Описание ректификационной колонны SARGAS. Ректификационная колонна для нефти


Ректификационные колонны :: OOO НПП "HOУ Пром"

Колонны ректификационные представляют собой цилиндрические аппараты вертикального типа предназначены для атмосферного разделения смеси углеводородов, путем ректификации на массообменных устройствах (тарелках или насадках).

Таблица 1: Технические характеристики ректификационных колонн

НаименованиеДиаметр, ммВысота колонны, мТипРабочая средаДавление, кг/см2Пропускная способность м3/час

Колонна ректификационная атмосферная

530

12,5

Насадочная

Газообразные и жидкие углеводороды

0.7

0.8

Колонна ректификационная атмосферная сложная с полуглухой тарелкой

530

12,5

Насадочная

Газообразные и жидкие углеводороды

0.7

0.8

Колонна ректификационная атмосферная

530

10

Тарельчатая

Газообразные и жидкие углеводороды

0.7

0.6

Колонна ректификационная атмосферная сложная с полуглухой тарелкой

530

10

Тарельчатая

Газообразные и жидкие углеводороды

0.7

0.6

Колонна ректификационная Стриппинг Секция

530

2

Насадочная

Газообразные и жидкие углеводороды

0.7

0.8

Колонна ректификационная атмосферная

720

16

Насадочная

Газообразные и жидкие углеводороды

0.7

2

Колонна ректификационная атмосферная сложная с полуглухой тарелкой

720

16

Насадочная

Газообразные и жидкие углеводороды

0.7

2

Колонна ректификационная атмосферная

720

15

Тарельчатая

Газообразные и жидкие углеводороды

0.7

1.7

Колонна ректификационная атмосферная сложная с полуглухой тарелкой

720

15

Тарельчатая

Газообразные и жидкие углеводороды

0.7

1.7

 

nouprom-npz.ru

Расчет вакуумной ректификационной колонны для разгонки нефтепродуктов

Министерство образования Российской Федерации

Ангарская Государственная Техническая академия

Кафедра Химической технологии топлива

Пояснительная записка к курсовому проекту.

Тема проекта: “Блок ВП(м), установка ГК-3”

Выполнил: ст-нт гр.ТТ-99-1

Семёнов И. А.

Проверил: проф.., к.т.н.

Щелкунов Б.И.

Ангарск 2003

Содержание:

Введение 3

  1. Материальный баланс 4
  2. Определение рабочего флегмового числа и числа теоретических тарелок для 1-й секции 5
  3. Расчёт физико-химических свойств смеси в верхней и нижней частях 9
  4. Гидравлический расчёт колпачковых тарелок 1-й секции 11
  5. Расчёт эффективности тарелок и высоты 1-й секции 21
  6. Определение рабочего флегмового числа и числа теоретических тарелок для 2-й секции 23
  7. Расчёт физико-химических свойств смеси. 26
  8. Гидравлический расчёт колпачковых тарелок 2-й секции 27
  9. Расчёт эффективности тарелок и высоты 2-й секции. 32
  10. Тепловой баланс колонны 33
  11. Расчёт штуцеров колонны 35
  12. Расчёт теплоизоляции 37

Список литературы 38

Введение

Ректификация является одним из важнейших технологических процессов разделения и очистки жидкостей и сжиженных газов в химической, нефтехимической, фармацевтической, пищевой и других отраслях промышленности. Это массообменный процесс, который осуществляется в большинстве случаев в противоточных колонных аппаратах с контактными элементами. Ректификация – это наиболее полное разделение смесей жидкостей, целиком или частично растворимых друг в друге. Процесс заключается в многократном взаимодействии паров с жидкостью – флегмой, полученной при частичной конденсации паров. Процесс основан на том, что жидкости, составляющие смесь, обладают различным давлением пара при одной и той же температуре. Поэтому состав пара, а следовательно, и состав жидкости, получающейся при конденсации пара, будут несколько отличаться от состава начальной смеси: легколетучего компонента в паре будет содержаться больше, чем в перегоняемой жидкости. Очевидно, что в неиспарившейся жидкости концентрация труднолетучего компонента при этом должна увеличиться.

Технологический расчёт колонны

В колонну поступает 76000 кг/ч сырья (мазута).Продуктами перегонки являются:

  1. Фракция НК-350 о С (пары и газы разложения).
  2. Фракция 350-500 о С (вакуумный погон).
  3. Фракция 500-КК о С (гудрон).

Давление в колонне равно

Материальный баланс колонны

Материальный баланс колонны составляем на основе данных о выходах (табл. 1) продуктов из сырья.

Таблица 1.

Расчёт:

1. Расход вакуумного погона:

2. Расход гудрона:

3. Расход паров и газов разложения:

Все результаты расчёта по колонне заносим в таблицу 2.

Таблица 2.

Материальный баланс по колонне

Считаем материальный баланс по каждой секции:

Таблица 3.

Материальный баланс 1-й секции

Таблица 4.

Материальный баланс 2-й секции

Определение рабочего флегмового числа и числа теоретических тарелок для 1-й секции.

Для выполнения расчёта заменяем имеющиеся фракции углеводородов на простые алканы нормального строения:

1. Фракция НК-350 о С. Так как данная фракция состоит преимущественно из паров диз. топлива, то за НК примем температуру равную 240 о C. Средняя температура равна: (350+240)/2=295 о С.

Принимаем: н-гексадекан (С16 Н34 ), tкип =287 о С, М=226 кг/кмоль.

2. Фракция 350-500 о С. tср =(350+500)/2 = 425 о С.

Принимаем: н-гексакозан (С26 Н54 ), tкип =417 о С, М=366 кг/кмоль.

3. Фракция 500-КК о С

Принимаем: н-пентатриаконтан (С35 Н72 ), tкип =511 о С, М=492 кг/кмоль.

Заменяем перегоняемую смесь углеводородов в 1-й секции на бинарную смесь. В качестве низкокипящеко (НК) компонента принимаем н-гексакозан (С26 Н54 ), а в качестве выкокипящего (ВК) - н-пентатриаконтан (С35 Н72 ).

Производим расчёт мольных концентрация на входе и на выходах из секции.

Мольную концентрацию на входе определяем на основе массовой концентрации, которую рассчитали в материальном балансе 1-й секции (табл. 3).

Состав куба дистиллята определяется на основе ср. температур кипения фракции и рассчитывается по формуле:

где Pатм - атмосферное давление, PНК и PВК –давление насыщенных паров индивидуальных компонентов при температуре фракции, определяются по уравнению Антуана:

, [Па.]

