Растворимость газов в нефти. От количества растворенного в пластовой нефти газа зависят все ее важнейшие свойства:. Разгазирование дифференциальное нефти


дифференциальное разгазирование - это... Что такое дифференциальное разгазирование?

 дифференциальное разгазирование

1) Sakhalin energy glossary: differential test/liberation

2) Karachaganak: separator flash test

Универсальный русско-английский словарь. Академик.ру. 2011.

  • дифференциальное разбиение единицы
  • дифференциальное раскрытие

Смотреть что такое "дифференциальное разгазирование" в других словарях:

  • Дифференциальное разгазирование — 17. Дифференциальное разгазирование Форма выделения газа из пластовой нефти, при которой газ, выделяющийся на каждом бесконечно малом интервале снижения давления, непрерывно отводится из системы; при этом в каждый данный момент времени общее… …   Словарь-справочник терминов нормативно-технической документации

  • Разгазирование пластовой нефти — 14. Разгазирование пластовой нефти Процесс перехода газа из растворенного состояния в свободное. В лабораторной практике используют две формы разгазирования контактное и дифференциальное, и вытекающие из них стандартную и ступенчатую сепарации… …   Словарь-справочник терминов нормативно-технической документации

  • форма — 3.2 форма (form): Документ, в который вносятся данные, необходимые для системы менеджмента качества. Примечание После заполнения форма становится записью. Источник: ГОСТ Р ИСО/ТО 10013 2007: Менеджмент организации. Руководство по документированию …   Словарь-справочник терминов нормативно-технической документации

  • ОСТ 153-39.2-048-2003: Нефть. Типовое исследование пластовых флюидов и сепарированных нефтей. Объем исследований и формы представления результатов — Терминология ОСТ 153 39.2 048 2003: Нефть. Типовое исследование пластовых флюидов и сепарированных нефтей. Объем исследований и формы представления результатов: 14.2 Форма 1 «Титульный лист». Содержит четыре поля. поле 1 (вверху листа)… …   Словарь-справочник терминов нормативно-технической документации

  • Форма 3 — 14.4 Форма 3 «Пояснительная записка». Содержит 2 поля: в поле 1 (вверху справа) название месторождения и номер скважины; в поле 2 текстовый материал. В пояснительной записке должны содержаться краткие сведения о выполненном исследовании:… …   Словарь-справочник терминов нормативно-технической документации

  • ОСТ 39-112-80: Нефть. Типовое исследование пластовой нефти. Объем исследования. Форма представления результатов — Терминология ОСТ 39 112 80: Нефть. Типовое исследование пластовой нефти. Объем исследования. Форма представления результатов: 12. Газосодержание Количество углеводородов, перешедших в газовую фазу при изменении условий от пластовых до атмосферных …   Словарь-справочник терминов нормативно-технической документации

  • Форма 14 — 14.15 Форма 14 «Дифференциальное разгазирование. Контактное разгазирование. Состав газа». Таблицу заполняют результатами анализа компонентного состава газа, выделившегося на различных ступенях дифференциального или контактного разгазирования.… …   Словарь-справочник терминов нормативно-технической документации

  • Форма 13 — 14.14 Форма 13 «Дифференциальное разгазирование. Контактное разгазирование». В графе 1 записывают давления ступеней (в первой строке пластовое давление, во второй строке давление насыщения). Предпоследняя строка предназначена для атмосферного… …   Словарь-справочник терминов нормативно-технической документации

  • Физико-химические свойства пластовых флюидов — Значимость предмета статьи поставлена под сомнение. Пожалуйста, покажите в статье значимость её предмета, добавив в неё доказательства значимости по частным критериям значимости или, в случае если частные критерии значимости для… …   Википедия

universal_ru_en.academic.ru

Дифференциальное дегазирование - Большая Энциклопедия Нефти и Газа, статья, страница 1

Дифференциальное дегазирование

Cтраница 1

Дифференциальное дегазирование проходит при пластовой температуре.  [2]

Дифференциальное дегазирование углеводородной смеси, осуществляемое в лабораторных условиях, является процессом ступенчатого изменения давления в исследуемой системе и достижения после каждого приращения давления равновесного состояния газо-нефтяной смеси.  [3]

