Способ определения содержания сероводорода и легких меркаптанов в газовом конденсате и нефтях. Содержание в нефти меркаптанов


Определение сероводорода и меркаптанов в нефти

Documents войти Загрузить ×
  1. No category
advertisement advertisement
Related documents
Освоение новых источников энергии
Кремниевые и кварцевые микроканальные пластины
Кол-во мест 5 Длина 3 940
Сравнение МКП-УНКП
Кардиола (МКП)
база для развития туристического потенциала
1 Проблемы организации эффективного контроля деятельности
International Trade Union Confederation (ITUC)
Дунаева Е. И. Научный руководитель ассист. Почкайло Н. В.
www.ituc-csi.org
Скачать advertisement StudyDoc © 2018 DMCA / GDPR Пожаловаться

studydoc.ru

Способ определения содержания сероводорода и легких меркаптанов в газовом конденсате и нефтях

Изобретение относится к методам аналитического контроля качества газового конденсата и нефтей и может быть использовано в нефтегазодобывающей, нефтеперерабатывающей отраслях промышленности. Способ включает отбор и подготовку пробы с термостатированием при температуре 50-70°С с одновременным вытеснением сероводорода и легких меркаптанов инертным газом или воздухом в последовательно расположенные поглотительные растворы, причем в качестве поглотительного раствора для определения сероводорода используют раствор углекислого натрия, а в качестве поглотительного раствора для определения легких меркаптанов используют раствор гидроокиси натрия, количественное определение сероводорода и легких меркаптанов методом йодометрического титрования, причем перед поступлением в последовательно расположенные поглотительные растворы вытесняемую из пробы воздухом или инертным газом смесь паров легких углеводородов с сероводородом и легкими меркаптанами охлаждают до температуры от значения выше 15°С до 20°С. Достигается повышение точности и надежности, а также ускорение анализа. 1 з.п. ф-лы, 3 табл., 1 ил.

 

Предложение относится к методам аналитического контроля качества нефти и газового конденсата и может быть использовано в нефтегазодобывающей, нефтеперерабатывающей отраслях промышленности.

Известен способ определения содержания сероводорода и легких меркаптанов (метил- и этилмеркаптана) в нефти с помощью газовой хроматографии, основанный на испарении и вытеснении летучих компонентов нефти инертным газом-носителем в испарителе при температуре до 70°С, разделении компонентов нефти на хроматографической колонке при температуре 35-60°С, регистрации выходящих из хроматографической колонки сероводорода и легких меркаптанов пламенно-фотометрическим детектором и расчете результатов определения методом абсолютной градуировки (ГОСТ Р 50802-95). Данный способ закреплен в качестве стандартного метода испытаний в ГОСТ Р 51858-2002 «Нефть. Общие технические условия» для определения принадлежности нефти к определенному виду при поставке потребителям.

Недостатками данного способа являются необходимость использования сложного и дорогостоящего оборудования, невозможность проведения анализа вне стационарной лаборатории, большая погрешность и разброс результатов измерений, связанные со слишком малым объемом анализируемой пробы, и ограничение диапазона анализируемых продуктов практически только нефтями товарного качества.

Известен способ определения содержания сероводорода и меркаптанов в нефтепродуктах, основанный на потенциометрическом титровании (ГОСТ 17323-71 «Топливо для двигателей»). Данный способ включает в себя отбор пробы, разбавление ее растворителем и дальнейшее потенциометрическое титрование и построение кривой титрования, которая представляет собой зависимость значения электродного потенциала от объема титранта, нахождение точки эквивалентности по графику, позволяющее рассчитать концентрацию меркаптанов в пробе. Содержание сероводорода определяется по разности объемов титранта, израсходованных на титрование до и после удаления сероводорода из нефтепродукта.

Недостатками данного способа являются длительность проведения анализа и высокая стоимость нитрата серебра, применяемого для титрования, вовлечение в анализ не только легких меркаптанов, но и тяжелых меркаптанов и сернистых соединений других классов, что приводит к пологим кривым потенциометрического титрования и связанной с этим погрешности при определении точки эквивалентности, а также к завышению результатов анализа по меркаптанам. Высока погрешность определения содержания сероводорода по разности результатов двух анализов в связи с неточностью самих определений и с потерями легких меркаптанов в процессе связывания сероводорода. Эти недостатки приводят к сужению диапазона анализируемых продуктов практически только нефтепродуктами, а именно топливами для двигателей.

Известен способ определения содержания сероводорода в мазуте (нефтепродукте), включающий отбор и подготовку пробы, вытеснение сероводорода из полученной массы инертным газом в поглотительный раствор, количественное определение сероводорода методом йодометрического титрования. (Пат. №2155960, МПК G01 №33/22, опубл. 10.09.2000). По известному способу берут навеску мазута 20-50 г и разбавляют в соотношении 1:1 органическим растворителем, размешивают до однородной массы, далее вытесняют сероводород инертным газом в течение 1-2 ч в поглотительный раствор (30%-ный раствор хлористого кадмия) и производят количественное определение содержания сероводорода методом йодометрического титрования.

Недостатками данного способа являются: необходимость разбавления и перемешивания нефтепродукта в процессе подготовки пробы, что ведет к потерям сероводорода и неточности результата анализа; относительно большой объем анализируемой пробы и связанная с этим длительность процесса продувки нефтепродукта инертным газом. Способ не обеспечивает одновременного определения сероводорода и легких меркаптанов в нефти и в газовом конденсате, и легких меркаптанов в нефтепродуктах.

Наиболее близким по технической сущности к предлагаемому является способ определения содержания сероводорода и легких меркаптанов в нефти, нефтепродуктах и газовом конденсате (Пат. №2285917 МПК G01N 33/22, 33/26, С01В 17/16, С07С 321/04 опуб. 20.10.2006 г.), включающий отбор и подготовку пробы, вытеснение сероводорода и легких меркаптанов инертным газом или воздухом в поглотительные растворы и количественное определение сероводорода и меркаптанов методом йодометрического титрования.

Недостатком данного способа является то, что отдувка сероводорода и легких меркаптанов производится при барботировании пробы воздухом или инертным газом при температуре 60±5°С. В состав газовых конденсатов входит от 50 до 95% легких углеводородов, а состав нефтей - от 3 до 15% и при отдувке часть углеводородов в виде конденсата накапливается в поглотительной склянке, что приводит к завышению результатов определения содержания сероводорода.

Технической задачей предлагаемого способа является расширение функциональных возможностей за счет повышения точности определения содержания сероводорода и легких меркаптанов в газовом конденсате и нефтях.

