Каталитический риформинг. Риформинг нефти реакции


Риформинг

Получение высокооктановых бензинов путем каталитического риформинга возможно при ряде реакций, повышающих октановое число. К ним относятся:

  1. образование бензолоподобных ароматических молекул из тяжелых парафиновых углеводородов за счет отщепления волокна;
  2. преобразование линейных парафиновых углеводородов в разветвленные изомеры;
  3. дегидрирование циклических насыщенных углеводородов (нафтенов) и их последующее преобразование в ароматические молекулы;
  4. гидрокрекинг парафиновых углеводородов в легкие фракции с высоким октановым числом.

Реакции, протекающие на риформинговых катализаторах, в корне изменяют углеводородный состав бензиновых фракций. При этом наиболее приоритетным направлением в данном процессе является ароматизация обрабатываемых углеводородов. Конечная стадия образования ароматических углеводородов происходит на этапе дегидрирования алкилциклогексанов. Дегидроциклизация тяжелых парафиновых углеводородов проходит через промежуточный этап образования алкилциклогексанов (с последующим дегидрированием) и алкилциклопентанов. Парафиновые углеводороды изомеризуются катализаторами риформинга на промежуточном этапе образования ионов карбония и малоразветвленных изомеров. Изомеризация алкилциклопентанов в алкилциклогексаны также является одной из основных реакций риформинга.

В ряде случаев процесс риформинга проводят с реакцией гидрогенолиза тяжелых парафиновых углеводородов, которая позволяет образовывать газообразные углеводороды и в частности метан. Данная реакция проходит на металлических участках используемого в риформинге катализатора. Парафиновые и нафтеновые углеводороды проходят через гидрокрекинг, реакция которого протекает на кислотных участках катализатора. При этом начальная и финальная стадии гидрокрекинга, в ходе которых образуются олефины, а продукты распада гидрируются, проходят на металлических участках катализатора. Это связано с их гидрирующей и дегидрирующей функциями.

Кроме этого, в условиях каталитического риформинга проходит ряд реакций, почти не влияющих на итоговое преобразование основных продуктов процесса, но оказывающих значительное воздействие на стабильность и активность катализаторов. К ним относят реакцию распада хлорсодержащих, азотистых и сернистых соединений, а также реакции, в результате протекания которых на катализаторе образуется кокс. Процесс его образования обуславливается закоксовыванием катализаторов – реакции уплотнения на поверхности, снижающей активность и ухудшающей селективность.

Кроме этого, на закоксовывание влияют такие факторы, как отравление катализатора каталитическими ядами, снижение мольного отношения водорода к исходному сырью, падение парциального давления, дисбаланс кислотной и гидрирующей функций катализатора, а также преобразование сырья с высоким содержанием тяжелых и легких углеводородов. Наиболее быстрой реакцией риформинга считается реакция дегидрирования циклогексана и его химических соединений в ароматические углеводороды. Наиболее медленной – реакция дегидроциклизации парафиновых углеводородов, которую, как и гидрокрекинг, можно ускорить максимально возможным повышением температуры.

Сернистые соединения, в зависимости от строения, в процессе риформинга преобразуются в ароматические, нафтеновые или парафиновые углеводороды, поглощающие водород и выделяющие сероводород. Азотсодержащие соединения на катализаторе преобразуются в аналогичные углеводороды, но с выделением аммиака. Реакции риформинга, в процессе протекания которых из нафтенов и парафинов образовываются ароматические углеводороды, поглощают тепло. Реакции гидрогенолиза и гидрокрекинга по сути экзотермичны, тогда как изомеризация нафтеновых и парафиновых углеводородов обладает почти нулевым тепловым эффектом.

www.gas-burners.ru

Основные реакции каталитического риформинга. Технологии производства высокооктановых бензинов.

Карта сайта
  • Разработки
    • Добавка БТ (МИНИМА)
    • Монометиланилин (ММА)
    • Производство ММА
    • ММА на НПЗ
    • Метаформинг
    • Результаты испытаний
      • Исходный бензин
      • Испытание 1
      • Испытание 2
    • Физ/Хим показатели
    • Инструкции
      • Применение МИНИМА
    • Разработка присадок
    • Ферроцен
    • Очиститель инжектора
    • Бензин спортивный
    • ЦГН
    • Бензины ЕВРО-3, ЕВРО-4
  • Справочник
    • Антидетонаторы
      • ТЭС
      • Железосодержащие
      • Марганецсодержащие
      • Оксигенаты
      • Ароматические амины
    • Допущенные присадки
    • ГОСТы
      • ГОСТ 2084-77
      • ГОСТ Р 51105-97
      • ГОСТ Р 51313-99
      • ГОСТ Р 51866-2002
      • Технический регламент
    • Топливная хартия
    • Сортность бензина
    • Перв. переработка нефти
      • Обессоливание
      • Атм. и вакуумн. перегонка
      • Вторичная перегонка
      • Газофракционирование
    • Процессы пр-ва бензинов
      • Каталитический риформинг
      • Изомеризация
      • Гидроочистка
      • Каталитический крекинг
      • Алкилирование
      • Олигомеризация олефинов
      • Гидрокрекинг
      • Висбрекинг
      • Коксование
    • Технологии пр-ва масел
      • Производство масел
      • Деасфальтизация гудрона
      • Очистка растворителями
      • Депарафинизация масел
      • Контактная доочистка
      • Гидродоочистка масел
    • Технол. пр-ва парафинов
      • Производство парафинов
      • Неочищенные парафины
      • Доочистка парафинов
      • Жидкие парафины
    • Производство битумов
    • Методы испытаний
      • КМКО
      • Испаряемость
      • Потери от Испарения
      • Защитные свойства
    • Оборудование НПЗ
      • Реакторное оборудование
      • Технологические печи
      • Ректифик. колонны
      • Теплообменные аппараты
      • Вакуум. устройства
      • Насосы
      • Компрессоры
      • Емкости, резервуары
      • Трубопроводы
      • Констр. материалы
    • Физ-химия нефти
      • Плотность
      • Молекулярная масса
      • Вязкость
      • Поверхностное натяжение
      • Характеризующий фактор
      • Давление насыщ. паров
      • Конст. фазов. равновесия
      • Критические параметры
      • Теплоемкость
      • Теплота испарения
      • Теплота плавления
      • Теплотворная способность
      • Энтальпия
      • Теплопроводность
      • Тепловые эффекты
      • Индивид. соединения
    • Хар-ки нефтепродуктов
      • Фракционный состав
      • Температура застывания
      • Октановое число
      • Цетановое число
      • Высота нек. пламени
      • Методы испытаний
      • Сырье НПЗ
      • Классификация нефтей
      • Характеристика нефтей
      • Газовые конденсаты
      • Топлива
      • Нефтяные масла
      • Присадки к маслам
      • Ароматика
      • Сжиженные газы
      • Др. нефтепродукты
    • Общезав. хоз-во НПЗ
      • Прием и отгрузка
      • Хранение нефтепродуктов
      • Электроснабжение
      • Теплоснабжение
      • Водоснабжение
      • Канализация, очистка
      • Снабжение топливом
      • Снабжение газами
      • Факела
    • Пром. безопасность
      • Свойства продуктов
      • Категорирование
      • Электрооборудование
      • Трубопроводы
    • Охрана окруж. среды
      • Основные понятия
      • Нормирование
      • Контроль
  • Статьи
  • Проектирование
    • Консультации
    • Моделирование
    • Оборудование
      • Каталог
      • Теплообменники
      • Емкости
      • Нестандарт. оборудование
      • Колонные аппараты
      • Реакторное оборудование
    • Установка риформинга
    • Сертификация
    • Утилизация
    • Статический смеситель
      • Описание
      • Опросной лист
    • Динамический смеситель

additive.spb.ru

Риформинг Википедия

Риформинг — это промышленный процесс переработки бензиновых и лигроиновых фракций нефти с целью получения высококачественных бензинов и ароматических углеводородов.

