Справочник химика 21. Сера из нефти применение


Сера | Info-Farm.RU

Серы (S) — химический элемент группы 16 периодической системы элементов с атомным номером 16, простое вещество которого сера — неметалл, желтая кристаллическое вещество. Встречается в природе в самородном состоянии и в виде сульфидов тяжелых металлов (пирита и других). Серу применяют преимущественно в химической промышленности для производства серной кислоты, синтетического волокна, сернистых красителей, дымного пороха, в резиновой промышленности, а также в сельском хозяйстве, фармацевтике и др.

Благодаря способности создавать дисульфидные связи Сера играет важную роль в составе белков.

История

Элементарную природу серы установил Антуан Лавуазье в своих опытах по сжиганию.

Общая характеристика

Серы имеет атомную массу 32,06. В природе существует 4 стабильных изотопа с массовыми числами 32-34 и 36. Сера принадлежит к халькогенов, по новой классификации в шестнадцатом, а по старой к VI группы элементов периодической таблицы. Сера является неметаллов.

Известны несколько аллотропных форм серы. При обычных условиях стабильной является ромбическая сера — бледно-желтого цвета, с плотностью 2070 кг / м3, t плав = 112,8 ° С, t кип = 444,6 о С. Во всех жидких и твердых состояниях сера диамагнитна. Термодинамические и другие свойства серы резко меняются при 160 ° C, что связано с изменением молекулярного строения жидкой серы. Вязкость серы с повышением температуры сильно возрастает (от 0,0065 Пас при 155 ° C до 93,3 Пас при 187 ° C), а затем падает (до 0,083 Пас при 444,6 ° C).

Сера реагирует почти со всеми металлами.

Распространение в природе

Серы — достаточно распространенный элемент, на него приходится около 0,1% массы земной коры. Среднее содержание серы в земной коре 4,710 -2 мас.%, При этом основное количество природной серы сосредоточена в осадочных горных породах (0,3 мас.%). В других горных породах среднее содержание серы таков: дуниты, перидотиты, пироксениты — 0,01%; базальты, габронориты, диабаза — 0,03%; диориты, андезиты — 0,02%.

В природе сера встречается как в свободном состоянии — так называемая самородная сера, но значительно чаще она встречается в связанном виде, то есть в виде различных соединений. Важнейшие из них — железный колчедан, или пирит FeS 2, цинковая обманка ZnS, свинцовый блеск PbS, медный блеск Cu 2 S, гипс CaSO 4 · 2H 2 O, мирабилит Na 2 SO 4 · 10H 2 O и др.

Сера содержится в каменном угле и нефти, а также во всех растительных и животных организмах, поскольку она входит в состав белков.

Содержание серы в нефти и природном газе оценивается в 210 9 т, то есть больше, чем запасы природной серы. Сера в нефти присутствует в разной форме, от элементной серы и сероводорода в сернистой органики, который включает более 120 соединений. Основные серосодержащие вещества углеводородного сырья — сероводород, меркаптаны и другие сероорганические соединения. Сырьевой базой для получения серы является, как правило, газы с содержанием сероводорода не менее 0,1%.

Конечно самородная сера встречается сплошной массой, заполняя трещины и полости в горных породах, или в виде натечных, шаровидных и гниздоподибних агрегаты, сталактитов, сталагмитов, налетов, выцветов, землистых порошковатые скоплений. Нередко она образует кристаллы, которые часто группируются в сростки, друзы, щетки.

Физические свойства

Сера — кристаллическое вещество желтого цвета. Она очень хрупкая и легко растирается в мельчайших порошок. Плотность 2070 кг / м 3. t плав = 112,8 ° С, t кип = 444,6 о С. Во всех жидких и твердых состояниях сера диамагнитна.

Встречается в трех аллотропных формах: две кристаллические (ромбическая и моноклинная, по способу соединения атомов в кристалле) и аморфная.

  • α-S (ромбическая) кристаллическая модификация, t плав = 112,8 ° C, устойчива к 95,6 ° C, лимонно-желтая;
  • β-S кристаллическая модификация, t плав = 119 ° C, устойчива при 95,6-119 ° C, медово-желтая. До 160 ° C молекулы 8-атомные, в парах — 2-атомные (парамагнитная сера), 4, 6, и 8-атомные.
  • Выше 160 ° C образуются спиральные цепи μ-S пластической серы.

Электрического тока и тепла сера почти не проводит. Пары серы при очень быстром охлаждении переходят в твердое состояние в виде очень тонкого порошка (серного цвета), минуя жидкое состояние. В воде сера нерастворим и не смачивается водой, но в бензоле C 6 H 6 и особенно в сероуглероде CS 2 растворяется хорошо.

Химические свойства

Имея во внешнем слое шесть электронов: (+ 16), 2,8,6 — атомы серы проявляют свойства окислителя и, присоединяя от атомов других элементов два электрона, которых им не хватает в полностью заполненной внешней оболочки, превращаются в отрицательно двухвалентные ионы: S 0 + 2е = S 2. Но Сера — менее активный окислитель, чем кислород, поскольку его валентные электроны отдаленные от ядра атома и слабее с ним связаны, чем валентные электроны атомов кислорода. В отличие от кислорода Сера может проявлять свойства и восстановителя: S 0 — 6e = S 6+ или S 0 — 4e = S 4+. Восстановительные свойства серы проявляются при взаимодействии с сильнее него окислителем, то есть с веществами, атомы которых имеют большее сродство к электрону.

Серы может непосредственно реагировать почти со всеми металлами (за исключением благородных), но преимущественно при нагревании. Так, если смесь порошков серы и железа нагреть хоть в одном месте, чтобы началась реакция, то дальше вся смесь сама собой раскалится (за счет теплоты реакции) и превратится в черную хрупкую вещество — моносульфид железа:

Fe + S = FeS

Смесь порошков серы и цинка при поджога реагирует очень бурно, со вспышкой. Вследствие реакции образуется сульфид цинка:

Zn + S = ZnS

С ртутью сера реагирует даже при обычной температуре. Так, при растирании ртути с порошком серы возникает черное вещество — сульфид ртути:

Hg + S = HgS

При высокой температуре сера реагирует также с водородом с образованием сероводорода:

H 2 + S = H 2 S.

При взаимодействии с металлами и водородом сера играет роль окислителя, а сама восстанавливается до ионов S 2- Поэтому во всех сульфидах сера негативно двухвалентное. Сера сравнительно легко реагирует и с кислородом. Так, подожжена сера горит на воздухе с образованием диоксида серы SO 2 (сульфитного ангидрида) и в очень незначительном количестве триоксида серы SO 3 (сульфатного ангидрида).

  • S + O 2 = SO 2
  • 2S + 3O 2 = 2SO 3

При этом окислителем является кислород, а серу — восстановителем. В первой реакции атом серы теряет четыре, а во второй — шесть валентных электронов, в результате чего Сера в составе SO 2 положительно четырёхвалентен, а в SO 3 — положительно шестивалентный.

Получение

Серу получают из самородных руд, а также в виде побочного продукта при переработке полиметаллических руд, из сульфатов при их комплексной переработке, из природных газов и горючих ископаемых при их очистке. Доля серы получена из сероводорода возрастает. Для отделения серы от посторонних примесей ее выплавляют в автоклавах. Автоклавы — это железные цилиндры, в которые загружают руду и нагревают перегретым водяным паром до 150 ° С под давлением 6 атм .. Расплавленное сера стекает вниз, а пустая порода остается. Выплавленная из руды сера еще содержит определенное количество примесей.

Вполне чистую серу получают перегонкой в ​​специальных печах, соединенных с большими камерами. Пары серы в холодной камере сразу переходят в твердое состояние и оседают на стенках в виде очень тонкого порошка светло-желтого цвета. Когда же камера нагревается до 120 ° С, то пары серы превращаются в жидкость. Расплавленную серу разливают в деревянные цилиндрические формы, где она и застывает. Такую серу называют Черенкова.

Применение

Сера широко применяется в различных отраслях народного хозяйства, в основном в химической промышленности для производства серной кислоты H 2 SO4 (почти половина серы, добываемой в мире), сероуглерода CS 2, некоторых красителей, и других химических продуктов. Значительные количества серы потребляет резиновая промышленность для вулканизации каучука, то есть для преобразования каучука в резину.

Серу используют в химической промышленности при производстве фосфорной, соляной и других кислот, в резиновой промышленности, производстве красителей, дымного пороха и тому подобное. Самородную серу используют в сельском хозяйстве (инсектициды, микроудобрения, как дезинфицирующее средство в животноводстве).