Результат достигается способом определения сероводорода и легких меркаптанов в газовом конденсате и нефтях, включающим отбор и подготовку пробы с термостатированием при температуре 50-70°С с одновременным вытеснением сероводорода и легких меркаптанов инертным газом или воздухом в последовательно расположенные поглотительные растворы, причем в качестве поглотительного раствора для определения сероводорода используют раствор углекислого натрия, а в качестве поглотительного раствора для определения легких меркаптанов используют раствор гидроокиси натрия, количественное определение сероводорода и меркаптанов методом йодометрического титрования.

Новым является то, что для предотвращения конденсации паров углеводородов в склянке с поглотительным раствором и для устранения ошибки при йодометрическом титровании перед поступлением в последовательно расположенные поглотительные растворы вытесняемую из пробы воздухом или инертным газом смесь легких углеводородов с сероводородом и легкими меркаптанами охлаждают до температуры от 15 до 20°С для конденсации углеводородов.

На чертеже приведена схема лабораторной установки для определения содержания сероводорода и легких меркаптанов в газовом конденсате и нефти.

С помощью лабораторной установки осуществляют вытеснение сероводорода и легких меркаптанов из газового конденсата и нефтей воздухом или инертным газом через ловушку углеводородного конденсата в поглотительные растворы.

Установка для реализации способа включает шприц для отбора пробы 1, склянку 2 для барботирования газового конденсата воздухом или инертным газом, термостат 3, в котором поддерживается температура 50-70°С, ловушку паров легких углеводородов 4, помещенную в термостат 5, склянки с поглотительными растворами 6 и 7, кран 8, вакуумный насос 9, регулирующий подачу воздуха.

Предлагаемый способ определения содержания сероводорода и легких меркаптанов в газовом конденсате апробирован в лабораторных и промысловых условиях на газовом конденсате Иргизского месторождения с различным содержанием сероводорода и легких меркаптанов.

Реализация способа показана на примере конкретного выполнения.

Пример 1. Для определения содержания сероводорода и легких меркаптанов использовали газовый конденсат Иргизского месторождения с предполагаемым содержанием сероводорода 200-350 млн-1 (ppm), легких меркаптанов 12-40 млн-1 (ppm). Ввод пробы осуществляют путем выдавливания газового конденсата из шприца 1 массой 2 г во входной патрубок склянки 2, которая помещена в термостат 3 с температурой 60°С, при включенном на всасывание вакуумном насосе 9. К склянке 2 последовательно подсоединены ловушка 4, помещенная в термостат 5 при температуре 15°С для конденсации легких углеводородов, склянки с поглотительными растворами 6 и 7, в которые залито соответственно по 10 см3 5%-ного раствора углекислого натрия (для поглощения сероводорода) и 5%-ного раствора гидроокиси натрия (для поглощения легких меркаптанов) и вакуумный насос 9 с регулирующим краном 8. Продувку воздухом осуществляют в течение 2 мин, после чего количественно определяют содержание сероводорода и легких меркаптанов методом йодометрического титрования. Содержание сероводорода составило 188 млн-1 (ppm), а легких меркаптанов - 24,4 млн-1 (ppm).

Пример 2. Исследование газового конденсата проводили по схеме прототипа. Содержание сероводорода составило 245 млн-1 (ppm), а легких меркаптанов - 32,8 млн-1 (ppm).

В таблице 1 приведены результаты определения содержания сероводорода и легких меркаптанов в газовом конденсате по предлагаемому способу и по прототипу.

Таблица 1
№ пп Массовая доля сероводорода млн-1, (ppm) Массовая доля легких меркаптанов, млн-1 (ppm)
по предлагаемому способу по прототипу по предлагаемому способу по прототипу
1 188 245 24,4 32,8
2 188 247 22,9 31,0
3 186 248 22,5 31,5
4 339 426 24,3 35,2
5 356 457 24,4 38,2
6 343 441 25,3 37,3

Значение содержания сероводорода при определении по прототипу выше, чем при определении его по предлагаемому способу, на 20-24%, а легких меркаптанов - на 25-36%, что объясняется попаданием конденсата легких углеводородов в поглотительный раствор.

Пример 3. Определение массовой доли сероводорода и легких меркаптанов осуществляли по схеме, приведенной в примере 1, но в качестве газа отдувки использовали гелий, азот и попутный нефтяной газ, не содержащий сероводорода.

В таблице 2 приведены результаты определения содержания сероводорода и легких меркаптанов в газовом конденсате по предлагаемому способу с использованием различных газов при отдувке определяемых компонентов.

Таблица 2
№ пп Наименование используемого газа Массовая доля, млн-1 (ppm)
сероводорода легких меркаптанов
1 Воздух 343 25,3
2 Гелий 341 24,8
3 Азот 342 24,6
4 Углеводородный газ, не содержащий сероводорода 343 24,2

Из данных, представленных в таблице 2, следует, что все перечисленные газы могут быть применены для отдувки при определении сероводорода и легких меркаптанов в газовом конденсате и нефтях.

Пример 4. Определение массовой доли сероводорода и легких меркаптанов в нефти ООО ТНС «Развитие» с предполагаемым содержанием сероводорода 300-600 млн-1 (ppm), а легких меркаптанов 2-10 млн-1 (ppm) проводили по схеме, приведенной в примере 1. Массовая доля сероводорода и легких меркаптанов составила 517 и 5,3 млн-1 (ррт) соответственно.

Пример 5. Исследование нефти ООО ТНС «Развитие» проводили по схеме прототипа. Содержание сероводорода составило 580 млн-1 (ppm), а легких меркаптанов - 6,1 млн-1 (ppm).

В таблице 3 представлены результаты определения содержания сероводорода и легких меркаптанов в нефти по предлагаемому способу и по прототипу.

Таблица 3
№ пп Массовая доля сероводорода, млн-1 (ppm) Массовая доля легких меркаптанов, млн-1 (ppm)
по предлагаемому способу по прототипу по предлагаемому способу по прототипу
1 517 580 5,3 6,1
2 520 581 5,4 6,2
3 519 578 5,3 6,0
4 352 397 5,1 5,9
5 350 390 4,8 5,6
6 352 390 4,7 5,4

Значение содержания сероводорода в нефти при определении по прототипу выше, чем при определении его по предлагаемому способу, на 10-13%, а легких меркаптанов - на 13-17%, что объясняется попаданием конденсата легких углеводородов из нефти в поглотительный раствор.