Историческая справка

Дегидрирование шестичленных нафтенов с образованием ароматических соединений в присутствии никеля и металлов платиновой группы при 300 °С было открыто Н. Д. Зелинским в 1911 году. В 1936 году Б. Л. Молдавский и Н. Д. Камушер на катализаторе Cr2O3 при 470 °С и Б. А. Казанский и А. Ф. Платэ на катализаторе Pt/C при 310 °С открыли ароматизацию алканов. Первый промышленный процесс был осуществлён на катализаторе Cr2O3/Al2O3 в 1939 году. Новое поколение катализаторов было предложено фирмой UOP в 1949 году под руководством В. П. Хэнзела. Этот вариант риформинга, протекающий при 450 °С и 5-6 МПа на катализаторах Pt/Al2O3 или Pt/алюмосиликат, получил название платформинга. Технологически процесс осуществлялся в реакторе с неподвижным слоем катализатора. Платформинг позволял получать бензин с октановым числом до 100 пунктов. В 1969 году компании Chevron был выдан первый патент на биметаллический катализатор риформинга. В качестве второго металла используют добавки рения, олова и иридия, что позволяет значительно увеличить стабильность катализатора и соответственно понизить рабочее давление в реакторе. В 1971 году фирмой UOP было предложено новое техническое решение и создана первая установка риформинга с непрерывной регенерацией катализатора. В этом случае удается ещё понизить рабочее давление в реакторе, а также снизить затраты водорода на процесс. В настоящее время в мире используются установки как с неподвижным слоем катализатора, так и с непрерывной регенерацией.

Реакции риформинга

Целевые реакции

Дегидрирование нафтеновых углеводородов в ароматические:

С6h22 → C6H6 + 3h3 + 221 кДж/моль

Изомеризация пятичленных циклоалканов в производные циклогексана:

С5H9-СН3 → C6h22 — 15,9 кДж/моль

Изомеризация н-алканов в изоалканы:

н-С6h24 → изо-C6h24 — 5,8 кДж/моль

Дегидроциклизация алканов в ароматические углеводороды (ароматизация):

С6h24 → C6H6 + 4h3 + 265 кДж/моль

Побочные реакции

Дегидрирование алканов в алкены:

С6h24 → C6h22 + h3 + 130 кДж/моль

Гидрокрекинг алканов:

н-С9h30 + h3 → изо-C4h20 + изо-С5h22

Каталитический риформинг

Основными целями риформинга являются:

Октановые числа ароматических углеводородов:

Углеводород исследовательское моторное дорожное
Бензол (Ткип = 80 °С) 106 88 97
Толуол (Ткип = 111 °С) 112 98 105
пара-Ксилол (Ткип = 138 °С) 120 98 109
мета-Ксилол(Ткип = 139 °С) 120 99 109,5
oртo-Ксилол (Ткип = 144 °С) 105 87 96
Этилбензол (Ткип = 136 °С) 114 91 102,5
Сумма ароматики С9 117 98 107,5
Сумма ароматики С10 110 92 101

Процессы каталитического риформинга осуществляются в присутствии бифункциональных катализаторов — платины, чистой или с добавками рения, иридия, галлия, германия, олова, нанесённой на активный оксид алюминия с добавкой хлора. Платина выполняет гидрирующие-дегидрирующие функции, она тонко диспергированна на поверхности носителя, другие металлы поддерживают дисперсное состояние платины. Носитель — активный оксид алюминия обладает Бренстедовскими и Льюисовскими кислотными центрами, на которых протекают карбонийионные реакции: изомеризация нафтеновых колец, гидрокрекинг парафинов и частичная изомеризация низкомолекулярных парафинов и олефинов. Температура процесса 480—520 °C, давление 15-35 кгс/см². Следует отметить, что большое содержание ароматических углеводородов в бензине плохо сказывается на эксплуатационных и экологических показателях топлива. Повышается нагарообразование и выбросы канцерогенных веществ. Особенно это касается бензола, при сгорании которого образуется бензпирен — сильнейший канцероген. Для нефтехимии риформинг — один из главных процессов. Например, сырьём для полистирола является стирол — продукт риформинга. Также одним из продуктов процесса риформинга является пара-ксилол. В промышленности селективным каталитическим окислением п-ксилола получают терефталевую кислоту, из которой, в дальнейшем, производится полиэтилентерефталат (ПЭТФ, PET), наиболее широкоизвестный в быту, как материал, из которого изготавливаются пластиковые бутылки для различных напитков.

Базовые процессы риформинга

В настоящее время в мировой промышленности используются процессы риформинга со стационарным слоем катализатора и непрерывной регенерацией катализатора.

Процесс со стационарным слоем катализатора

На установках риформинга со стационарным слоем катализатора гидроочищенное сырьё подвергают предварительной стабилизации и ректификации в специальной колонне.

Фракция 80-180°С в смеси с рециркулирующим водородсодержащим газом поступает последовательно в три (иногда четыре) стальных реактора. Между реакторами смесь подогревается, поскольку дегидрирование, протекающее в первых реакторах, сильно эндотермический процесс. Каждый реактор работает в режиме, близком к адиабатическому. Катализатор распределяют по реакторам неравномерно, в первом — наименьшее количество, в последнем — наибольшее. Жидкие продукты стабилизируют в специальной колонне, газообразные попадают в компрессор для циркуляции водородсодержащего газа. Типичные условия процесса: 490—530°С, 2-3,5 МПа, объёмная скорость подачи сырья 1,5-2,5 ч−1, водород: сырьё = 5-10:1.

Основные факторы процесса риформинга

Качество сырья

Ввиду того, что основной реакцией образования ароматических соединений является дегидрирование нафтенов, эффективность риформинга будет тем выше, чем выше содержание нафтенов в сырье. Выход риформатов из бензиновых фракций, богатых нафтенами, на 3,5-5 %, а иногда на 10-12 % больше, чем из парафинистого сырья при выработке катализата с одинаковым октановым числом. В сырье риформинга нежелательно присутствие алифатических непредельных соединений, поскольку при этом водород нерационально расходуется на их гидрирование. Поэтому риформингу подвергают бензиновые фракции прямогонного происхождения. Риформинг бензинов вторичного происхождения (например, термического крекинга) возможен только в смеси с прямогонным сырьём после глубокой гидроочистки.