Дифференциальное дегазирование следующей пробы проводится уже до более низкого давления. Так же, как в первом испытании, дифференциально дегазированную нефть переводят в условия, поддерживаемые в нефтехранилище методом контактного дегазирования. В результате контактного дегазирования второй пробы нефти получаются такие же данные, как и в первом испытании. Чтобы получить более точные результаты, исследования проводят для ряда значений давленья.  [4]

При дифференциальном дегазировании интенсивность выделения газа из раствора уменьшается. Это объясняется тем, что при отводе из системы выделившихся из раствора фракций, в контакте с жидкостью остаются все более тяжелые фракции, имеющие возрастающее парциальное давление, что приводит к уменьшению выделяющегося газа.  [5]

При дифференциальном дегазировании в нефти остается больше газа, чем при том же давлении в условиях контактного дегазирования. Это объясняется следующим образом. Из нефти выделяется в первую очередь метан, и в составе оставшихся газов увеличивается доля тяжелых УВ, что приводит к увеличению их растворимости. Дегазирование нефти при поступлении ее из пласта в промысловые сепараторы более сходно с контактным.  [6]

При дифференциальном дегазировании количество газа, остающегося в растворе, больше, чем при контактном, что объясняется преимущественным переходом в паровую фазу метана в начале процесса дегазации и ростом вследствие этого содержания тяжелых углеводородов в составе газов, оставшихся в системе. Эти компоненты, как известно, имеют повышенную растворимость по сравнению с метаном. Указанным объясняется расхождение в результатах определения давления насыщения различными исследователями.  [7]

При дифференциальном дегазировании выделяющийся газ непрерывно отводят, чтобы не было контакта с нефтью. Пластовая жидкость находится в равновесных условиях только с выделяющимся газом при данном давлении, но не с газом, выделившимся за конечный интервал падения давления. Объем системы при этом может не меняться, но число компонентов в ней будет уменьшаться. При контактной дегазации выделяющиеся из нефти легкие компоненты, оставаясь в газовой фазе, своим присутствием усиливают выделение более тяжелых. Поэтому выделение компонента из нефти на последних ступенях дегазации происходит под вакуумом, что приводит к увеличению количества выделившегося компонента.  [8]

При дифференциальном дегазировании непрерывный отвод из системы выделившихся из раствора фракций приводит к тому, что в контакте с жидкостью находятся только что выделившиеся из раствора все более тяжелые фракции с постепенно возрастающим парциальным давлением, вследствие чего интенсивность выделения газа из раствора по сравнению с контактным дегазированием уменьшается. Таким образом, различие в количестве выделившегося из раствора газа в условиях контактного и дифференциального дегазирования объясняется тем, что газонефтяная смесь состоит из многих неодинаковых углеводородов.  [10]

В большинстве случаев дифференциальное дегазирование рассматривается как процесс непрерывного снижения давления.  [12]

Строгое соблюдение условий дифференциального дегазирования затруднено, поэтому используется многократное ( ступенчатое) дегазирование.  [13]

Значения пластовых объемных факторов при дифференциальном дегазировании не совпадают со значениями объемных факторов, полученных при контактном дегазировании нефти. Не совпадают также между собой и значения газовых факторов, полученных при дифференциальном и контактном дегазировании нефти. Таким образом, при любом исследовании - контактном или дифференциальном - в результате анализов необходимо внести некоторую поправку для более точной оценки состояния пластовой газо-нефтяной смеси в процессе нефтедобычи.  [14]

Количество газа, выделившегося при контактном и дифференциальном дегазировании - различное. При контактном дегазировании в системе сохраняются все компоненты газа, выделившегося из раствора, в том числе и наиболее легкие его части, а это, в свою очередь, усиливает парообразование более тяжелых углеводородов.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Растворимость газов в нефти. От количества растворенного в пластовой нефти газа зависят все ее важнейшие свойства:

От количества растворенного в пластовой нефти газа зависят все ее важнейшие свойства: вязкость, сжимаемость, термическое расширение, плотность и другие.

Распределение компонентов нефтяного газа между жидкой и газообразной фазами определяется закономерностями процессов растворения. Способность газа растворяться в нефти и воде имеет большое значение на всех этапах разработки месторождений от добычи нефти до процессов подготовки и транспортировки.