Предлагаемое техническое решение может быть использовано для аналитического контроля содержания сероводорода и легких меркаптанов в газовом конденсате и нефтях.

Достоинством данного технического решения является расширение функциональных возможностей за счет повышения точности определения содержания сероводорода и легких меркаптанов в газовом конденсате и нефтях, с возможностью использования в качестве газов отдувки инертных к определяемым компонентам газов: гелия, азота и углеводородного газа, не содержащего сероводорода.

1. Способ определения содержания сероводорода и легких меркаптанов в газовом конденсате и нефтях, включающий отбор и подготовку пробы с термостатированием при температуре 50-70°С с одновременным вытеснением сероводорода и легких меркаптанов инертным газом или воздухом в последовательно расположенные поглотительные растворы, причем в качестве поглотительного раствора для определения сероводорода используют раствор углекислого натрия, а в качестве поглотительного раствора для определения легких меркаптанов используют раствор гидроокиси натрия, количественное определение сероводорода и легких меркаптанов методом йодометрического титрования, отличающийся тем, что перед поступлением в последовательно расположенные поглотительные растворы вытесняемую из пробы воздухом или инертным газом смесь паров легких углеводородов с сероводородом и легкими меркаптанами охлаждают до температуры от значения выше 15 до 20°С.

2. Способ определения содержания сероводорода и легких меркаптанов в газовом конденсате и нефтях по п.1, отличающийся тем, что в качестве инертного газа используют инертный к сероводороду и легким меркаптанам газ, например азот, углеводородный газ, не содержащий сероводорода и меркаптанов.

www.findpatent.ru

Определение - меркаптан - Большая Энциклопедия Нефти и Газа, статья, страница 3

Определение - меркаптан

Cтраница 3

Кункель, Бакли и Горин [2] разработали спектрофотометриче-ский метод определения меркаптанов, основанный на разложении дитизоната серебра тиоспиртами с образованием свободного ди-тизона, который имеет максимум поглощения при 615 нм.  [31]

Если предполагается их присутствие, то эти соединения перед определением меркаптанов удаляют последовательной обработкой раствором хлористого кадмия и йодистого калия. Следы сероводорода удаляют промывкой пробы водой.  [32]

В табл. 3 приведены средние результаты, полученные при определении меркаптанов в различных дизельных топливах по методу Боргстрома и Рейда [9] и потенциометрическом титрованием с аммиакатом серебра.  [33]

В практической работе приходится весьма осторожно подходить к выбору метода определения меркаптанов.  [34]

Изменение концентрации серебра ( I) в электрохимической ячейке положено в основу определения меркаптанов автоматическим газоанализатором. Он имеет две ячейки: реакционную и измерительную. В реакционной ячейке находятся серебряный анод и платиновый катод.  [35]

Было показано, что элементарная сера до концентрации 0 0010 ъеоЛ не мешает определению меркаптанов в нефтях и дистиллятах; сероводород, при содержании его в дистиллятах не выше 0 00085, а в нефти до 0 003С №, не мешает определению меркаптанов.  [36]

После удаления элементарной серы образец делится на две неравные части: меньшая идет на определение меркаптанов, большая - на определение дисульфидов и для последующего анализа.  [37]

Визуальный способ определения точек эквивалентности с использованием таких индикаторов, как ( внешний) нитропруссид натрия при определении меркаптанов; изменение цвета флуоресценции смеси апоморфина, гидроокиси аммония и титруемой аскорбиновой кислоты; вариаминовый голубой.  [38]

В воздухе промышленных предприятий часто одновременно с меркаптаном находрпся сероводород, который поглощается раствором нитрата серебра и мешает определению меркаптана. Для раздельного определения сероводорода и меркаптана воздух протягивают через четыре последовательно соединенных поглотительных прибора.  [40]

При больших содержаниях сероводорода его следует определять отдельно, для этого потребуется пропустить меньшее количество газа, чем на определение меркаптанов. В таких случаях поглотители с подкисленным хлористым кадмием отсоединяют от системы раньше, как только появится осадок сернистого кадмия в I поглотителе.  [41]

Определение дисульфидов производится в большей части образца, оставшегося после удаления сероводорода и элементарной серы; меньшая часть его, как было указано, пошла на определение меркаптанов. Анализируемое масло смешивают с равным объемом ледяной уксусной кислоты и нагревают 3 часа с цинковой пылью. Все дисульфиды превращаются при этом в меркаптаны. Отфильтровав избыток цинка и отмыв уксусную кислоту водой, обрабатывают масло спиртовым раствором плумбита натрия, как описано выше, и определяют общее количество меркаптанов, находящихся в исследуемом масле и образовавшихся при восстановлении дисульфидов. Процентное содержание серы, которая приходится на долю дисульфидов, выразится разностью между содержанием серы до и после их восстановления и удаления.  [42]

Определение дисульфидов производится в большей части образца, оставшегося после удаления сероводорода и элементарной серы; меньшая часть его, как было указано, пошла на определение меркаптанов. Анализируемое масло смешивают с равным объемом ледяной уксусной кислоты и нагревают 3 часа с цинковой пылью. Все дисульфиды превращаются при этом в меркаптаны. Отфильтровав избыток цинка и отмыв уксусную кислоту водой, обрабатывают масло спиртовым раствором плумбита натрий, как описано выше, и определяют общее количество меркаптанов, находящихся в исследуемом масле и образовавшихся при восстановлении дисульфидов. Процентное содержание серы, которая приходится на долю дисульфидов, выразится разностью между содержанием серы до и после их восстановления и удаления.  [43]

Было показано, что элементарная сера до концентрации 0 0010 ъеоЛ не мешает определению меркаптанов в нефтях и дистиллятах; сероводород, при содержании его в дистиллятах не выше 0 00085, а в нефти до 0 003С №, не мешает определению меркаптанов.  [44]

Визуальному титрованию меркаптанов не мешают SO, SjOg, S207 -, NOs, РС4 -, метионин, дифенилтиомочевина, аскорбиновая кислота. Определению меркаптанов мешают 520з -, S2 -, P. В качестве индикаторного электрода используют амальгамированный - металлической ртутью серебряный электрод.  [45]

Страницы:      1    2    3    4

www.ngpedia.ru

Способ определения содержания сероводорода и легких меркаптанов в газовом конденсате и нефтях

Изобретение относится к методам аналитического контроля качества газового конденсата и нефтей и может быть использовано в нефтегазодобывающей, нефтеперерабатывающей отраслях промышленности. Способ включает отбор и подготовку пробы с термостатированием при температуре 50-70°С с одновременным вытеснением сероводорода и легких меркаптанов инертным газом или воздухом в последовательно расположенные поглотительные растворы, причем в качестве поглотительного раствора для определения сероводорода используют раствор углекислого натрия, а в качестве поглотительного раствора для определения легких меркаптанов используют раствор гидроокиси натрия, количественное определение сероводорода и легких меркаптанов методом йодометрического титрования, причем перед поступлением в последовательно расположенные поглотительные растворы вытесняемую из пробы воздухом или инертным газом смесь паров легких углеводородов с сероводородом и легкими меркаптанами охлаждают до температуры от значения выше 15°С до 20°С. Достигается повышение точности и надежности, а также ускорение анализа. 1 з.п. ф-лы, 3 табл., 1 ил.