где A, В, С – параметры Антуана для каждого компонента. t- температура, о С.

Параметры уравнения для каждого компонента приведены в таблице 5.

Таблица 5.

Параметры уравнения Антуана

Расчёт состава куба: PНК и PВК рассчитываются при температуре равной 500 о С.

Расчёт состава дистиллата: PНК и PВК рассчитываются при температуре равной 425 о С.

Температуры на выходе из дистиллата и куба определяем по формуле методом последовательного приближения:

Температура на выходе из дистиллата равна: tD =363 о С

Температура на выходе из куба равна: tW =408 о С

mirznanii.com

Описание ректификационной колонны SARGAS

 Состав ректификационной колонны SARGAS

1 Печь, 1 шт.
2 Куб, 1 шт.
3 Колонна, 1 шт.
4 Конденсатор, 1 шт.
5 Делитель, 1 шт.
6 Лестница с площадкой, 1 шт.
7 Холодильник остатка, 1 шт.
8 Сборник, 4 шт.
9 Система трубопроводов, комплект
Описание процесса ректификации

Ректификация — процесс разделения смесей взаимно растворимых компонентов, различающихся по температурам кипения, путем противоточного многократного контактирования неравновесных жидкости и пара. Контактирование осуществляется, как правило, в колонных аппаратах на тарельчатых или насадочных контактных устройствах противоточно — пар снизу вверх, жидкость сверху вниз.

Колонный аппарат представляет собой вертикальную стальную трубу с размещенными внутри контактными устройствами. В тарельчатых колоннах контакт происходит ступенчато на отдельных ступенях, называемых тарелками (ситчатые, колпачковые, клапанные и т.д.), обычно путем барботажа пара сквозь слой жидкости или путем распылительного перемешивания, или другим способом, обеспечивающим максимально эффективный тепло- и массообмен. В насадочных колоннах контакт осуществляется непрерывно между паром и жидкой пленкой в слое насадки с развитой поверхностью, которой заполнена колонна (щебень, кольца, пружины, сетки и т.п.).

Жидкость, относительно богатая легкокипящими компонентами, имеющая относительно более низкую температуру, поступает на контактное устройство сверху. Пар, богатый высококипящими компонентами, имеющий более высокую температуру, поступает на контактное устройство снизу. На контактном устройстве жидкость и пар стремятся к равновесию путем тепло- и массообмена. Если равновесие между паром и жидкостью, покидающими контактное устройство достигается, то такое контактное устройство называется теоретической ступенью или теоретической тарелкой.

Простая дистилляция («самогонный аппарат») обеспечивает однократный хороший контакт жидкости и пара и эквивалентна одной теоретической ступени. Реальные тарелки промышленных колонн имеют эффективность 0,3...0,8 теоретической ступени. Для насадочных колонн есть величина, называемая высотой эквивалентной теоретической тарелке, — это высота слоя насадки, массообменная эффективность которого эквивалентна одной теоретической ступени. Эта высота может быть 100...600мм. На контактных устройствах пар обогащается низкокипящим компонентом, а жидкость высококипящим. Проходя последовательно ряд ступеней, жидкость и пар достигают заданных концентраций компонентов. Вверху колонны концентрируется низкокипящие компоненты, внизу — высококипящие. Наращивая число ступеней, можно получить любую заданную четкость разделения компонентов. По высоте колонны концентрации компонентов меняются иногда весьма нелинейно.

В аппаратах непрерывной ректификации сырье вводят примерно на середине высоты колонны, т.е. на ту тарелку, где концентрации компонентов примерно равны таковым у сырья. Сверху колонны отбирают дистиллят, богатый низкокипящими компонентами. Снизу отбирают остаток, богатый высококипящими компонентами. Пары с верхней тарелки колонны охлаждаются в конденсаторе, часть в виде паров или жидкости отбирается как дистиллят, остальное возвращается в колонну в виде жидкости. Жидкость с нижней тарелки нагревается в кипятильнике, часть жидкости отбирается как нижний продукт (остаток), остальное в виде пара возвращается в колонну.

Отношение массового расхода жидкости, поступающей из конденсатора в колонну, к массовому расходу дистиллята называется флегмовым числом. Отношение массового расхода паров из кипятильника к массовому расходу остатка называется паровым числом. Эти числа характеризуют режим работы верхней (выше питания) и нижней (ниже питания) секций колонны. Чем выше флегмовое (и паровое) число, тем легче (меньшим числом ступеней) достигается заданная четкость раделения смеси ректификацией, но также возрастают удельные затраты энергии и уменьшается производительность колонны. Флегмовое (и паровое) число не может быть меньше определенного минимального, при котором заданная четкость ректификации не достигается при сколь угодно большом числе ступеней.

При периодической ректификации в кипятильник соответствующего объема (называемый кубом колонны) загружается порция сырья, в процессе ректификации сырье не добавляют и состав кубового остатка непрерывно меняется от состава сырья до заданного высококипящего остатка. Соответственно сверху колонны отбирают дистиллят изменяющегося по времени состава. Если число компонентов смеси невелико (2...5), а количество ступеней и флегмовое число достаточны для сравнительно четкого разделения, то состав дистиллята и температура на верхней тарелке изменяется ступенчато, вначале дистиллят состоит из концентрированного самого низкокипящего компонента (назовем его первым компонентом), затем следует короткий переходный период, когда дистиллят представляет собой смесь переменного состава, в которой концентрация первого компонента убывает, а концентрация второго компонента возрастает, далее дистиллят состоит из концентрированного второго компонента, и т.д. для всех компонентов. Дистиллят переходных периодов традиционно называют bad cuts, его смешивают со следующей порцией сырья.

Если четкость разделения невелика и/или количество компонентов велико (нефтяные смеси), то ступенчатость состава дистиллята становится незаметной, состав дистиллята и температура на верхней тарелке меняются непрерывно. Многокомпонентные смеси могут быть разделены на индивидуальные компоненты повторной ректификацией узких фракций дистиллятов, содержащих уже небольшое число компонентов. Особенности ректификации нефтяных смесей обусловлены требованиями к качеству разделения на фракции и тем, что нефтяные смеси состоят из тысяч компонентов. Многокомпонентность нефтяных смесей обуславливает непрерывный состав дистиллята при периодической ректификации для любого практически достижимого числа ступеней и флегмового числа.

