Формы залегания нефтяных залежей. Схема залежи нефти


Залежи нефти и газа

 

Залежью называют естественное локальное скопление нефти или газа, занимающее часть (ловушку) природного резервуара. Если раз­работка залежи рентабельна, она называется промышленной залежью.

В большинстве случаев формирование залежей нефти и газа происходит по антиклинально-гравитационной модели, описанной в 1859 г. М. Дрейком в США. Согласно этой модели нефть и газ, как менее плотные, вытесняются из газонефтеводяного флюида в верхние части резервуаров и локализуются в ловушках, которые обычно нахо­дятся в выступах верхних частей резервуаров (рис.13 и рис.14).

 

Рис. 13. Принципиальная схема пластово-сводовой

Газо-нефтяной залежи.

1– подошва нефтяной залежи; 2 – внешний контур нефтеносности; 3 – внутренний контур нефтеносности; 4 – поверхность газонефтяного раздела; 5 – внешний контур газоносности; 6 – внутренний контур газоносности; 7 – длина залежи; 8 – ширина залежи; 9 – высота нефтяной залежи; 10 – высота газовой шапки; 11 – общая высота газонефтяной залежи; 12 – газовая часть залежи; 13 – газонефтяная часть залежи; 14 – нефтяная часть залежи; 15 – водонефтяная часть залежи.

 

 

 

Рис. 14. Схема массивной нефтегазовой залежи.

1 – подошва нефтяной залежи; 2 – внешний контур нефтеносности; 3 – поверхность газонефтяного раздела; 4 – внешний контур газоносности; 6 – длина залежи; 5 – ширина залежи; 7 – высота нефтяной залежи; 8 – высота газовой шапки; 9 – общая высота газонефтяной залежи; 10 – газонефтяная часть залежи; 11 – водонефтяная часть залежи.

 

В залежи, сформировавшейся по этой модели, большое значение имеют размеры и формы ловушек. Приведем несколько примеров того, то это действительно так. Для этого будем использовать характеристики ловушек и залежей. Чтобы определить данные величины, необходимо дать несколько определений. Поверхность, разделяющая нефть и воду, называется подошвой нефтяной залежи или поверхностью водонефтяного раздела (контакта) – ВНК. Аналогично – поверхность, разделяющая газ и воду, – поверхность водогазового контакта – ГВК. Поверхность, разделяющая газ и нефть, – поверхность газонефтяного контакта – ГНК. Для пластового резервуара линия перелома этих разделов с кровлей пласта называется внешним контуром нефтеносности (газоносности). У залежей массивного типа внутренние контуры нефтеносности и газоносности всегда отсутствуют.

Похожие статьи:

poznayka.org

Формы залегания нефтяных залежей

Поиск Лекций

Нефтяные залежи и месторождения

Нефть насыщает поры, трещины и пустоты в горных породах в недрах Земли. Естественное скопление нефти в недрах называется нефтяной залежью.

Нефтяные залежи, как правило, содержат газообразные соединения, которые могут находиться как в свободном состоянии, так и в растворённом состоянии в нефти. Поэтому нефтяная залежь по существу является нефтегазовой. Газообразные соединения составляют основу попутного нефтяного газа.

В недрах имеются также чисто газовые и газоконденсатные залежи. В газоконденсатных залежах помимо газа в порах пласта содержится некоторый объём жидких соединений - конденсата.

Совокупность залежей нефти или газа, расположенных на одном участке земной поверхности, представляет собой нефтяное или газовое месторождение.

Промышленные залежи нефти и газа обычно встречаются в осадочных породах, имеющие большое количество крупных пор. Осадочные породы образовались в результате осаждения органических и неорганических веществ на дне водных бассейнов и поверхности материков.

Характерный признак осадочных горных пород – их слоистость. Они сложены, в основном, из почти параллельных слоёв (пластов), отличающихся друг от друга составом, структурой, твёрдостью и окраской. На месторождении могут быть от одного до нескольких десятков нефтяных или газовых пластов.