Техническая сера, применяется для производства серной кислоты, должна содержать не менее 95% серы, мышьяка и Селена не должно быть совсем, а содержание органических веществ не должно превышать 1%. Производство искусственного волокна (вискозы) в химической промышленности является другим потребителем серы. В сельском хозяйстве серу применяют как средство борьбы с вредителями, частично в качестве удобрения, для дезинфекции при лечении животных. В бумажном производстве серу в виде SО2 используют при обработке древесной массы (бисульфатний метод). Сера используется при вулканизации резины, в стеклянной, кожевенной промышленности. Незначительные количества серы высокой чистоты используются в химико-фармацевтической промышленности. Серу используют также для производства ультрамарина. Текстильная, пищевая, крахмальная и паточная отрасли промышленности применяют серу или ее соединения для отбеливания и осветления, при консервировании фруктов, в холодильном деле.

Серу используют также в спичечном производстве, в пиротехнике, в производстве черного пороха и тому подобное. В медицине сера идет для изготовления серной мази при лечении кожных болезней. В сельском хозяйстве сернистый цвет применяют для борьбы с вредителями хлопчатника и виноградной лозы.

Воздействие на человека

Серный пыль раздражает органы дыхания, слизистые оболочки. ПДК — 2 мг / м. куб.

Изображения по теме

info-farm.ru

Получение и применение нефтяных сернистых соединений

    Получение и применение нефтяных сернистых соединений [c.743]

    До недавнего времени на нефтеперерабатывающих заводах старались не извлекать и утилизировать сернистые соединения нефтей, а разрушать и возможно полнее удалять их из товарных продуктов в основном с целью предотвращения коррозии аппаратуры и оборудования в процессах переработки нефти и применения нефтепродуктов. Сернистые соединения моторных топлив снижают их химическую стабильность и полноту сгорания, придают неприятный запах и вызывают коррозию двигателей. В бензинах, кроме того, они понижают антидетонационные свойства и приемистость к тетраэтилсвинцу, который добавляется для повышения качества. В настоящее время лучшим способом обессериваниЯ нефтяных фракций и остатков от перегонки нефтей является очистка в присутствии катализаторов и под давлением водорода. При этом сернистые соединения превращаются в сероводород, который затем улавливают и утилизируют с получением серной кислоты и элементарной серы. [c.29]

    С учетом областей применения нефтяных сераорганических соединений и была принята основной следующая схема получения НСО. Из фракции диз. топлива сернистой или высокосернистой нефти выделяются концентраты сульфидов по известному 16] и усовершенствованному в Институте химии способу сернокислотной экстракции. Часть выделенных сульфидных концентратов может непосредственно использоваться в качестве экстрагентов благородных металлов и флотореагентов, другая часть сульфидного концентрата, преимущественно высокомолекулярная, должна окисляться до сульфоксидов, пригодных в качестве эффективных экстрагентов редких металлов. [c.29]

    В главе 1 приведен обзор литературы по составу и свойствам сернистых соединений, содержащихся в нефтях, рассмотрены способы очистки нефтяных дистиллятов от сернистых соединений с применением различных способов и катализаторов, а также новые направления получения бензинов высокого качества. В главах 2-5 приведены экспериментальные данные и описаны теоретические основы и практические результаты работы. [c.7]

    Известно, что жидкий сернистый ангидрид извлекает из бензиновых дистиллятов одновременно с ароматическими углеводородами сера-, азот- и кислородсодержащие соединения 11]. Применение сернистого ангидрида в качестве экстрагента для получения нефтяных сераорганических соединений представляется весьма интересным. Однако, селективность сернистого ангидрида по отношению к сераорганическим соединениям в присутствии ароматических углеводородов исследована недостаточно. [c.219]

    Высокое содержание сернистых соединений в нефтяных остатках не всегда является фактором, отрицательно влияющим на качество связующих веществ. Так, при получении элементных углей применение нефтяного связующего с содержанием серы до 2,5% и с хорошими упруго-пластическими свойствами предпочтительнее даже, чем использование модифицированных каменноугольных связующих веществ. Брикетирование сернистых нефтяных коксов требует применения сернистых связующих веществ, в которых высокое содержание серы является положительным фактором. [c.77]

    В ближайшее время предполагают увеличить в 2—3 раза ресурс автомобильных, тракторных, судовых, тепло-во.зных и других двигателей, а содержание серы в соответствующих топливах снизить до 0,01 0,05 и 0,2% для этого вводят новые производственные мощности гидроочистки, которой уже в настоящее время подвергают около 17% перерабатываемой нефти [15]. Для переработки высокосернистых и высокосмолистых нефтей кроме гидроочистки возможно применение и других методов, при которых сернистые и кислородные соединения могут быть выделены из нефтяных дистиллятов без изменения состава. Трудности получения нефтяных сернистых и кислородных соединений заключаются в необходимости переработки большого количества сырья для извлечения продуктов, содержащихся в малых концен- [c.10]

    Отрицательные результаты, полученные при применении метода адсорбционной хроматографии для разделения ароматических углеводородов и сернистых соединений нефтяных фракций, отнюдь не свидетельствуют о том, что этот метод к рассматриваемому случаю не применим. Необходимы дальнейшие исследования в этом направлении и, прежде всего, разработка новых адсорбентов, обладающих специфическим адсорбционным сродством в отношении сернистых соединений. Усилия в этом направлении вполне компенсируются теми преимуществами, которыми обладает адсорбционный метод разделения по сравнению с химическими методами. [c.126]

    Процесс экстракции ароматических и сернистых соединений из газойля каталитического крекинга фурфуролом и бензином Галоша является первой стадией разработанного НИИНефтехим процесса получения нафталина из нефтяного сырья. В настоящее время широкое применение в промышленности находят роторно-дисковые экстракторы (РДЭ) как достаточно эффективные и высокопроизводительные аппараты. [c.222]

    Промышленности органического синтеза во многих случаях требуется в качестве сырья бензол совсем не содержащий тиофена, и имеющий очень ограниченное количество остальных сернистых соединений, а также насыщенных углеводородов. Получение подобного бензола чрезвычайно затруднительно и практически невозможно для обычного процесса гидроочистки, так как исчерпывающий гидрогенолиз тиофена связан с некоторым развитием процессов гидрирования ароматических углеводородов и получением бензола с несколько увеличенным содержанием продуктов гидрирования — циклогексана и метилциклогексана. В связи с этим был разработан процесс каталитической гидроочистки, при котором развитие получают реакции разложения (гидрокрекинга) насыщенных углеводородов, дающие возможность получения бензола, свободного от примесей насыщенных углеводородов и обладающего поэтому высокой температурой кристаллизации (не менее 5,4°С). Подобный процесс хоть и является несколько усложненным, зато избавляет от необходимости прибегать к таким специальным методам очистки бензола от неароматических примесей, как экстрактивная ректификация, кристаллизация и т. п. В связи с тем, что бензол оказался более дефицитным и дорогим продуктом, чем его гомологи, процесс гидроочистки оказалось возможным совместить с процессом деметилирования последних. Этот процесс, получивший название процесса Литол , является еще более сложным и пока нашел ограниченное применение — преимущественно при совместной переработке фракций сырых бензолов каменноугольного и нефтяного происхождения. [c.9]

    Отрицательные результаты, полученные при применении метода адсорбционной хроматографии для разделения ароматических углеводородов, и сернистых соединений нефтяных фракций, отнюдь не свидетельствуют [c.126]

    Значительно более простой и технически сравнительно легко, осуществимой является задача выделения узких фракций нормальных парафинов, содержащих группы близких по молекулярным весам углеводородов. Более детальное изучение образцов технических сортов твердого парафина, вырабатываемого, нефтяной промышленностью, позволило установить, что в них обычно преобладают несколько смежных гомологов, содержащих в своей молекуле от 24 до 30 С-атомов. Для целей технического применения парафина, а также для использования его в качестве химического сырья (в реакциях окисления, хлорирования и др.) такие узкие фракции его оказываются вполне доброкачественным материалом, если только они хорошо очищены от примеси неуглеводородного характера, например сернистых и кислородных соединений, а также достаточно полно, отделены от разветвленных парафиновых углеводородов. Особенно нежелательными являются примеси углеводородов с цик лическими, особенно ароматическими, заместителями в углеводородной цепи, если парафин предназначается для использования в качестве химического сырья. Нередко уже присутствие-небольших количеств структур такого типа в парафине оказывается достаточным, чтобы сделать невозможным использование его как сырья, например, для процессов окисления с целью--получения спиртов и кислот. [c.238]

    Газификация нефтяных остатков представляет собой процесс неполного горения углеводородов, протекающий в основной с образованием окиси углерода, водорода и примесей двуокиси углерода, метана, сернистых соединений. Он солрововдается выделением нежелательного продукта - свободного углерода (сажи). Этот процесс нашел широкое применение во всех странах, так в настоящее время работает более 200 промышленных установок по получению водорода и скнтез-газа, построенных по лицензиям фирм "Тексако" и "аелл". [c.114]