Качество разделения на фракции определяется по результатам простой дистилляции (стандарт ASTM D86) проб данной фракции, по температурам 5% и 95% отгона. Стандартами на соответствующие нефтепродукты определяется, что перекрытие температур 95% и 5% отгона между соседними фракциями должно быть не более 10...15С. Например, если 95% бензиновой фракции, полученной на данной колонне, отгоняется по D86 не более чем при 180С, то 5% дизельной фракции, полученной на этой же колонне, должно отгоняться по D86 не менее чем при 170С.

ttgroupworld.com

Оборудование нефтеперерабатывающих заводов. Ректификационные колонны

Карта сайта
  • Разработки
    • Добавка БТ (МИНИМА)
    • Монометиланилин (ММА)
    • Производство ММА
    • ММА на НПЗ
    • Метаформинг
    • Результаты испытаний
      • Исходный бензин
      • Испытание 1
      • Испытание 2
    • Физ/Хим показатели
    • Инструкции
      • Применение МИНИМА
    • Разработка присадок
    • Ферроцен
    • Очиститель инжектора
    • Бензин спортивный
    • ЦГН
    • Бензины ЕВРО-3, ЕВРО-4
  • Справочник
    • Антидетонаторы
      • ТЭС
      • Железосодержащие
      • Марганецсодержащие
      • Оксигенаты
      • Ароматические амины
    • Допущенные присадки
    • ГОСТы
      • ГОСТ 2084-77
      • ГОСТ Р 51105-97
      • ГОСТ Р 51313-99
      • ГОСТ Р 51866-2002
      • Технический регламент
    • Топливная хартия
    • Сортность бензина
    • Перв. переработка нефти
      • Обессоливание
      • Атм. и вакуумн. перегонка
      • Вторичная перегонка
      • Газофракционирование
    • Процессы пр-ва бензинов
      • Каталитический риформинг
      • Изомеризация
      • Гидроочистка
      • Каталитический крекинг
      • Алкилирование
      • Олигомеризация олефинов
      • Гидрокрекинг
      • Висбрекинг
      • Коксование
    • Технологии пр-ва масел
      • Производство масел
      • Деасфальтизация гудрона
      • Очистка растворителями
      • Депарафинизация масел
      • Контактная доочистка
      • Гидродоочистка масел
    • Технол. пр-ва парафинов
      • Производство парафинов
      • Неочищенные парафины
      • Доочистка парафинов
      • Жидкие парафины
    • Производство битумов
    • Методы испытаний
      • КМКО
      • Испаряемость
      • Потери от Испарения
      • Защитные свойства
    • Оборудование НПЗ
      • Реакторное оборудование
      • Технологические печи
      • Ректифик. колонны
      • Теплообменные аппараты
      • Вакуум. устройства
      • Насосы
      • Компрессоры
      • Емкости, резервуары
      • Трубопроводы
      • Констр. материалы
    • Физ-химия нефти
      • Плотность
      • Молекулярная масса
      • Вязкость
      • Поверхностное натяжение
      • Характеризующий фактор
      • Давление насыщ. паров
      • Конст. фазов. равновесия
      • Критические параметры
      • Теплоемкость
      • Теплота испарения
      • Теплота плавления
      • Теплотворная способность
      • Энтальпия
      • Теплопроводность
      • Тепловые эффекты
      • Индивид. соединения
    • Хар-ки нефтепродуктов
      • Фракционный состав
      • Температура застывания
      • Октановое число
      • Цетановое число
      • Высота нек. пламени
      • Методы испытаний
      • Сырье НПЗ
      • Классификация нефтей
      • Характеристика нефтей
      • Газовые конденсаты
      • Топлива
      • Нефтяные масла
      • Присадки к маслам
      • Ароматика
      • Сжиженные газы
      • Др. нефтепродукты
    • Общезав. хоз-во НПЗ
      • Прием и отгрузка
      • Хранение нефтепродуктов
      • Электроснабжение
      • Теплоснабжение
      • Водоснабжение
      • Канализация, очистка
      • Снабжение топливом
      • Снабжение газами
      • Факела
    • Пром. безопасность
      • Свойства продуктов
      • Категорирование
      • Электрооборудование
      • Трубопроводы
    • Охрана окруж. среды
      • Основные понятия
      • Нормирование
      • Контроль
  • Статьи
  • Проектирование
    • Консультации
    • Моделирование
    • Оборудование
      • Каталог
      • Теплообменники
      • Емкости
      • Нестандарт. оборудование
      • Колонные аппараты
      • Реакторное оборудование
    • Установка риформинга
    • Сертификация
    • Утилизация
    • Статический смеситель
      • Описание
      • Опросной лист
    • Динамический смеситель
    • Регенерация масел
    • мини НПЗ
    • Химизм риформинга
      • Реакции риформинга
      • Влияние параметров
    • Для хим.лаборатории
      • Химреактивы
      • ГСО
      • Анализ нефтепродуктов
      • Мебель лабораторная
        • Столы
        • серия Евромакс
        • серия Евромини
        • Вытяжные шкафы
    • Книги
  • К

additive.spb.ru

Ректификационная колонна - крекинг-установка - Большая Энциклопедия Нефти и Газа, статья, страница 1

Ректификационная колонна - крекинг-установка

Cтраница 1

Ректификационные колонны крекинг-установок отличаются от колонн для прямой перегонки нефти тем, что работают при повышенном давлении, близком к давлению в основном испарителе.  [2]

Ректификационная колонна крекинг-установок отличается от колонны первичной перегонки нефти высоким давлением и отсутствием тарелок, расположенных ниже ввода сырья.  [3]

Ректификационная колонна крекинг-установки отличается от колонн первичной гонки тем, что они действуют под повышенным давлением, сходным с действием основного испарителя, и что вниз их не подается перегретый водяной пар.  [4]

Ректификационные колонны крекинг-установок отличаются от колонн установок первичной перегонки тем, что работают при высоком давлении. Повышенное давление в колоннах способствует уменьшению их размеров, обеспечивает подачу крекинг-газа на дальнейшую переработку без дополнительного сжатия. Однако из-за повышенного давления ухудшаются условия ректификации. Еще одно отличие состоит в отсутствии отгонной секции, то есть тарелок, расположенных ниже ввода сырья. В них нет необходимости, так как продукт, выводимый с низа колонн, поступает на крекинг.  [5]