Если на одной площади всего одна залежь – то месторождение и залежь равнозначны и такое месторождение называется однопластовым. В остальных случаях месторождения многопластовые.

Поверхность, ограничивающая пласт снизу, называется подошвой, сверху – кровлей. Пласты осадочных пород могут залегать не только горизонтально, но и в виде складок вследствие горных процессов. Изгиб пласта, направленный выпуклостью вверх, называется антиклиналью, вниз – синклиналью. Соседние антиклиналь и синклиналь образуют полную складку. Размеры антиклинали в среднем составляют: длина 5…10 км, ширина 2…3 км, высота 50…70 м. Примерами гигантских антиклиналей являются Уренгойское газовое месторождение (длина 120 км, ширина 30 км, высота 200 м) и нефтяное месторождение Гавар в Саудовской Аравии (длина 225 км, ширина 25 км, высота 370 м). В России почти 90% разведанных залежей нефти и газа находятся в антиклиналях.

По проницаемости горные породы делятся на проницаемые (коллекторы) и непроницаемые (покрышки). Коллекторы – породы, которые могут вмещать, пропускать и отдавать жидкости и газы.

 

 

Рис. 1.1. Схема полной складки пласта

 

Различают следующие типы коллекторов: поровые (пески, песчаники), кавернозные (имеющие полости – каверны, образовавшиеся за счёт растворения солей водой), трещиноватые (имеющие микро- и макротрещины в непроницаемых породах, например, известняки) и смешанные. Покрышки – практически непроницаемые породы (обычно глины).

Для формирования крупных скоплений нефти и газа необходимо выполнение ряда условий: наличие коллекторов, покрышек, а также пласта особой формы, попав в который нефть и газ оказываются как бы в тупике (ловушке). Скопление нефти и газа происходит вследствие их миграции в коллекторах из области высоких в область низких давлений вдоль покрышек. Различают следующие основные типы ловушек: антиклинальная, тектонически экранированная, стратиграфически экранированная и литологически экранированная. Тектонически экранированная ловушка образуется вследствие тектонических движений и вертикальных смещений земной коры. Стратиграфически экранированная ловушка образуется вследствие перекрывания коллекторов более молодыми непроницаемыми отложениями. Литологически экранированная ловушка образуется при окружении линз проницаемых пород непроницаемыми породами. Попав в ловушку, нефть, газ и вода расслаиваются.

Нефтяные залежи чаще всего встречаются в антиклинальных ловушках, схема которой представлена на рис. 1.2. Геометрические размеры залежи определяются по её проекции на горизонтальную плоскость.

 

Рис. 1.2. Схема нефтяной залежи антиклинального типа:

1 – внутренний контур газоносности; 2 – внешний контур газоносности;

3 – внутренний контур нефтеносности; 4 – внешний контур нефтеносности

 

Поверхность раздела газа и нефти – газонефтяной контакт. Поверхность раздела нефти и воды – водонефтяной контакт. Линия пересечения поверхности газонефтяного контакта с подошвой пласта – это внутренний контур газоносности, с кровлей – внешний контур газоносности. Линия пересечения поверхности водонефтяного контакта с подошвой пласта – внутренний контур нефтеносности, с кровлей – внешний контур нефтеносности.

Кратчайшее расстояние между кровлей и подошвой пласта – это толщина пласта. Расстояние по большой оси ее между крайними точками внешнего контура нефтеносности – длина залежи. Расстояние по малой оси между крайними точками внешнего контура нефтеносности – ширина залежи. Расстояние по вертикали от подошвы залежи до её наивысшей точки – мощность залежи.

Обычным спутником нефти в нефтяных залежах являются пластовые воды, которые обычно находятся в пониженных частях пласта.

Пластовые воды, находящиеся в нижней части продуктивных пластов, называются подошвенными, объём которых обычно в десятки и сотни раз больше нефтяной части. Пластовые воды, простирающиеся на большие площади за пределами залежи, называются краевыми.