    Обессеривание с применением твердых реагентов. Представляют интерес опыты по обессериванию сернистого нефтяного кокса из белаимской нефти путем добавления к нему окнслов, гидроокисей и карбонатов щелочных и щелочноземельных металлов [94]. Эти опыты основаны на химическом связывании выделяющихся газообразных сернистых соединений из кристаллитов кокса, сопровождаемом получением неорганических сульфидов, хорошо растворимых п воде. Поскольку энергии активации реакций распада серооргаиических соединений и рекомбинации ненасыщенных сеток ароматических колец различны, скорости реакций (16) и (17) можно регулировать изменением температуры и скорости нагрева кокса. С повышением температуры и скорости нагрева органические соединения серы распадаются более интенсивно, в то время как скорость процессов уплотнения, обладающих меньшей энергией активации, в этих условиях изменяется не так значительно. Исходя из изложенных теоретических представлений, можно проводить низкотемпературное обессерива1ше, если в период между реакциями распада и уплотнения вывести продукты распада первичных сернистых соединений из зоны реакции, например, используя для этой цели твердые реагенты. В этом случае [c.207]

    Над разделением сернисто-ароматического концентрата, получаемого из нефтяных дистиллятов, работали многие исследователи. Так, на активированной окиси алюминия хроматографировали бензиновую фракцию 38— 100° С [13]. Углеводороды десорбировали изопентаном, сернистые соединения пытались вытеснить этанолом. При этом был получен концентрат сернистых соединений, содержавший значительные количества бензола и толуола. Многократное хроматографирование сернистого концентрата не привело к его очистке. Только путем его микрофракционирования и последующего применения инфракрасной спектроскопии удалось установить присутствие меркаптанов и сульфидов с температурой кипения ниже 85 С. [c.100]

    Данные по элементному составу продуктов, растворимых в воде, — нижний слой — показывают, что при очистке сернистых реактивных топлив получаются нефтяные сульфокислоты, количество которых зависит от содержания сернистых соединений, ароматических углеводородов, концентрации серного ангидрида и составляет в среднем 5—10% на сырье. Водорастворимые сульфокислоты являются одним из лучших компонентов, применяемых при получении отечественных смазочно-охлаждающих жидкостей, для металлообрабатывающей промышленности. Производство их из минеральных масел не обеспечивает возрастающей потребности промышленности в высокоэффективных и дешевых смазочно-охлаждающих жидкостях. Промышленное применение рассматриваемого 1иетода очистки топлив от сернистых соединений позволит получать наряду с высококачественными топливами и ценный компонент для смазочно-охлаяеда-ющих жидкостей. [c.86]

    В 1955 г. появилась обобщающая статья [511, в которой дан краткий обзор американских работ по выделению сернистых соединений рефтей и их идентификации. В статье приведено краткое описание 1 1етодов, применяемых в Американском нефтяном институте нри разработке исследовательской проблемы 48А, т. е. проблемы сернистых соединений пефти. Наиболее широко применялись методы вакуумной перегонки в сочетании с хроматографией на специальным образом приготовленной окиси алюминия. Результаты, полученные при Еспользовапии метода термической диффузии для концентрации сернистых соединений нефти, хорошо согласуются с данными хроматографического разделения па окиси алюминия. Из химических мето- ов, упоминается использование реакции комплексообразования. В, концентратах сернистых соединений (150—220 С) тексасской нефти, полученных в результате применения одного или нескольких методов, были идентифицированы при помощи инфракрасной спектроскопии и масс-спектроскопии 43 сернистых соединения (40 надежно, а 3 предположительно). Выделенные из нефти сернистые соединения чувствительны к металлам (особенно к меди и ртути) и к повышенным температурам. [c.368]

    Сложной задачей является извлечение органических соединений серы из нефтепродуктов. Сера присутствует в нефти в виде различных соединений сероводорода, сероуглерода, меркаптанов и тиофенолов, тиоэфиров, полисульфидов, производных тнофена и тнофана и др. Сернистые соединения в нефти приводят к появлению неприятного запаха и нежелательной окраски нефтепродуктов, к ухудшению их стабильности, вызывают коррозию аппаратуры, ухудшают антндетонационные и антиокнслительпые свойства бензина. В 1 млн. т добываемой сернистой нефти содержится около 15 тыс. т органических соединений серы с т. кип. 100— 300 °С. В настоящее время органические соединения серы из нефти в промышленном масштабе не выделяют, хотя они могут найти широкое применение в народном хозяйстве. Нефтяные сульфоксиды, полученные окислением нефтяных сульфидов, могут быть использованы в гидрометаллургии в качестве экстрагентов [41— 43] в сельском хозяйстве как биологически активные вещества [44] в качестве ингибиторов окисления минеральных масел [45], пластификаторов [46] и антиобледенителей [47]. [c.202]

    Биокатализаторы интересны еще и с другой точки зрения реакции, катализируемые ими, протекают с достаточной скоростью при обычных температурах и давлениях многие реакции в присутствии химических катализаторов возможны лишь при высоких температурах, а часто и высоких давлениях. К биокатализаторам указанного действия относятся бактерии, обеспечивающие, например, фиксацию азота воздуха (азотобактеры), выделение железа и окислов железа (железные бактерии), получение серы из сероводорода и других сернистых соединений (серные бактерии), различные превращения углеводородов (нефтяные бакте-рии), образование белков из нефти и т. д. В результате таких процессов получаются продукты, обладающие более высокой энтропией, чем исходные. Происходит это за счет параллельно идущих экзотермических процессов, особенно процессов окисления. Необходимо глубже вникнуть в механизм действия такого рода ферментативных систем, чтобы изыскать возможности восироизведения их с помощью искусственных катализаторов. Пока мы еще не создали таковых, здесь нужны широкие исследования возможностей осуществления промышленных процессов с применением природных ферментов в виде соответствующих бактерий и грибков. [c.19]

    Проблема использования сера-оргаиических соединений имеет очень важное значение. Именно проблема использования решает дело. Потому что выделять сера-органические соединения из дистиллятов мы уже умеем. Нужно найти такого потребителя сера-органических соединений, который бы мог дорого за них платить. Тогда вопрос о дешевом пути их выделения не был бы основным. Нас, нефтепереработчиков, интересует и другая проблема —и()01)л. ма получения обессеренных не [)тепродуктов и особенно дизельного топлива. Хроматографически можно выделять сернистые концентраты и одновременно получать качественное дизельное топливо. Вопрос только в том, как использовать эти концентраты. Не менее важно выяснить, можно ли из этих концентратов выделить тот или иной продукт целевого назначения. Мы здесь пока что не слышали ни одного сообщения на этот счет. Наш цех занимался вопросом обессеривания дизельного топлива, вырабатываемого заводом из высокосернистых ишимбайских нефтей, и получил неплохие результаты. Что касается использования концентратов сернистых соединений, то, на мой взгляд, они могут быть употреблены для получения нефтяного черного контакта (НЧК). НЧК имеет ограниченное применение и найти на него потребителя в больших масштабах было бы хорошо. Ясно одно, что вопрос о применении сера-органических соединений чрезвычайно серьезный и очень трудный. Я пробовал окислять сера-органические соединения, но они не [c.205]

    С помош ью газовой хроматографии были ироанализироваим углеводороды всех видов от С) до, примерно, С о. Газо-хромато-графнческая техника практически во всех отраслях этой иромыш-ленпости оказалась выдающимся орудием исследования, получения и очистки нефтепродуктов. Примерами являются анализы газов из бурового шлама, природного (рис. 24), влажного, нефтяного газов, легких фракций бензина, ароматики и парафинов в бензине, разных продуктов нефтеперерабатывающих заводов, летучих сернистых соединений сырой нефти, а также легких, средних и тяжелых восков. Некоторые примеры применения газовой хроматографии в этой области описываются во многих литературных источниках. [c.111]

    Производные тиофена могут быть использованы как физиологически активные вещества, красители, присадки к маслам, полиорганилсилоксаны и являются потенциальным сырьем для получения разнообразных веществ. Тиолан применяется в качестве одоранта газа. Полученные на основе содержащихся в нефтепродуктах сернистых соединений так называемые нефтяные сульфоксиды могут использоваться в гидро- и цветной металлургии в качестве экстрагентов и флотореагентов, Тиолан-1,1-диоксид - эффективный экстрагент ароматических углеводородов из риформированных нефтепродуктов и растворитель в различных процессах, в том числе при очистке газов от кислых компонентов. Более подробную информацию по проблеме применения органических соединений серы можно найти в обзорах [2-9]. [c.4]