Сложность состава нефти и широкий диапазон давлений и температур затрудняют применение термодинамических уравнений для оценки газонасыщенности нефти при высоких давлениях.

Процесс растворения для идеального газа при небольших давлениях и температурах описывается законом Генри:

, (2.11)

где Vг – объём растворённого газа при данной температуре;

– коэффициент растворимости газа;

Vж – объём жидкости-растворителя;

Р – давление газа над поверхностью жидкости.

Коэффициент растворимости газа показывает, какое количество газа (Vг) растворяется в единице объёма жидкости (Vж) при данном давлении:

. . (2.12)

Коэффициент растворимости зависит от природы газа и жидкости, давления, температуры.

Количество выделившегося из нефти газа зависит не только от его содержания в нефти, но и от способа дегазирования. Различают контактное разгазирование, когда выделившийся газ находится в контакте с нефтью, и дифференциальное разгазирование, когда выделившийся из нефти газ непрерывно отводится из системы.

Однократное стандартное (контактное) разгазирование (ОСР) – процесс характеризуется тем, что образовавшиеся паровая и жидкая фазы находятся в равновесии и не разделяются до окончания процесса, а при достижении конечной температуры их разделяют в один приём, однократно.

При дифференциальном разгазировании часть жирных газов остается растворенным в нефти, чем предотвращаются неоправданные потери ценного углеводородного сырья.

Строгое соблюдение условий дифференциального разгазирования в лабораторных условиях затруднено, поэтому этот процесс заменяют на ступенчатое дегазирование, используя многократное (ступенчатое) разгазирование.

Газовый фактор пластовой нефти

где Vг – объём газа, выделившегося из объема Vн нефти в процессе её изотермического контактного разгазирования. Vн – объём дегазированной нефти, полученный из пластовой в процессе её разгазирования.

Объём выделившегося равновесного нефтяного газа (Vг) приведён к стандартным условиям (давление атмосферное – 100 кПа, температура – 293,15 К) или к нормальным условиям (0,1013 МПа, 273,15 К).

По статистическим данным Г. Ф. Требина из 1200 залежей около 50 % имеют газовый фактор от 25 до 82 м3/м3. То есть в 1 м3 нефти в пластовых условиях растворено от 25 до 82 м3 газа.

Для нефтяных месторождений Западной Сибири величина газового фактора изменяется в диапазоне от 35 до 100 м3/м3, для нефтегазовых залежей величина газового фактора может доходить до 250 м3/м3.

 

Дата добавления: 2015-10-23; просмотров: 115 | Нарушение авторских прав

Читайте в этой же книге: Проницаемость горных пород | Зависимость проницаемости от пористости | Насыщенность коллекторов | Зависимости проницаемости от насыщенности коллекторов | Механические свойства горных пород | Тепловые свойства горных пород | Понятие о неоднородности коллекторов и моделях пласта | Физическое состояние нефти и газа при различных условиях в залежи | Кислородные соединения нефти | Вязкость - свойство жидкости сопротивляться взаимному перемещению ее частиц при движении. |mybiblioteka.su - 2015-2018 год. (0.007 сек.)

mybiblioteka.su

Пластовая и дегазированная нефть.

Пластовая нефть– неокисленная, содержащая растворенный газ и находящаяся под пластовым давлением и температурой.

Дегазированная нефть – при подъеме нефти на поверхность снижается P и t, из нефти выделяется газ. Такую нефть называют дегазированной или устьевой трапной.

Пластовая нефть представляет собой смесь большого количества компонентов разного состава, отличающихся разнообразием свойств. При дегазации пластовой нефти выделяются ее газообразные составляющие: УВ газы, N2 и иногда CO2, h3S и инертные газы.

Содержание газообразных УВ в нефти может изменяться от единиц до сотен м3 на тонну нефти. Растворенный в нефти газ уменьшает ее вязкость и плотность и увеличивает ее сжимаемость. Газ взаимодействует с диспергированными в нефти парафинами и асфальтенами - изменяются вязкость, температура насыщения нефти парафином и тд.