В нефтегазовой части пластов вода удерживается в виде тонких слоев на стенках пор и трещин за счет адсорбционных сил. Эта вода при эксплуатации залежи остается неподвижной и называется остаточной или связанной. Ее содержание составляет примерно от 10 до 30% от суммарного объема пор в нефтяных месторождениях и до 70% в газовых месторождениях.

Если в пласте есть свободный газ, то он будет в верхней части пласта в виде газовойшапки.

Раздел между газом, нефтью и водой в нефтяных залежах или между газом и водой в чисто газовых залежах представляет собой сложную переходную область. Из-за подъема воды за счет капиллярных сил в порах пород четкого раздела воды и нефти не существует и содержание воды по вертикали изменяется от 100% до 30% и более в повышенных частях залежи. Высота этой зоны составляет от 3 до 5 метров и более.

 

poisk-ru.ru

Режимы работы нефтяной залежи — Мегаобучалка

Режимом работы залежи называется проявление преобладающего вида пластовой энергии в процессе раз­работки. Энергетическое состояние залежи - главный фактор, ограничивающий темпы ее разработки и полноту извлечения нефти и газа. По преобладающему виду энергии различают следующие режимы работы нефтяных за­лежей: водонапорный; упругий; растворенного газа; газонапорный; гравитационный; смешанные. Такое деление на режимы в "чистом виде" весьма условно. При реальной разработке месторождений в основном отмечают смешан­ные режимы.

Водонапорный режим.

В условиях водонапорного режима основной движущей силой служит напор краевых и подошвенных вод. Водонапорный режим проявляется тогда, когда законтурная водоносная область месторождения связана с земной поверхностью и постоянно пополняется дождевыми и талыми водами (рис. 4.1). место выхода пласта на поверх­ность или пополнения его водой называется областью или контуром питания. Область питания может находиться на расстоянии сотен километров от нефтенасыщенной части пласта. Постоянное пополнение водоносной части пласта через область питания обеспечивает постоянство приведенного пластового давления на контуре питания, а

при хорошей его гидродинамической связи с нефтенасыщенной частью это создает наиболее благоприятные усло­вия для разработки залежи.

Рис. 4.1. Схема строения нефтяной залежи.

1 - с напором краевых вод; 2-е газовой шапкой и напором подошвенных вод; 3 -гидродинами­чески изолированной; I - нефтенасыщенный; II -водонасыщенный; III - газонасыщенный объемы пласта

Отбор нефти в начальный период разработки залежи приводит к некоторому снижению пластового давле­ния в нефтеносной части пласта. Возникшая разница давлений на контуре питания и в зоне отбора вызывает дви­жение воды, поступление которой в нефтеносную часть стабилизирует в ней давление. Оно устанавливается на та­ком уровне, когда приток воды полностью компенсирует отбор жидкости из залежи. При хороших коллекторских свойствах законтурной водоносной части пласта даже значительные отборы не приводят к существенному сниже­нию пластового давления в залежи. В таких случаях режим работы залежи называют ясестководонапорным.мало меняющееся пластовое давление и связанное с ним постоянство дебита скважин и газового фактора на протяжении всего периода разработки месторождения - наиболее характерные черты водонапорного режима работы нефтяной залежи.

При водонапорном режиме работы по мере отбора нефти происходит перемещение контура нефтеносно­сти к центру залежи, что на определенном этапе закономерно приводит к появлению пластовой воды в продукции скважин. Вследствие различия темпов отбора на отдельных участках залежи, неоднородности коллекторских свойств пласта, различия вязкостей нефти и воды, за счет капиллярных явлений продвижение происходит нерав­номерною. Поэтому и обводнение скважин наступает не сразу, а постепенно.