Фракционный состав сырья определяется назначением процесса. При получении катализатов с целью производства высокооктановых бензинов оптимальным сырьём является фракция, выкипающая в пределах 85-180 °C. Применение сырья с температурой начала кипения ниже 85 °C нецелесообразно, так как это влечёт повышенное газообразование за счет гидрокрекинга, при этом прироста эффективности ароматизации наблюдаться не будет в виду того, что углеводороды С6 ароматизуются наиболее трудно. Кроме того, использование такого сырья приведёт к непроизводительной загрузке реактора балластными фракциями. Наличие в сырье фракций, выкипающих выше 180 °C, нежелательно по причине интенсификации коксообразования, влекущего дезактивацию катализатора. При получении индивидуальных бензола и толуола сырьём служат узкие бензиновые фракции, выкипающие в пределах 62-85 °C и 85-105 °C, соответственно. Бензол образуется из циклогексана, метилциклопентана и н-гексана, толуол — из метилциклогексана, диметилциклопентана и н-гептана.

Сырьё не должно содержать компонентов, влекущих дезактивацию катализатора. К ним относятся сернистые соединения, содержание которых не должно превышать 1*10−4%, азотистые соединения (не более 0,5*10−4%) и влага (не более 4*10−4%). Максимально допустимое содержание металлорганических микропримесей (мышьяк, свинец, медь) в гидроочищенном сырье риформинга составляет 0,0001 ppm, а в негидроочищенном пусковом сырье — 0,005 ppm.

Температура окончания кипения сырья

Температура окончания кипения сырья может в некоторой степени варьироваться и определяется целями риформинга. Поскольку температура конца кипения риформата, как правило, на 8-10°С выше, чем у сырья, температура окончания кипения сырья риформинга не должна превышать 200°С для удовлетворения паспортных данных на бензин[2].

Давление

Снижение давления в реакторах влечёт повышение степени ароматизации парафинового сырья и снижение вклада реакций гидрокрекинга, поэтому процесс риформинга развивается в направлении понижения рабочего давления. Увеличение выхода ароматических углеводородов в свою очередь приводит к росту октанового числа катализата и выхода водорода. Снижение давления с 3 до 1 МПа ведёт к росту выходов ароматики и водорода соответственно в 2-2,3 и 3 раза.

Тем не менее снижение давления ограничено требованиями стабильности работы катализатора. При снижении давления скорость дезактивации катализатора существенно возрастает. Прогресс в создании катализаторов риформинга и модифицировании технологической схемы позволили снизить давление с 3,5-4,0 МПа для платинового катализатора до 1,2-1,6 для платино-рениевого катализатора, а затем, после создания в начале 1970-х варианта процесса с непрерывной регенерацией катализатора, и до 0,35-0,7 МПа.

Промышленные процессы каталитического риформинга

США и Европа

Первая установка риформинга была пущена по лицензии фирмы UOP в 1949 г. Это был «полурегенеративный риформинг», то есть каталитический риформинг на алюмоплатиновом катализаторе в реакторах со стационарным слоем и с периодической остановкой установки для регенерации катализатора. Основными лицензиарами процесса риформинга в мире являются 9 фирм, причем лидерство принадлежит UOP, по лицензиям которой построено около 800 установок.

Процесс Разработчик Первая установка
Платформинг (полурегенеративный) UOP 1949 г.
Синклер-Бейкер (полурегенеративный) Sinclair-Baker 1952 г.
Гудриформинг (полурегенеративный) Houdry 1953 г.
Ультраформинг (с периодической регенерацией) Exxon 1953-1956 гг.
Пауэрформинг (с периодической регенерацией) IFP (Французский институт нефти) 1954 г.
Каталитический риформинг (с периодической регенерацией) IFP 1964 г.
Магнаформинг (с периодической регенерацией) Atlantic Richfield 1967 г.
Рениформинг (полурегенеративный) Chevron 1970 г.
Платформинг (с непрерывной регенерацией) UOP 1971 г.
Каталитический риформинг (с непрерывной регенерацией) IFP 1973 г.
Аромайзинг (с непрерывной регенерацией) IFP 1977 г.

СССР и Россия

В СССР первая опытная установка риформинга была пущена в 1955 году на Краснодарском НПЗ[3][:стр. 235]. Следующим стал пуск установки на Уфимском НПЗ в 1959 году. В 1962 года на Новокуйбышевском, а затем и на Московском НПЗ были пущены промышленные установки типа 35-5 для получения риформата с ОЧММ = 75. На установках 35-5 и 35-11/300, введённых в эксплуатацию до 1965 года, использовался отечественный алюмоплатиновый катализатор марки АП-56. Позже стали использовать катализатор АП-64 для получения риформата с ОЧММ = 78-80. До конца 1980-х годов строились крупные установки мощностью до 1 млн тонн по сырью, ОЧИМ риформата достигало 95 пунктов. К концу 1980-х годов стали использовать платино-ренивые катализаторы марок КР (КР-102, КР-102с, КР-104, КР-106, КР-108, КР-110) и РБ (РБ-1, РБ-11, РБ-22), что позволило понизить давление до 1,5-1,8 МПа. Разработкой процесса занимались институты «ВНИИНефтехим» и «Ленгипронефтехим».

Возникающие проблемы в процессе риформинга прямогонного бензина

Невозможность бесперебойного снабжения водородом механизмов гидрокрекинга, гидроочистки, изомеризации, а также поддержания точной температуры всех печей реактора установки — две основные проблемы риформинга, негативно сказывающиеся на качестве конечной продукции.

Примечания

См. также

Ссылки

wikiredia.ru

Каталитический риформинг Википедия

Риформинг — это промышленный процесс переработки бензиновых и лигроиновых фракций нефти с целью получения высококачественных бензинов и ароматических углеводородов.

Историческая справка[ | код]

Дегидрирование шестичленных нафтенов с образованием ароматических соединений в присутствии никеля и металлов платиновой группы при 300 °С было открыто Н. Д. Зелинским в 1911 году. В 1936 году Б. Л. Молдавский и Н. Д. Камушер на катализаторе Cr2O3 при 470 °С и Б. А. Казанский и А. Ф. Платэ на катализаторе Pt/C при 310 °С открыли ароматизацию алканов. Первый промышленный процесс был осуществлён на катализаторе Cr2O3/Al2O3 в 1939 году. Новое поколение катализаторов было предложено фирмой UOP в 1949 году под руководством В. П. Хэнзела. Этот вариант риформинга, протекающий при 450 °С и 5-6 МПа на катализаторах Pt/Al2O3 или Pt/алюмосиликат, получил название платформинга. Технологически процесс осуществлялся в реакторе с неподвижным слоем катализатора. Платформинг позволял получать бензин с октановым числом до 100 пунктов. В 1969 году компании Chevron был выдан первый патент на биметаллический катализатор риформинга. В качестве второго металла используют добавки рения, олова и иридия, что позволяет значительно увеличить стабильность катализатора и соответственно понизить рабочее давление в реакторе. В 1971 году фирмой UOP было предложено новое техническое решение и создана первая установка риформинга с непрерывной регенерацией катализатора. В этом случае удается ещё понизить рабочее давление в реакторе, а также снизить затраты водорода на процесс. В настоящее время в мире используются установки как с неподвижным слоем катализатора, так и с непрерывной регенерацией.

