Оборудование установок подготовки нефти. Сепарационные установки нефти


Скважинные установки для сепарации нефти и газа (СУС)

 ТУ 3615-016-57439299-08

Скважинные установки СУС используются на добывающих скважинах на стадии разведки и пробной эксплуатации нефтяных месторождений и служат для сепарации продукции добывающих скважин и исследования их добычных возможностей.

Применение СУС обеспечивает прием продукции скважин, отделение попутного нефтяного газа и пластовой воды, подготовку и подачу попутного газа на использование на нужды нефтепромысла или утилизацию, а также позволяет организовать накопление и хранение добытой продукции скважин для последующей откачки насосами или вывоза автоцистернами.

CУС могут быть выполнены как в стационарном, так и в передвижном исполнении с размещением на шасси автомобиля.

В комплект технологического оборудования СУС входит:

  •  сепаратор;
  • конденсатосборник;
  • фильтр СДЖ;
  • технологические трубопроводы входа водонефтегазовой смеси и сброса нефти, газа и воды.

В комплект СУС входят узлы замера газа и жидкости с выводом показаний на дисплей автоматизированного рабочего места оператора и/или систему АСУТП верхнего уровня.

Комплект СУС по желанию Заказчика может также включать буферные (накопительные) емкости, передвижные факельные установки, стояки налива, насосы откачки нефти.

Таблица 1. Показатели назначения СУС

Показатель

Значение

Рабочая среда

Нефть, попутный нефтяной газ, пластовая вода (продукция нефтяных скважин)

Температура рабочей среды, °С

5 — 70

Производительность  по жидкости, м3/сутки

50 — 1000

Рабочее давление, МПа

4,0 (6,3)

Рабочая среда

Нефть, попутный нефтяной газ, пластовая вода (продукция нефтяных скважин)

Температура рабочей среды, °С

5 — 70

Плотность жидкости, кг/м3, не более

1200

Объем сепаратора, м3

2,5 — 12,5

Объем буферной емкости, м3

25 — 200

Климатическое исполнение и категория размещения по ГОСТ 15150

У1 (ХЛ1)

Условное обозначение скважинных установок СУС:

sus1[1]

Пример условного обозначения установок СУС:

СУС – 500 — ХЛ по ТУ 3615-016-57439299-08

Общий вид технологической части СУС:

sus2[1]

xn----ttbnncr7c.xn--p1ai

Оборудование установок подготовки нефти.

В установке подготовки нефти основным оборудованием являются:

1. сепараторы – в большинстве нефтяных сепараторах основные элементы, обеспечивающие сепарацию, делятся на четыре группы, каждая из которых образует секцию. Название секции отражает технологический процесс, реализуемый элементами. 1. – основная сепарационная секция - обеспечивает грубое отделение нефти и газа, в основном за счет использования центробежный и гравитационных сил. Интенсивность процессов в этой секции определяется конструкцией ввода нефти в сепаратор. 2. – осадительная секция - происходит дополнительное выделение пузырьков газа, увлеченных нефтью из сепарационных секций, для этого поток нефти направляется тонким слоем по наклонной секции. Эффективность работы секции определяется протяженностью плоскости и составом продукции. 3. – сбор нефти - для плавного и равномерного отбора нефти из сепараторов устанавливаются перегородки, которые называются успокоителями уровня и отбор осуществляется при срабатывании исполнительного механизма по команде датчика уровня. 4. – каплеуловительная секция – является аккумулятором мельчайших капелек жидкости, уносимых потоком газа. Поскольку работа нефтегазовых сепараторов осуществляется с пульсирующим потоком несжимаемой жидкости, то необходимы меры по снижению пульсаций потока и обеспечению плавного разгазирования нефти. Для обводненных нефтей, образующих устойчивые эмульсии, эффективно использование трех-фазного сепаратора.

2. отстойники – основная разновидность приемов обезвоживания нефтяных эмульсий – гравитационный отстой. Это процесс реализуется в отстойниках, в которых разделение происходит за счет разности плотности жидкостей => скорости их осаждения. Отстойники используются для разделения уже частично или полностью разрушенных эмульсий. Устанавливаются на УПН либо для предварительного сброса воды, либо после деэмульсаторов печей для окончательного обезвоживания нефти. Используются отстойники непрерывного отстоя горизонтальные или вертикальные. Для окончательного отстоя отличительной особенностью аппаратов является ввод эмульсий через перфорированный патрубок и отбор нефти через перфорированный сборник. Отстойники могут быть соединены последовательно или параллельно. Параллельное соединение приводит к неравномерной загрузке их нефтью и водой. В результате чего нарушается технологический режим их работы. При последовательном соединении будет происходить более тщательное отделение воды от нефти, поскольку длительность отстоя увеличивается, но тем самым и удорожается процесс подготовки.