Предложение относится к методам аналитического контроля качества нефти и газового конденсата и может быть использовано в нефтегазодобывающей, нефтеперерабатывающей отраслях промышленности.

Известен способ определения содержания сероводорода и легких меркаптанов (метил- и этилмеркаптана) в нефти с помощью газовой хроматографии, основанный на испарении и вытеснении летучих компонентов нефти инертным газом-носителем в испарителе при температуре до 70°С, разделении компонентов нефти на хроматографической колонке при температуре 35-60°С, регистрации выходящих из хроматографической колонки сероводорода и легких меркаптанов пламенно-фотометрическим детектором и расчете результатов определения методом абсолютной градуировки (ГОСТ Р 50802-95). Данный способ закреплен в качестве стандартного метода испытаний в ГОСТ Р 51858-2002 «Нефть. Общие технические условия» для определения принадлежности нефти к определенному виду при поставке потребителям.

Недостатками данного способа являются необходимость использования сложного и дорогостоящего оборудования, невозможность проведения анализа вне стационарной лаборатории, большая погрешность и разброс результатов измерений, связанные со слишком малым объемом анализируемой пробы, и ограничение диапазона анализируемых продуктов практически только нефтями товарного качества.

Известен способ определения содержания сероводорода и меркаптанов в нефтепродуктах, основанный на потенциометрическом титровании (ГОСТ 17323-71 «Топливо для двигателей»). Данный способ включает в себя отбор пробы, разбавление ее растворителем и дальнейшее потенциометрическое титрование и построение кривой титрования, которая представляет собой зависимость значения электродного потенциала от объема титранта, нахождение точки эквивалентности по графику, позволяющее рассчитать концентрацию меркаптанов в пробе. Содержание сероводорода определяется по разности объемов титранта, израсходованных на титрование до и после удаления сероводорода из нефтепродукта.

Недостатками данного способа являются длительность проведения анализа и высокая стоимость нитрата серебра, применяемого для титрования, вовлечение в анализ не только легких меркаптанов, но и тяжелых меркаптанов и сернистых соединений других классов, что приводит к пологим кривым потенциометрического титрования и связанной с этим погрешности при определении точки эквивалентности, а также к завышению результатов анализа по меркаптанам. Высока погрешность определения содержания сероводорода по разности результатов двух анализов в связи с неточностью самих определений и с потерями легких меркаптанов в процессе связывания сероводорода. Эти недостатки приводят к сужению диапазона анализируемых продуктов практически только нефтепродуктами, а именно топливами для двигателей.

Известен способ определения содержания сероводорода в мазуте (нефтепродукте), включающий отбор и подготовку пробы, вытеснение сероводорода из полученной массы инертным газом в поглотительный раствор, количественное определение сероводорода методом йодометрического титрования. (Пат. №2155960, МПК G01 №33/22, опубл. 10.09.2000). По известному способу берут навеску мазута 20-50 г и разбавляют в соотношении 1:1 органическим растворителем, размешивают до однородной массы, далее вытесняют сероводород инертным газом в течение 1-2 ч в поглотительный раствор (30%-ный раствор хлористого кадмия) и производят количественное определение содержания сероводорода методом йодометрического титрования.

Недостатками данного способа являются: необходимость разбавления и перемешивания нефтепродукта в процессе подготовки пробы, что ведет к потерям сероводорода и неточности результата анализа; относительно большой объем анализируемой пробы и связанная с этим длительность процесса продувки нефтепродукта инертным газом. Способ не обеспечивает одновременного определения сероводорода и легких меркаптанов в нефти и в газовом конденсате, и легких меркаптанов в нефтепродуктах.

Наиболее близким по технической сущности к предлагаемому является способ определения содержания сероводорода и легких меркаптанов в нефти, нефтепродуктах и газовом конденсате (Пат. №2285917 МПК G01N 33/22, 33/26, С01В 17/16, С07С 321/04 опуб. 20.10.2006 г.), включающий отбор и подготовку пробы, вытеснение сероводорода и легких меркаптанов инертным газом или воздухом в поглотительные растворы и количественное определение сероводорода и меркаптанов методом йодометрического титрования.

Недостатком данного способа является то, что отдувка сероводорода и легких меркаптанов производится при барботировании пробы воздухом или инертным газом при температуре 60±5°С. В состав газовых конденсатов входит от 50 до 95% легких углеводородов, а состав нефтей - от 3 до 15% и при отдувке часть углеводородов в виде конденсата накапливается в поглотительной склянке, что приводит к завышению результатов определения содержания сероводорода.

Технической задачей предлагаемого способа является расширение функциональных возможностей за счет повышения точности определения содержания сероводорода и легких меркаптанов в газовом конденсате и нефтях.

Результат достигается способом определения сероводорода и легких меркаптанов в газовом конденсате и нефтях, включающим отбор и подготовку пробы с термостатированием при температуре 50-70°С с одновременным вытеснением сероводорода и легких меркаптанов инертным газом или воздухом в последовательно расположенные поглотительные растворы, причем в качестве поглотительного раствора для определения сероводорода используют раствор углекислого натрия, а в качестве поглотительного раствора для определения легких меркаптанов используют раствор гидроокиси натрия, количественное определение сероводорода и меркаптанов методом йодометрического титрования.

Новым является то, что для предотвращения конденсации паров углеводородов в склянке с поглотительным раствором и для устранения ошибки при йодометрическом титровании перед поступлением в последовательно расположенные поглотительные растворы вытесняемую из пробы воздухом или инертным газом смесь легких углеводородов с сероводородом и легкими меркаптанами охлаждают до температуры от 15 до 20°С для конденсации углеводородов.

На чертеже приведена схема лабораторной установки для определения содержания сероводорода и легких меркаптанов в газовом конденсате и нефти.