Реакции риформинга[ | код]

Целевые реакции[ | код]

Дегидрирование нафтеновых углеводородов в ароматические:

С6h22 → C6H6 + 3h3 + 221 кДж/моль

Изомеризация пятичленных циклоалканов в производные циклогексана:

С5H9-СН3 → C6h22 — 15,9 кДж/моль

Изомеризация н-алканов в изоалканы:

н-С6h24 → изо-C6h24 — 5,8 кДж/моль

Дегидроциклизация алканов в ароматические углеводороды (ароматизация):

С6h24 → C6H6 + 4h3 + 265 кДж/моль

Побочные реакции[ | код]

Дегидрирование алканов в алкены:

С6h24 → C6h22 + h3 + 130 кДж/моль

Гидрокрекинг алканов:

н-С9h30 + h3 → изо-C4h20 + изо-С5h22

Каталитический риформинг[ | код]

Основными целями риформинга являются:

ru-wiki.ru

Реакция - риформинг - Большая Энциклопедия Нефти и Газа, статья, страница 3

Реакция - риформинг

Cтраница 3

Дегидрирование циклогексана и его гомологов является самой быстрой из реакций риформинга, скорость которой примерно в 10 - 100 раз превышает остальные. Дегидрирование протекает только на металлическом активном центре катализатора.  [31]

Особенно эффективны они при высоких температурах, термодинамически благоприятных для протекания реакций риформинга.  [32]

Влияние способа приготовления на свойства алюмо-молибденовых катализаторов было также изучено на реакциях риформинга чистых углеводородов. Рассел и Стоке [141, 142] изучали реакции к-гептана над алюмо-молибденовыми катализаторами при атмосферном давлении.  [33]

Правая часть уравнения учитывает расход тепла ( в кВт): Q2 - на реакции риформинга; Q3 - с продуктами реакций и циркулирующим газом; Q4 - потери в окружающую среду.  [34]

Как видно из табл. 1 и 2, процесс риформирования сопровождается интенсивным поглощением тепла и проведение реакции риформинга требует непрерывного подвода тепла в зону реакции.  [36]

Однако я хочу указать на то, что поверхность раздела металл - кислота не является единственным местом протекания реакций риформинга, как это показано следующим опытом, проведенным в лаборатории Гудри. Были приготовлены в порошкообразном виде два однофункциональных катализатора, а именно: платина на силикагеле и алюмосиликат. Бифункциональный катализатор был приготовлен сухим таблетированием смеси этих порошков. При испытании этого катализатора найдено, что он обладает очень высокой активностью при превращении метилциклопентана в бензол. Очевидно, что в данном случае кислотные и металлические центры могли быть разделены тысячами атомов и все же эффективно действовали. Поверхность раздела металл - кислота не представляет собой места, на котором протекает катализ, и миграция промежуточного соединения типа олефина, как ранее и предполагалось, по-видимому, является существенной особенностью механизма реакции.  [37]

Во-вторых, отложившийся на поверхности кокс кроме тормозящего может в некоторых случаях оказывать и положительное влияние на процесс, как это, например, показано для реакции риформинга на платиновых катализаторах, когда такие отложения способствуют десорбции продуктов реакции и тем самым снимают ее как лимитирующую стадию.  [38]

После получения указанного выше результата был использован кумоловый метод определения кислотности большого числа образцов катализаторов риформинга, для которых, кроме того, была определена активность в реакции риформинга.  [39]

Для изучения влияния изменения дегидрирующей ( гидрирующей) активности на риформинг нефти ряд катализаторов, имеющих постоянный кислотный компонент, но различную дегидрирующую активность, определенную в реакции с циклогексаном, был исследован в реакции риформинга нефти. Для этого был выбран алюмосиликат с кислотной основой, который пропитывали воднь.  [40]

Отличия данной схемы от схемы каталитического крекинга состоят в следующем: 1) реактор и регенератор работают под давлением 1 7 - 1 9 МПа; 2) вследствие недостатка теплоты регенерации для проведения реакций риформинга предусмотрен подогрев всех потоков, поступающих в реактор.  [42]

Носитель в катализаторе, с одной стороны, служит для распределения и диспергирования активного металла с целью более эффективного его использования, с другой стороны, он выполняет роль кислотного агента, катализируя целый ряд реакций риформинга. К их числу относятся реакции изомеризации и расщепления. Определенное влияние кислотный носитель оказывает на скорость реакций де-гидроциклизации. На носителе протекают также реакции уплотнения, приводящие к образованию углистых отложений ( кокса) на поверхности катализатора.  [43]

После этого поток сырья проходит через три или четыре реактора. Поскольку реакции риформинга в основном эндотермические, между реакторами устанавливают печи для сохранения температуры потока на определенном уровне. Из последнего реактора поток входит в теплообменник, где нагревает исходное сырье, и далее поступает в испаритель, в кубе которого собираются жидкие продукты, а верхний погон разделяется на рецир-кулят и выходящий из установки водород. Жидкие продукты направляют в стабилизатор для удаления легких углеводородов.  [45]

Страницы:      1    2    3    4    5

www.ngpedia.ru

Реакция риформинга нефти - Справочник химика 21

    V. РЕАКЦИЯ РИФОРМИНГА НЕФТИ [c.51]

    Таким образом было получено пять образцов катализатора с различной степенью потери дегидрирующей активности. Каждый образец был испытан в реакции риформинга нефти. [c.656]

    Реакции, лежащие в основе каталитического риформинга, эндо-термичны, а это требует применения сравнительно высоких температур. В этих условиях наряду с образованием ароматических углеводородов в результате более глубоких процессов деструкции на катализаторе откладывается кокс, что приводит к отравлению катализатора. Для того чтобы этого избежать, каталитический риформинг проводят под давлением водорода. В результате каталитического риформинга доля аренов, которая в исходном нефтяном сырье не превышает 10-15%, возрастает до 50—65%. Каталитический риформинг важен еще и в том отнощении, что за счет роста содержания ароматических углеводородов в продуктах риформинга резко возрастает октановое число бензина, используемого в двигателях внутреннего сгорания. Индивидуальные арены — бензол, толуол, ксилол и другие — вьщеляют при перегонке продуктов риформинга на высокопроизводительных ректификационных колоннах. В настоящее время около 90% бензола и его гомологов получается в промышленности в результате каталитического риформинга нефти. [c.373]

    Каталитический риформинг нефти в высокооктановый бензин заключается в получении парафинов и ароматических углеводородов из парафиновых и нафтеновых компонентов нефтяного сырья. В то время как ароматические углеводороды образуются из нафтенов с шестичленными циклами при их непосредственной дегидрогенизации, для образования ароматических углеводородов из нафтенов с пятичленными циклами требуется, кроме того, изомеризация в шестичленные циклы перед дегидрогенизацией в ароматические углеводороды. Платиновые катализаторы риформинга эффективно катализируют эти реакции. Данные катализаторы характеризуются наличием платины, связанной с твердой подложкой, относящейся к классу веществ, имеющих кислотные свойства (например, кремнезем, промотированный окисью алюминия, окись алюминия, содержащая галоген, и т. д.). Миле и сотрудники [1], которые предположили, что механизм изомеризации состоит в дегидрогенизации — гидрогенизации насыщенных углеводородов в промежуточные олефины и в скелетной перегруппировке, претерпеваемой промежуточными олефинами, назвали эти катализаторы бифункциональными . [c.649]