В пластовых залежах с напором краевых вод (рис. 4.1, 1) в первую очередь обводняются скважины, распо­ложенные ближе к контуру нефтеносности, и лишь на последнем этапе разработки - скважины, находящиеся в сводовой части залежи. В таких условиях причиной опережающего обводнения может быть прорыв воды по от­дельным высокопроницаемым интервалам пласта. Обводненность скважин нарастает по мере приближения конту­ра нефтеносности, но даже после обводнения всей продуктивной толщины пласта в скважины еще долго поступает доотмываемая нефть. При достижении предельной обводненности продукции, делающей дальнейшую эксплуата­цию скважин нерентабельной, их отключают.

В массивных залежах с подошвенной водой, называемых еще водоплавающими (рис. 4.1, 2), обводнение скважин может произойти преждевременно из-за образования конуса подошвенных вод. При разработке водопла­вающих залежей в скважинах вскрывают только верхнюю нефтенасыщенную часть пласта. Отбор нефти приводит к возникновению перепада давления между нижней обводненной и верхней нефтенасыщенной частями пласта. За счет этого перепада давления зеркало подошвенной воды вблизи скважины начинает подниматься, образуя водя­ной конус. При прорыве подошвенной воды в скважину обводнение ее прогрессирует довольно быстро, поэтому полная обводненность продукции скважины может наступить еще задолго до выработки основных запасов нефти.

В гидродинамически изолированных залежах и залежах, плохо связанных с областью питания, водонапор­ный режим разработки, если это экономически и технически оправдано, создают искусственно, путем закачки во­ды в пласт с поверхности через нагнетательные скважины. Такой способ разработки месторождений, называемый искусственным заводнением или просто заводнением, получил широкое распространение у нас в стране и за рубе­жом.

Нарушение равновесия между отбором жидкости и поступлением воды приводит к тому, что начинают играть роль энергии других видов: при увеличении поступления воды - энергия упругости; при уменьшении по­ступления воды и снижения давления ниже давления насыщения - энергия расширения растворенного газа. Упругий режим.

Упругий режим разработки нефтяных месторождений проявляется в гидродинамически изолированных залежах при пластовых давлениях в них выше давления насыщения нефти газом. При этом забойное давление не ниже давления насыщения, нефть находится в однофазном состоянии. В таких условиях основным источником энергии служит упругость пород-коллекторов и насыщающих их жидкостей. В начальный период вода, нефть, скелет породы, находящиеся под действием высокого пластового давления, сжаты и обладают некоторым запасом упругой энергии. При вводе в эксплуатацию добывающей скважины происходит снижение пластового давления в ближайшей к забою зоне пласта. При снижении давления объем пластовой жидкости увеличивается, а объем поро-вого пространства уменьшается за счет расширения скелета породы-коллектора. Все это обусловливает вытесне­ние жидкости из пласта в скважину. Дальнейший отбор жидкости приводит к расходованию запаса упругой энер­гии во все более удаленных зонах пласта. Сравнительно быстро область пониженного давления, ее часто называют областью упругого возмущения, распространяется и на законтурную часть пласта.

Сжимаемость пород-коллекторов и жидкостей невелика, но при значительных объемах пласта, особенно его водоносной части, за счет упругих сил в скважины могут быть вытеснены большие объемы нефти (до 5-10 %). При большом объеме водоносной части пласта упругий запас может быть настолько значителен, что по эффектив­ности и внешним проявлениям упругий режим разработки будет близок к водонапорному. Он будет характеризо­ваться вытеснением нефти водой, двигающейся из законтурной области, низким темпом падения пластового дав­ления, постоянством газового фактора и дебитов скважин.

Газонапорный режим.

Газонапорный режим связан с преимущественным проявлением энергии расширения сжатого свободного газа газовой шапки. Под газовой шапкой понимают скопление свободного газа над нефтяной залежью, тогда саму залежь называют нефтегазовой. Нефть вытесняется из пласта напором расширяющегося газа. По мере разработки месторождения в связи с расширением газовой шапки нефтенасыщенная толщина пласта уменьшается, газонефтя­ной контакт опускается. В чистом виде газонапорный режим действует в залежах, не имеющих гидродинамиче­ской связи с областью питания, нередко он сочетается и с водонапорным режимом, если пластовые воды не обла­дают достаточной активностью.