С помощью лабораторной установки осуществляют вытеснение сероводорода и легких меркаптанов из газового конденсата и нефтей воздухом или инертным газом через ловушку углеводородного конденсата в поглотительные растворы.

Установка для реализации способа включает шприц для отбора пробы 1, склянку 2 для барботирования газового конденсата воздухом или инертным газом, термостат 3, в котором поддерживается температура 50-70°С, ловушку паров легких углеводородов 4, помещенную в термостат 5, склянки с поглотительными растворами 6 и 7, кран 8, вакуумный насос 9, регулирующий подачу воздуха.

Предлагаемый способ определения содержания сероводорода и легких меркаптанов в газовом конденсате апробирован в лабораторных и промысловых условиях на газовом конденсате Иргизского месторождения с различным содержанием сероводорода и легких меркаптанов.

Реализация способа показана на примере конкретного выполнения.

Пример 1. Для определения содержания сероводорода и легких меркаптанов использовали газовый конденсат Иргизского месторождения с предполагаемым содержанием сероводорода 200-350 млн-1 (ppm), легких меркаптанов 12-40 млн-1 (ppm). Ввод пробы осуществляют путем выдавливания газового конденсата из шприца 1 массой 2 г во входной патрубок склянки 2, которая помещена в термостат 3 с температурой 60°С, при включенном на всасывание вакуумном насосе 9. К склянке 2 последовательно подсоединены ловушка 4, помещенная в термостат 5 при температуре 15°С для конденсации легких углеводородов, склянки с поглотительными растворами 6 и 7, в которые залито соответственно по 10 см3 5%-ного раствора углекислого натрия (для поглощения сероводорода) и 5%-ного раствора гидроокиси натрия (для поглощения легких меркаптанов) и вакуумный насос 9 с регулирующим краном 8. Продувку воздухом осуществляют в течение 2 мин, после чего количественно определяют содержание сероводорода и легких меркаптанов методом йодометрического титрования. Содержание сероводорода составило 188 млн-1 (ppm), а легких меркаптанов - 24,4 млн-1 (ppm).

Пример 2. Исследование газового конденсата проводили по схеме прототипа. Содержание сероводорода составило 245 млн-1 (ppm), а легких меркаптанов - 32,8 млн-1 (ppm).

В таблице 1 приведены результаты определения содержания сероводорода и легких меркаптанов в газовом конденсате по предлагаемому способу и по прототипу.

Таблица 1
№ пп Массовая доля сероводорода млн-1, (ppm) Массовая доля легких меркаптанов, млн-1 (ppm)
по предлагаемому способу по прототипу по предлагаемому способу по прототипу
1 188 245 24,4 32,8
2 188 247 22,9 31,0
3 186 248 22,5 31,5
4 339 426 24,3 35,2
5 356 457 24,4 38,2
6 343 441 25,3 37,3

Значение содержания сероводорода при определении по прототипу выше, чем при определении его по предлагаемому способу, на 20-24%, а легких меркаптанов - на 25-36%, что объясняется попаданием конденсата легких углеводородов в поглотительный раствор.

Пример 3. Определение массовой доли сероводорода и легких меркаптанов осуществляли по схеме, приведенной в примере 1, но в качестве газа отдувки использовали гелий, азот и попутный нефтяной газ, не содержащий сероводорода.

В таблице 2 приведены результаты определения содержания сероводорода и легких меркаптанов в газовом конденсате по предлагаемому способу с использованием различных газов при отдувке определяемых компонентов.

Таблица 2
№ пп Наименование используемого газа Массовая доля, млн-1 (ppm)
сероводорода легких меркаптанов
1 Воздух 343 25,3
2 Гелий 341 24,8
3 Азот 342 24,6
4 Углеводородный газ, не содержащий сероводорода 343 24,2

Из данных, представленных в таблице 2, следует, что все перечисленные газы могут быть применены для отдувки при определении сероводорода и легких меркаптанов в газовом конденсате и нефтях.

Пример 4. Определение массовой доли сероводорода и легких меркаптанов в нефти ООО ТНС «Развитие» с предполагаемым содержанием сероводорода 300-600 млн-1 (ppm), а легких меркаптанов 2-10 млн-1 (ppm) проводили по схеме, приведенной в примере 1. Массовая доля сероводорода и легких меркаптанов составила 517 и 5,3 млн-1 (ррт) соответственно.

Пример 5. Исследование нефти ООО ТНС «Развитие» проводили по схеме прототипа. Содержание сероводорода составило 580 млн-1 (ppm), а легких меркаптанов - 6,1 млн-1 (ppm).

В таблице 3 представлены результаты определения содержания сероводорода и легких меркаптанов в нефти по предлагаемому способу и по прототипу.

Таблица 3
№ пп Массовая доля сероводорода, млн-1 (ppm) Массовая доля легких меркаптанов, млн-1 (ppm)
по предлагаемому способу по прототипу по предлагаемому способу по прототипу
1 517 580 5,3 6,1
2 520 581 5,4 6,2
3 519 578 5,3 6,0
4 352 397 5,1 5,9
5 350 390 4,8 5,6
6 352 390 4,7 5,4

Значение содержания сероводорода в нефти при определении по прототипу выше, чем при определении его по предлагаемому способу, на 10-13%, а легких меркаптанов - на 13-17%, что объясняется попаданием конденсата легких углеводородов из нефти в поглотительный раствор.

Предлагаемое техническое решение может быть использовано для аналитического контроля содержания сероводорода и легких меркаптанов в газовом конденсате и нефтях.

Достоинством данного технического решения является расширение функциональных возможностей за счет повышения точности определения содержания сероводорода и легких меркаптанов в газовом конденсате и нефтях, с возможностью использования в качестве газов отдувки инертных к определяемым компонентам газов: гелия, азота и углеводородного газа, не содержащего сероводорода.

Формула изобретения

1. Способ определения содержания сероводорода и легких меркаптанов в газовом конденсате и нефтях, включающий отбор и подготовку пробы с термостатированием при температуре 50-70°С с одновременным вытеснением сероводорода и легких меркаптанов инертным газом или воздухом в последовательно расположенные поглотительные растворы, причем в качестве поглотительного раствора для определения сероводорода используют раствор углекислого натрия, а в качестве поглотительного раствора для определения легких меркаптанов используют раствор гидроокиси натрия, количественное определение сероводорода и легких меркаптанов методом йодометрического титрования, отличающийся тем, что перед поступлением в последовательно расположенные поглотительные растворы вытесняемую из пробы воздухом или инертным газом смесь паров легких углеводородов с сероводородом и легкими меркаптанами охлаждают до температуры от значения выше 15 до 20°С.

