме нефти, друг с другом и поверхностью оборудования, 4) энергии межмолекулярных связей между кристаллами парафина и поверхностью, на которой они возникают.

В общем случае любая группа способов борьбы с отложениями парафина может оказаться перспективной, если они основаны на использовании таких свойств взаимодействующих фаз, на которые легко воздействовать в необходимом направлении современными техническими средствами.

Проблему борьбы с отложениями парафина можно решить на наиболее, высоком уровне, применив способы четвертой группы. Это достигается путем использования защитных покрытий, имеющих низкую сцепляемость с нефтяными парафинами, и путем добавления в нефть химических присадок, придающих аналогичные свойства поверхности нефтепромыслового оборудования. Однако возможности их применения на практике неодинаковы.

Как правило, на практикеприменяются оба метода, которые дополняют друг друга.

Так, до применения ингибиторовнеобходимо тщательно подготовить скважину — очистить от смолопарафиновых отложений НКТ, арматуру и выкидные пинии с помощью удалителей. После подготовки скважины применяют ингибиторы для предотвращения отложений смолопарафиновой массы.

Исходя из состава АСПО, который зависит от состава нефти, прежде всего ее высокомолекулярной части, и гидро- и термодинамических условий формирования отложений производится выбор химических реагентов, удаляющих или предупреждающих отложения.

Подбор химреагентов основан на экспериментальных исследованиях.

Сущность химических методов удаления парафиновых отложений заключается в предварительном их разрушении или растворении с последующим удалением. Для этих целейиспользуются: органические растворители с высокой растворяющей способностью не только твердых углеводородов, но и асфальтосмолистых веществ; водные растворы ПАВ, которые при контакте с парафиновыми отложениями проникают в их толщу и, диспергируя смолопарафиновую массу, снижают их прочность вплоть до разрушения.

Одним из наиболее эффективных способов ликвидации отложений парафина является использование растворителей, объем которых определяется количеством и растворимостью парафина в имеющемся растворителе при средней температуре в скважине. Растворимость парафина зависит от температуры его плавления tпл, температуры кипения растворителя tк, температурырастворения tР и описывается соотношением:

(160)

где К – растворимость парафина в растворителе, кг/кг.

Растворители и растворы композиций ПАВ более эффективно действуют при повышенной температуре. На практике нередко химические методы удаления парафиновых отложений применяются в сочетании с тепловыми и механическими методами. При этом достигается наибольший технологический и экономический эффект в результате существенного ускорения процесса и полнотыудаления смолопарафиновых отложений. Особых ограничений для применения методов удаления смолопарафиновых отложений нет. Вместе с тем при использовании химических методов в сочетании с тепловыми и механическими методами необходимо соблюдать осторожность. Интенсивное удаление таких отложений из сильно запарафиненных объектов может вызвать образование парафиновых пробок в трубопроводе. Такие объекты целесообразно обрабатывать в два-три этапа: вначале с помощью удалителя при обычной температуре, а затем для более полного удаления смолопарафиновых отложений — при повышенной температуре (60-70 оС). Легкие углеводородные растворители используются, как правило, без подогрева.

Для предотвращения парафиноотложения применяют разнообразные композиции химических веществ, существенно различающихся по механизму воздействия на образование смолопарафиновых отложений на поверхности оборудования.

Так, композиции, состоящие в основном из ПАВ являются смачивателями поверхности оборудования и диспергаторами смолопарафиновых составляющих отложений. При постоянной дозировке такого химпродукта в скважину на поверхности оборудования создается гидрофильная пленка, препятствующая формированию на ней отложений. Одновременно такой реагент оказывает диспергирующее действие на твердую фазу смолопарафиновых веществ, что способствует беспрепятственному выносу их потоком жидкости. Для предупреждения отложений парафина применяются химреагенты— депрессаторы, предотвращающие рост кристаллов и образование структур с плотной упаковкой молекул твердых углеводородов.

Отложениям парафина препятствуют также химреагенты— модификаторы, изменяющие кристаллическую структуру парафинов в процессе их фазового перехода. Основное требование успешного применения экспериментально подобранных химреагентов - подача реагента в поток продукции скважины до места начала кристаллизации парафина.

Практика показывает, что для предотвращения отложения парафина при добыче, хранении и транспорте нефти применяются:

  • добыча нефти в устойчивом турбулентном режиме;

  • повышение растворяющей способности нефти за счет использования нефтяных растворителей;

  • эффективные покрытия;

  • электромагнитное поле или ультразвук;

  • ингибиторы парафиноотложений.

Каждый способ предотвращения отложений парафина в процессе добычи нефти имеет свою область эффективного применения.

Ингибиторная защита отличается технологической эффективностью, во многом не зависящей от геолого-физических, гидродинамических и термодинамических условий добычи нефти (при подаче ингибитора до начала кристаллизации парафина).