Пары крекинг-бензина прямо из ректификационной колонны крекинг-установки пропускают через специальные башни 7, точнее - камеры, наполненные флоридином. Камеры Грея новейшей конструкции представляют собой громадные цилиндры высотой до 5 2 м при диаметре до 5 5 м с двойным перфорированным дном, на котором покоится сплошной слой адсорбента. В цилиндрической части камеры имеются три горизонтальные перегородки, также из перфорированного железа, прикрытые, как и дно, медной сеткой для поддерживания зерен флоридина и свободного прохода паров бензина.  [7]

Бензин, получаемый из второй ректификационной колонны крекинг-установки, содержит много летучих углеводородов. Они легко испаряются при хранении бензина и создают неудобства при использовании его в моторах. В то же время это ценный материал для производства высокооктановых моторных топлив и других нефтепродуктов, а также сырье для синтеза каучука, спиртов и многих других продуктов химической промышленности. Эти фракции необходимо извлечь из бензина.  [8]

Десорбция осуществляется обычно путем подачи насыщенного масла в ректификационную колонну крекинг-установки, газ и бензин которой перерабатываются на данной установке. В колонне крекинг-установки поглощенные из газа углеводороды испаряются и в смеси с новообразованными продуктами крекинга снова поступают на рассматриваемую установку. Из той же колонны крекинг-установки отбирается в виде бокового потока дистиллят, который после обычной отпарки в отпарной колонне охлаждается и подается в абсорбер К1 в качестве абсорбента. Через верх абсорт бера выводятся только самые легкие компоненты газа, а все углеводороды, подлежащие извлечению, оказываются в конечном счете в сырье депропанизации.  [10]

Среди различных методов, применявшихся прежде, только один Грэй-процесс существует до сих пор. Дистиллятные пары выводятся непосредственно из ректификационной колонны крекинг-установки и пропускаются сверху вниз через отбеливающую глину. Часть тяжелых фракций дистиллята конденсируется и служит в качестве растворителя для растворения полимеров, выделенных в адсорбционной башне. Пары, покидающие адсорбционную башню, фракционируются в ректификационной колонне для получения бензина с заданным концом кипения; тяжелые фракции растворяют полимеры, которые скопились в адсорбционной башне, и обычно возвращаются на крекинг-установку. Чтобы не допустить чрезмерного коксообразования, они раньше пропускаются через эвапоратор ( или смолоотделитель), где более тяжелые полимеры удаляются вместе со смолой. Эти более тяжелые полимеры интересны возможностью применения их вместо окрашенных смол.  [11]

Парофазная очистка применяется в производстве бензина. Очистку бензина термического крекинга производят следующим образом. Пары бензина из ректификационной колонны крекинг-установки поступают непосредственно в цилиндрический аппарат, работающий под давлением до 10 ат, в котором на решетке помещается отбеливающая глина в форме зерен. Образующиеся продукты полимеризации диолефинов, обладающие более высокой температурой кипения, отделяются от паров бензина ректификацией. Количество их составляет 0 5 - 0 8 % от веса бензина. Так как ароматические и непредельные углеводороды в этих условиях не реагируют, очищенный по этому способу бензин обладает более высокими антидетонационными свойствами, чем очищенный серной кислотой.  [12]

Перерабатываемое сырье подается насосом через теплообменники и отстойник нефти в ректификационную колонну для прямой гонки нефти. Остаток из этой колонны перекачивается насосом в ректификационную колонну крекинг-установки, где он разбавляется тяжелыми фракциями, идущими на повторный крекинг, и затем проходит в печь для тяжелого сырья. Легкие дестил-латы, выделенные из нефти и полученные в ректификационной колонне крекинг-установки, перерабатываются в печи для легкого сырья. Продукты крекинга из обеих печей проходят в одну реакционную камеру и затем в камеру испарения для разделения остатка крекинга и дестиллатов.  [13]

Сущность очистного действия флоридина при повышенной температуре на некоторые углеводороды крекинг-бензина, а именно на его ди-олефины, заключается в их полимеризации, тогда как на ароматику, наф-тены, парафины и олефины крекинг-бензина флоридин не оказывает заметного действия даже при повышенной температуре. Образующиеся полимеры, имея более высокую температуру кипения, чем основная масса углеводородов крекинг-бензина, сгущаются в жидкость, и, таким образом, происходит легкое удаление наименее устойчивых частей крекинг-бензина от главной его массы, находящейся в парообразном состоянии. Сконденсировавшиеся полимеры направляются в специальные сбор-пики 8, откуда их перекачивают насосом 9 в ректификационную колонну крекинг-установки 1 для выделения из них увлеченного ими бензина. Окончательно отбензиненные полимеры вместе с флегмой колонны могут быть направлены в печь на новоо крекирование; что же касается освобожденного от полимеров бензина, то для получения товарного продукта его направляют в специальную колонну очистной установки 12, на которой и производится окончательное отделение полимеров от основной массы бензина.  [14]

Сущность очистного действия флоридина при повышенной температуре на некоторые углеводороды крекинг-бензина, а именно на его ди-олефины, заключается в их полимеризации, тогда как на ароматику, наф-тены, парафины и олефины крекинг-бензина флоридин не оказывает заметного действия даже при повышенной температуре. Образующиеся полимеры, имея более высокую температуру кипения, чем основная масса углеводородов крекинг-бензина, сгущаются в жидкость, и, таким образом, происходит легкое удаление наименее устойчивых частей крекинг-бензина от главной его массы, находящейся в парообразном состоянии. Сконденсировавшиеся полимеры направляются в специальные сборники 8, откуда их перекачивают насосом 9 в ректификационную колонну крекинг-установки 1 для выделения из них увлеченного ими бензина. Окончательно отбензиненные полимеры вместе с флегмой колонны могут быть направлены в печь на новое крекирование; что же касается освобожденного от полимеров бензина, то для получения товарного продукта его направляют в специальную колонну очистной установки 12, на которой и производится окончательное отделение полимеров от основной массы бензина.  [15]

Страницы:      1    2

www.ngpedia.ru

Ректификационные колонны лабораторные - Справочник химика 21

Рис. 5.19. Тарелки для лабораторных ректификационных колонн
Рис. 5.16. Насадки япя лабораторных ректификационных колонн
    Выбор диаметра насадочной колонны определяется требуемой пропускной способностью (см. разд. 4.11). В лабораторных ректификационных установках используют обычно колонны диаметром. 10—50 мм. Колонны диаметром 50—200 мм относятся к полупромышленным. Пилотные установки снабжаются ректификационными колоннами диаметром от 150 до 400 мм. [c.345]