2. Способ определения содержания сероводорода и легких меркаптанов в газовом конденсате и нефтях по п.1, отличающийся тем, что в качестве инертного газа используют инертный к сероводороду и легким меркаптанам газ, например азот, углеводородный газ, не содержащий сероводорода и меркаптанов.

bankpatentov.ru

способ определения содержания сероводорода и легких меркаптанов в нефти, нефтепродуктах и газовом конденсате - патент РФ 2285917

Изобретение относится к методам аналитического контроля качества нефти, нефтепродуктов и газового конденсата и может быть использовано в нефтегазодобывающей, нефтеперерабатывающей отраслях промышленности. Для осуществления способа пробу отбирают в количестве 2-5 г, термостатируют при температуре 50-70°С и одновременно вытесняют сероводород и легкие меркаптаны инертным газом или воздухом в последовательно расположенные поглотительные растворы в течение 2-5 минут, при этом в качестве поглотительного раствора для определения сероводорода используют раствор углекислого натрия, а в качестве поглотительного раствора для определения легких меркаптанов используют раствор гидроокиси натрия. После полного извлечения сероводорода и легких меркаптанов в полученных растворах определяют количественное содержание сероводорода и легких меркаптанов методом йодометрического титрования. Способ обеспечивает расширение диапазона анализируемых продуктов, повышение точности определения содержания сероводорода и легких меркаптанов в нефти, нефтепродуктах и газовом конденсате, сокращение времени проведения анализа и возможность проведения анализа не только в пределах стационарной лаборатории, получение результатов анализа в условиях, максимально соответствующих стандартизованным методам. 1 табл., 1 ил.

Рисунки к патенту РФ 2285917

Предложение относится к методам аналитического контроля качества нефти, нефтепродуктов и газового конденсата и может быть использовано в нефтегазодобывающей, нефтеперерабатывающей отраслях промышленности.

Известен способ определения содержания сероводорода в нефти и нефтепродуктах (Рыбак Б.М. Анализ нефти и нефтепродуктов. - М.: Изд-во "Гостоптехиздат", 1962, стр.428-431) методом экстрагирования в раствор хлористого кадмия, заключающийся в том, что 500 см3 испытуемого нефтепродукта загружают в делительную воронку и встряхивают в течение 10 минут со 100 см3 слабоподкисленного раствора хлористого кадмия. Реакция протекает по следующей схеме:

CdCl2+Н 2S=CdS +HCl

Затем смесь отстаивают и сливают водный слой с содержащимся осадком сульфида кадмия CdS для дальнейшего количественного определения сероводорода любым известным методом (йодометрическое, потенциометрическое титрование и т.д.).

Недостатками данного способа являются большой объем анализируемой пробы, необходимость отстаивания экстракта и возможные потери осадка CdS в слое не разделившейся эмульсии и на стенках делительной воронки и связанное с этим снижение точности определения.

Известен способ определения содержания сероводорода и легких меркаптанов (метил- и этилмеркаптана) в нефти с помощью газовой хроматографии, основанный на испарении и вытеснении летучих компонентов нефти инертным газом-носителем в испарителе при температуре до 70°С, разделении компонентов нефти на хроматографической колонке при температуре 35-60°С, регистрации выходящих из хроматографической колонки сероводорода и легких меркаптанов пламенно-фотометрическим детектором и расчете результатов определения методом абсолютной градуировки (ГОСТ Р 50802-95). Данный способ закреплен в качестве стандартного метода испытаний в ГОСТ Р 51858-2002 "Нефть. Общие технические условия" для определения принадлежности нефти к определенному виду при поставке потребителям.

Недостатком данного способа является необходимость использования сложного и дорогостоящего оборудования, невозможность проведения анализа вне стационарной лаборатории, большая погрешность и разброс результатов измерений, связанные со слишком малым объемом анализируемой пробы и ограничение диапазона анализируемых продуктов практически только нефтями товарного качества.

Известен способ определения содержания сероводорода и меркаптанов в нефтепродуктах, основанный на потенциометрическом титровании (ГОСТ 17323-71 "Топливо для двигателей"). Данный способ включает в себя отбор пробы, разбавление ее растворителем и дальнейшее потенциометрическое титрование и построение кривой титрования, которая представляет собой зависимость значения электродного потенциала от объема титранта, нахождение точки эквивалентности по графику, позволяющее рассчитать концентрацию меркаптанов в пробе. Содержание сероводорода определяется по разности объемов титранта, израсходованных на титрование до и после удаления сероводорода из нефтепродукта.

Недостатками данного способа являются длительность проведения анализа и высокая стоимость нитрата серебра, применяемого для титрования, вовлечение в анализ не только легких меркаптанов, но и тяжелых меркаптанов и сернистых соединений других классов, что приводит к пологим кривым потенциометрического титрования и связанной с этим погрешности при определении точки эквивалентности, а также к завышению результатов анализа по меркаптанам. Высока погрешность определения содержания сероводорода по разности результатов двух анализов в связи с неточностью самих определений и с потерями легких меркаптанов в процессе связывания сероводорода. Эти недостатки приводят к сужению диапазона анализируемых продуктов практически только нефтепродуктами, а именно топливами для двигателей.

Наиболее близким по технической сущности к предлагаемому является способ определения содержания сероводорода в мазуте (нефтепродукте), включающий отбор и подготовку пробы, вытеснение сероводорода из полученной массы инертным газом в поглотительный раствор, количественное определение сероводорода методом йодометрического титрования (Пат. №2155960, МПК G 01 N 33/22, опубл.10.09.2000). По известному способу берут навеску мазута 20-50 г и разбавляют в соотношении 1:1 органическим растворителем, размешивают до однородной массы, далее вытесняют сероводород инертным газом в течение 1-2 ч в поглотительный раствор (30%-ный раствор хлористого кадмия) и производят количественное определение содержания сероводорода методом йодометрического титрования.

Недостатками данного способа являются: необходимость разбавления и перемешивания нефтепродукта в процессе подготовки пробы, что ведет к потерям сероводорода и неточности результата анализа; относительно большой объем анализируемой пробы и связанная с этим длительность процесса продувки нефтепродукта инертным газом. Способ не обеспечивает одновременного определения сероводорода и легких меркаптанов в нефти и в газовом конденсате, и легких меркаптанов в нефтепродуктах.