Количественное содержание растворенных газов характеризуется газосодержанием (газонасыщенностью)– кол-во газа растворенного в ед. объема пластовой нефти, сохраняющееся постоянно при пластовом давлении равном либо превышающем давление насыщения; и уменьшающееся при сжижении пластового давления ниже давления насыщения

Гн = Vг / Vпл.н [м3/м3]

Vг – объем содержащегося газа в ед. объема пластовой нефти

Растворимость газа- максимальное кол-во газа, которое может быть растворено в единице объема пластовой нефти при определенном P и t.

Коэффициент растворимости газаa показывает, какое количество газа растворяется в единице объёма жидкости при данном давлении:

α = VГ / (VЖ * Р)

Vж – объём жидкости-растворителя;

Vг – количество газа, растворённого при данной температуре;

Р – давление газа над поверхностью жидкости

Если пластовое давление меньше давления насыщения, то часть газа находится в свободном состоянии (залежь имеет газовую шапку). Если пластовое давление больше давления насыщения, то говорят, что нефть "недонасыщена" газом и весь газ растворён в нефти. С повышением давления растворимость газа растёт, а с повышением температуры – падает.

Разные компоненты нефтяного газа обладают разной способностью растворятся в жидкостях, причём с увеличением молекулярной массы газового компонента растёт коэффициент растворимости.

Давление насыщения нефти газом– давление, при котором газ начинает переходить из растворимого нефтесостояния в свободное. Оно зависит от количества и вида растворенного газа, а также состава нефти и от t. С увеличением количества растворенного газа и t нефти, давление насыщения увеличивается.

С ростом молекулярной массы давление насыщения увеличивается.

Сведения о давлении насыщении газа необходимо знать для обоснования глубины спуска насоса под динамический уровень жидкости газа, при выборе длины, диаметра подъемных труб при фонтанном и газлифтном способах добычи нефти.

Количество выделившегося из нефти газа зависит и от способа дегазирования :

- Контактное разгазирование - выделившийся газ находится в контакте с нефтью,

- дифференциальное разгазирование - выделившийся из нефти газ непрерывно отводится из системы.

Коэффициент разгазирования– количество газа, выделившегося из единицы объёма нефти при снижении давления на единицу.

Св-ва нефти в пластовых условиях.

Плотность дегазированной и пластовой нефти .

Изменяется в широких пределах 600...1000 кг/м3 .

Присутствие в пл. нефти раств-го газа и повышенная температура пласта приводит к уменьшению плотности нефти.

Ромашкинское МР: 822 - > 870.

Не все газы одинаково влияют на плотность нефти при их раств-ии. Так с увеличением давления плотность нефти значительно уменьшается при насыщении ее УВ газами и СО2 и несколько увеличивается при насыщении N2. Это объясняется тем, что с увеличением давления с одной стороны увеличивается кол-во раств-го в нефти газа, что уменьшает вязкость нефти, с другой - уменьшается объем нефти из-за упругого ее сжатия, что ведет к увеличению вязкости.

Плотность, как параметр, необходима для перевода объемных ед. в массовые и наоборот.

Вязкость пластовой нефти.

Она всегда отличается от вязкости дегазированной нефти в следствии большого кол-ва растворенного газа, повышенной t и P. При этом все нефти подчиняются следующим закономерностям:

1.повышение давления приводит к некоторому снижению вязкости, но при условии, что Рпл > Рнас вязкость увеличивается:

По мере увеличения давления (АВ) вязкость нефти уменьшается, т.к. увеличивается кол-во растворимого в нефти газа. В (В) Р = Рнас и весь свободный газ растворен в нефти, дальнейшее увеличение давления приводит к некоторому увеличению вязкости нефти за счет ее упругого сжатия.

2.Вязкость нефти уменьшается с увеличением t, при этом увеличение P уменьшает темп падения вязкости:

Наиболее высокая скорость снижения вязкости отмечается при начальном увеличении t, в дальнейшем снижение вязкости замедляется. По данной кривой можно подобрать наиболее оптимальную t нагрева нефти. Высоковязкие нефти со значительной плотностью обладают большим темпом снижения вязкости, чем нефти имеющие меньшую вязкость и плотность.

В пластовых условиях вязкость нефти может быть в 10 раз меньше вязкости дегазированной нефти.