    Следует, однако, иметь в виду, что эффективность ректификационной колонны существенно зависит от ее геометрических размеров и лабораторные данные не могут быть в полной мере использованы для разработки промышленной установки. Моделирование ректификационной аппаратуры является предметом специальных исследований. Необходимо также учитывать, что процесс разделения, проводимый в установках из металла, часто отличается от процесса, проте-каемого в стеклянной аппаратуре, особенно при разделении термически нестойких веществ. Вследствие этого необходимо одновременно проводить исследования термической стойкости компонентов исходной смеси в присутствии материала, из которого предполагается изготавливать промышленную установку. — Прим. ред. [c.238]

    В процессах лабораторной перегонки и ректификации нефтепродуктов приходится измерять температуру паров перегоняемого образца и температуру жидкости в кубе (колбе). В некоторых случаях измеряют температуру паров и жидкости на тарелках ректификационной колонны, сырья, поступающего в колонну, температуру компенсирующих теплопотери нагревателей, хладоагента и др. Диапазон значений измеряемых температур колеблется от -20 °С до 500 °С. [c.25]

    Используемые в лабораторной практике перегонные (ректификационные ) колонны имеют небольшой диапазон диаметров - от 10 до 50 мм. [c.142]

    Ректификационная колонна - лабораторный и промышленный аппарат для разделения жидких смесей. [c.91]

    К первой группе относятся всевозможные приборы для перегонки легких нефтепродуктов, а также колбы с дефлегматорами разных систем и без дефлегматоров, ко второй — лабораторные трубчатки для равновесного испарения, третью группу составляют колбы и кубики с ректификационными колоннами различных конструкций. [c.171]

    Обычно режим полного орошения используется при лабораторных испытаниях ректификационных колонн, проводимых с целью выяснения того, какому числу теоретических тарелок эквивалентна разделительная способность этих колонн. Вместе с тем, как указывалось выше, рассмотрение режима полного орошения позволяет установить наименьшее для назначенного разделения число теоретических тарелок колонны. Но эти два обстоятельства еш е не определяют всего значения режима полного орошения в теории ректификации. Оказывается, после некоторых [c.177]

    С другой стороны, перегонка не является универ сальным методом очистки. Многие вещества разлагаются при температуре кипения даже при пониженном давлении. Если у жидкостей близкие температуры кипения, их разделение в лабораторных условиях очень трудоемко и требует применения эффективных ректификационных колонн, которые имеются далеко [c.128]

    Головки ректификационных колонн для промышленных установок собирают из отдельных частей конденсаторов и делительных устройств. В этих головках преимущественно применяют клапаны с электромагнитным регулированием. Регулировка клапанов осуществляется также, как и в головках лабораторных колонн (см. рис. 306, 247). С помощью электромагнитов, электромоторов или пневматического привода можно автоматически регулировать работу клапанов (см. рис. 248). Для автоматического деления потока конденсата в основном применяются головки с качающейся воронкой (см. рис. 142). В этих головках колеблющийся сердечник движется с помощью электромагнитов, размещенных на наружной стенке колонны. Отбор дистиллята через боковой штуцер проводят при включенных магнитах. [c.386]

    Определение фракционного состава нефти и нефтепродуктов по ИТК проводят на лабораторных ректификационных колоннах методом периодической ректификации. [c.46]

    В технике процесс ректификации проводится в специальных ректификационных колоннах, разделенных по высоте горизонтальными перегородками — тарелками . Каждый отдельный акт конденсации — испарение происходит на отдельной тарелке. Поэтому число тарелок в колонне равно показателю степени в (V.9.3). Это число определяет эффективность данной колонны и называется числом теоретических тарелок. В лабораторных условиях высокая эффективность процесса разделения достигается применением дефлегматоров. [c.145]

Рис. 5.13. Конденсационные головки лабораторных ректификационных колонн
    В тггературе описано большое количество различных лабораторных ректификационных установок периодического действия. Наиболее типичной является установка атмосферной ректификации КЛ-1, выпускавшаяся Клинским заводом, с ректификационной колонной диаметром 11 мм и высотой 400 или 1100 мм (рис, 5.7,а), [c.89]

    Головха лабораторной ректификационной колонны, предназначенная для работы при атмосферном давлении и под вакуумом. [c.381]

    Дпя работы лабораторных ректификационных колонн необходимо компенсировать теплопотери через стенки колонны. Кроме описанной выше системы, когда колонна помещена в воздушную баню с электрообогреваемой стенкой, наиболее типичным решением является размещение колонны в вакуумной рубашке. Два из таких решений показаны на рис. 5.8 [5, 49, 50]. На рис. 5.8,а изображена целиком (со шлифами) колонна, впаянная в вакуумную рубашку, из которой удален воздух. Для компенсации разности термических удлинений колонны и рубашки нижняя часть копонны выполнена в виде спирали. Стенки вакуумной рубашки иногда покрывают слоем серебра дпя уменьшения радиационных потерь тепла. [c.90]

    Для расчета IV предложено несколько уравнений [5, 86, 87], для лабораторных насадочных ректификационных колонн наибольшее распространение получило уравнение Шумахера [c.142]

    Для контроля за расходом охлаждающей воды при ректификации наиболее пригодны лабораторные ротаметры типа SW (рис. 395). В конические стеклянные измерительные трубки ротаметров вставляются поплавки, изготовляемые из различных материалов в зависимости от физико-химических свойств исследуемой среды. Методы автоматического регулирования расхода охлаждающей воды описаны в работе Ницпетера [79]. Промышленностью выпускаюте ротаметры-регуляторы для жидкостей или газов, которые прекращают подачу исходной смеси в ректификационную колонну при выходе из строя водяного холодильника или при уменьшении расхода охлаждающей воды по сравнению с заданным значением. При восстановлении расхода охлаждающей воды регуляторы [c.463]

    Существуют два способа разгонки нефтей с целью построения кривых ИТК. По первому исследуемую нефть подвергают разгонке из колбы с ректификационной колонной, достигая при этом максимально возможной глубины отгона. По второму, принятому в США, вначале от нефти отгоняют при атмосферном давлении светлые продукты, затем из полученного мазута путем перегонки его на лабораторной вакуумной трубчатой установке отгоняют широкую фракцию максимальной глубины отбора и последнюю, так же как и при отборе светлых продуктов, разгоняют из колбы с ректификационной колонной. [c.220]