Технической задачей предлагаемого способа является расширение диапазона анализируемых продуктов, повышение точности определения содержания сероводорода и легких меркаптанов в нефти, нефтепродуктах и газовом конденсате, сокращение времени проведения анализа, возможность проведения анализа не только в пределах стационарной лаборатории и получение результатов анализа в условиях, максимально соответствующих стандартизованным методам.

Результат достигается способом определения сероводорода и легких меркаптанов в нефти, нефтепродуктах и газовом конденсате, включающим отбор и подготовку пробы, вытеснение сероводорода и легких меркаптанов инертным газом в поглотительные растворы и количественное определение сероводорода и меркаптанов методом йодометрического титрования. Новым является то, что пробу нефти, нефтепродукта или газового конденсата отбирают в количестве 2-5 г, термостатируют при температуре 50-70°С и одновременно вытесняют сероводород и легкие меркаптаны инертным газом или воздухом в последовательно расположенные поглотительные растворы в течение 2-5 минут, при этом в качестве поглотительного раствора для определения сероводорода используют раствор углекислого натрия, а в качестве поглотительного раствора для определения легких меркаптанов используют раствор гидроокиси натрия.

На чертеже приведена схема лабораторной установки для определения содержания сероводорода и легких меркаптанов в нефти, нефтепродуктах и газовом конденсате.

С помощью лабораторной установки осуществляют вытеснение сероводорода и легких меркаптанов из нефти, нефтепродуктов и газового конденсата воздухом или инертным газом в поглотительные растворы. В течение небольшого промежутка времени, которое требуется для вытеснения сероводорода и легких меркаптанов и проведения анализа, сероводород не успевает в значительной мере окислиться кислородом воздуха, поэтому в качестве инертного газа может использоваться воздух.

Установка включает шприц-пробоотборник 1 для отбора анализируемых проб, склянку 2 для барботирования нефти, нефтепродуктов или газового конденсата воздухом или инертным газом, термостат 3, в котором для более полного вытеснения сероводорода и легких меркаптанов поддерживается температура 50-70°С, соединительные шланги 4, склянки с поглотительными растворами 5 и 6, кран 7, регулирующий подачу воздуха, насос вакуумный 8, баллон 9 с инертным газом, например с гелием.

Предлагаемый способ соответствует критериям патентоспособности: новизна и изобретательский уровень, и промышленная применимость.

Предлагаемый способ определения содержания сероводорода и легких меркаптанов в нефти, нефтепродуктах и газовом конденсате апробирован в лабораторных и промысловых условиях на нефти, нефтепродуктах и газовом конденсате с различным содержанием сероводорода и легких меркаптанов.

Пример конкретного выполнения.

Пример 1. Для определения использовали сернистую нефть с предполагаемым содержанием сероводорода 100-150 ppm, легких меркаптанов 5-10 ppm. Пробу нефти объемом 2 см3 отбирают медицинским одноразовым шприцем 1. Масса нефти определяется по разности масс шприца до и после ввода пробы. Ввод пробы нефти осуществляют путем выдавливания нефти из шприца 1 во входной патрубок склянки 2, которая помещена в термостат 3 с температурой 60°С, при включенном на всасывание вакуумном насосе 8. К склянке 2 последовательно подсоединены склянки 5 и 6, в которые залито соответственно по 10 см3 5%-ного раствора углекислого натрия (для поглощения сероводорода) и 5%-ного раствора гидроокиси натрия (для поглощения легких меркаптанов). Продувку воздухом осуществляют в течение 2 минут, после чего количественно определяют содержание сероводорода и легких меркаптанов методом йодометрического титрования. Содержание сероводорода составило 137 ppm, а легких меркаптанов - 7,8 ppm.

Пример 2. Для определения содержания сероводорода и легких меркаптанов в нефтепродуктах использовали насыщенное минеральное масло, через которое в течение 10 минут барботировали сероводородсодержащий газ. Определение сероводорода и легких меркаптанов проводили по той же схеме, что и в первом примере. Пробу нефтепродукта отбирали в количестве 5 г и продувку осуществляли инертным газом (гелием) в течение 5 минут. Содержание компонентов составило: сероводорода 35,1 ppm, а легких меркаптанов 6,5 ppm.

Пример 3. Исследование газового конденсата с очень высоким содержанием сероводорода и легких меркаптанов проводили по той же схеме, что и в первом примере, только продувку воздухом осуществляли в течение 5 минут для более полного извлечения исследуемых компонентов. Содержание сероводорода составило 3486 ppm, а легких меркаптанов - 726,6 ppm.

В таблице приведены результаты определения содержания сероводорода и легких меркаптанов в нефти, нефтепродуктах и газовом конденсате при различных технологических условиях по предлагаемому способу и по прототипу. Ввиду того, что для определения сероводорода в минеральном масле не требуется разбавление растворителем и перемешивание, в данном примере прототипу соответствовали масса пробы и время продувки гелием.

Таблица
№пппНаименование исследуемого продуктаМасса пробы, г ПродувкаПодготовка пробы Время продувки, мин Содержание, ppm
Температура, °С Разбавление и перемешивание сероводородалегких меркаптанов
1Нефть 5,21воздухом55 -5 24,95,9
2 Нефть5,33 гелием55- 525,15,9
3Нефть 3,14воздухом60 -3 1377,8
4 Нефть3,09 гелием60- 31377,7
5Нефть 2,05воздухом70 -2 55612,5
6 Нефть2,12 гелием70- 254813,8
7Газовый конденсат 2,03воздухом 64-2 3486727
8 Газовый конденсат2,04 гелием60 -23522 733
Сравнение способов определения
9 Минеральное масло (предлагаемый)2,11 гелием60 -235,1 6,5
10Минеральное масло (предлагаемый)5,24 гелием60- 535,36,2
11Минеральное масло (прототип)20,2гелием 24- 6029,8не подлежит определению
12 Минеральное масло (прототип)50,3 гелием24- 9025,1не подлежит определению
13 Мазут (предлагаемый)5,31 гелием60- 513,65,7
14Мазут (предлагаемый) 5,12гелием 60-5 13,25,5
15 Мазут (прототип)20,1 гелием24 +6010,8 не подлежит определению
16 Мазут (прототип)50,5 гелием24 +908,3 не подлежит определению

Из приведенных данных видно, что при варьировании температур, масс проб и времени продувки в указанных диапазонах результаты определения сероводорода и легких меркаптанов по предлагаемому способу имеют незначительные расхождения (0,5-1,5%) или хорошую сходимость.

При определении содержания сероводорода в нефтепродуктах (насыщенном минеральном масле и мазуте) по способу прототипа сходимость составляет 9,5-17,5%. Значение содержания сероводорода при определении по прототипу ниже чем при определении его по предлагаемому способу на 9,6-19%.