    Способ переработки сернистых нефтяных остатков выбирают в зависимости от необходимости получения максимального количества тех или иных жидких нефтепродуктов. Для переработки сернистых нефтяных остатков можно применять гидрокрекинг, д еасфальтизацию бензином (добен) с последующей деструкцией деасфальтизата и коксование. Непосредственное гидрирование нефтяных остатков связано со сложным технологическим оформлением процесса (многостадийность, давление 15—30 МПа), быстрым снижением активности катализатора из-за расслоения остатка на фазы и интенсивного отложения на поверхности катализатора углеродного материала, металлоорганических, сернистых, азотистых и других вредных соединений. Деасфальтизация остатков бензином находится на стадии опытно-промышленных испытаний и пока не может быть рекомендована для широкого распространения. Кроме того, применение асфальтита (концентрат асфальтенов, получаемый при деасфальтизацип), вырабатываемого на этой установке, является весьма проблематичным из-за его плохой транспортабельности и других его свойств..  [c.9]

    В литературе [1] и среди технологов-нефтепереработчиков установилось мнение, что применение указанных процессов особенно выгодно в тех случаях, когда в качестве сырья используются такие высокосмолистые нефтяные остатки, как гудрон восточных сернистых нефтей. На первый взгляд практические данные как будто бы подтверждают отмеченное выше мнение. В процессе деасфальтизации пропаном удаляется большое количество асфальтово-смолистых веш,еств. Полученный деас-фальтизат удается очистить от оставшихся в нем нежелательных ароматических и смолистых соединений такими растворителями,как фенол и фурфурол, в то время как нефтяные остатки, не подвергнутые деасфальтизации, удовлетворительной очистке этими растворителями не поддаются. Кроме того, процессы деасфальтизации и фенольной очистки несложны и достаточно удобны в эксплуатации. [c.104]

    В связи с актуальностью проблемы углубления переработки нефти с целью получения максимального количества светлых нефтепродуктов с малым содержанием сернистых и азотистых соединений в течение последнего десятилетия разработаны многочисленные варианты процессов гидрокрекинга нефтяного сырья различных направлений с применением цеолитсодержащих катализаторов. Некоторые процессы нашли применение в СССР и за рубежом в промышленном масштабе. Про-должалось совершенствование цеолитсодержащих катализаторов в процессах гидрокрекинга, реализованных до 1970 г. [c.79]

    Основными поставщиками ароматических соединений являются коксохимическая и нефтехимическая промышленности. Развитие каталитических методов получения ароматических углеводородов из нефтяных фракций значительно увеличило роль нефтяной промышленности в производстве бензола, толуола и кселолов. Выделение ароматических соединений из дистиллятов, получаемых при каталитической ароматизации, сопряжено с некоторыми трудностями. Последние обусловливаются в основном наличием близко-кипящих неароматических соединений, образующих смеси малой относительной летучести и азеотропные смеси. Эти обстоятельства затрудняют применение ректификации для выделения ароматических углеводородов высокой степени чистоты. Одним из эффективных способов извлечения ароматических соединений является жидкостная экстракция. В качестве растворителей при выделении ароматических углеводородов используются диэтиленгликоль и жидкий сернистый ангидрид. [c.185]

chem21.info

Сера, использование - Справочник химика 21

    В последнее время в связи с совершенствованием методов очистки газа и развитием техники используют цинк-(медь-алюминиевые и цинк-медные катализаторы 112, 113]. Известно, что катализаторы на медной основе повышают скорость образования метанола из синтез-газа, но быстро становятся инертными из-за наличия в синтез-газе примесей серы. Использование медьсодержащих катализаторов позволяет синтезировать метанол при пониженных температуре и давлении. Схема синтеза метанола представлена на рис. IX-2. Синтез-газ сжимается компрессором 1, проходит через масляный фильтр и поступает в теплообменник 2. После теплообменника синтез-газ пропускают через каталитический реактор 3. [c.261]     Предварительно был проведен количественный анализ основных компонентов образцов фламина двух производственных серий, использованных в качестве субстанций для изготовления гранул. Степень высвобождения компонентов фламина из гранул рассчитывали относительно их содержания в соответствующей исходной субстанции (табл.5). Как и следовало ожидать, на примере каждой партии гранул установлено, что степень перехода в раствор гликозидов выше, чем агликонов. Это обусловлено лучшей растворимостью гликозидов в воде. [c.742]

    В настоящее время элементная сера является крупнотоннажным попутным продуктом нефтяной и газовой промышленности и несмотря свои ценные свойства ( биологические, гидрофобные, теплофизические и др.) не имеет заметного применения, так как расширение областей применения затрудняется объективными проблемами многообразие аллотропных форм, неустойчивость некоторых из них, низкая растворимость в различных растворителях и др. Для решения проблемы увеличения растворимости и реакционной способности элементной серы использован метод интенсивной механической обработки с помощью которого удается заметно менять физические и химические свойства, в том числе и растворимость материалов. В настоящей работе исследовано влияние механической обработки в дезинтеграторе на растворимость серы в органических растворителях и водных щелочных растворах [c.136]

    Бензины, содержащие присадки типа АПК, характеризуются высокими антиокислительными свойствами, в 2,5-6,0 раз превосходящими базовые образцы, что позволяет вырабатывать бензины, предназначенные для длительного хранения (без антиокислительных присадок). Наличие присадки АПК практически не влияет на фракционный и углеводородный состав бензинов и содержание в них серы. Использование присадки АПК обусловливает возможность вовлечения от 5 до 10% низкооктановых дешевых прямогонных фракций, что позволяет регулировать в более широких пределах 04 бензина по моторному методу, выгодно с экономической и экологической точки зрения. [c.377]

    При регенерации резины происходят деструкция углеводородных цепей изменение углеродных цепей, образованных сажей, содержащейся в резине уменьшение содержания свободной серы, использованной для вулканизации резины, деструкция серных, полисульфидных связей структурирование вновь образовавшихся молекулярных цепей. [c.293]

    Определение серы в арсениде индия ведут по методу трех эталонов.. Аналитические линии серы, использованные в работе — 511 5473,63 А и 5453,88 А. [c.207]

    При сухой очистке газа окисью железа сероводород поглощается ею, и при регенерации окиси железа выделяется свободная сера. Использованная окись может содержать от 30 до 50% свободной серы, в зависимости от условий операции. В американской практике отработанная окись обьгано содержит около 30% серы в Европе часто доводят содержание серы до 50% [103]. [c.87]

    Заводы и комбинаты Потери серы, % Использование серы в продукцию, % [c.22]

    Потери серы, % Использование серы в продукцию % [c.11]

    Еще большая опасность перегрева катализатора возникает при переработке смеси двуокиси серы с кислородом. Использование кислорода представляет существенный интерес, так как позволяет весьма значительно (в среднем в пять-шесть раз) повысить производительность на всех стадиях контактного процесса окисления двуокиси серы. Использование кислорода позволяет также, что особенно важно, непосредственно на контактных установках получать жидкую трехокись серы, высокопроцентный олеум. [c.332]

    На одном из алюминиевых заводов, где применено восстановление алунита серой, использование серы алунита составляет около 20%, а основное количество кислоты получают из привозной серы. В этом случае технически и экономически целесообразно перевести завод на циклический метод. [c.41]

    При очистке газа от сероводорода имеется возможность получать значительные количества ценных для народного хозяйства серной кислоты и элементарной серы. Использование цианистого водорода коксового газа часто экономически нецелесообразно, так как существуют достаточно дешевые способы производства синтетических цианистых соединений. [c.102]

    Взаимодействие диеновых олигомеров с серой. Использование серы широко распространено в органической химии и химии [c.70]

    Исключения могут существовать в случае таких реакций для которых геометрическая конфигурация и прочие условия аналогичны тому, что имеет место в случае стандартной серии, использованной для определения величин (Т . В этих случаях точки для орто-. пара- и мета-замещенных производных могут, в принципе, укладываться на одну общую прямую. [c.33]

    Цвиттерионный характер сульфониевых илидов определяет их широкое использование в перегруппировочных процессах, позволяющих формировать новые С-С связи часто с высокой стерео- и региоселективностью. В синтезах гетероциклических соединений наибольшее синтетическое применение находят 1,2-перегруппировки Стивенса [3, 14] и 2,3-сигматропные перегруппировки [3, 13-16] циклических илидов серы. Использование перегруппировок илидов серы в синтезе циклических соединений стало особенно перспективным в связи с развитием карбенового метода генерирования циклических сульфоилидов. Образование илидов происходит за счет электрофильного присоединения к атому серы карбеноид-ной частицы, генерируемой из диазогруппы под действием соединений переходных металлов (преимущественно Штили Си) [3]. [c.207]

    Смишек и Черны [36] приводят данные об успешной эксплуатации опытной установки адсорбционной сероочистки коксового газа в Научно-исследовательском топливном институте (Чехословакия), где для экстракции серы использован ксилол. Процесс проводят в двух последовательно включенных адсорберах первый адсорбер содержит частично отработанный уголь, во втором — свежий уголь. В процессе очистки содержание серы в угле первого адсорбера повышается с 25— 30 до 80—85% (масс.), во втором адсорбере с О до 25—30%. Исходный газ содержал 5 г h3S на 1 м , после очистки — 20 мг. Одновременно удалялось 15—20% органической серы и 20% цианистого водорода. Эксплуатационные затраты на 1 т выделенной серы составили  [c.290]