    Как уже отмечалось, многие методы оценки качества ароматических углеводородов применяют в силу сложившихся традиций и использование их не всегда оправдано. Определение ресурсов веществ в исходном сырье — в каменноугольной смоле или сыром бензоле — осуществляется зачастую по схеме, имитирующей в лабораторных условиях промышленный технологический процесс. Так, сырой бензол предварительно отгоняют, нагревая пробу до 180 °С, очищают серной кислотой и подвергают ректификации на лабораторной ректификационной колонне [43, с. 299— 305]. Этот длительный и трудоемкий метод анализа может и должен быть заменен методом газожидкостной хроматографии [43, с. 305—311]. [c.139]

    Гоповки лабораторных ректификационных колонн могут быть с частичной (парциальной) или полной конденсацией поступающих в них паров. На практике получили распространение в основном последние, поскольку ни позволяют стабильнее вести процесс и регулировать орошение колонны постоянной по составу флегмой. Основные требования к головкам следующие простота регулирования и измерения флегмового числа точное измерение температуры паров малая инерционность по запасу жидкости минимальное переохлаждение флегмы, стекающей в колонну относительная простота устройства и герметичность, обеспечивающая работу при атмосферном давпении и в вакууме. [c.97]

    Из рассмотрения процесса ясно, что труднолетучий компонент в чистом виде путем фракционной перегонки выделен быть не может. Поэтому в описанном выше виде фракционную перегонку на практике не применяют. В промышленности и в лабораторных условиях обычно используют так называемую ректификацию. Последняя — это сложный неравновесный процесс, в ходе которого происходит непрерывный обмен веществом между находящимися в постоянном контакте друг с другом потоками жидкости и пара. Процесс этот реализуют в аппаратах, называемых ректификационными колоннами (в лаборатории — колонками). В таких колоннах пар от кипящего раствора поднимается вверх и встречает на своем пути стекающую жидкость, образующуюся при конденсации пара (так называемую флегму). Составы и температура кипения вступающих в контакт потоков неравновесны. [c.280]

    Потенциальное содержание в нефтях светлых продуктов можно определять любыми лабораторными перегонными аппаратами, снабженными ректификационными колоннами, например прибор Гадаскина или близкие к ним приборы ГрозНИИ, ИТК. [c.52]

    Улучшение исследования нефтей и их фракционировки при помощи более совершенной лабораторной аппаратуры позволило уточнить потенциальное содержание бензинов в нефтях и вскрыть дополнительные ресурсы этих ценных продуктов. Так, при разгонке на разных аппаратах определенной нефти выход бензина (содержащего 40% фракций до 100°) составлял разгонка с дефлегматором по Глинскому 14%, разгонка с ректификационными колоннами по Гадаскину 15%, по ИТК (ГрозНИИ) 16,5%.  [c.52]

    В простейшем виде аппарат для ректификации состоит из кубика, где испаряется разделяемая смесь, ректификационной колонны, обеспечивающей многократный тесный контакт паров и жидкого орошения, дефлегматора — парциального конденсатора для конденсации той части поднявшихся наверх паров, которая должна быть возвращена в колонну как орошение конденсатора-холодильника для конденсации и охлаждения ректификата и приемника для сбора ректификата. Таково общее устройство колонн периодического действия, обычно применяемых в лабораторной практике, за исключением крайне редких, специальных случаев непрерывнодействующие — модельные, укрупненно-лабораторные установки). Существуют ректификационные колонны разнообразных типов, дающие различную степень разделения и обладающие разной производительностью. Выбор для исследования того или иного типа аппарата представляет серьезную задачу и должен решаться в соответствии с задачами исследования. [c.173]

    Штаге [9 ] разработал ряд лабораторных ректификационных установок типа Лабодест-робот . Примером такой установки является установка с трубчатой щелевой колонной, предназначенная для полумикроректификации (см. рис. 2576). Преимущество данных установок состоит в том, что их измерительную и регулирующую системы можно использовать для оснащения различных ректификационных колонн [10], например для трубчатых щелевых колонн с емкостью куба 5—100 мл, работающих при абсолютном давлении от 0,01 до 760 мм рт. ст. с эффективностью, равной примерно 40 теоретическим ступеням разделения, или для колонн с металлической сетчатой насадкой с емкостью куба 100—1000 мл, работающих при атмосферном давлении или остаточном давлении до 5 мм рт. ст. с эффективностью около 60 теоретических ступеней разделения. [c.422]

    Одной из бопее труд51ых проблем в лабораторной ректификации является разделение тяжелых нефтяных фракций (мазутов, масел, петролатумов) методом ректифик цйи. В связи с тем, что сопротивление насадок ректификационных колонн во много раз превышает давление, при котором эти продукты должны подвергаться нагреву, работа с такими продуктами в обычных колоннах непрерывного действия невозможна. Процесс ректификации таких продуктов приходится проводить с подачей в колонну инертного компонента (водяного №ра или азота), чтобы понизить парциальное давление нефтяных паров до требуемого. [c.133]

    Вопросам определения эффективности лабораторных ректификационных колонн посвящщо много исследований. В нескольких работах предложены эмпирические формупы дпя расчета ЗЭТТ, например формула Мэрча [5] [c.154]

    Современные заводские перегонные установки обладают ректификационными колоннами с высокой погоноразделительиой способностью. Для обеспечения качественного контроля работы этих установок необходимо осуществлять перегонку и в лабораторных условиях с не менее качественными по фракционировке показателями. [c.204]

    Следует, однако, иметь в виду, что эффективность ректификационной аниаратуры существенно зависит от геометрических размеров и лабораторные данные не могут быть использованы безоговорочно в промышленном масштабе. Моделирование ректификационных колонн различного типа является предметом специальных исследований. Необходимо также учитывать, что часто осуществление процесса ректификации в металлической аппара туре отличается от такового в стеклянной установке, особенно в случае разделения термически нестойких веществ. Ввиду этого рекомендуется одновременно проводить исследования термической стойкости компонентов в присутствии материала, из которого предполагается соорудить промышленную установку.— Прим. ред. [c.265]