Химические соединения и химреагенты, используемые в качестве ингибиторов парафиноотложений, по механизму действия можно разделить на группы:

  • адгезионного (смачивающего, гидрофилизирующего, покрывающего) действия;

  • модифицирующего (депрессорного) действия ;

  • моющего (комплексного, многофазного детергентного действия).

Механизм действия ингибиторов адсорбционного действия заключается в гидрофилизации металлической поверхности нефтепромыслового оборудования (труб) полимерным высокомолекулярным полярным адсорбционным слоем. Этот слой является как бы смазкой для неполярной парафиносодержащей нефтяной фазы, обеспечивающей сокращение отложений на поверхности оборудования.

Ингибиторы модифицирующего действия изменяют кристаллическую структуру парафинов в момент возникновения твердой фазы. В результате образуются дендритные недоразвитые кристаллы парафина, структурно несоединенные друг с другом.

Действие ингибиторов моющего типа заключается в следующем:

  • полярные анионные и катионные группы ПАВ воздействуют на зарождение, рост кристаллов и величину частиц дисперсии асфальтосмолопарафиновых отложений;

  • двигаясь с потоком продукции скважин, ингибиторы поддерживают парафиноотложения в мелкодисперсном состоянии, обеспечивая отмыв зародышей кристаллов со стенок нефтепромыслового оборудования.

Действие детергентов-удалителей парафиноотложений заключается в следующем. При температуре плавления асфальтосмолопарафиновых отложений (50-80 °С) ПАВ способствует отмыву, диспергированию, а также предотвращает повторное отложение парафина при охлаждении нефтяного потока.

В основе технологии применения ингибиторов адсорбционного действия лежит периодическая обработка нефтепромыслового оборудования водным раствором реагента с последующим осаждением его на трубах в течение определенного времени.

Технология имеет ряд недостатков: периодические остановки (простой скважин), смыв слоя со стенок водонефтяным потоком, ограничение эффективной защиты участком обработки, загрязнение оборудования реагентом.

Технология применения ингибиторов модифицирующего действия основана на понижении температуры застывания и улучшении реологических свойств нефти. Процесс осуществляется при условии непрерывной подачи реагента в нефть при температуре выше температуры начала кристаллизации парафина.

Технология использования ингибиторов моющего действия предусматривает диспергирование и отмыв зародышей кристаллов, образующихся как в объеме, так и на стенках оборудования при условии непрерывной подачи реагента в нефть при температуре выше температуры начала кристаллизации парафина.

В основе технологии применения детергентов-удалителей лежит диспергирующее, моющее, эмульгирующее, деэмульгирующее, пенообразующее действие реагента, водный раствор используют при температуре плавления асфальтосмолопарафиновых отложений, периодически обрабатывая нефтепромысловое оборудование.

Технология применения детергентов-растворителей основана на растворении и диспергировании парафиноотложений при температуре ниже температуры плавления парафиновых отложений. Детергенты-растворители используют для периодических обработок парафинизирующегося оборудования.

Химические способы удаления парафиновых отложений с поверхности нефтепромыслового оборудования находят в последнее время все более широкое применение. Для этих целей используются различного рода растворители — отходы химической промышленности. Наиболее эффективными растворителями являются гексановая фракция, бутилбензоловая фракция, легкая пиролизная смола, их композиции и др. (табл.11).

Таблица 11

Растворители

Растворитель

Растворяющая способность, % мас.

Легкая смола пиролиза

78

Газовый бензин

82

Бензольная фракция

80

Кубовый остаток производства бутанолов

46

Нефрас – П – 150/330

64

Адсорбент А – 1

52

Растворители успешно применяются для депарафинизации выкидных линий, нефтесборных коллекторов. Для депарафинизации выкидных линий растворитель закачивают в объеме, необходимом для заполнения очищаемого интервала, выдерживают 3-4 ч, потом запускают скважину. В промысловой практике на 1 км выкидной линии расходуется около 5 м3 растворителя.

Выбор каждого из указанных способов зависит от характеристики отдельно взятой скважины, от необходимости очистки выкидной линии и т. д. С экономической точки зрения применять растворители нужно после 4-5 промывок горячей нефтью или водным раствором ПАВ. При этой технологии нижняя часть лифта промывается растворителем, верхняя — за счет теплоносителя.

Все вышеописанные способы борьбы с отложениями парафина при умелом применении их уже сегодня позволяют эффективно бороться с отложениями парафина в добыче нефти. Для каждого месторождения в зависимости от физико-химических условий пластовых флюидов может применяться тот или иной способ депарафинизации. Однако изучение условийотложения и свойствпарафина обязательно во всех случаях. При выборе способа борьбы с отложением парафина предпочтение следует отдавать способам предупреждения отложений.

14. ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ ОБЕЗВОЖИВАНИЯ И ОБЕССОЛИВАНИЯ НЕФТИ

На нефтяных месторождениях эксплуатируются следующие установки обезвоживания и обессоливания нефти:

В

Рис.38. Технологическая схема термохимической установки обезвоживания нефти

термохимической установке обезвоживания нефти (рис.38) сырую нефть (нефтяная эмульсия) I из сырьевого резервуара 1насосом 2 через теплообменник 3 подают в трубчатую печь 4. Перед насосом 2 в нефть закачивают реагент-деэмульгатор II. В теплообменнике 3 и трубчатой печи 4 нефтяная эмульсия подогревается, и в процессе ее турбулентного перемешивания в насосе и при движении по трубному змеевику в печи происходит доведение реагента-деэмульгатора до капель пластовой воды и разрушение бронирующих слоев асфальтосмолистых веществ. Нагрев в трубчатой печи осуществляется при необходимости нагрева нефтяной эмульсии до температуры выше 120 °С (при повышенном давлении, чтобы не допустить вскипания воды). При меньших температурах нагрева вместо трубчатой печи 4 можно использовать пароподогреватель. Оптимальной температурой нагрева считается такая, при которой кинематическая вязкость нефтяной эмульсии составляет 4 * 10-6 м2/с. Неустойчивая эмульсия из трубчатой печи 4 поступает в отстойник 5, где расслаивается на нефть и воду. Обезвоженная нефть выводится сверху из отстойника 5, проходит через теплообменник 3, где отдает часть тепла поступающей на деэмульсацию сырой нефти и поступает в резервуар 6, из которого товарная нефть III насосом откачивается в магистральный нефтепровод. Отделившаяся в отстойнике 5 пластовая вода IV направляется на установку по подготовке сточных вод.

Сырьевой резервуар 1 может работать как резервуар с предварительным сбросом воды. В этом случае часть горячей воды, выходящей из отстойника 5 и содержащей реагент-деэмульгатор, подается в поток сырой нефти перед резервуаром 1 (пунктирная линия, рис.1). В этом случае резервуар 1 оборудуют распределительным маточником и переливной трубой. В резервуаре поддерживается слой воды, так что поступающая нефтяная эмульсия распределенным потоком проходит через толщу воды, что способствует более полному отделению свободной воды из нефтяной эмульсии. Отделившаяся в резервуаре с предварительным сбросом вода насосом откачивается на установку по подготовке сточных вод.

Наиболее эффективным считается способ обессоливания на электрообессоливающей установке (рис.39). При этом для стабилизации обводненности нефтяной эмульсии, поступающей в электродегидратор, вводится ступень теплохимического обезвоживания. Сырая нефть I из сырьевого резервуара 1 сырьевым насосом 2 прокачивается через теплообменник 3 и подогреватель 4 и поступает в отстойник 5. Перед сырьевым насосом в сырую нефть вводят реагент-деэмульгатор II, поэтому в отстойнике 5 из сырой нефти

в

Рис.39. Технологическая схема электрообезвоживающей установки

ыделяется основное количество пластвой .воды. Из отстойника 5 нефть с содержанием остаточной воды до 1—2 % направляется в электродегидратор 8. При этом перед электродегидратором в .поток нефти вводят пресную воду III и деэмульгатор II, так что перед обессоливанием обводненность нефти в зависимости от содержания солей доводится до 8—15 %. Соли растворяются в пресной воде и после отделения воды от нефти в электродегидраторе нефть становится обессоленной. Сверху электродегидратора 8 выходит обезвоженная и обессоленная нефть, которая, пройдя промежуточную емкость 7, насосом 6 прокачивается через теплообменник 3, подогревая сырую нефть, и направляется в резервуар 9 товарной нефти. Вода IV, отделившаяся от нефти в отстойнике 5 и электродегидраторе 8, направляется на установку по подготовке воды. Товарная нефть Vнасосом откачивается в магистральный нефтепровод.

15. ТЕХНОЛОГИЧЕСКИЕ СХЕМЫ СТАБИЛИЗАЦИИ НЕФТИ

Процессы подготовки нефти — это обезвоживание, обессоливание, а также стабилизация нефти. Сущность стабилизации нефти заключается в отделении от нее летучих углеводородов (пропан-бутановой фракции), а также растворимых в нефти сопутствующих газов, таких как сероводород, углекислый газ и азот, что сокращает потери нефти от испарения, снижает интенсивность процесса коррозии аппаратуры, оборудования и трубопроводов по пути движения нефти от месторождения до нефтеперерабагывающего завода, а также позволяет получать ценное сырье для нефтехимии.

Применяют следующие способы стабилизации нефти: горячую, или вакуумную, сепарацию и ректификацию.

При горячей, или вакуумной, сепарации от нефти отделяется широкая газовая фракция, в которой наряду с пропан-бутановой фракцией содержится большое количество более высокомолекулярных углеводородов, извлечение которых из нефти ухудшает ее качество. Для извлечения высокомолекулярных углеводородов из широкой газовой фракции и последующего возвращения их в стабильную нефть, используют следующие процессы:

1) однократную конденсацию с последующей компрессией, масляной абсорбцией или низкотемпературной конденсацией остаточных газов;

2) фракционированную конденсацию с последующей компрессией газового остатка;

3) абсорбцию или ректификацию.