    Для определения тиофена в тяжелых фракциях нефти и сырых нефтях может быть использована специальным образом модифицированная ГХ-система с узлом предварительного фракционирования, подсоединенным к стандартному устройству ввода с делением потока [10]. На рис. 8-8 приведена схема крана-переключателя, используемого в этом анализе. Проба вводится через устройство ввода узла предварительного фракционирования в короткую предколонку с НФ OV-101. На этой иредколонке происходит разделение компонентов в соответствии с их температурами кипения. Во избежание попадания тяжелых фракций нефти (Сао) в капиллярную колонку кран-переключатель устроен таким образом, чтобы обеспечить продувку и сброс тяжелых фракций. Легкие фракции нефти попадают в аналитическую колонку, где происходит дальнейшее разделение и идентификация смеси. На рис. 8-9 приведена типичная хроматограмма сырья, поступающего на гидроочистку. Анализируемая фракция содержит 1,5 масс.% серы. Использование высокоэффективных капиллярных колонок сводит к минимуму совместное элюирование углеводородов, содержащихся в большом количестве, и серусодержащих соединений. В результате такого совместного элюирования может наблюдаться гашение сигнала ПФД. По сравнению с ПИД ПФД обладает превосходной чувствительностью к серусодержащим соединениям и селективен к ним (рис. 8-10). Вследствие нелинейности сигнала ПФД к сере количественное определение серы проводится с помощью многоуровневой градуировки. Градуировочные кривые для некоторых тиофенов представлены на рис. 8-11. [c.112]

    Важнейшей проблемой при использовании метода Хюккеля являются использование одноэлектронного гамильтониана и исключение из расчетов взаимодействия электронов. Попл [57а] и Пари-зер и Парр [576] разработали метод с использованием многоэлек-тронного гамильтониана и ввели ряд упрощений, позволивших построить серию уравнений, сравнимую с серией, использованной в теории Хюккеля, но включающей члены, отражающие взаимодействие электронов. Применение самосогласующегося поля (ССП) с использованием параметров, первоначально предложенных Паризером и Пар- д ром [576], известно как приближение Попла — Паризера — Парра (ППП). [c.303]

    Выводы. Установлено, что из исследуемых моделей наиболае точно реакцию гидрообессеривания деасфальтированных остатков на катализатора йГД0-1 описывает модель, составленная на основе представлений процесса превращения в виде двух параллельных реакций первого порядка для условных групп легко -и трудноудаляемой серы. Использование этой модели позволяет углубить наши познания в области кинетики процесса и разработать в последующем метод расчета реакционных систем. [c.56]

    Графики для -углеродного атома незамещенной винильной группы дивиниловых сульфидов и эфиров аналогичны ( ис. 51). Найденный наклон (i ) составил 1,02, когда в расчете-для атома серы использован spd-базис, в случае же sp-приближения R = [c.234]

    Органические соединения селена называют, насколько возможно, аналогично соответствующим соединениям серы. Использование приставок и окончаний, с примерами нх применения, показано в табл. XIII. Структуры, неуказанные в таблице, называют, помещая слог селено- перед названием соответствующего кислородного соединения. [c.260]

    Из предшествующих разделов складывается впечатление, что наиболее корректно метод спектроскопии ЯМР может быть применен для установления химического состава углеводородной части нефтей В связи с вовлечением в процессы переработки высокосернистых нефтей и тяжелых нефтяных остатков, обогащенных гетероатомными компонентами, возникает необходимость струк-турно-фуппового анализа последних, в первую очередь — наиболее представительных органических соединений серы Использование традиционных видов спектроскопии ЯМР, те ЯМР на ядрах водорода и углерода, для анализа смесей сероорганических соединений (СОС) нефти малоэффективно, поскольку ХС н и С ядер, находящихся в а- и тем более в р- и у-положениях к атому сульфидной серы, не отличаются от ХС СН2-групп в соответствующих положениях к углероду [388] Анализ структурных особенностей продуктов окисления сероорганических соединений нефти и угля методом спектроскопии ЯМР н и С можно проводить только при надежном разделении их на фракции, близкие по структурногрупповому составу Кроме того, необходимо отделить кислородсодержащие соединения, так как ХС С атомов углерода в а-положении к кислороду близки по значению к ХС С сульфоксидов и сульфонов [445] [c.336]

    Недавно были разработаны удобные способы получения четырехфтористой серы " . Использование этого нового фторирующего агента имеет широкие перспективы для получения разнообразных соединений, содержанщх фтор. [c.40]

    Медиокритский Е. Л. Повышение эффективности использования природного газа в промышленных печах с помощью радиационных регенераторов // Газовая промышленность. Серия Использование газа в народном хозяйстве. Обзорная информация. 1980. Вып. 5. [c.603]

    Сорока Б. С. Топливо- и магериалосберегающая технология в процессе нагрева и термообработки металла / ВНИИЭгазпром обз. Информация. Серия Использование газа в народном хозяйстве. 1986. Вып. 4. С. 59. [c.754]

    Данных для изопропильной и тре/п-бутильной групп в работе [2] не приводится. В реакционной серии, использованной для определения стерических констант, применяли 95%-ный этанол (по объему) при 34,5 и едкое кали. Для данных по скоростям реакций шести силанов, содержащих незамещенные алкильные группы, лучшую корреляцию дает р =-ЬЗ,5 0,2 (Соммер и Бэри, неопубликованные данные см. [5]). В работе [2] для незамещенных первичных алкильных заместителей лучшую корреляцию также дает р =-ЬЗ,5. [c.129]

    В Советском Союзе большая часть серной кислоты до сих пор получается из колчедана, т. е. по самой сложной схеме производ- ства. В дальнейшем удельный вес колчедана в общем балансе серного сырья будет уменьшаться за счет увеличения количества применяемой природной и газовой серы, использования сероводорода, извлекаемого из газов коксохимических заводов, а также более полного испольования газов цветной металлургии идр. [c.105]

    Вагнер с сотр. [16] с помощью более сложной ячейки определили АС для реакции образования U2S из меди и серы. Использование для этих целей ячейки [c.613]

    В работе также осуществлена расчетная оценка значений ЛН° 2gg ряда полигалогенпроизводных метана, в том числе и для тех lu не содержащих фтооа соединений, для которых имеются экспериментальные оценкк . Дяя последних стандартное отклонение расчетных данных от экспериментальных составляет 7,в ккал/моль. Это, по-видимому, свидетельствует о ненадежности сравнительного расчета в рамках коротких серий, использованного в работе . [c.457]

chem21.info

Производство серы из природного газа

    Нефтяные и природные газы наряду с углеводородами могут содержать кислые газы — диоксид углерода (СО ) и сероводород (Н jS), а также сероорганические соединения — серооксид углерода ( OS), сероуглерод ( Sj), меркаптаны (RSH), тиофены и другие примеси, которые осложняют при определенных условиях транспортирование и использование газов. При наличии диоксида углерода, сероводорода и меркаптанов создаются условия для возникновения коррозии металлов, эти соединения снижают эффективность каталитических процессов и отравляют катализаторы. Сероводород, меркаптаны, серооксид углерода — высокотоксичные вещества. Повыщенное содержание в газах диоксида углерода нежелательно, а иногда недопустимо еще и потому, что в этом случае уменьшается теплота сгорания газообразного топлива снижается эффективность использования магистральных газопроводов из-за повышенного содержания в газе балласта. Если рассматривать этот вопрос с указанных позиций, то серо- и кислородсодержащие соединения можно отнести к разряду нежелательных компонентов. Однако такая постановка вопроса не исчерпывает всей полноты проблемы, так как кислые газы являются в частности высокоэффективным сырьем для производства серы и серной кислоты. Поэтому при выборе процессов очистки газов учитывают возможности достижения заданной глубины извлечения нежелательных компонентов и использования их для производства соответствующих товарных продуктов. В Канаде, например, сера в зависимости от содержания в газе сероводорода рассматривается как основной, сопутствующий или побочный продукт, и в зависимости от этого распределяются затраты на очистку газа и производство серы, а также регламентируются условия разработки и эксплуатации некоторых месторождений [22]. Известны случаи, когда сероводородсодержащий природный таз добывают с целью производства серы, очищенный газ после извлечения сероводорода закачивают обратно в пласт для поддержания пластового давления. В ряде стран мира (США, Канаде, Франции) открытие крупных месторождений природного сероводородсодержащего газа положило начало широкому развитию в 50-х годах добычи и очистки такого газа и производству серы из этого сырья. В Канаде из сероводородсодержащего газа получено около 5,3 млн. т серы (по состоянию на начало 1978 г. доказанные запасы серы составляли 105 млн. т) [23]. [c.135]     Как правило, основные источники природного сырья кроме необходимого компонента содержат и другие ценные вещества. К примеру, в железной руде часто присутствуют медь, титан, ванадий, кобальт, цинк, фосфор, сера, свинец и другие редкие элементы. В полиметаллических рудах содержится более 50 ценных элементов, в том числе олово, медь, кобальт, вольфрам, молибден, серебро, золото, металлы платиновой группы. Часто сопутствующие элементы обладают большей ценностью, чем основные, ради которых организовано производство. В природном газе находятся азот, гелий, сера, а в составе газового конденсата — гомологи метана. В нефтях содержатся различные соединения серы и им сопутствуют попутные газы, в состав которых входят ценные углеводороды, а также пластовые воды с содержанием йода, брома и бора. Полное использование вещественного потенциала сырья выходит за рамки одной ХТС и становится возможным только при комплексной переработке сырьевых ресурсов, обеспечиваемой многими отраслями промышленности. [c.307]