Вязкость нефти в пластовых условиях изменяется от десятых долей до мПа·с до 2000 - 3000 мПа·с. Сведения о вязкости используют при определении дебита скважин, при подборе нефтепромыслового оборудования и др. расчетах.

Сжимаемость нефти

Упругие св-ва нефти оцениваются коэф-ом сжимаемости нефти – способностью ж-ти изменять свой объем под действием давления:

Наиболее низкими значениями обладают дегазированные нефти. βн.дег = (4...7) · 10-10 Па

У пластовых нефтей, содержащих растворимый газ βн.пл = 140·10-10 Па. Но чаще всего (25...35) ·10-10 Па.

βн зависит от ее состава, кол-ва раств-го газа и температуры. Чем выше молекулярная масса нефти, тем выше βн. Чем больше в нефти раств-го газа, тем больше βн. С увеличением температуры βн уменьшается, что объясняется ухудшением растворимости газов в нефти.

График βн от Р:

Уменьшение βн со снижением давления ниже давления насыщения обуславливается дегазацией нефти. Величина βн используется при определении упругих запасов нефти, при расчетах коэф-ов пъезопроводности и упругой емкости пласта.

βн определяется по кривым Р - ∆V.

Диэлектрические свойства нефтей . Нефть – диэлектрик. Диэлектрическая проницаемость (ε) показывает, во сколько раз взаимодействие между электрическими зарядами в данном веществе меньше, чем в вакууме, при прочих равных условиях. Теоретически считается что если у вещества ε < 2,5, то вещество считается диэлектрик. Величины диэлектрической проницаемости измененяются в следующих диапазонах: для воздуха = 1; для нефти = 1,86 – 2,38; для нефтяного газа = 1,015; для смол и асфальтенов = 2,8.

29.Растворимость газов в нефти. Газосодержание пластовой нефти. Газовый фактор. Влияние растворенного газа на физ св-ва нефти. Контактный и дифференциальный процессы разгазирования.

В пластовой нефти всегда содержатся растворимые газы, количественное их содержание хар-ся газосодержанием (газонасыщенностью).

Газосодержание пластовой нефти– кол-во газа растворенного в ед. объема пластовой нефти, сохраняющееся постоянно при пластовом давлении равном либо превышающем давление насыщения; и уменьшающееся в процессе разработки залежи в процессе сжижении пластового давления ниже давления насыщения

Гн = Vг / Vпл.н [м3/м3]

Vг – объем содержащегося газа в ед. объема пластовой нефти

Максимальное кол-во газа, которое может быть раств. в ед. объема пластовой нефти при опред. P и t наз-ся растворимостью газа .

Газосодержание может быть равным или меньшим растворимости газа. Растворимость газов при небольших давлениях и температурах подчиняются линейному закону Генри:

Vг = α · Vж · Р

Vг – кол-во газа, раств в объеме жидкости Vж, [м3]

Р – абсолютное давление газа над поверхностью жидкости, [Па]

α - коэф-нт раств. газа в жидкости

Физический смысл α- кол-во газа растворенного в ед. объема или массы нефти при увеличении давления на единицу и может изменяться в пределах от долей до 40-50 м3 / м3 · МПа

α = Vг / Vж · Р , [м3 / м3 · МПа ; Па-1]

Газовый фактор – это кол-во газа, приходящегося на 1 т или 1 м3 добытой нефти.

Гф =Vг / Vд.н. = [м3 / м3 ; м3 / т]

Различают начальный, текущий и средний газовый фактор:

- начальный – отношение количеств добытого газа и нефти за первый месяц или квартал работы скважины.

- текущий – отношение добытого газа и нефти за любой ограниченный отрезок времени.

- средний –отношение количеств газа и нефти добытого с начала разработки до любой произвольной даты.

Различные компоненты нефтяного газа обладают неодинаковой растворимостью в нефти. С увеличением молекулярной массы коэф-нт растворимости УВ-ых газов возрастает. Из неУВ-ых газов: углекислый газ обладает весьма высокой растворимостью, а азот наиболее низкой.