При стабилизации нефти ректификацией всю нефть подвергают процессу ректификации, при этом обеспечивается четкое разделение углеводородов и достигается заданная глубина стабилизации нефти.

Т

Рис.40. Технологическая схема процесса стабилизации нефти горячей сепарацией и однократной конденсацией широкой газовой фракции

ехнологическая схема процесса стабилизации нефти горячей cепарациейи однократной конденсацией широкой газовой фракции приведена на рис.40. Сырая нефть I насосом 1 подается в теплообменник 3 и, пройдя блок обезвоживания и обессоливания 4, поступает на стабилизацию. При этом обезвоженная и обессоленная нефть нагревается в пароподогревателе 5 до температуры 80—120 °С и подвергается однократному испарению в сепараторе 6 при давлении 0,15—0,25 МПа, где от нее отделяется широкая газовая фракция. Снизу сепаратора 6 выводится стабильная нефть III, которая насосом 7 прокачивается через теплообменник 3, где отдает тепло сырой нефти, и направляется в резервуар 2 стабильной нефти, Широкая газовая фракция IV, отделяемая от нефти в

сепараторе 6, подвергается однократной конденсации, для чего охлаждается в холодильнике 8 до температуры 30 °С, при этом конденсируются высокомолекулярные (?) углеводороды II (бензин), которые отделяются от газа в сепараторе 9, собираются в емкости бензина 10 и насосом 11 возвращаются в стабильную нефть для восстановления ее бензинового потенциала. Газ, выходящий из сепаратора 9, поступает на прием компрессора 12, в котором повышается давление газа до 0,5—1,7 МПа, в зависимости от расстояния до газоперерабатывающего завода. После компрессора газ проходит маслоотделитель 13, где отделяется смазочное масло VII, уносимое газом из компрессора, конденсатор-холодильник 14 и сепаратор 15, в котором отделяется сконденсировавшийся в результате сжатия и охлаждения нестабильный конденсат VI. Нестабильный конденсат собирается в емкости 16, из которой насосом 17 перекачивается на газоперерабатывающий завод. Туда же направляется и газ V, выходящий из сепаратора 15.

Технологическая схема процесса стабилизации нефти горячей сепарацией ифракционированной конденсацией широкой газовой фракции приведена на рис.41.

Рис.41. Технологическая схема процесса стабилизации нефти горячей сепарацией и фракционированной конденсацией широкой газовой фракции

Сырую нефть I насосом 1 подают в теплообменник 3 и, пройдя блок обезвоживания и обессоливания 4, поступает на стабилизацию. Обезвоженная и обессоленная нефть нагревается в пароподогревателе 5 до температуры 80—120 °С и подвергается однократному испарению в сепараторе 6 при давлении 0,15—0,25 МПа, где от нее отделяется широкая газовая фракция. Снизу сепаратора 6 выводится стабильная нефть II, которая насосом 7 прокачивается через теплообменник 3, где отдает тепло сырой нефти, и направляется в резервуар 2 стабильной нефти. Широкая газовая фракция III, отделяемая от нефти в сепараторе 6, подвергается фракционированной конденсации в фракционирующем конденсаторе 8, который представляет собой вертикальный кожухотрубчатый теплообменный аппарат, в его межтрубном пространстве снизу вверх проходит широкая газовая фракция, а в трубном — сверху вниз — охлаждающая вода V. При охлаждении широкой газовой фракции образуется углеводородный конденсат, который, стекая вниз по поверхности трубок, вступает в контакт с газом, вновь поступающим в аппарат. Между этими встречными потоками газа и конденсата происходит тепло- и массообмен, при котором часть высокомолекулярных углеводородов из газа переходит в конденсат, а часть низкомолекулярных углеводородов из конденсата переходит в газ. Таким образом образуются конденсат с минимальным содержанием низкомолекулярных углеводородов (метан—бутан) и газ с минимальным содержанием высокомолекулярных углеводородов (C5+высшие). Конденсат IV направляется в стабильную нефть для пополнения ее бензинового потенциала. Газ, выходящий из фракционирующего конденсатора 8, проходит сепаратор 9, где отделяется уносимый им капельный конденсат, и поступает на прием компрессора 10 с соответствующим числом ступеней сжатия, в зависимости от удаленности объектов газопотребления или газоперерабатывающего завода. Скомпримированный до соответствующего давления газ проходит маслоотделитель 11, где отделяется смазочное масло VIII, захватываемое в цилиндрах компрессора, конденсатор-холодильник 12, где охлаждается до 30 °С, и поступает в сепаратор 13, где от газа отделяется сконденсировавшийся нестабильный конденсат VII. Нестабильный конденсат собирается в емкости 14, из которой насосом 15 перекачивается на газоперерабатывающий завод. Газ VI, выходящий из сепаратора 13, направляется потребителю или на газоперерабатывающий завод.