    Поступающий на производство сероуглерода природный газ имеет довольно сложный состав, зависящий от месторождения. Прежде чем направить природный газ на синтез сероуглерода, его надо очистить от вредных примесей. Метан, содержание которого в природном газе составляет 90—98% (об.), является основным реагентом. Этан тоже может быть переработан на сероуглерод и даже с меньшими затратами серы.  [c.137]

    Карпов Е.В. Особенности производства сжиженного природного газа. //НТС Сер. Газификация. Природный газ в качестве моторного топлива. Подготовка, переработка и использование газа/ ИРЦ Газпром. - 2001. -№ 1. - С. 16-23 [c.45]

    Ливанов В.К. Организация производства аналогов запасных частей и обеспечение ими АГНКС всех типов//НТС. Сер. Природный газ в качестве моторного топлива. Подготовка, переработка и использование газа Отеч. и зарубеж. опыт/ИРЦ Газпром. - 1996. -№ 9-11. -С.18-21. [c.85]

    Сернистые компоненты природного газа, и в первую очередь НгЗ, служат прекрасным сырьем для производства серы. Из сероводорода природного газа получают наиболее чистую и дешевую серу, потребность в которой постоянно растет. По количеству расходуемой серы и разнообразию сфер ее применения, она наряду с солью, известью, углем и нефтью относится к основным сырьевым материалам для химической промышленности. В 70-х годах 85% добываемой в мире серы перерабатывалось в серную кислоту, 60% серной кислоты шло на производство удобрений. Поэтому современные процессы очистки природного газа связаны с производством серы и очищенного воздуха . [c.169]

    Вторая операция при очистке сернистого природного газа — производство серы из получаемых потоков кислого газа. Практикой установлено, что для кислых газов, объемное содержание сероводорода в которых более 15%), наиболее экономичны различные модификации процесса Клауса для кислых газов с объемным содержанием h3S менее 15% — процессы прямого окисления. [c.184]

    Влияние состава кислого газа на выбор и эффективность процессов производства серы указывает на то, что процессы разработки месторождений сероводородсодержащих природных газов (состав добываемых газов), процессы извлечения кислых компонентов из природного газа и процессы производства серы из них должны рассматриваться в единой системе, быть строго взаимоувязанными на весь период разработки месторождения. 188 [c.188]

    Следующей операцией при очистке сернистого природного газа вслед за производством серы тем или иным способом является очистка остаточных (хвостовых) газов— производство чистого воздуха . [c.189]

    Завершающим этапом в цепи описанных выше процессов подготовки природных и попутных газов к переработке является утилизация сероводорода. До недавнего времени сероводород считался вредной и опасной примесью нефтяных и природных газов. Сейчас на базе нефтяного сероводорода налажено производство элементарной серы. Самым широко распространенным способом получения элементарной серы из сероводорода является процесс Клауса, основанный на неполном сгорании сероводорода. При этом протекают следующие реакции  [c.162]

    Газоперерабатывающий завод (ГПЗ) предназначен для улавливания из природных или попутных газов бензиновых фракций, этана, пропана, бутанов, гелия и производства элементарной серы. Сухой газ частично используют на нужды завода, а основную его массу направляют в газопроводы для использования в качестве бытового или энергетического топлива. [c.8]

    Мощным средством повышения производительности сернокислотных систем является увеличение концентрации диоксида серы. Высококонцентрированные газы, содержащие до 80% 50г, уже начали получать в производстве цветных металлов из их сульфидных руд с применением технического кислорода. Также высококонцентрированный газ можно производить при сжигании сероводорода, полученного при очистке природного газа или газов нефтепереработки адсорбционно-десорбционным способом. [c.137]

    В промышленности применяются четыре основных способа Клауса для производства элементарной серы из кислых компонентов природного газа и нефтезаводских газов прямоточный (пламенный), разветвленный, разветвленный с подогревом кислого газа и воздуха и прямое окисление [13]. [c.97]

    В нефтяной и газовой промышленности процесс абсорбции применяется для разделения, осушки и очистки углеводородных газов. Из природных и попутных нефтяных газов путем абсорбции извлекают этан, пропан, бутан и компоненты бензина абсорбцию применяют для очистки природных газов от кислых компонентов — сероводорода, используемого для производства серы, диоксида углерода, серооксида углерода, сероуглерода, тиолов (меркаптанов) и т.п. с помощью абсорбции также разделяют газы пиролиза и каталитического крекинга и осуществляют санитарную очистку газов от вредных примесей. [c.192]

    Значительно также производство элементарной серы из природных газов и газов нефтеперерабатывающих заводов. Во Франции в связи с открытием крупного газового месторождения Лак, в газе которого содержится около 15% сероводорода, развилось производство серы пз этого газа. В 1965 г. оно достигло 1 млн. т. [c.357]

    Конструкционные материалы и гончарные изделия — основные виды продукции этого старейшего производства, однако СНГ и природные газы стали применять в технологии их производства немногим более 20 лет. Первыми видами топлива были дрова и уголь, а также генераторный газ, получавшийся из них. Однако из-за необходимости борьбы с дымом и серой, содержавшейся в угле, постепенно были освоены нефтяное топливо и дистилляты, доступные по ресурсам и ценам. В те времена синтетические искусственные газы, отличные от коксового, генераторного (получаемого из угля) или городского (получаемого пз нефти) газов, были слишком дороги. Их использовали только при изготовлении дорогих и художественно ценных товаров. По мере развития нефтяной и газовой промышленности и увеличения ресурсов относительно дешевых СНГ как основного, так и дополнительного продукта природного газа стали происходить изменения, особенно в Европе, [c.281]

    Развитие газовой промышленности обеспечивает дальнейшее упрочение сырьевой базы нефтехимической промышленности. В десятом пятилетии значительно увеличились мощности по комплексной переработке попутного и природного газов, расширено производство сжиженных газов, бензинов, гелия, серы. [c.45]

    В настоящее время возродился интерес к процессу Фишера-Троп-ша (синтез углеводородов из оксида углерода и водорода), направленному на получение фракций, выкипающих в пределах дизельного топлива. Достоинством этого процесса является возможность производства топлива, практически не содержащего серы. По указанной технологии сооружен ряд промышленных установок [353-357]. В частности, фирмой Шелл в Малайзии пущен завод по синтезу углеводородов из природного газа мощностью 570 тыс. т/год. Разработанный этой фирмой процесс получил название Синтез средних дистиллятов . Он включает стадии некаталитического парциального окисления метана с получением синтез-газа, последующий синтез высокомолекулярных парафинов и их гидрокрекинг с получением смеси средних дистиллятов. [c.364]

    Процессы адсорбции широко применяются в промышленности при очистке и осушке газов, очистке и осветлении растворов, разделении смесей газов или паров, в частности при извлечении летучих растворителей из их смеси с воздухом или другими газами (рекуперация летучих растворителей) и т. д. Еще сравнительно недавно адсорбция применялась в основном для осветления растворов и очистки воздуха в противогазах в настоящее время ее используют для очистки аммиака перед контактным окислением, осушки природного газа, выделения и очистки мономеров в производствах синтетического каучука, смол и пластических масс, выделения ароматических углеводородов из коксового газа и для многих других целей. В ряде случаев после адсорбции поглощенные вещества выделяют (десорбируют) из поглотителя. Процессы адсорбции часто сопутствуют гетерогенному катализу, когда исходные реагенты адсорбируются на катализаторе, а продукты реакции десорбируются, например при каталитическом окислении двуокиси серы в трехокись на поверхности платинового катализатора и др. [c.563]

    Органическая сера является нежелательной примесью природных газов. Наличие в газе органической серы более 30—50 мг ограничивает возможность его использования без доочистки для химических каталитических ироцессов, производства газов — восстановителей для закалки и термообработки металлов и в других технологических процессах. [c.285]