3. теплообменники – температура подогрева эмульсий является одним из важнейших факторов обеспечивающих эффективность обезвоживания и обессоливания нефтей. Наиболее оптимальными температурами подогрева являются 50-60 0С, поскольку при более высоких температурах происходит интенсивное разгазирование нефти и для сохранения ценных углеводородов необходимо высокое давление, что требует дополнительного оборудования повышенной прочности и ведет к значительному удорожанию продукции. Для подогрева используют печи трубчатые, в блочном исполнении типа ПТБ-10.

4. электродегидраторы – для промысловой электрообработки, т.е. для разделения неустойчивых эмульсий образовавшихся в следствии подачи пресной воды в поток практически готовой нефти, для растворения кристаллов минеральных солей используются электродегидраторы. Они эффективны для обессоливания средних, тяжелых и вязких нефтей. Плотность нефти больше либо равна 820 кг/м3. Если безводную нефть поместить между двумя плоскими параллельными электродами, находящимися по высоким напряжением, то возникает однородное электрическое поле, силовые линии которого расположены параллельно друг – другу. Если в это поле поместить эмульсию, т.е. обводненную нефть, то однородность поля нарушается и в результате индукции капли воды располагаются вдоль электрического поля, а электрические заряды располагаются в вершинах этих капель. Капли приходят в упорядоченное движение и укрупняются. В поле переменного тока происходит непрерывное движение капель воды. В результате разрушаются оболочки этих капель, происходит их укрупнение и отделение от нефти. Основные факторы, влияющие на разрушение капель – напряженность, частота электрического поля. Электродегидраторы работают при напряжении 10 000 – 45 000 вольт и на токах промышленной частоты 50 Гц.

5. Каплеобразователи

 

Похожие статьи:

poznayka.org

Оборудование установок подготовки нефти.

В установке подготовки нефти основным оборудованием являются:

1. сепараторы – в большинстве нефтяных сепараторах основные элементы, обеспечивающие сепарацию, делятся на четыре группы, каждая из которых образует секцию. Название секции отражает технологический процесс, реализуемый элементами. 1. – основная сепарационная секция - обеспечивает грубое отделение нефти и газа, в основном за счет использования центробежный и гравитационных сил. Интенсивность процессов в этой секции определяется конструкцией ввода нефти в сепаратор. 2. – осадительная секция - происходит дополнительное выделение пузырьков газа, увлеченных нефтью из сепарационных секций, для этого поток нефти направляется тонким слоем по наклонной секции. Эффективность работы секции определяется протяженностью плоскости и составом продукции. 3. – сбор нефти - для плавного и равномерного отбора нефти из сепараторов устанавливаются перегородки, которые называются успокоителями уровня и отбор осуществляется при срабатывании исполнительного механизма по команде датчика уровня. 4. – каплеуловительная секция – является аккумулятором мельчайших капелек жидкости, уносимых потоком газа. Поскольку работа нефтегазовых сепараторов осуществляется с пульсирующим потоком несжимаемой жидкости, то необходимы меры по снижению пульсаций потока и обеспечению плавного разгазирования нефти. Для обводненных нефтей, образующих устойчивые эмульсии, эффективно использование трех-фазного сепаратора.

2. отстойники – основная разновидность приемов обезвоживания нефтяных эмульсий – гравитационный отстой. Это процесс реализуется в отстойниках, в которых разделение происходит за счет разности плотности жидкостей => скорости их осаждения. Отстойники используются для разделения уже частично или полностью разрушенных эмульсий. Устанавливаются на УПН либо для предварительного сброса воды, либо после деэмульсаторов печей для окончательного обезвоживания нефти. Используются отстойники непрерывного отстоя горизонтальные или вертикальные. Для окончательного отстоя отличительной особенностью аппаратов является ввод эмульсий через перфорированный патрубок и отбор нефти через перфорированный сборник. Отстойники могут быть соединены последовательно или параллельно. Параллельное соединение приводит к неравномерной загрузке их нефтью и водой. В результате чего нарушается технологический режим их работы. При последовательном соединении будет происходить более тщательное отделение воды от нефти, поскольку длительность отстоя увеличивается, но тем самым и удорожается процесс подготовки.