Пример: коэф-нт растворимости отдельных газов в Ромашкинской нефти (Газ - α, м3 / м3 · МПа)

СО2 - 13,0

СН4 - 3,8

N2 - 0,88

Замечено, что растворенность газов в нефти увеличивается с возрастанием содержания в нефти парафинов УВ и уменьшается с ростом ароматических УВ и асфальтосмолистых веществ (АСВ).

С увеличением давления растворенность газов увеличивается, но это увеличение различно для различных газов.

Выводы: для N2 и СН4 пологий подъем, растворимость равномерна и подчиняется закону Генри, а для хорошо растворимых газов СО2 и попутный газ, растворимость характеризуется резким подъемом до определенных давлений, а затем выполаживанием. Последнее обуславливается обратными процессами растворения компонентов нефти в сжатом газе (ретроградные фазовые превращения).

Очень часто в нефтепромысловой практике мы встречаемся с процессами разгазирования. Различают контактный и дифференциальный процессы разгазирования.

- Контактный– когда весь выделившийся из нефти газ остается в контакте с нефтью.

- Дифференциальный– когда выделившийся из нефти газ постоянно отводится.

Представление о количестве выделившегося газа дают кривые разгазирования.

Q – кол-во выделившегося газа.

30.Давление насыщения нефти газом., объемный коэффициент и усадка нефти. Определение давления насыщения и его практическое приложение.

studlib.info

Структурно-механические свойства аномально-вязких нефтей

Реологические характеристики нефти в значительной степени определяются содержанием в ней смол, асфальтенов, твердого парафина, порфиринов. Асфальтены за счет плохой растворимости в углеводородах представляют собой коллоидные системы. Мицеллы асфальтенов стабилизируются смолами.

При значительном содержании парафина и асфальтенов вязкость нефти зависит от скорости сдвига, т.е. приобретает свойства неньютоновских жидкостей.

Структурно-механические свойства движущихся неньютоновских жидкостей изучает наука – реология.

Как известно, вязкость ньютоновских жидкостей зависит только от температуры и давления и касательное напряжение , возникающее в движущихся слоях жидкости, пропорционально градиенту скорости :

. (2.3)

Данное уравнение записывается в форме, аналогичной закону Гука, путем следующих преобразований

, (2.4)

где – длина в направлении скорости движения ; – время.

Величина характеризует сдвиг слоев (деформацию), и, следовательно, у ньютоновских жидкостей скорость сдвига пропорциональна касательному напряжению и обратно пропорциональна вязкости жидкости

. (2.5)

Данное уравнение называют реологическим уравнением.

Вязкость неньютоновской жидкости зависит не только от давления и температуры, но и от скорости деформации сдвига и предыстории состояния жидкости (от времени ее нахождения в спокойном состоянии). Свойства этих жидкостей описываются реологическим уравнением другого вида

. (2.6)

В зависимости от вида функции эти жидкости разделяются на три вида:

1) бингамовские пластики;

2) псевдопластики;

3) дилатантные жидкости.

Реологические кривые для различных видов жидкостей приведены на рисунке.

Реологическая кривая 1 относится к бингамовским пластикам. В этом случае нефть проявляет свойства пластической жидкости. В состоянии равновесия нефтяная система ведет себя как пластическая жидкость (рис. 3.26) и обладает некоторой пространственной структурой, способной сопротивляться сдвигающему напряжению (τ), пока величи-на его не превысит значение статического напряжения сдвига (τо). После достижения некоторой скорости сдвига нефть способна течь как ньютоновская жидкость.

Для определения аномальной вязкости таких пластичных тел Ф. Н. Шведовым предложено следующее реологическое уравнение:

, (2.7)

где Е — модуль Юнга;

— предельное напряжение сдвига;

— скорость деформации;

– период релаксации (определяет время, необходимое для «рассасывания»

упругих напряжений, возникших в теле при постоянной деформации .

Бингамом аналогичное вязкопластичное течение описывается уравнением:

. (2.8)

Два последних уравнения идентичны и обычно объединяются в одну формулу Шведова – Бингама:

(2.9)

где динамическое напряжение сдвига;

– пластическая вязкость, не зависящая от скорости сдвига и равная угловому

коэффициенту линейной части зависимости .