При разработке залежей в условиях газонапорного режима пластовое давление постоянно снижается. Тем­пы его снижения зависят от соотношения объемов газовой и нефтяной частей пласта, активности пластовых вод, темпов отбора нефти. Несмотря на большие запасы пластовой энергии, сосредоточенной в газовой шапке, эффек­тивность работы залежи при газонапорном режиме ниже, чем при водонапорном из-за относительно плохой вы­тесняющей способности газа. Кроме того, дебиты скважин приходится ограничивать вследствие быстрого прорыва в них газа из газовой шапки.

В зависимости от состояния давления в газовой шапке различают газонапорный режим двух видов: упру­гий и жесткий.

При упругом газонапорном режиме в результате некоторого снижения давления на газонефтяном контакте вследствие отбора нефти начинается расширение объема свободного газа газовой шапки и вытеснение им нефти. По мере отбора нефти из залежи давление газа уменьшается.

Жесткий газонапорный режим отличается от упругого тем, что давление в газовой шапке в процессе отбо­ра нефти остается постоянным. Такой режим в чистом виде возможен только при непрерывной закачке в газовую шапку достаточного количества газа или же в случае значительного превышения запасов газа над запасами нефти, когда давление в газовой шапке уменьшается незначительно по мере отбора нефти. Режим растворенного газа.

Режим растворенного газа проявляется в нефтяных залежах после снижения пластового давления в них ниже давления насыщения нефти газом. Находящийся в нефти растворенный газ по мере снижения давления вы­деляется в свободное состояние в виде отдельных пузырьков, равномерно распределенных по всему перовому объ­ему пласта. Расширяясь, пузырьки продвигают нефть и сами перемещаются по пласту к забоям скважин.

При режиме растворенного газа пластовое давление постоянно падает, в результате разница между давле­нием насыщения и текущим пластовым давлением растет. Это ведет к увеличению объема выделившегося свобод­ного газа, росту газонасыщенности пласта и, как следствие, к снижению фазовой проницаемости для нефти и уве­личению ее для газа. В результате газовый фактор возрастает до значений, в несколько раз превышающих газосо­держание нефти. Энергия газа расходуется нерационально, двигаясь по пласту, он практически не совершает рабо­ты по вытеснению нефти. На завершающей стадии разработки месторождения газовый фактор, достигнув своего максимального значения, начинает снижаться вследствие дегазации нефти. Так как пластовая энергия заключена в растворенном газе, количество которого в залежи ограничено, то падение пластового давления и полная дегазация нефти являются признаками истощения залежи. Дебиты скважин падают, дальнейшая эксплуатация их становится нерациональной.

Гравитационный режим.

При гравитационном режиме нефть движется по пласту к забоям скважин под действием силы тяжести. Интенсивность проявления гравитационной энергии относительно невелика, поэтому гравитационный режим воз­можен, когда отсутствуют или уже исчерпаны другие виды пластовой энергии. Темпы отбора нефти, дебиты сква­жин при гравитационном режиме очень невелики, поэтому он используется лишь в исключительных случаях: при доразработке истощенных месторождений, в шахтной добыче нефти.

Гравитационный режим начинает проявляться тогда, когда действует только потенциальная энергия напо­ра нефти (гравитационные силы), а остальные энергии истощились. Выделяют такие его разновидности:

1) гравитационный режим с перемещающимся контуром нефтеносности (напорно-гравитационный), при котором нефть под действием собственного веса перемещается вниз по падению крутозале­гающего пласта и заполняет его пониженные части. Дебиты скважин небольшие и постоянные;