    Не вдаваясь в теорию ректификации, укажем лишь, что в ректификационной колонне пар встречается с различными фракциями конденсата, при этом часть менее летучего компонента конденсируется из пара в жидкость, а часть более летучего компонента переходит из жидкости а пар. Проходя через множество полок ( тарелок ) ректификационной колонны, пар успевает настолько обогатиться более летучим компонентом, что на выходе из колонны практически содержит только этот комщ>нент (или азеотропную смесь). Степень разделения зависит от того, насколько пар обедняется при-месыо по сравнению с жидкой фазой. Расчет показывает, что в современных лабораторных ректификационных колоннах высотой 1—2 м можно осуществить очистку в 10 раз (и более) , если даже содержание прнмеси в равновесном паре только на 10% меньше, чей в жидкости. Этим объясняется широкое использование дистилляции и ректификации в производстве чистых веществ. Ректификация используется для очистки не только жидких препаратов. Общеизвестно применение ректификации для разделения сжиженных газов (кислород, азот, лнертные газы и т. д.)- [c.14]

chem21.info

Ректификационная колонна — Википедия (с комментариями)

Материал из Википедии — свободной энциклопедии

Ректификационная колонна (син. ректификационный колонный аппарат) — цилиндрический вертикальный сосуд постоянного или переменного сечения, оснащенный внутренними тепло- и массообменными устройствами и вспомогательными узлами[1], предназначенный для разделения жидких смесей на фракции, каждая из которых содержит вещества с близкой температурой кипения. Классическая колонна представляет собой вертикальный цилиндр, внутри которого располагаются контактные устройства — тарелки или насадки. Соответственно различают ректификационные колонны тарельчатые и насадочные. Вспомогательные узлы предназначены для ввода, распределения и аккумулирования (сбора) жидкости и пара. Нагреваемая жидкая смесь поступает из контейнера в ректификационную колонну, где «легкие» фракции (продукты, имеющие более низкую температуру кипения) концентрируются в верхней части колонны, а «тяжелые» (продукты, имеющие более высокую температуру кипения) — в нижней. Ректификационная колонна, в верхней части которой давление близко к атмосферному, называется атмосферной колонной. В вакуумных колоннах промышленного назначения используется низкое абсолютное давление в верхней части колонны — как правило, 1,87—2,4 КПа и менее[1].

Ректификационные колонны применяются в процессах дистилляции, экстрактивной ректификации, экстракции жидкостей, теплообмена между паром и жидкостью и в других процессах[1]. Один и тот же принцип действия ректификационной колонны используется как в относительно простых лабораторных приборах, так и в сложных промышленных установках нефтеперерабатывающей, нефтехимической, химической, газовой, пивоваренной и других отраслей. Диаметр промышленных ректификационных колонн может достигать 16 метров, а высота — 90 метров и более.

Промышленное применение

Ректификация известна с начала XIX века как один из важнейших технологических процессов главным образом спиртовой и нефтяной промышленности. В настоящее время ректификацию во всем мире применяют в самых различных областях химической технологии, где выделение компонентов в чистом виде имеет весьма важное значение (в производствах органического синтеза, изотопов, полимеров, полупроводников и различных других веществ высокой чистоты). Ректификация — это процесс многократного испарения и конденсации, в ходе которого исходная смесь разделяется на 2 или более компонентов, и паровая фаза насыщается легколетучим (низкокипящим) компонентом (-тами), а жидкая часть смеси насыщается тяжелолетучим (высококипящим) компонентом (-тами).

Принцип работы

Исходная смесь, нагретая до температуры питания tf в паровой, парожидкостной или жидкой фазе, поступает в колонну в качестве питания (Gf). Зону, в которую подаётся питание, называют эвапорационной, так как там происходит процесс эвапорации — однократного отделения пара от жидкости.

Пары поднимаются в верхнюю часть колонны, охлаждаются, конденсируются в холодильнике-конденсаторе и подаются обратно на верхнюю тарелку колонны в качестве орошения. Таким образом в верхней части колонны (укрепляющей) противотоком движутся пары (снизу вверх) и стекает жидкость (сверху вниз).

Стекая вниз по тарелкам, жидкость обогащается высококипящими компонентами, а пары, чем выше поднимаются в верх колонны, тем более обогащаются легкокипящими компонентами. Таким образом, отводимый с верха колонны продукт обогащен легкокипящим компонентом. Продукт, отводимый с верха колонны, называют дистиллятом. Часть дистиллята, сконденсированного в холодильнике и возвращённого обратно в колонну, называют орошением или флегмой. Отношение количества возвращемой в колонну флегмы и количества отводимого дистиллята называется флегмовым числом.

Для создания восходящего потока паров в кубовой (нижней, отгонной) части ректификационной колонны часть кубовой жидкости направляют в теплообменник, образовавшиеся пары подают обратно под нижнюю тарелку колонны.

Таким образом, в кубе колонны создается 2 потока: 1 поток — жидкость, стекающая с верха (из зоны питания+орошение) 2 поток — пары, поднимающиеся с низа колонны.

Кубовая жидкость, стекая сверху вниз по тарелкам, обогащается высококипящим компонентом, а пары обогащаются легкокипящим компонентом.[2]

В случае, если разгоняемый продукт состоит из двух компонентов, конечными продуктами являются дистиллят, выходящий из верхней части колонны и кубовый остаток (менее летучий компонент в жидком виде, вытекающий из нижней части колонны). Ситуация усложняется, если необходимо разделить смесь, состоящую из большого количества фракций. В этом случае используются аппараты, подобные изображённому на картинке.

Разновидности

Ректификационные установки по принципу действия делятся на периодические и непрерывные. В установках непрерывного действия разделяемая сырая смесь поступает в колонну и продукты разделения выводятся из неё непрерывно. В установках периодического действия разделяемую смесь загружают в куб одновременно и ректификацию проводят до получения продуктов заданного конечного состава.

Конструкции

Промышленные ректификационные колонны могут достигать 80 метров в высоту и более 6,0 метров в диаметре. В ректификационных колоннах в качестве контактных устройств применяются тарелки, которые дали название химическому термину, и насадки. Насадка, заполняющая колонну, может представлять собой металлические, керамические, стеклянные и другие элементы различной формы. Конденсация осуществляется на развитой поверхности этих элементов.

Согласно ряду нормальных диаметров колонные аппараты изготавливают диаметрами:

0,4м 0,6м 0,8м 1,0м 1,2м 1,4м 1,6м 1,8м 2,0м 2,2м 2,4м 2,6м 2,8м 3,0м 3,2м 3,4м 3,6м 3,8м 4,0м 4,5м 5,0м 5,5м 6,0м 6,4м 7,0м 8,0м

Напишите отзыв о статье "Ректификационная колонна"

Примечания

  1. ↑ 1 2 3 ГОСТ Р 53684—2009. Аппараты колонные. Технические требования
  2. ↑ Александров И. А. Ректификационные и абсорбционные аппараты. — 2-е изд. перераб.. — Москва: Химия, 1971. — 296 с.