    Активность в реакции риформинга определялась по стандартизованной прямогонной фракции канзасской нефти с интервалом т. кип. 110—182° (46% парафинов, 51% нафтенов, 3% ароматических углеводородов). Это нефтяное сырье пропускали над 75 см катализатора при скорости 2 объема жидкости/объем катализатора/час и общем давлении 35 ат в присутствии водорода, вводимого в молярном соотношении водород углеводород = 10 1. Использование трехсекционной (с независимой ре- [c.654]

    На рис, 2 приведена кривая зависимости активности в реакции риформинга этих и необработанного образцов катализатора от дегидрирующей активности, определенной в опытах с циклогексаном. Эти результаты приводят к следующему выводу для того чтобы при стандартизованной методике риформинга нефти получить 98-октановый продукт, дегидрирующая активность, измеренная по циклогексану на свежеприготовленных катализаторах, должна превышать величину 100 мкмоль сек- г. Интересно, что активности, измеренные на различных продажных катализаторах риформинга, лежат, как было найдено, в интервале 500—1500 мкмоль сек- г (по циклогексану). [c.656]

    Кислородные соединения нефти (спирты, эфиры, перекиси, фенолы) и растворенный кислород в условиях гидроочистки переходят в воду. Повышенное содержание влаги в сырье риформинга приводит удалению галогенов из катализатора, что нарушает сбалансированное соотношение кислотных и металлических функций катализатора. В результате уменьшаются скорости реакции изомеризации, гидрокрекинга и ароматизации. Ввиду несовершенства способов анализа [c.25]

    Получение ароматических углеводородов. Так как образование ароматических углеводородов является одной из основных реакций каталитического риформинга, логично использовать этот процесс для получения некоторых ароматических углеводородов. Действительно, в настоящее время таким образом получают из нефти значительное количество бензола, толуола и ксилолов. [c.186]

    Подробно рассматриваются такие вопросы, как химический состав нефтей и нефтяных фракций очистка нефтяных фракций физическими и химическими методами теория термо-ката-литических процессов нефтепереработки (крекинг, пиролиз, риформинг, гидрирование, алкилирование) теоретические аспекты применения и эксплуатационных свойств нефтепродуктов. При этом большое внимание уделяется термодинамическим и кинетическим закономерностям, механизма реакций, теории катализа, теории сорбционных процессов и процессов экстракции, явлениям детонации, стабильности нефтепродуктов. [c.4]

    Водород как газификационный агент можно применять для газификации таких сложных углеводородов, как сырая нефть, остаточное топливо и уголь, но в этом случае условия реакции настолько жесткие, что требуют первоначального частичного окисления сырья. Таким образом, для газификации обычных видов ископаемого топлива применяют следующие методы паровой риформинг легких фракций гидрогазификацию газойля и остаточного топлива частичное окисление остаточного топлива или угля. [c.20]

    Результаты работ [79, 81—83] по риформингу фракций 62— 180 °С из восточных нефтей СССР на катализаторе АП-64 при 25—35 ат позволили заключить следующее. Процесс получения бензина с октановым числом 95—100 по исследовательскому методу идет достаточно удовлетворительно при его осуществлении в три ступени реакции, с распределением катализатора по реакторам установки в соотношении 1 2 4. Однако указывается [81], что при работе на нафтеновом сырье необходимо снизить загрузку катализатора в первом реакторе, т. е. в этом случае необходимо другое соотношение катализатора, загружаемого в реакторы. [c.48]

    Процесс риформинга протекает в присутствии алюмоплатинового катализатора АП-56 при 480—520 °С, 20 ат, объемной скорости подачи сырья 1—2,0 ч и циркуляции газа 1300—1500 м 1м сырья. Катализатор регенерируется периодически через 3—4 месяца [3, 25]. Основные показатели процесса при риформировании фракций 62—85 и 62—105°С из восточных нефтей СССР с целью получения бензола и толуола были приведены в табл. 22 (см. стр. 91) [3, 18]. Дальнейшие исследовательские работы по изучению риформинга фракций 62—85 и 62—105°С показали, что выход бензола за счет более интенсивного протекания реакций де- [c.101]

    Стадия подготовки сырья для процесса риформинга с целью выделения ароматических углеводородов g (технического ксилола) из жидких продуктов реакции путем обычной ректификации изучалась на фракции 115—169 °С нефти Кувейта, содержащей углеводороды (в вес.%) парафиновые 58 нафтеновые 29,3 ароматические 12,7 [61]. Сырье фракционировали в ректификационной колонне при кратности орошения 5—10 1. При к. к. сырья 126—130 °С (минимальное содержание в сырье парафиновых и нафтеновых углеводородов g) в результате риформинга получают жидкие продукты с октановым числом около 90 по исследовательскому методу. Из них ректификацией на колонне с погоноразделительной способностью 60 т. т. выделяют технический ксилол, не содержащий парафиновых и нафтеновых углеводородов. При к. к. сырья выше 130 °С или снижении четкости погоноразделения в процессе отбора целевой фракции (сырья риформинга) содержание парафиновых и нафтеновых углеводородов С, во фракции возрастает. В этом случае недостаточное глубокое превращение этих углеводородов не позволит выделить ксилол нужного качества. [c.25]

    Снижение рабочего давления, а следовательно, и парциального давления водорода, смещает равновесие реакций дегидрирования и дегидроциклизации в сторону ароматических углеводородов и способствует увеличению скорости их образования. На рис. 52 показано влияние давления на выход ароматических и газообразных углеводородов при риформинге фракции 105—140 °С из сернистой нефти-. Как видно из этих данных, со снижением давления не только увеличивается выход ароматических углеводородов, но и снижается выход газообразных углеводородов, увеличивая таким образом селективность каталитического риформинга. Эта закономерность сохраняется и при риформинге более широких фракций для получения бензина с высоким октановым числом. [c.164]

    Для изучения влияния изменения дегидрирующей (гидрирующей) активности на риформинг нефти ряд катализаторов, имеющих постоянный кислотный компонент, но различную дегидрирующую активность, определенную в реакции с циклогексаном, был исследован в реакции риформинга нефти. Для этого был выбран алюмосиликат с кислотной основой, который пропитывали воднь.м раствором Н2Р1С1б, в результате чего получали катализатор с содержанием 0,35 вес.% Р1. Высушенный, прокаленный и восстановленный катализатор имел дегидрирующую [c.655]