    Природный и нефтяной газ — это не только топливо и сырье для производства этана, пропана и других гомологов метана. При очистке и переработке газа получают большие количества дешевой серы, гелия и других неорганических продуктов, необходимых для развития ряда отраслей народного хозяйства. Канада благодаря наличию крупных мощностей по переработке сероводородсодержащих природных газов занимает среди капиталистических стран второе место по производству серы [13]. По производству гелия— одного из важнейших и перспективных продуктов — первое место занимают США [14]. Структура потребления гелия характеризуется следующими данными (в % об.) [15] ракетно-космическая техника — 19 контролируемые атмосферы — 12 искусственные дыхательные смеси — 6 исследования — 15 сварка в атмосфере инертного газа — 18 криогенная техника — 6 теплопередача — 7 хроматография — 4 другие области — 13. В перспективе гелий предполагают широко использовать в атомной энергетике, криогенной электротехнике и других областях [16]. [c.12]

    Природный газ проходит сепаратор 7 для отделения жидких углеводородов, сжимается турбокомпрессором2до 28—30ат и подогревается в подогревателе 3 за счет сжигания в межтрубном пространстве природного газа. Последующую очистку проводят в две стадии. В аппарате 4 при 380—400 °С осуществляется каталитическое гидрирование органических соединений серы до сероводорода (водород или подходящий по условиям процесса водородсодержащий газ вводят перед подогревателем 3). В адсорбере 5 при температуре 360°С сероводород поглощается адсорбентом на основе окиси цинка (объем катализатора и поглотителя должен обеспечивать срок службы, определенный для катализатора синтеза метанола, или быть больше его). В избранных технологических условиях достигается высокая степень очистки. Очищенный газ подают на конверсию в трубчатую печь 6 в газ предварительно вводят необходимое количество водяного пара и двуокиси углерода. Температура паро-газовой смеси повышается в подогревателе трубчатой печи за счет тепла дымовых газов до 530—550 °С подогретый газ направляется непосредственно на катализатор в реакционные трубы. Процесс паро-углекислотной конверсии проходит при давлении до 20 ат. Тепло, необходимое для конверсии, получается в результате сжигания отходов производства или природного газа в специальных горелках. Тепло дымовых газов, имеющих температуру выше 1000°С, используют для подогрева паро-газовой смеси, получения пара высокого давления в котле-утилизаторе, подогрева воды, питающей котлы, и топливной смеси перед подачей ее в горелки трубчатой печи 6. Охлажденные до 200—230 °С дымовые газы выбрасываются в атмосферу или частично направляются на выделение двуокиси углерода. [c.85]

    Даки Н.В. (ВНИИгаз), Чебоксаров В.И. (ОАО Газпром ). Использование тиристорных пусковых устройств на АГНКС и опыт эксплуатации аналогов силовых выключателей производства Германии // Научн. техн. сб. Сер. Природный газ в качестве моторного топлива. Подготовка, переработка и использование газа. - М. ИРЦ Газпром. - 1996. - № 9-11. - С. 8-12. [c.31]

    Сероводород, получаемый с гидрогенизационных процессов переработки сернистых и высокосернистых нефтей, газоконденсатов и установок аминной очистки нефтяных и природных газов, обычно используют на НПЗ для производства элементной серы, инс-гда для производства серной кислоты. [c.165]

    При транспортировании по трубопроводам в природный газ добавляют меркаптаны, обладающие резким запахом, что позволяет легко обнаружить утечку газа, но создает дополнительные трудности при его переработке, так как меркаптаны —серосодержащие соединения, а сера является ядом для катализаторов производства аммиака. В этом случае для пндпнидуальной защиты применяют фильтрующие противогазы с коробками марки А. [c.20]

    Сернистые соединения в значительной степени ухудшают качество природного газа как сырья для различных технологических процессов, так и как технологического топлива. Они являются причиной повышенной коррозии аппаратуры, вызывают быстрое и необратимое отравление катализаторов, применяемых в процессах конверсии углеводородов. При сжигании газа, содержащего сернистые соединения, образуются высокотоксичные оксиды серы, которые, попадая в атмосферу с дымовыми газами, отрицательно воздействуют на окружающую среду. Вместе с тем, входящие в состав природного газа сернистые соединения являются сырьем для получения ценных продуктов. Из сероводорода, извлеченного из газов, получают элементную серу, этантиол и смесь природных меркаптанов (СПАЛ) используются для одорирования газов, этан- и бутантиолы применяются при производстве инсектицидов и моющих средств. Поэтому технологические схемы глубокой переработки природного и попутного газа, как правило, включают стадию очистки их от сернистых соединений. В зависимости от конкретных условий производства, [c.5]

    Например, известны случаи, когда неучтенный хлор в углеводородном сырье вызывал коррозию реакционных труб нечи парового риформинга и другого оборудования, отравлял некоторые катализаторы и загрязнял получаемый продукт. Аналогичные результаты получались при использовании загрязненного хлором воздуха в качестве сырья для производства аммиака по схеме с двухступенчатым риформингом углеводородного газа и нефти. Появление в природном газе ранее отсутствовавших органических соединений серы привела к снижению активности катализатора парокислородного риформинга и к пэме-нению его температурного режима. В результате этих факторов в синтез-газе появились примеси ацетилена, которые на стадии очистки медно-аммиачным раствором в установке получения водорода образовали при нарушении режима регенерации осадок взрывчатой ацетиленовой меди. [c.24]

    На рис. 1 представлена схема производства метанола из сип-тез-газа, полученного из природного газа. В зависимости от природы и количества содержащихся соединений серы газ сначала обессеривают с помощью оксида цинка или других подходя- [c.221]

    Распространенный метод очистки природных газов от НгЗ основан на применении водного раствора моноэтаноламина. Обрабатываемый газ противотоком пропускается через поглотительную башню и выходит из нее очищенным от сероводорода и охлажденным за счет теплообмена с входящим потоком регенерированного абсорбента. Отработанный раствор выпускается через нижнюю часть поглотительной башни и после теплообмена с различными потоками поступает в отпарную колонну. Там аминовый раствор очищают от сероводорода струями острого пара и рециркуляцией отстоя через испаритель. Кислые газы охлаждаются, содержащийся в них водяной пар конденсируется, а остаточные газы сжигаются на факеле или использ уются в качестве сырья для производства серы, что зависит от их объема и содержания серы. [c.32]

    Очистка газа. Каталитические процессы производства аммиака необходимо осуществлять при высокой чистоте поступаюп1его па катализаторы газа. Так, в природном газе, подаваемом на катализатор конверсии метана, содержание серы не должно превышать [c.85]

    В качестве природных катализаторов для ряда процессов (кре кинг, этерификация, полимеризация, производство серы из серии стых газов и другие) могут быть использованы боксит, кизельгур железная руда, различные глины [200—206]. Природные катализа торы дешевы, технология их производства сравнительно проста Она включает операции размола, формовки гранул, их активацию Применяют различные способы формовки (экструзию, таблетиро ввние, грануляцию на тарельчатом грануляторе), пригодные для получения гранул из порошкообразных материалов, увлажненных связующими. Активация исходного сырья заключается в удалении из него кислых или щелочных включений длительной обработкой растворо м"щелочи йли кислоты при повышенных Температурах. При активации, как правило, увеличивается поверхность контактной массы. Наибольшее применение в промышленном катализе нашли природные глины монтмориллонит, каолинит, бейделлит, бентониты и др. Они представляют собой смеси различных алюмосиликатов и продуктов их изоморфных замещений, а также содержат песок, известняк, окислы железа, слюду, полевые шпаты и другие примеси. Некоторые природные алюмосиликаты, например, каолин, обладают сравнительно высокой каталитической активностью в реакциях кислотно-основного катализа уже в естественном виде, после сушки и прокаливания. Большинство других требует более глубокой предварительной обработки кислотой при соответствующих оптимальных условиях (температура, концентрация кислоты, продолжительность обработки). В активированных глинах возрастает содержание SiOa, а количество КагО, СаО, MgO, AI2O3 уменьшается. Часто для уменьшения потерь алюминия в глинах к активирующему раствору добавляют сол , алю.мниия [46]. [c.168]

    Рассмотрены основные процессь[ очистки природного газа от кислых компонентов (сероводорода, диоксида углерода и меркаптанов) и производство серы методом Клауса. Приведены классификация и технологические схемы установок очистки и разделения углеводородных газов. Изложены основные принципы выбора поглотителей для очистки гаэа и обоснована стратегия выбора оптимальных технологических режимов. Приведены классификация низкотемпературных процессов разделения углеводородных газов (низкотемпературная конденсация, ректификация, абсорбция и адсорбция) и особенности технологических схем соответствующих установок. Изложены основные этапы получения гелия из природного газа и представлены технологические схемы отечественных установок получения гелиевого концентрата и тонкой очистки гелия. [c.2]