2) гравитационный режим с неподвижным контуром нефтеносности, при котором уровень нефти на­ходится ниже кровли горизонтально залегающего пласта. Дебиты скважин меньше дебитов при напорно-гравитационном режиме и со временем медленно уменьшаются

megaobuchalka.ru

Элементы залежей нефти и газа

Газ, нефть и вода располагаются в ловушке в соответствии с их плотностью. В двухфазной залежи газ занимает верхнюю часть ловушки. ниже пустотное пространство заполняется нефтью, а ещё ниже – водой. Поверхности контактов газа и нефти, нефти и воды называются поверхностями соответственно газонефтяного (ГНК) и водонефтяного (ВНК) контактов. Линия пересечения поверхности ВНК (ГНК) с кровлей продуктивного пласта называется внешним контуром нефтеносности (газоносности). Если поверхность контакта горизонтальная, то контур нефтеносности (газоносности) в плане параллелен изогипсам кровли пласта. При наклонном положении поверхности ВНК (ГНК) контур нефтеносности (газоносности) на структурной карте будет пересекать изогипсы кровли пласта, смещаясь в сторону наклона поверхности раздела. Наклон поверхности ВНК (ГНК) может быть связан с проявлением гидродинамических или капиллярных сил, а также с процессами новейшей тектонической деформации ловушки.

Если количества нефти или газа недостаточно для заполнения всей толщины пласта-коллектора в сводовой ловушке, то внутренние контуры нефтеносности и газоносности будут отсутствовать и такие залежи называются неполнопластовыми водонефтяными или водогазовыми. Внутренние контуры отсутствуют и у массивных залежей, которые сформировались в массивных природных резервуарах. Длина, ширина и площадь залежи определяется по её проекции на горизонтальную плоскость внутри внешнего контура нефтеносности (газоносности). Высота залежи (высота нефтяной части плюс высота газовой части, называемой у газонефтяной залежи газовой шапкой), называется вертикальное расстояние от подошвы залежи до её наивысшей точки.

Линия пересечения поверхности ВНК (ГНК) с подошвой продуктивного пласта называется внутренним контуром нефтеносности (газоносности).

Фазовое состояние УВ, их состав и взаимоотношение жидких и газообразных фаз являются важнейшими параметрами залежей. Углеводородные системы находятся в залежах, как в однофазном, так и в двухфазном состоянии. Однофазные залежи содержат только нефть или газ, а двухфазные – газ и нефть. При этом согласно плотности газ занимает верхнюю часть ловушки, а нефть – нижнюю. Нефтяная часть залежи подпирается водой. Название двухфазных залежей определяется соотношением фаз. Принято преобладающую фазу ставить на второе место. Название: «залежь газонефтяная» говорит, что в ней больше нефти, а название «залежь нефтегазовая», - что в ней больше газа. При совместном учёте нефти и газа используется понятие «условное топливо», при котором 1000 м3 газ приравнивается к 1 т нефти.

Скопление свободного газа в газонефтяной залежи называется газовой шапкой. Газовая шапка образуется только в случае, когда давление насыщения нефти газом в залежи станет равным пластовому давлению при данной температуре. В нефтегазовой залежи её нефтяная часть, располагающаяся между газом и водой, называется нефтяной оторочкой.

Существуют различные классификации залежей УВ по их фазовому состоянию. Отличаются они количеством групп залежей и их состоянием. Например, К. Бека и И. Высоцкий (1976) выделяют газоводяные залежи, содержащие газ, растворенный в воде и газогидратные залежи.

В классификации запасов и прогнозных ресурсов нефти и горючих газов, утверждённой Министерством природных ресурсов в 2005 году месторождения (залежи) нефти и горючих газов в зависимости от фазового состояния и состава основных углеводородных соединений разделяются на шесть типов:

1) нефтяные (Н), содержащие только нефть, насыщенную в различной степени газом;

2) газонефяные (ГН), в которых нефтяная часть залежи является основной, а газовая шапка не превышает по объёму условного топлива нефтяную часть залежи;

3) нефтегазовые (НГ), к которым относятся газовые залежи с нефтяной оторочкой, в которой нефтяная часть составляет по объёму условного топлива менее 50 %;

4) газовые (Г), содержащие только газ;

5) газоконденсатные (ГК), содержащие газ с конденсатом;

6) нефтегазоконденсатные (НГК), содержащие нефть, газ и конденсат.