Технологическая схема процесса стабилизации нефти горячей сепарацией иабсорбцией широкой газовой фракции приведена на рис.42.

Рис.42. Технологическая схема процесса стабилизации нефти горячей сепарацией и абсорбцией широкой газовой фракции

Сырая нефть I подается насосом 1 в теплообменник 4, и,пройдя блок обезвоживания и обессоливания 5, насосом 7 прокачивается через трубчатую печь 8, где нагревается до температуры 100—110°С, и поступает в сепаратор 9, в котором от нефти отделяется широкая газовая фракция. Снизу сепаратора 9 выходит стабильная нефть II, которая, отдав тепло сырой нефти в теплообменнике 4, направляется в резервуар стабильной нефти 2. Широкая газовая фракция III, выходящая сверху сепаратора 9, насосом 11 подается в низ абсорбера 10, в котором в результате процесса абсорбции из нее извлекаются высокомолекулярные углеводороды (бензиновая фракция). Сущность процесса абсорбции состоит в избирательном поглощении высокомолекулярных углеводородов из газа жидкостью, называемой абсорбентом. Переход высокомолекулярных углеводородов из газа в жидкость обусловлен нарушением фазового равновесия при контакте газа с родственной жидкостью, в которой содержание поглощаемых компонентов мало.

В технологической схеме должен быть предусмотрен процесс десорбции абсорбента, т. е. обратного извлечения поглощенных им в абсорбере углеводородов. Абсорбент можно десорбировать либо ректификацией, либо выпаркой абсорбента. В рассматриваемой технологической схеме в качестве абсорбента используют стабильную нефть, которая насосом 3 прокачивается через холодильник 6 и подается на верх абсорбера 10. Таким образом, в абсорбере 10 происходит встречное днижение поднимающейся снизу вверх широкой газовой фракции и стекающей сверху вниз стабильной нефти (абсорбента). Для создания лучшего контакта встречных потоков жидкости и газа в абсорбере применяют различные специальные устройства — тарелки, насадки и др.

В результате абсорбции бензиновые углеводороды из широкой газовой фракции переходят в нефть, а легкие газообразные углеводороды IV (от метана до бутана) выходят сверху абсорбера и направляются на газоперерабатывающий завод. Процесс абсорбции (переход углеводородов из газообразного состояния в жидкое) происходит с выделением тепла, поэтому абсорбент, опускаясь вниз по абсорберу, разогревается, что приводит к снижению растворимости газов в нем. Для снижения температуры абсорбента проводят промежуточное его охлаждение. Для этого разогретый абсорбент забирается с определенного уровня абсорбера, прокачивается насосом 13 через холодильник 12, и охлажденный абсорбент Vвозвращается в абсорбер.

Технологическая схема стабилизации нефти ректификацией приведена на рис.43.

textarchive.ru

ХИМИЧЕСКИЕ МЕТОДЫ БОРЬБЫ С ОТЛОЖЕНИЯМИ ПАРАФИНА

 

Химические методы борьбы с отложениями парафина развиваются и создаются по двумосновным направлениям:

· удаление смолопарафиновыхотложений с помощью органических растворителей и водных растворов различных композиций поверхностно-активных веществ (ПАВ);

· предотвращение отложения парафина применением химпродуктов, ингибирующих процесс формирования смолопарафиновых отложений.

Такая классификация способов борьбы с oтложeниями парафина построена на основе практических приемов удаления или предотвращения образования отложений, поэтому является формальной.

Исходя из основных положений механизма парафинизации промыслового оборудования, все способы борьбы с отложениями парафина целесообразно классифицировать на основе учета решающих физико-механических свойств взаимодействующих фаз (нефть–парафин-поверхность оборудования): 1) растворимости парафина в нефти: 2) особенностей структуры и прочности парафиновых отложений; 3) энергии взаимодействия кристаллов парафина, взвешенных в объеме нефти, друг с другом и поверхностью оборудования, 4) энергии межмолекулярных связей между кристаллами парафина и поверхностью, на которой они возникают.

В общем случае любая группа способов борьбы с отложениями парафина может оказаться перспективной, если они основаны на использовании таких свойств взаимодействующих фаз, на которые легко воздействовать в необходимом направлении современными техническими средствами.

Проблему борьбы с отложениями парафина можно решить на наиболее, высоком уровне, применив способы четвертой группы. Это достигается путем использования защитных покрытий, имеющих низкую сцепляемость с нефтяными парафинами, и путем добавления в нефть химических присадок, придающих аналогичные свойства поверхности нефтепромыслового оборудования. Однако возможности их применения на практике неодинаковы.

Как правило, на практикеприменяются оба метода, которые дополняют друг друга.