3. теплообменники – температура подогрева эмульсий является одним из важнейших факторов обеспечивающих эффективность обезвоживания и обессоливания нефтей. Наиболее оптимальными температурами подогрева являются 50-60 0С, поскольку при более высоких температурах происходит интенсивное разгазирование нефти и для сохранения ценных углеводородов необходимо высокое давление, что требует дополнительного оборудования повышенной прочности и ведет к значительному удорожанию продукции. Для подогрева используют печи трубчатые, в блочном исполнении типа ПТБ-10.

4. электродегидраторы – для промысловой электрообработки, т.е. для разделения неустойчивых эмульсий образовавшихся в следствии подачи пресной воды в поток практически готовой нефти, для растворения кристаллов минеральных солей используются электродегидраторы. Они эффективны для обессоливания средних, тяжелых и вязких нефтей. Плотность нефти больше либо равна 820 кг/м3. Если безводную нефть поместить между двумя плоскими параллельными электродами, находящимися по высоким напряжением, то возникает однородное электрическое поле, силовые линии которого расположены параллельно друг – другу. Если в это поле поместить эмульсию, т.е. обводненную нефть, то однородность поля нарушается и в результате индукции капли воды располагаются вдоль электрического поля, а электрические заряды располагаются в вершинах этих капель. Капли приходят в упорядоченное движение и укрупняются. В поле переменного тока происходит непрерывное движение капель воды. В результате разрушаются оболочки этих капель, происходит их укрупнение и отделение от нефти. Основные факторы, влияющие на разрушение капель – напряженность, частота электрического поля. Электродегидраторы работают при напряжении 10 000 – 45 000 вольт и на токах промышленной частоты 50 Гц.

5. Каплеобразователи

 

Похожие статьи:

www.poznayka.org

Сепарационные установки - Справочник химика 21

из "Оператор обзвоживающей и обессоливающей установки"