    Попутно из выделенных в процессе очистки природного газа кислых компонентов на ОГПЗ организовано производство газовой серы (из сероводорода) по методу Клауса и получение одоранта из смеси природных меркаптанов, полученных в процессе щелочной очистки газовых конденсатов от меркаптанов. [c.178]

    До открытия месторождений природного газа в Голландии и под Северным морем источники сырья (в виде низших углеводородов) в Западной Европе были очень ограничены. Поэтому в результате дальнейших исследований фирмы Ай-Си-Ай процесс риформинга был распространен в 1954 г. на гидронетроль (синтетический бензин), который получается гидрированием при высоком давлении каменного угля и креозота. Следующей разработкой явился риформинг легкой нафтыТ(дистиллата, во многом подобного гидропетролю), которая стала использоваться для производства водорода вследствие все увеличивающегося во всем мире числа нефтеперерабатывающих заводов. Технические проблемы (особенно удаление серы из исходного сырья и разработка новых катализаторов, пригодных для риформинга этих, более высокомолекулярных углеводородов под давлением без образования углерода) были разрешены, и в 1959 г. фирма Ай-Си-Ай пустила первые установки риформинга нафты. Процесс с нафтой в настоящее время широко используется не только для его первоначального назначения — получения газа для синтеза аммиака, но также (процесс Ай-Си-Ай 500) для производства городского газа с калорийностью около 500 БТЕ/фут (4805 ккал м ). Этот последний процесс представляет значительную ценность для стран, которые не обладают собственными месторождениями природного газа. [c.82]

    Схема производства метанола при низком давлении (5,0-6,0 Ша) (рис. 81, 82). В последние годы получили широкое распросвтранение схемы синтеза метанола на низкотемпературных катализаторах при давлении 5,0-6,0 Ша. Низкотемпературные медьсодержащие катализаторы весьма чувствительны к соединениям серы поэтому природный газ (или жидкое сырье) должен очищаться до содержания серы не более I мг/м . Очистка проводится путем гидрирования сернистых соединений с последующей адсорбцией окисью цинка. Очищенный газ смешивается с водяным паром в отношении I 3 и с температурой 340-350°С направляется в подогреватель парогазовой смеси I, находящейся в конвективной зоне печи. Нагретая до 510°С парогазовая смесь поступает в реакционные [c.260]

    Развитие производства аамените.тд природного газа. - М.,19 с.-24 с. - (Сер. Переработка гаэа и газового конденсата / ВНИН- [c.307]

    При производстве цемента содержащиеся в топливе сернистые соединения взаимодействуют с богатыми известняком компонентами сырья и переходят в цементный клинкер, поэтому в качестве топлива в данном случае можно использовать богатые серой уголь и мазут. Уголь — достаточно загрязненное топливо. К тому же на приобретение и установку дорогостоящего оборудования для размола, сортировки и транспортировки пылеугля требуются значительные капитальные затраты. По этой причине в большинстве стран при выборе вида топлива предпочтение отдается мазуту. Например, во Франции на долю мазута приходится 80 %, в ФРГ — 66%, Швеции — 78%, Швейцарии — 86 % от общего количества топлива, потребляемого в цементной промышленности. Даже в Великобритании с ее большими запасами угля и традиционным использованием его в тяжелой промышленности 76 % от всего потребляемого в производстве цемента топлива приходилось на долю мазута (по данным 1976 г.). В Нидерландах и Бельгии в цементной промышленности потребляется природный газ, добываемый на Гронингенском месторождении. В 1976 г. в Нидерландах на его долю приходилось 48 %, в Бельгии — 41 % от всего количества топлива, потребляемого в цементной промышленности. Следовательно, низкое содержание серы и низкая излучательная способность пламени не являются препятствием для перевода обжиговых печей с угля и мазута на газовое отопление. [c.295]

    В результате исследований, проведенных совместно с различными министерства.ми, были разработаны и уже внедряются в промышленность нестационарные методы окисления диоксида се1)ы в производстве серной кислоты, обезвреживания отходящих газов промышленных производств от оксида углерода и различных органических веществ, получения высокопотенциальной теплоты из слабоконцентрированных топлив и газов. Ведутся работы по синтезу метанола, аммиака, конверсии природного газа и оксида углерода, метанироианию, получению серы из сероводорода и другим процессам. Особенно интенсивно протекает внедрение нестационарных методов окисления на предприятиях цветной металлургии, где [c.260]

    Процесс разработан фирмой Лурги. Первая промышленная установка построена в ФРГ в 1963 г. для очистки природного газа от СОа и HaS (производительность по газу — 50 тыс. м /ч, по сере — 4,2 т/ч). Пуризол-процесс используют для грубой и тонкой очистки сухих газов от HjS и СОа при различной их концентрации в исходном сырье. В связи с высокой селективностью растворителя NMP кислые газы установок Пуризол имеют достаточно высокое соотношение HgS СО2, поэтому их можно использовать для производства серы по методу Клауса. В зависимости от содержания СО2 и h3S и необходимой глубины очистки абсорбция кислых компонентов [c.152]

chem21.info

Где применяют серу

Сегодня именно химическая промышленность потребляет наибольшее количество серы. Наиболее важной является серная кислота. Именно поэтому на ее изготовление уходит почти половина серы, которая добывается по всему миру. Из трехсот кг серы при сжигании получается около одной тонны серной кислоты.

Еще одной отраслью промышленности, которая неразрывно связана с добываемой серой и потребляет ее существенную часть, является производство бумаги. Чтобы получить 17 целлюлозы требуется использовать не меньше ста кг серы.

Применение серы в резиновой промышленности

Для того, чтобы превратить каучук в резину чаще всего используется сера. При смешивании с серой и нагревании до нужной температуры каучук приобретает свойства, за которые очень ценится среди потребителей, – упругость и эластичность. Этот процесс еще называют вулканизацией.

 

 

Она бывает:

  1. Горячей. Предложена Гудиром в 1839 году. Смесь каучука и серы нагревается примерно до 150 градусов Цельсия.
  2. Холодной. Предложена Парксом в 1846 году. Каучук не нагревается, а обрабатывается с раствором хлорида серы S2C12.

Вулканизацию проводят с целью появления в веществе связей между полимерными группами.

Большинство важных физико-механических свойств материала, прошедшего вулканизацию, зависят от того, из чего состоят, как распределены и сколько энергии содержат связи —С—Sn—С—. Например, при разной концентрации добавляемой серы могут получиться абсолютно различные материалы с отличающимися свойствами.

Сера в сельском хозяйстве и медицине

Сера в чистом виде и в соединениях с другими элементами с успехом применяется для сельскохозяйственных целей. Она также значима для растений, как фосфор. Удобрения, имеющие в своем составе серу, положительно влияют и на качество собранного урожая, и на его количество.

Опытным путем ученые выявили влияние серы на устойчивость злаков к морозам. Она провоцирует образование органических веществ, которые содержит сульфгидрильные группы-S-Н. Благодаря этому повышается морозостойкость растения за счет гидрофильности белков и изменения внутренней структуры. Еще одним способом использовать серу для сельскохозяйственных нужд является ее применение в предотвращении болезней, в основном хлопчатника и винограда.

Для медицинских целей может быть использована и чистая сера, а также ее соединения с другими элементами. Основа для многих мазей, которые используются для лечения разных грибковых заболеваний кожи – это мелкодисперсная сера. Большинство препаратов сульфамидной группы – это ничто иное, как соединения разных веществ с серой: сульфадимезин, норсульфазол, белый стрептоцид.

Сегодня объем добычи серы превышает необходимое количество сырья для промышленности. Ее добывают не только из глубины земли, но и из газов или при очищении топлива. В связи с этим придумываются новые способы применения вещества, например, в строительстве. Так, в Канаде изобрели пенопласт из серы, который планируется использовать при укладке дорог и для прокладывания трубопровода за пределами полярного круга. А в Монреале был построен первый в мире дом из необычных по составу блоков, которые на треть состоят из серы (остальное песок). Для изготовления таких блоков используют металлические формы, в которых нагревают смесь до температуры больше 100 градусов Цельсия. Они такие же прочные и устойчивые к износу, как их цементные аналоги. Избежать окисления поможет простая обработка синтетическим лаком. Из таких блоков можно построить гараж или склад, магазин или дом.

Сегодня все чаще можно встретить информацию о появлении новых стройматериалов, которые содержат серу. Ни для кого уже не секрет, что при использовании серы получается асфальтовое покрытие, обладающее отличными свойствами. Оно может сравниться с покрытием из гравия и даже превзойти его. Достаточно выгодно использовать его при строительстве автострады. Для получения такого состава необходимо смешать одну часть асфальта, две части серы и 13 частей песка.

Потребность в данном сырье растет. Продажи серы в долгосрочной перспективе будут только увеличиваться. 

 

technicalsulfur.ru