Так, до применения ингибиторовнеобходимо тщательно подготовить скважину — очистить от смолопарафиновых отложений НКТ, арматуру и выкидные пинии с помощью удалителей. После подготовки скважины применяют ингибиторы для предотвращения отложений смолопарафиновой массы.

Исходя из состава АСПО, который зависит от состава нефти, прежде всего ее высокомолекулярной части, и гидро- и термодинамических условий формирования отложений производится выбор химических реагентов, удаляющих или предупреждающих отложения.

Подбор химреагентов основан на экспериментальных исследованиях.

Сущность химических методовудаленияпарафиновых отложений заключается в предварительном их разрушении или растворении с последующим удалением. Для этих целейиспользуются: органические растворители с высокой растворяющей способностью не только твердых углеводородов, но и асфальтосмолистых веществ; водные растворы ПАВ, которые при контакте с парафиновыми отложениями проникают в их толщу и, диспергируя смолопарафиновую массу, снижают их прочность вплоть до разрушения.

Одним из наиболее эффективных способов ликвидации отложений парафина является использование растворителей, объем которых определяется количеством и растворимостью парафина в имеющемся растворителе при средней температуре в скважине. Растворимость парафина зависит от температуры его плавления tпл, температуры кипения растворителя tк, температуры растворения tР и описывается соотношением:

(160)

 

где К – растворимость парафина в растворителе, кг/кг.

Растворители и растворы композиций ПАВ более эффективно действуют при повышенной температуре. На практике нередко химические методы удаления парафиновых отложений применяются в сочетании с тепловыми и механическими методами. При этом достигается наибольший технологический и экономический эффект в результате существенного ускорения процесса и полноты удалениясмолопарафиновых отложений. Особых ограничений для применения методов удаления смолопарафиновых отложений нет. Вместе с тем при использовании химических методов в сочетании с тепловыми и механическими методами необходимо соблюдать осторожность. Интенсивное удаление таких отложений из сильно запарафиненных объектов может вызвать образование парафиновых пробок в трубопроводе. Такие объекты целесообразно обрабатывать в два-три этапа: вначале с помощью удалителя при обычной температуре, а затем для более полного удаления смолопарафиновых отложений — при повышенной температуре (60-70 оС). Легкие углеводородные растворители используются, как правило, без подогрева.

Для предотвращения парафиноотложения применяют разнообразные композиции химических веществ, существенно различающихся по механизму воздействия на образование смолопарафиновых отложений на поверхности оборудования.

Так, композиции, состоящие в основном из ПАВ являются смачивателямиповерхности оборудования и диспергаторами смолопарафиновых составляющих отложений. При постоянной дозировке такого химпродукта в скважину на поверхности оборудования создается гидрофильная пленка, препятствующая формированию на ней отложений. Одновременно такой реагент оказывает диспергирующее действие на твердую фазу смолопарафиновых веществ, что способствует беспрепятственному выносу их потоком жидкости. Для предупреждения отложений парафина применяются химреагенты— депрессаторы, предотвращающие рост кристаллов и образование структур с плотной упаковкой молекул твердых углеводородов.

Отложениям парафина препятствуют также химреагенты— модификаторы, изменяющие кристаллическую структуру парафинов в процессе их фазового перехода. Основное требование успешного применения экспериментально подобранных химреагентов - подача реагента в поток продукции скважины до места началакристаллизации парафина.

Практика показывает, что для предотвращения отложения парафина при добыче, хранении и транспорте нефти применяются:

· теплоизоляция трубопроводов;

· подогрев нефти;

· поддержание пластового давления выше давления начала разгазирования;

· добыча нефти в устойчивом турбулентном режиме;

· повышение растворяющей способности нефти за счет использования нефтяных растворителей;

· эффективные покрытия;

· электромагнитное поле или ультразвук;

· ингибиторы парафиноотложений.

Каждый способ предотвращения отложений парафина в процессе добычи нефти имеет свою область эффективного применения.

Ингибиторная защита отличается технологической эффективностью, во многом не зависящей от геолого-физических, гидродинамических и термодинамических условий добычи нефти (при подаче ингибитора до начала кристаллизации парафина).

Химические соединения и химреагенты, используемые в качестве ингибиторов парафиноотложений, по механизму действия можно разделить на группы:

· адгезионного (смачивающего, гидрофилизирующего, покрывающего) действия;

· модифицирующего (депрессорного) действия ;

· моющего (комплексного, многофазного детергентного действия).

Механизм действия ингибиторов адсорбционного действия заключается в гидрофилизации металлической поверхности нефтепромыслового оборудования (труб) полимерным высокомолекулярным полярным адсорбционным слоем. Этот слой является как бы смазкой для неполярной парафиносодержащей нефтяной фазы, обеспечивающей сокращение отложений на поверхности оборудования.