    На рис. 6.9 приведены данные по влиянию глубины ароматизации на показатели непрерывного риформинга широкой бензиновой фракции 85-180 С западно-сибирской нефти при конечном содержании кокса на платинооловянном катализаторе, равном 2% (мае.). Процесс проводили при давлении 1,1 МПа, объемной скорости 2,5 и соотношении водород сырье = 600 1. Глубину ароматизации меняли повышением температуры. Видно, что при увеличении содержания в катализаторе ароматических углеводородов с 60 до 80% (мае.) средняя температура растет с 490 до 510 С, снижается выход катализата с 82 до 72% (мае.) в два раза увеличивается выход кокса и соответственно кратность циркуляции катализатора. Характер изменения выхода кокса (в % на исходное сырье) в зависимости от глубины ароматизации свидетельствует о том, что процесс риформинга с непрерывной регенерацией выгодно применять при получении катализата с содержанием не менее 75% ароматических углеводородов. Селективность процесса с повышением степени ароматизации сырья убывает. Последнее обусловлено тем, что по мере повышения жесткости процесса в реакции риформинга начинают вовлекаться парафиновые углеводороды, ароматизация которых сопровождается более высоким выходом газа и кокса по сравнению с нафтенами. [c.148]

    Система циркуляции катализатора использована Французским институтом нефти в процессе риформинга, а также при осуществлении процесса аромайзинг. В этом процессе за счет изменения состава катализатора и проведения реакций в особо жестких условиях наряду с реакциями риформинга протекает деалкилирование гомологов бензола с накоплением в катализате бензола, толуола и ксилолов (табл. 5.30). Выход продуктов при переработке сырья разного фракционного состава приведен в табл. 5.31. Из катализата процесса аромайзинг бензол выделяют экстрактивной дистилляцией, а толуол и ксилолы — ректификацией. [c.172]

    Важной особенностью риформинга, значение которой прогрессивно возрастает в современной нефтепереработке, является возможность перераспределенпя водорода, содержащегося в исходной нефти. Принципиально основной задачей современной нефтепереработки является производство автомобильных л дизельных топлив. Водород, выделяющийся при реакциях риформинга, можно ввести в более тяжелые фракции нефти или непосредственным гидрокрекингом тяжелых фракций или гидрированием пх в более мягких условиях для получения высококачественных дизельных топлив, или облагораживания -сырья, направляемого на каталитический крекинг. В обоих случаях достигается уменьшение выхода остаточных топлив и увеличение выхода автомобильных и дизельных топлив с одновременным повышением их качества. [c.203]

    Главным источником ароматических углеводородов (аренов) в настоящее время является нефть, хотя в недалеком прошлом эту роль выполнял каменный уголь. В основе промышленного получения ароматических углеводородов лежат реакции дегидрирования циклоалканов и дегидроциклизации алканов. Зти процессы получили название каталитического риформинга нефти. В качестве катализатора обычно используют платину, нанесенную на окись алюминия высокой степени чистоты в количестве 0,5—1% по массе, из-за чего сам процесс часто называют гшат-формингом. Смесь паров бензиновой фракции углеводородов нефти и водорода пропускают над Р1/А120з при 450-550 С и давлении от 10 до 40 атм (1 10 — 4 10 Па). В этих условиях аро-матичесю.с углеводороды получаются в результате трех основных типов реакций  [c.372]

    От катализаторов синтеза углеводородов требуются как гидрогенизационная и полимеризационная активность, так и активность к внедрению СО, необходимая для построения углеродных цепочек. Образование сплавов или полиметаллических кластеров является обещающим путем для изменения каталитических свойств поверхности металла. Некоторое систематическое представление о поверхностных свойствах сплавов появляется из недавних работ по ряду металлов и реакций. Детальная оценка применимости систем на основе сплавов для синтеза углеводородов является задачей долгосрочных исследований. Подход, использованный Синфельтом с сотр. [19] при разработке катализаторов риформинга нефти, является хорошим примером. Эта группа начала с определения удельной активности широкого ряда нанесенных металлов для нескольких модельных реакций, что важно для понимания свойств металла в этих реакциях. Предложена модель процесса, связывающая кинетику реакций для одного металла с кинетикой для другого. Затем были испытаны комбинации металлов, каждый из которых способен ускорить или замедлить одну из стадий каталитического процесса. [c.268]

    Научные работы посвящены органическому катализу. Совместно с Н. Д. Зелинским впервые в СССР начал (1932) работы по получению хлоропренового каучука. Предложил каталитическую конденсацию ароматических аминов с ацетиленом и на ее основе создал удобный метод синтеза хинолино-вых оснований, названный его именем (реакция Козлова). Разработал новую реакцию гидроамини-рования органических соединений нитрилами, оксимами, гидразинами. Предложил MOHO-, би- и полиметаллические платинусодержаище катализаторы риформинга нефти, термостабильные и селективные катализаторы для дегидрирования, гидрирования и изомеризации углеводородов. [6] [c.246]

    При исследовании влияния содержания пиридина в бензине ромашкинской нефти на качество и выход катализата при риформинге (480—515 °С, Р = 3,5 МПа) на катализаторе Р0-150 установлено, что добавки пиридина подавляют гидрокрекинг, почти не оказывая влияния на остальные реакции риформинга [412]. Авторы считают, что пиридин следует вводить в сырье на свежем катализаторе для снижения его кислотности, что способствует уменьшению коксообразования. В случае использования бензина ромашкинской нефти следует добавлять 3 ррм азота в сырье. По мере дезактивации катализатора и необходимости повышения температуры реакции следует увеличивать количество добавляемого азота (рис. 40). Это вызвано тем, что при повышении температуры равновесие адсорбция—десорбция сдвигается в сторону десорбции. Данные о применении этого метода в условиях промышленного риформинга отсутствуют. [c.158]

    Результаты данных исследований представлены на рис. 17 для трех уровней эффективной кислотности (У), а именно при одном Pt-компоненте и двух смесях с частицами в 500и и 5 г. Для удобства сравнения этих трех случаев суммарная степень превращения отложена по абсциссе. Отметим сходство для второго и третьего случаев с данными, рассчитанными для аналогичных случаев регулирования селективности, описанных в разделе II, Г, 2 полученные результаты представлены на рис. 6, а и б для двух уровней активности компонента У. Максимальная изомеризационная активность зависит от эффективности кислотного компонента У и в его отсутствие почти равна нулю. По-видимому, стадия, катализируемая кислотными центрами, обычно определяет скорость реакции в бифункциональном катализе углеводородов над платиновым катализатором это было показано Вейсом и Претером [28] для условий риформинга нефти, Келемансом и Воге [29], исходившими из косвенных данных при изучении ароматизации различных нафтенов, и Син-фельтом и др. [30], изучавшими изомеризацию парафинов. [c.51]