 

Похожие статьи:

poznayka.org

Залежи нефти и газа. Основные их элементы

Федеральное агентство по образованию РФ

Государственное образовательное учреждение

высшего профессионального образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»РЕФЕРАТ

по дисциплине “Геология, поиск и разведка НГМ”

на тему: «Залежи нефти и газа. Основные их элементы»Выполнил:                                                          студент группы ГТз-05-01

                                                                    Овчинников А.Б.

Проверил:Уфа   2008

Содержание

1.     Введение……………………………………………………………                                                                 

2.     Происхождение нефти и газа…………………………………

3.     Породы, содержащие нефть и природные газы………………

4.     Понятия: "месторождение", "ловушка", "залежь", "пласт"….

5.     Залежи и месторождения нефти и газа……………………….

6.     Мировые запасы нефти и газа ……………………………..

7.     Классификация запасов месторождений, перспективных и прогнозных ресурсов нефти и горючих газов в России

8.     Группы запасов нефти и газа………………………………

Заключение………………………………………………………..

Список использованной литературы…………………………….Введение«Нефть и газ приковывали к себе внимание с незапамятных времен. Народы разных стран использовали нефть, асфальты и битумы в медицине, строительстве, в качестве топлива, смазки, освещения и в военных целях. В настоящее время технический прогресс во всех отраслях промышленности связан с применением нефти и газа»[1].

Нефть и газ играют большую роль в развитии народного хо­зяйства нашей страны. Нефть и газ как наиболее эффектив­ные и энергоемкие из всех природных веществ имеют домини­рующее положение в энергетике.

Почти все автомобили и самолеты, а также значительная часть судов и локомотивов работают на нефтепродуктах. Про­изводное нефти - керосин с жидким кислородом применяют в ракетной технике, где особенно остро стоит проблема энерго­емкости топлива.

Ценность нефти как топлива определяется ее энергетиче­скими свойствами, ее физическим состоянием, достаточной ста­бильностью при хранении и транспортировке, малой токсич­ностью.

Но не менее ценна - нефть как сырье для химической про­мышленности. Сегодня нефтехимическая промышленность охва­тывает производство синтетических материалов и изделий глав­ным образом на основе продуктов переработки нефти и при­родного газа (синтетический каучук, продукты основного органического синтеза, сажа, резиновые, асботехнические и дру­гие изделия).

Газ - высококалорийное топливо. Это отличное сырье для химического производства. Он в известном смысле заменяет кокс, являясь технологическим компонентом при выплавке ме­таллов, используется в цементном производстве и для выработки электроэнергии, нашел широкое применение в быту.

1. Происхождение нефти и газа

Существуют разные теории происхождения нефти и газа. Одни из них предполагают неорганическое, а другие - органи­ческое образование этих полезных ископаемых.

Приведу сущность некоторых из них.

К ядру Земли движется по трещинам вода. В условиях вы­соких температур и давлений водяной пар реагирует с карбидами тяжелых металлов, в результате чего образуются их окислы и углеводороды, т. е. компоненты нефти и газа. Пары углеводородов поднимаются в верхние холодные зоны Земли, там конденсируются и скапливаются в трещинах, пустотах и порах, образуя залежи.

Другая гипотеза о космическом происхождении нефти. Земля образовывалась из рассеянного в протосолнечной системе газопылевого вещества. В газовой оболочке Земли содержались углеводороды. По мере остывания Земли и перехода ее из огненно-жидкого состояния в жидкостно-твердое углеводороды поглощались остывающим веществом. В наиболее остывших верхних слоях Земли они конденсировались, перемещались по трещинам и скапливались в определенных зонах, образуя за­лежи нефти и газа.

Так объясняют предполагаемое неорганическое происхож­дение нефти и газа.

Общепринятой является теория органического образования нефти и газа. Остатки животных и растительных организмов, разлагаясь в недрах Земли без доступа кислорода под действием высоких температур и давлений, образовали углеводороды  - компоненты нефти и газа.