В процессе подъема жидкости из скважин и транспортирования ее до центрального пункта сбора и подготовки нефти, газа и воды постепенно снижается давление в системе сбора, и из нефти выделяется газ. Объем выделившегося газа по мере снижения давления в системе увеличивается, и поток в нефтегазосборных коллекторах, включая и верхние участки НКТ, состоит из двух фаз газовой и жидкой. Такой поток называется двухфазным или нефтегазовым потоком. [c.32] Жидкая фаза может, в свою очередь, состоять из нефти и пластовой воды, содержание которой в потоке мoлieт изменяться от нуля до значительных величин. Следовательно, в случае содержания воды в продукции скважин мы имеем дело с трехфазным или нефтеводогазовым потоком, который состоит из нефти газа и воды. [c.32] Нефть и выделившийся из нее газ нри нормальных условиях не могут храниться или транспортироваться вместе. Поэтому на нефтяных месторождениях совместный сбор нефти и газа и совместное транспортирование их осуществляют только на определенные экономически целесообразные расстояния, а затем нефть и выделившийся газ транспортируют раздельно. [c.32] Вывод отсепарированного газа из нефтегазовых сепараторов и раздельный сбор его осуществляются в различных пунктах системы сбора и центральных пунктах сбора и подготовки нефти, газа и воды. Каждый такой пункт вывода отсепарированного газа называется ступенью сепарации газа. Ступеней сепарации может быть несколько, и окончательное отделение нефти от газа завершается в концевых сепараторах или в резервуарах под атмосферным давлением. [c.33] Многоступенчатая сепарация применяется при высоких давлениях иа устье скважин для лучшего разделения нефти и газа при последовательно снижающихся давлениях в сепараторах. Нефтегазовую смесь из скважины направляют сначала в сепаратор высокого давления, в котором из нефти выделяется основная масса газа, состоящего главным образом из метана и этана. [c.33] Из сепаратора высокого давления нефть поступает в сепараторы среднего и низкого давления для окончательного отделения от газа. [c.33] Сепараторы первой ступени в зависимости от конкретных условий на месторождении могут быть рассредоточены в нескольких пунктах по его территории или сосредоточены наряду с остальными ступенями сепарации на центральном пункте сбора и подготовки нефти, газа и воды. В последнем случае на месторождении не строятся газосборные трубопроводы. Транспортирование же газа всех ступеней сепарации от ЦПС до газокомпрессорной станции или до газоперерабатывающего завода обычно осуществляется по одному газопроводу. [c.33] Вертикальные сепараторы имеют четыре секции (рис. 13). [c.33] Осадительная секция //, в которой происходит дополнительное выделение пузырьков газа, увлеченных нефтью из сепарацпонной секции. Для более интенсивного выделения пузырьков газа из нефти ее направляют тонким слоем по наклонным плоскостям, увеличивая тем самым длину пути движения нефти, т. е. эффективность ее сепарации. [c.34] Секция сбора нефти III, занимающая самое нижнее положение в сепараторе и предназначенная как для сбора, так и для вывода нефти из сепаратора. Нефть может находиться здесь или в однофазном состоянии, или в смеси с газом-—в зависимости от эффективности работы сепарационной и осадительной секций и времени пребывания нефти в сепараторе. [c.34] Каплеулов и тельная секция IV, расположенная в верхней части сепаратора, служит для улавливания мельчайших капелек жидкости, уносимых потоком газа. [c.34] В составе групповых замерных установок применение вертикальных аппаратов обеспечивает большую точность замеров расхода жидкости в широком диапазоне дебитов скважии, включая малодебптные. [c.34] Обслуживание вертикальных сепараторов сводится к поддержанию в них установленного давления и исправного состояния регулятора уровня, предохранительного клапана, манометра. В случае использования уровпемерных стекол в замерном сепараторе, особенно при вязких нефтях и низких температурах, требуется время от времени промывать соляровым маслом загрязненные стекла, отключая их соответствующими кранами от сепаратора. [c.34] Горизонтальные сепараторы имеют большую пропускную способность по газу и жидкости, чем вертикальные. По некоторым данным, пропускная способность горизонтального сепаратора при одинаковых размерах примерно в 2,5 раза больше, чем вертикального. Это объясняется тем, что в горизонтальном сепараторе капли жидкости под действием силы тяжести падают вниз, перпендикулярно к потоку газа, а не навстречу, как это происходит в вертикальных сепараторах. [c.34] Область применения горизонтальных сепараторов весьма обширна. Они используются для оснащения дол имных насосных станций, для первой, второй и третьей ступеней сепарации па центральных пунктах сбора и подготовки нефти, газа и воды. Пропускная способность горизонтальных сепараторов, применяемых для первой, второй и третьей сту--пеней сепарации, может достигать 30 000 т/сут по жидкости на каждой ступени. [c.35] Горизонтальные сепараторы широко применяются также для отделения н сбора свободной воды из продукции скважин на первой или последующих ступенях сепарации, что исключает попадание значительных объемов воды на установку по подготовке нефти. В этом случае они выполняют роль трехфазных сепараторов. [c.35] Горизонтальные сепараторы некоторых конструкций для повышения пропускной способности и улучшения качества сепарации нефти оборудуются гидроциклонами. Отделение газа от нефти в гидроциклонах происходит за счет центробежных сил. Нефть, имеющая большую плотность, отбрасывается к стенкам гидроциклона, а газовый вихрь, вращаясь, движется в центре. Из гидроциклоиа нефть и газ отдельно поступают в емкости (рис. 14). [c.35] освобожденная от основной массы газа в трубопроводе 2, поступает в корпус сепаратора через нижний патрубок ввода 4, в котором установлены сплошная перегородка 14, успокоитель уровня 13 и две наклонные полки 10, увеличивающие путь движения нефти и способствующие выделению из нефти окклюдированных пузырьков газа, не успевших скоалесциро-ваться и выделиться в наклонном трубопроводе 2. Давление выделившегося из нефти газа повышают при помощи эжектора 9, затем газ транспортируется на ГПЗ. [c.37] Для регулирования вывода нефти из сепаратора имеется датчик уровнемера поплавкового типа 11 с исполнительным механизмом 12. [c.37] Раздельный ввод газа и жидкости в аппарат имеет ряд преи--муществ. При совместном вводе нефтегазового потока в сепаратор с перепадом давления и перемешиванием фаз количество в нефти пузырьков газа размером 2—3 мкм примерно в 4 раза больше, чем в случае раздельного ввода нефти и газа в аппарат без перепада давления. Пузырьки газа таких размеров обычно находятся во взвешенном состоянии и не успевают выделиться из нефти за время ее движения в сепараторе. Таким образом, в сепараторах с раздельным вводом жидкости и газа унос свободного газа вместе с нефтью в несколько раз меньше, чем в сепараторах с совместным вводом продукции, и обычно не превышает 1 7о от объема жидкости. [c.37]

Вернуться к основной статье

chem21.info


Смотрите также