    Полагают, что при риформинге нефти над катализаторами риформинга, полученными на основе Pt, наиболее важной является способность превращать различные углеводороды в ароматические углеводороды. В результате дегидрирующей активности смешанного катализатора шестичленные нафтены превращаются в ароматические углеводороды, однако высокоактивные катализаторы риформинга должны иметь способность к ароматизации циклопен-танов, т. е. к изомеризации пятичленных структур в щестичленные наряду с максимальной ароматизацией. Механизм превращения через промежуточные олефины, предложенный Милсом. Хайнеманном,. Милликеном и Обладом, можно выразить в терминах кинетики последовательных стадий реакции. Для измерения констант скоростей, характеризующ.чх отдельные стадии реакции, т. е. величины дегидрирующей активности и кислотной активности в стадии изомеризации, разработаны модельные реакции. Показано, что зависимость активности при риформинге нефти от величины активностей для этих отдельных процессов находится в соответствии с кинетикой последовательных реакций. Активность в реакции риформинга зависит от дегидрирующей активности только ниже некоторой величины, выше которой достигается стационарная концентрация промежуточного вещества, и скорость реакции определяется кислотной активностью. [c.649]

    Прежде, чем перейти к детальному рассмотрению реакций, имеющих место в процессах термического и каталитического риформинга, необходимо рассмотреть состав бензинов и лигроинов прямой гонки. На первой стадии развития процессов риформинга о составе применявшегося для переработки сырья было известно очень мало. Обычно указывалось только на более или менее нафтеновый характер исходных продуктов. Например, калифорнийская нефть рассматривалась как высоконафтеновая, а пенсильванская и мичиганская как парафиновые. Нефти Мид-Континента и Голфкоста занимали по этой классификации промежуточное положение между этими двумя типами. Даже в настоящее время наши знания о составе дистиллятов прямой гонки остаются далеко не удовлетворительными, хотя за 20 лет и были достигнуты значительные успехи. Наиболее изучен [c.162]

    Данные по риформингу двух тяжелых бензинов венесуэльской и кувейтской нефтей при различных условиях процесса показывают, что получение ароматических углеводородов из нафтенового венесуэльского бензина может быть объяснено в основном дегидрированием нафтенов. С другой стороны, получение ароматики из алканового кувейтского бензина составляет от 140 до 157% от потенциально возможного количества, получаемого при конверсии нафтенов. Это доказывает, что реакция дегидроциклизации алканов имеет преимущественное значение для получения высокого выхода ароматики [164]. [c.54]

    Реакции каталитической ароматизации занимают исключительно важное место в современных методах переработки нефти. На пих основаны процессы получения бензола, толуола, ксилолов и аролгатизированных бензинов каталитического риформинга. Бензо и толуол получают методом пиролиза нри весьма жестких термических условиях процесса (порядка 700° С) с низким выходом целевых продуктов па исходное сырье. [c.486]

    Процесс деалкилирования с водяным паром аквадель (НПО Ленне( яехнм — Французский институт нефти). В качестве сырья используются фракции ароматизованных бензинов пиролиза и риформинга. Селективность образования бензола может превышать 100% (мол.), так как наряду с деалкилированием алкилбензолов протекают реакции ароматизации насыщенных углеводородов. [c.277]

    Ранее простейшие гомологи бензола выделяли из фракций каменноугольной смолы, но возрастающие требования промышленности к количеству и качеству сырья для его-- дальнейшей переработки привели к поискам новых источников их получения. Алкилароматические углеводороды могут быть выделены из тяжелых смол пиролиза нефти, сверхчеткой ректификацией фракций риформинга, с помощью реакции Вю ца—Фиттига, ацили-рованием ароматических углеводородов и последующим восстановлением образующихся при этом кетонов и т. д. Все эти методы значительно уступают процессу алкилирования ароматических углеводородов олефинами ввиду высоких технико-экономических показателей его. Это обусловлено обеспечением процесса доступным и дешевым сырьем, производимым крупнотоннажными производствами, глубокой проработкой его химизма, довольно простым оформлением и получением больших выходов целевых продуктов при высокой селективности процесса.  [c.5]

    Для наиболее распространенного вида сырья — лигроинов прямой перегонки нефти, подвергаемых каталитичеакаму риформингу, основной задачей является глубокая очистка от серы и азота, небольшое дегидрирование парафинов и циклопарафинов и гидрокрекинг значения не имеют. Чтобы обеопечить максимальную скорость очистки, можно применять м аксимальные температуры 400—420 °С. При очистке авиационных керосинов недопустимо образование олефиновых и ароматических углеводородов, а иногда необходимо и неглубокое гидрирование последних (нафталинов). При применяемых обычно парциальных давлениях водорода термодинамически возможный выход нафталина при дегидрировании декалина и тетралина резко возрастает при температурах выше 370 °С, и очистку обычно проводят при 350—360 °С. Фракции, используемые в качестве дизельного топлива, можно очищать при температурах до 400—420 °С, при дальнейшем повышении температуры в результате дегидрирования би- и полициклических нафтенов снижается цетановое число, растет выход продуктов гидрокрекинга — газа и бензина и в результате реакций гидрокрекинга резко возрастает расход водорода. Нижний предел температуры очистки определяется в этом случае возможностью конденсации тяжелых фракций сырья появление жидкой фазы резко замедляет гидрирование из-за ограничения скорости транспортирования водорода к поверхности катализатора скоростью диффузии через пленку жидкости. [c.269]

    Отрегенерированный и восстановленный катализатор периодически загружается в реактор / ступени и затем последовательно проходит все реакторы. Транспорт между реакторами осуществляется ВСГ. Из последнего реактора катализатор поступаете бункер-накопитель, где отделяется от пневмоагента. Из бункера-накопителя катализатор периодически ссыпают в регенератор, где в неподвижном слое проводится окислительная регенерация и иные операции по подготовке катализатора к работе в цикле реакции. Единовременно регенерируется 5% общей загрузки катализатора. Система циркуляции катализатора использована Французским институтом нефти в процессе риформинга, а также при осуществлении процесса аро майзинг. Подобные установки могут сооружаться в два этапа [256] сначала монтируют обычную установку риформинга с реакторами, внутренняя конструкщгя которых приспособлена для движения катализатора, на втором этапе монтируют систему регенерации катализатора. При работе со стационарным слоем катализатора поддерживают более высокое давление и более высокую кратность циркуляции, после монтажа- системы регенерации давление снижают. [c.141]

    Бензиновые фракции большинства добываемых нефтей как советских, так и зарубежных, Содержат относительно немного нафтеноо (до 30—35%). Поэтому увеличение выхода ароматических углеводородов при каталитическом риформинге требует не только исчерпывающей ароматизации нафтенов, но и возможно более широкого вовлечения в реакцию дегидроциклизации парафинов, а также повышения селективности этой реакции. Как было показано в гл. 5, [c.181]