Ингибиторы модифицирующего действия изменяют кристаллическую структуру парафинов в момент возникновения твердой фазы. В результате образуются дендритные недоразвитые кристаллы парафина, структурно несоединенные друг с другом.

Действие ингибиторов моющего типа заключается в следующем:

· ингибитор растворяется в нефти непосредственно или через контакт фаз вода—ингибитор—нефть;

· алкановые блоки ПАВ внедряются в парафиноотложения в момент фазового перехода в твердое состояние и сокристаллизуются с ними;

· гидрофильные блоки концентрируются на поверхности раздела фаз в воде, стенках оборудования;

· гидрофобные блоки концентрируются на поверхности раздела фаз в нефти;

· полярные анионные и катионные группы ПАВ воздействуют на зарождение, рост кристаллов и величину частиц дисперсии асфальтосмолопарафиновых отложений;

· ингибиторы непрочно адсорбируются на металле и легко смываются потоком пластовой воды или нефти;

· двигаясь с потоком продукции скважин, ингибиторы поддерживают парафиноотложения в мелкодисперсном состоянии, обеспечивая отмыв зародышей кристаллов со стенок нефтепромыслового оборудования.

Действие детергентов-удалителей парафиноотложений заключается в следующем. При температуре плавления асфальтосмолопарафиновых отложений (50-80 °С) ПАВ способствует отмыву, диспергированию, а также предотвращает повторное отложение парафина при охлаждении нефтяного потока.

В основе технологии применения ингибиторов адсорбционного действия лежит периодическая обработка нефтепромыслового оборудования водным раствором реагента с последующим осаждением его на трубах в течение определенного времени.

Технология имеет ряд недостатков: периодические остановки (простой скважин), смыв слоя со стенок водонефтяным потоком, ограничение эффективной защиты участком обработки, загрязнение оборудования реагентом.

Технологияприменения ингибиторов модифицирующего действия основана на понижении температуры застывания и улучшении реологических свойств нефти. Процесс осуществляется при условии непрерывной подачи реагента в нефть при температуре выше температуры начала кристаллизации парафина.

Технология использования ингибиторов моющего действия предусматривает диспергирование и отмыв зародышей кристаллов, образующихся как в объеме, так и на стенках оборудования при условии непрерывной подачи реагента в нефть при температуре выше температуры начала кристаллизации парафина.

В основе технологииприменения детергентов-удалителей лежит диспергирующее, моющее, эмульгирующее, деэмульгирующее, пенообразующее действие реагента, водный раствор используют при температуре плавления асфальтосмолопарафиновых отложений, периодически обрабатывая нефтепромысловое оборудование.

Технология применения детергентов-растворителей основана на растворении и диспергировании парафиноотложений при температуре ниже температуры плавления парафиновых отложений. Детергенты-растворители используют для периодических обработок парафинизирующегося оборудования.

Химические способы удаления парафиновых отложений с поверхности нефтепромыслового оборудования находят в последнее время все более широкое применение. Для этих целей используются различного рода растворители — отходы химической промышленности. Наиболее эффективными растворителями являются гексановая фракция, бутилбензоловая фракция, легкая пиролизная смола, их композиции и др. (табл.11).

Таблица 11

Растворители

 

Растворитель Растворяющая способность, % мас.
Легкая смола пиролиза
Газовый бензин
Бензольная фракция
Кубовый остаток производства бутанолов
Нефрас – П – 150/330
Адсорбент А – 1

 

Растворители успешно применяются для депарафинизации выкидных линий, нефтесборных коллекторов. Для депарафинизации выкидных линий растворитель закачивают в объеме, необходимом для заполнения очищаемого интервала, выдерживают 3-4 ч, потом запускают скважину. В промысловой практике на 1 км выкидной линии расходуется около 5 м3 растворителя.

Выбор каждого из указанных способов зависит от характеристики отдельно взятой скважины, от необходимости очистки выкидной линии и т. д. С экономическойточки зрения применять растворители нужно после 4-5 промывок горячей нефтью или водным раствором ПАВ. При этой технологии нижняя часть лифта промывается растворителем, верхняя — за счет теплоносителя.

Все вышеописанные способы борьбы с отложениями парафина при умелом применении их уже сегодня позволяют эффективно бороться с отложениями парафина в добыче нефти. Для каждого месторождения в зависимости от физико-химических условий пластовых флюидов может применяться тот или иной способ депарафинизации. Однако изучение условий отложенияи свойств парафина обязательно во всех случаях. При выборе способа борьбы с отложением парафина предпочтение следует отдавать способам предупреждения отложений.