За эффективную вязкость пластичных тел принимается вязкость некоторой ньютоновской жидкости, величина которой

. (2.10)

Эффективная вязкость пластичных тел является переменной величиной.

П с е в д о п л а с т и к и (реологическая кривая 2 на рис. III.26) характеризуются отсутствием предела текучести, а также тем, что эффективная их вязкость понижается с увеличением скорости сдвига. Псевдопластиками такие жидкости называют потому, что в определенном интервале напряжений они подчиняются уравнению Шведова — Бингама.

Д и л а т а н т н ы е жидкости (кривая 4) также относятся к телам, у которых отсутствует предел текучести, однако их эффективная вязкость в отличие от псевдопластиков повышается с возрастанием скорости сдвига. Такой тип течения характерен для суспензий с большим содержанием твердой фазы. Предполагается, что в покое жидкость равномерно распределяется между плотно упакованными частицами и при сдвиге с небольшой скоростью жидкость служит смазкой, уменьшающей трение частиц. При больших скоростях сдвига плотная упаковка частиц нарушается, система расширяется и жидкости становится недостаточно для смазки трущихся поверхностей. Действующие напряжения в таком случае должны быть значительно большими.

Движение псевдопластиков и дилатантной жидкости аппроксимируется степенным законом зависимости касательного напряжения и модуля скорости деформации

 

 

Растворимость газов в нефти

От количества растворенного в пластовой нефти газа зависят все ее важнейшие свойства: вязкость, сжимаемость, термическое расширение, плотность и другие.

Распределение компонентов нефтяного газа между жидкой и газообразной фазами определяется закономерностями процессов растворения. Способность газа растворяться в нефти и воде имеет большое значение на всех этапах разработки месторождений от добычи нефти до процессов подготовки и транспортировки.

Сложность состава нефти и широкий диапазон давлений и температур затрудняют применение термодинамических уравнений для оценки газонасыщенности нефти при высоких давлениях.

Процесс растворения для идеального газа при небольших давлениях и температурах описывается законом Генри:

, (2.11)

где Vг – объём растворённого газа при данной температуре;

– коэффициент растворимости газа;

Vж – объём жидкости-растворителя;

Р – давление газа над поверхностью жидкости.

Коэффициент растворимости газа показывает, какое количество газа (Vг) растворяется в единице объёма жидкости (Vж) при данном давлении:

. . (2.12)

Коэффициент растворимости зависит от природы газа и жидкости, давления, температуры.

Количество выделившегося из нефти газа зависит не только от его содержания в нефти, но и от способа дегазирования. Различают контактное разгазирование, когда выделившийся газ находится в контакте с нефтью, и дифференциальное разгазирование, когда выделившийся из нефти газ непрерывно отводится из системы.

Однократное стандартное (контактное) разгазирование (ОСР) – процесс характеризуется тем, что образовавшиеся паровая и жидкая фазы находятся в равновесии и не разделяются до окончания процесса, а при достижении конечной температуры их разделяют в один приём, однократно.

При дифференциальном разгазировании часть жирных газов остается растворенным в нефти, чем предотвращаются неоправданные потери ценного углеводородного сырья.

Строгое соблюдение условий дифференциального разгазирования в лабораторных условиях затруднено, поэтому этот процесс заменяют на ступенчатое дегазирование, используя многократное (ступенчатое) разгазирование.

Газовый фактор пластовой нефти

где Vг – объём газа, выделившегося из объема Vн нефти в процессе её изотермического контактного разгазирования. Vн – объём дегазированной нефти, полученный из пластовой в процессе её разгазирования.

Объём выделившегося равновесного нефтяного газа (Vг) приведён к стандартным условиям (давление атмосферное – 100 кПа, температура – 293,15 К) или к нормальным условиям (0,1013 МПа, 273,15 К).

По статистическим данным Г. Ф. Требина из 1200 залежей около 50 % имеют газовый фактор от 25 до 82 м3/м3. То есть в 1 м3 нефти в пластовых условиях растворено от 25 до 82 м3 газа.

Для нефтяных месторождений Западной Сибири величина газового фактора изменяется в диапазоне от 35 до 100 м3/м3, для нефтегазовых залежей величина газового фактора может доходить до 250 м3/м3.

 

Читайте также:

lektsia.info