Отрывок, характеризующий Ректификационная колонна

Сзади, с того места, где сидел Каратаев, послышался выстрел. Пьер слышал явственно этот выстрел, но в то же мгновение, как он услыхал его, Пьер вспомнил, что он не кончил еще начатое перед проездом маршала вычисление о том, сколько переходов оставалось до Смоленска. И он стал считать. Два французские солдата, из которых один держал в руке снятое, дымящееся ружье, пробежали мимо Пьера. Они оба были бледны, и в выражении их лиц – один из них робко взглянул на Пьера – было что то похожее на то, что он видел в молодом солдате на казни. Пьер посмотрел на солдата и вспомнил о том, как этот солдат третьего дня сжег, высушивая на костре, свою рубаху и как смеялись над ним. Собака завыла сзади, с того места, где сидел Каратаев. «Экая дура, о чем она воет?» – подумал Пьер. Солдаты товарищи, шедшие рядом с Пьером, не оглядывались, так же как и он, на то место, с которого послышался выстрел и потом вой собаки; но строгое выражение лежало на всех лицах.

Депо, и пленные, и обоз маршала остановились в деревне Шамшеве. Все сбилось в кучу у костров. Пьер подошел к костру, поел жареного лошадиного мяса, лег спиной к огню и тотчас же заснул. Он спал опять тем же сном, каким он спал в Можайске после Бородина. Опять события действительности соединялись с сновидениями, и опять кто то, сам ли он или кто другой, говорил ему мысли, и даже те же мысли, которые ему говорились в Можайске. «Жизнь есть всё. Жизнь есть бог. Все перемещается и движется, и это движение есть бог. И пока есть жизнь, есть наслаждение самосознания божества. Любить жизнь, любить бога. Труднее и блаженнее всего любить эту жизнь в своих страданиях, в безвинности страданий». «Каратаев» – вспомнилось Пьеру. И вдруг Пьеру представился, как живой, давно забытый, кроткий старичок учитель, который в Швейцарии преподавал Пьеру географию. «Постой», – сказал старичок. И он показал Пьеру глобус. Глобус этот был живой, колеблющийся шар, не имеющий размеров. Вся поверхность шара состояла из капель, плотно сжатых между собой. И капли эти все двигались, перемещались и то сливались из нескольких в одну, то из одной разделялись на многие. Каждая капля стремилась разлиться, захватить наибольшее пространство, но другие, стремясь к тому же, сжимали ее, иногда уничтожали, иногда сливались с нею. – Вот жизнь, – сказал старичок учитель. «Как это просто и ясно, – подумал Пьер. – Как я мог не знать этого прежде». – В середине бог, и каждая капля стремится расшириться, чтобы в наибольших размерах отражать его. И растет, сливается, и сжимается, и уничтожается на поверхности, уходит в глубину и опять всплывает. Вот он, Каратаев, вот разлился и исчез. – Vous avez compris, mon enfant, [Понимаешь ты.] – сказал учитель. – Vous avez compris, sacre nom, [Понимаешь ты, черт тебя дери.] – закричал голос, и Пьер проснулся. Он приподнялся и сел. У костра, присев на корточках, сидел француз, только что оттолкнувший русского солдата, и жарил надетое на шомпол мясо. Жилистые, засученные, обросшие волосами, красные руки с короткими пальцами ловко поворачивали шомпол. Коричневое мрачное лицо с насупленными бровями ясно виднелось в свете угольев. – Ca lui est bien egal, – проворчал он, быстро обращаясь к солдату, стоявшему за ним. – …brigand. Va! [Ему все равно… разбойник, право!] И солдат, вертя шомпол, мрачно взглянул на Пьера. Пьер отвернулся, вглядываясь в тени. Один русский солдат пленный, тот, которого оттолкнул француз, сидел у костра и трепал по чем то рукой. Вглядевшись ближе, Пьер узнал лиловую собачонку, которая, виляя хвостом, сидела подле солдата. – А, пришла? – сказал Пьер. – А, Пла… – начал он и не договорил. В его воображении вдруг, одновременно, связываясь между собой, возникло воспоминание о взгляде, которым смотрел на него Платон, сидя под деревом, о выстреле, слышанном на том месте, о вое собаки, о преступных лицах двух французов, пробежавших мимо его, о снятом дымящемся ружье, об отсутствии Каратаева на этом привале, и он готов уже был понять, что Каратаев убит, но в то же самое мгновенье в его душе, взявшись бог знает откуда, возникло воспоминание о вечере, проведенном им с красавицей полькой, летом, на балконе своего киевского дома. И все таки не связав воспоминаний нынешнего дня и не сделав о них вывода, Пьер закрыл глаза, и картина летней природы смешалась с воспоминанием о купанье, о жидком колеблющемся шаре, и он опустился куда то в воду, так что вода сошлась над его головой. Перед восходом солнца его разбудили громкие частые выстрелы и крики. Мимо Пьера пробежали французы. – Les cosaques! [Казаки!] – прокричал один из них, и через минуту толпа русских лиц окружила Пьера. Долго не мог понять Пьер того, что с ним было. Со всех сторон он слышал вопли радости товарищей. – Братцы! Родимые мои, голубчики! – плача, кричали старые солдаты, обнимая казаков и гусар. Гусары и казаки окружали пленных и торопливо предлагали кто платья, кто сапоги, кто хлеба. Пьер рыдал, сидя посреди их, и не мог выговорить ни слова; он обнял первого подошедшего к нему солдата и, плача, целовал его. Долохов стоял у ворот разваленного дома, пропуская мимо себя толпу обезоруженных французов. Французы, взволнованные всем происшедшим, громко говорили между собой; но когда они проходили мимо Долохова, который слегка хлестал себя по сапогам нагайкой и глядел на них своим холодным, стеклянным, ничего доброго не обещающим взглядом, говор их замолкал. С другой стороны стоял казак Долохова и считал пленных, отмечая сотни чертой мела на воротах. – Сколько? – спросил Долохов у казака, считавшего пленных. – На вторую сотню, – отвечал казак. – Filez, filez, [Проходи, проходи.] – приговаривал Долохов, выучившись этому выражению у французов, и, встречаясь глазами с проходившими пленными, взгляд его вспыхивал жестоким блеском. Денисов, с мрачным лицом, сняв папаху, шел позади казаков, несших к вырытой в саду яме тело Пети Ростова.

wiki-org.ru