 

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru

Товарный парафин - Большая Энциклопедия Нефти и Газа, статья, страница 4

Товарный парафин

Cтраница 4

Следует отметить, что смесь олефинов, получаемая крекингом товарного парафина при 535 и с температурой кипения 102 - 212 и йодным числом 130, дает полимер с индексом вязкости 132 и высотой полюса вя. Такие хорошие качества смазочных масел объясняются тем, что они получены из олефинов с концевой двойной связью.  [46]

Было показано / 13 /, что логарифмы растворимости товарных парафинов с разными температурами плавления в нефтяных растворителях с различными пределами кипения меняются в линейной зависимости от температуры. Это указывает на возможность применения уравнения Шредера при расчете растворимости парафинов в нефтях.  [47]

Бициклические структуры от С35 до С40 были выделены из товарного парафина при помощи карбамида, но при этом требуется еще большая длина цепи алкильного радикала нормального строения в боковой цепи, чем в моноциклических структурах. Следовательно, при надлежащей длине алкильной цепи нормального строения как парафиновые, так и циклические углеводороды способны образовывать комплекс с карбамидом и таким образом извлекаться из нефтяных фракций.  [48]

В качестве примера на рис. 1 приведены графики изменения растворимости товарного парафина с температурой плавления 58 С в керосине. Кривая / построена по данным опытов с посте - - пенным наращиванием концентрации парафина, кривая 2 отражает изменение концентрации парафина при постепенном снижении температуры.  [49]

Газ содержит много масла, которое нужно отделить для получения товарного парафина.  [50]

На рис. 16 приведены графики распределения п-парафинов для трех проб товарных парафинов по числу углеродных атомов, построенные на основе данных масс-спектрометр ических определений. Сами кривые несимметричны относительно положений максимума. Исследование твердых парафинов мангышлакской нефти показывает, что для высокопарафинистых нефтей упомянутые кривые могут иметь не один, а несколько максимумов. Так, на основании этой работы была установлена закономерность в распределении твердых парафинов мангышлакской нефти по молекулярным массам, заключающаяся в существовании максимумов в интервалах температур кристаллизации 295 - 309 332 - 339, 353 - 363 К. Это значит, что количество кристаллической фазы парафинов, возникающее при снижении температуры на одну и ту же величину не остается постоянным по мере охлаждения нефти.  [52]

Гач и петролатум содержат значительное количество масла, поэтому для получения товарного парафина и церезина их необходимо подвергнуть обезмасливанию.  [53]

Данные табл. 26 показывают, что с повышением температуры кипения фракций товарных парафинов в них снижается содержание н-парафинов, сначала повышается, а затем снижается процент изопарафинов ( в более высокоплавком парафине) и увеличивается количество твердых нафтенов. Ароматические и нафтено-ароматические углеводороды содержатся в небольших количествах и то только во фракциях с высокой температурой кипения. Автор указывает, что ароматические углеводороды извлекаются при селективной очистке и депарафинизации. Эти компоненты находятся среди наиболее низкоплавких компонентов парафинов. На это указывают более низкие температуры плавления твердых ароматических углеводородов в сравнении с другими [67], а также данные по составу твердых углеводородов, извлекаемых при депарафинизации, о чем сказано ниже. Среди изопарафинов Эдварде нашел 2 - и 3-метилпарафины и среди нафтенов - 1-цикло-гексил и 1-циклопентилпарафины.  [54]

Смесь твердых предельных углеводородов с температурой плавления 30 - 70 используется для приготовления товарного парафина.  [55]

Значительные преимущества достигаются при работе установки депарафинизации МЭК в сочетании с установкой обезмасливания товарного парафина МЭК. При депарафинизации пропаном это гораздо менее рационально, так как обезмасливание пропаном осуществляется труднее, чем метилэтилкетоном, вследствие трудности фильтрации и недопустимости повышения температуры обезмасливания из-за чрезмерного возрастания давления.  [56]

С другой стороны, раствор цилиндрстока может быть отфильтрован при 0 С для получения микрокристаллического товарного парафина, а затем повторно при более низкой температуре. В результате получится брайтсток с низкой температурой застывания и гач, идущий на крекинг. Гач иногда перерабатывается в более высокоплавкий продукт.  [57]

Возможности адсорбционной очистки не ограничиваются областью получения масел, но распространяются и па получение белых товарных парафинов с различной температурой плавления, а также для обессмоливания и обессеривания некоторых топлив.  [58]

Для получения максимального выхода СЖК с 20 - 35 углеродными атомами в молекуле окисляют фракцию товарных парафинов 320 - 450 С, имеющую температуру плавления 51 - 52 С и содержащую не более 2 % масел. Температура окисления 105 - 120 С; подача воздуха 56 - 60 м3 / ч на 1 т окисляемого парафина ( обычно смеси свежего и возвратного в соотношении 1: 2) в присутствии 0 15 - 0 25 % катализатора. Окисление прекращают при достижении кислотного числа 70 и числа омыления 120 - 130 мг КОН на 1 г. После окисления содержимое колонны поступает в отстойник, где от него отделяется катализа-торный шлам. Низкомолекулярные водорастворимые кислоты удаляют из продукта промывкой горячей водой.  [59]

Страницы:      1    2    3    4

www.ngpedia.ru