    Дегидрирование парафинов Q—Са не применяется для производства соответствующих олефинов, получаемых в настоящее время олигомеризацией олефинов Ся—Q в мягких условиях (например, процесс Димерсол , разработанный Французским институтом нефти, — см. гл. 10). Ароматизация парафинов Q— g является одной из важнейших реакций процесса каталитического риформинга (см. гл. 5). Дегидроциклизация индивидуальных парафинов (гексана в бензол и гептана в толуол) интенсивно изучалась с целью разработки технологического процесса (Казанский, Дорогочинский — в СССР, Арчибальд и Гринсфельдер — в США) в присутствии промотированного алюмо-хромового катализатора. При 550 °С выход бензола и толуола составлял 60—70% при использовании в качестве сырья индивидуальных углеводородов чистоты 98—99%. Разработан вариант процесса в подвижном слое катализатора, что позволило обеспечить непрерывность рабочего цикла и подвод теплоты, необходимой для компенсации эндотермического теплового эффекта дегидроциклизации (см. табл. 2.1). Однако перспективы его внедрения в настоящее время неопределенны и, вероятно, будут обусловлены экономической эффективностью по сравнению с современными модификациями риформинга жесткого режима [платформинг низкого давления в подвижном слое катализатора, разработан фирмой Universal Oil Produ ts—UOP (США) — см. гл. 5]. Наибольшую роль дегидроциклизация парафинов Q—Се играет в процессе Аромайзинг , разработанном Французским институтом нес и. По рекламным данным, процесс осуществляется в подвижном слое полиметаллического алюмо-платинового катализатора при давлении Доля реакции дегидроциклизации парафинов в образовании ароматических углеводородов превышает 50% (см. гл. 5). [c.59]

    Высокотемпературный термический крекинг нефтяного сырья— пиролиз осуществляется обычно с целью получения газообразных олефинов, в первую очередь этилена, а также пропилена и бута-диеыов. Наиболее распространенпой формой промышленного процесса является пиролиз в трубчатых печах. Наиболее освоенное сырье — газообразные продельные углеводороды (этан, пропан, к-бутан) и низкооктановые бензиновые фракции прямой перегонки нефти, рафинаты риформинга, легкие фракции газоконденсатов дают наибольшие выходы целевых олефинов при ограниченном кок-сообразовании (закоксовывании труб печи). Наилучшие результаты достигаются при сочетании высокой температуры и малой длительности контактирования. Это объясняется более эффективным действием температуры на скорость реакций разложения, чем на скорость реакций уплотнения (энергия активации последних значительно ниже). [c.143]

    Для производства синтетических материалов необходимы ароматические углеводороды — бензол, толуол, ксилол, нафталин и др. Пока не был разработан процесс каталитического риформинга, единственным промышленным методом получения ароматических углеводородов из нефти был пиролиз, при котором наряду с газом образуется жидкий продукт, содержащий как моноциклические (бензол и др.), так и полициклические ароматические углеводороды (нафталин, антрацен и др.). При каталитическом риформинге происходит дегидрогенизация шестичленных нафтенов, и образуются ароматические углеводороды. Происходят и другие реакции — дигидрогенизация парафинов, циклизация и др. [c.325]

    В целях увеличения ресурсов сырья для риформинга можно использовать бензины, полученные при вторичных процессах переработки нефти. Такие бензины нуждаются в очистке, так как содержат довольно много серы (0,3—1,6%), азота (до 0,005%) и непредельных углеводородов (до 60%). Данные [70] о подготовке бензинов прямой перегонки и термического крекинга к каталитиче-скому риформингу приведены в табл. 15. Опыты проводили на установке при повышенном давлении с рециркуляцией газообразных продуктов реакций. При гидроочистке использовали алюмоко-бальтмолибденовый катализатор, а при каталитическом риформинге— алюмоплатиновый. Подобранные условия гидроочистки (380°С, 5 МПа, циркуляция 500 л водородсодержащего газа на [c.120]

    Раньше реакцией Се-дегидроциклизации алкилбензолов занимались главным образом для изучения механизма реакции и влияния ароматического кольца на реакционную способность замещенных парафинов. В последнее время эта реакция приобрела практическое значение, особенно в отношении получения диметилнаф-талинов — сырья для производства термостойких полимерных материалов. Реакцию дегидроциклизации исследовали также, используя в качестве исходных материалов алкилдиарилы, диарил-алканы и алкилнафталины. Хотя реакция дегидроциклизации алкилароматических углеводородов изучена менее детально, чем парафиновых, имеющиеся уже сейчас результаты показывают, что эта реакция занимает большее место в различных каталитических процессах нефтепереработки, в том числе в каталитическом риформинге, чем, предполагалось раньше. По-видимому, немалая роль принадлежит этой реакции и при образовании отдельных групп углеводородов в нефти. [c.138]

chem21.info

Основные реакции каталитического риформинга - Справочник химика 21

из "Глубокая переработка нефти"

Бензиновые фракции разных нефтей различаются по фракционному и групповому химическому составу. Чаще всего они содержат 60-70 парафиновых, 10% ароматических и 20-30% шести- и пятичленных нафтеновых углеводородов. Среди парафиновых преобладают углеводороды нормального строения и монометилзамещенные. Нафтены представлены преимущественно алкил-гомологами цикло-гексана и циклопентана, ароматические- алкилбензолами. Такой состав обусловливает низкое октановое число исходного бензина, оЬычно не превышающее 50 пунктов (М.М.) (табл. 6.1). [c.135] Основной целью каталитического риформинга является повышение октанового числа бензинов, получение индивидуальных ароматических углеводородов (бензола, толуола и ксилолов), а также дешевого водородсодержащего газа (ВСГ) для гидрогенизационных процессов. Каталитический риформинг является одним из наиболее распространенных среди каталитических процессов облагораживания нефтепродуктов, занимает ведущее место как в нефтепереработке, так и нефтехимии. Удельный вес этого процесса по отношению к объему переработки нефти составляет в СССР около 9%, в США и развитых капиталистических странах Западной Европы23 и 11 -19% соответственно. [c.136] Реакция превращения шестичленных цикланов в соответствующие ароматические углеводороды в условиях риформинга протекает крайне быстро и практически количественно. Реакция происходит на металлических центрах катализатора и ей способствует высокая температура и низкое парциальное давление водорода. Скорость дегидрирования гомологов циклогексана выше, чем голоядерного циклогек-сана. Исключение составляют гел -замещенные структуры, требующие предварительной изомеризации. [c.136] Скорость и селективность ароматизации циклопентанов значительно ниже, чем соответствующих циклогексановых углеводородов. В условиях риформинга конкурирующей реакцией является гидрогенолиз циклопентанового кольца. Скорость дегидроизомеризации пятичленных нафтеновых углеводородов увеличивается с ростом молекулярной массы и температуры процесса и уменьшением парциального давления водорода. [c.137] В условиях каталитического риформинга протекает изомеризация нормальных парафинов с образованием преимущественно малоразвет-вленных изоалканов поэтому эта реакция играет незначительную роль в повышении октанового числа катализатора. [c.138] Парафин Олефин Изоолефин Изопарафин. [c.138] Изомеризация нафтеновых и парафиновых углеводородов на катализаторах риформинга проходит через промежуточную стадию образования ионов карбония. Эти реакции ускоряются с ростом кислотности катализатора и температуры. Однако типовые рабочие температуры платформинга являются неблагоприятными для термодинамического равновесия, необходимого для получения наиболее желательных сильно разветвленных изопарафиновых и шестичленных нафтеновых углеводородов. Давление на реакции изомеризации влияет незначительно, а протекание реакций гидрогенолиза и гидрокрекинга зависит от давления. [c.138] Изопарафиновые углеводороды из-за наличия третичного атома углерода гидрокрекируются легче, чем соответствующие нормальные алканы. [c.138]

Вернуться к основной статье

chem21.info