Нефтеобразование связано с процессами образования и последующих изменений осадочных горных пород в значительно опустившихся бассейнах. Этот процесс многоступенчатый: нефть состоит из компонентов, которые образовались в раз­личные периоды. Некоторые составные части ее возникли еще в живых организмах. Следующее поколение компонентов нефти образовалось в процессе преобразования рыхлых осадков в осадочные горные породы в верхней зоне земной коры.

Нефть насыщает горную породу, которая с течением вре­мени подвергается действию все большего горного давления в связи с увеличением толщи осадочных горных пород. Под влиянием этого давления нефть перемещалась в более пори­стые породы, в результате чего образовались залежи.

Подтверждением органическому происхождению нефти яв­ляются следующие факторы. Нефтяные залежи почти отсут­ствуют в вулканических областях и тех районах, которые сло­жены породами, изверженными с больших глубин. Преобладаю­щее большинство известных скоплений нефти и газа связано с осадочными толщами горных пород.2. Породы, содержащие нефть и природные газы

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их при разработке мест их скоплений, называются коллекторами. Большинство пород-коллек­торов осадочного происхождения. Коллекторами нефти и газа являются, пески, песчаники, алевролиты, алевриты, некоторые глинистые породы, известняки, мел, доломиты.

Породы-коллекторы характеризуются двумя признаками - пористостью и проницаемостью. Пористость характеризует объем пустот в породе, а проницаемость - способность проникновения нефти, воды или газа через породу. Не все по­ристые породы проницаемы для нефти и газа. Проницаемость зависит от размера пустот или пор, зерен, взаимного располо­жения и плотности укладки частиц, трещиноватости пород. Сверхкапиллярные пустоты имеют размеры >0,5 мм, капиллярные 0,5-0,0002 мм, субкапиллярные <0,0002 мм. Движение нефти в пласте возможно лишь по сообщающимся между собой поровым каналам размером >0,0002 мм.

Различают общую, открытую и эффективную пористость. Общая пористость - это объем всех пор в породе. Открытая по­ристость—это объем только тех пор, которые сообщаются между собой. Эффективная пористость определяется наличием таких пор, из которых нефть может быть извлечена при разра­ботке мест ее скопления. Значение пористости достигает 40%.

При разработке мест скопления нефти и газа иногда при­меняют искусственные методы увеличения пористости и прони­цаемости.

Коллекторские свойства нефтегазоносных пластов часто из­меняются на небольших расстояниях в одном и том же пласте.

Скопления нефти и газа в породах-коллекторах перекры­ваются непроницаемыми для нефти, газа и воды породами. Та­кие породы называются покрышками. Роль их выполняют глины, соли, гипсы, ангидриты и др.

Породы-покрышки бывают различными по толщине, плотно­сти, проницаемости, минералогическому составу и характеру распространения.

Вместе с тем абсолютно непроницаемых покрышек для нефти и газа в природе не существует. Самыми лучшими явля­ются те породы-покрышки, которые имеют высокую экранирую­щую способность, т. е. незначительную абсолютную проницае­мость по газу.

Если порода-коллектор содержит нефть, газ или воду и экранирована плохо проницаемыми породами, то ее называют природным резервуаром.

Природные резервуары бывают пла­стовыми, массивными и литологически ограниченными со всех сторон.

Пластовый резервуар-это коллектор, значительно рас­пространенный по площади (сотни и тысячи квадратных кило­метров) и небольшой толщины (от долей до десятков метров), часто содержит отдельные линзовидные прослойки непроницае­мых пород (рис. 1).

                                        

Рис. 1. Природный резервуар:

1 — глины;

2 — песчаники

 
Рис. 2. Схема залежи нефти и газа:

1 — внутренний контур газоносности; 2 — внешний контур газоносности; 3 — внут­ренний контур нефтеносности; 4 — внеш­ний контур нефтеносности

 

www.coolreferat.com