Предлагаемое техническое решение может быть использовано для аналитического контроля содержания сероводорода и легких меркаптанов в нефти, нефтепродуктах и газовом конденсате.

Использование предлагаемого технического решения позволит сократить время проведения анализа, ликвидировать необходимость использования дорогостоящего оборудования и реактивов. Достоинством данного технического решения является расширение диапазона анализируемых продуктов, повышение точности определения содержания сероводорода и легких меркаптанов в нефти, нефтепродуктах и газовом конденсате, сокращение времени проведения анализа и возможность проведения анализа как в стационарной лаборатории, так и вне ее, получение результатов анализа в условиях, максимально соответствующих стандартизованным методам.

Диапазон определения сероводорода по предлагаемому способу составляет 1-5000 мг/л, а меркаптанов - 5-1000 мг/л.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ определения содержания сероводорода и легких меркаптанов в нефти, нефтепродуктах и газовом конденсате, включающий отбор и подготовку пробы, вытеснение сероводорода и легких меркаптанов инертным газом в поглотительные растворы, количественное определение сероводорода и легких меркаптанов методом йодометрического титрования, отличающийся тем, что пробу отбирают в количестве 2-5 г, термостатируют при температуре 50-70°С и одновременно вытесняют сероводород и легкие меркаптаны инертным газом или воздухом в последовательно расположенные поглотительные растворы в течение 2-5 мин, при этом в качестве поглотительного раствора для определения сероводорода используют раствор углекислого натрия, а в качестве поглотительного раствора для определения легких меркаптанов используют раствор гидроокиси натрия.

www.freepatent.ru

Способ дезодорирующей очистки нефти и газоконденсата от сероводорода и легких меркаптанов

Способ может быть использован в газонефтедобывающей и нефтеперерабатывающей промышленности. Содержащиеся в нефти и газоконденсате сероводород и меркаптаны С1-С3 окисляют кислородом воздуха до элементной серы и дисульфидов в присутствии неразбавленного моноэтаноламина или раствора фталоцианинового катализатора в моноэтаноламине. Моноэтаноламин вводят в сырье при перемешивании в количестве 0,01-0,1 мас.%, воздух 0,01-0,15 нм3 на 1 моль серы сероводорода и меркаптанов С1-С3, дисульфофталоцианин или дихлордиоксидисульфофталоцианин кобальта - из расчета 0,05-1,0 г на 1 т сырья. Окисление проводят при 10-65oC в течение 15-180 мин под давлением 0,2-1,5 МПа. Для ускорения реакции демеркаптанизации дополнительно вводят элементную серу в количестве 0,05-0,2 мас. % к сырью. Способ позволяет расширить его область применения и снизить расход реагентов. 2 з. п.ф-лы, 1 табл.

,

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к способам окислительной очистки нефти и газоконденсата от сероводорода и меркаптанов и может быть использовано в газонефтедобывающей промышленности для дезодорации нефти и газоконденсата. В нефтях и газоконденсатах может присутствовать до 0,05% (500 ppm) сероводорода и до 0,5% меркаптанов. Присутствие сероводорода и легких низкокипящих меркаптанов C1-C3 создает дурной запах нефти и газоконденсата. При нарушении герметичности хранилищ сероводород и низкокипящие меркаптаны могут попасть в атмосферу. Предельно допустимая концентрация в жилой зоне составляет: для сероводорода 8 · 10-3 мг/м3, метилмеркаптана 9 · 10-6 мг/м3 и этилмеркаптана 3 · 10-5мг/м3. В нефтедобывающей промышленности удаление сероводорода из нефти производится на стадиях сепарации и стабилизации, где сероводород, а также метилмеркаптан при повышенной температуре испаряется вместе с попутными газами C1-C4 (Химия нефти и газа. Под ред. д.т.н. Проскурякова В.А. Л.: Химия, 1981, 358 с.). Попутный газ очищают от сероводорода на газоперерабатывающих заводах (ГПЗ) или сжигают на факеле, что приводит к загрязнению окружающей среды диоксидом серы. При небольших объемах попутного газа создание ГПЗ и транспортировка газа не экономично, требует больших капиталовложений. Не исключается возможность утечки газа и загрязнение воздуха сероводородом. Для очистки газов от сероводорода широко применяют поглотительные растворы, содержащие этаноламины. При низких температурах сероводород поглощается раствором моноэтаноламина (диэтаноламина), а при нагревании происходит десорбция сероводорода, который затем окисляют до элементарной серы на установках Клауса. В патенте США N 3205164 (1965 г.) предложено абсорбировать сероводород из газов водным раствором этаноламина в присутствии фталоцианина с вводом воздуха в абсорбционную зону. Применяют 15%-ный водный раствор диэтаноламина. Недостатком способа является то, что очищенный газ разбавляется воздухом и образуется большое количество отработанных водных растворов. Во французских патентах N 1492797 - опубл. в РЖХ, 1968, 17Л41П и (N 1557618 - опубл. в РЖХ, 1970, 4Л61П) описывается процесс сероводорода в элементную серу в среде многоатомного спирта, содержащего небольшое количество органического основания. Для удаления из нефтепродуктов сероводорода, легких меркаптанов и кислых соединений проводят защелачивание. При промывке водным раствором гидрооксида натрия или соды нефтяные кислоты, фенолы, сероводороды и легкие меркаптаны образуют водорастворимые соли и уходят с промывной водой. За рубежом щелочную очистку нефтепродуктов от сероводорода и меркаптанов проводят на установках "Мерокс" (Ситтинг М. Процессы окисления углеводородного сырья. М.: Химия, 1970, 300 с.). По технической сущности и достигаемому результату наиболее близким к предлагаемому изобретению является способ дезодорирующей сероочистки кислых жидких углеводородных потоков с использованием алконоламминов по пат. США N 4412913, кл. C 10 G, 29/03, 1983 г. (Изобр. в СССР и за рубеж, вып. 60, N 7, 1984. - с.51; РЖХ 14П335П). По этому патенту жидкий углеводородный поток, предварительно насыщенный воздухом с небольшим избытком кислорода, в режиме противотока контактирует с водным раствором алканоламина. Если углеводород не содержит COS и CS2, то можно использовать моноэтаноламин, однако предпочтительнее использовать диэтаноламин. В процессе очистки часть меркаптанов окисляется до соответствующих дисульфидов, а часть образует с алканоламином меркаптиды, растворимые в водной среде. Водный раствор алканоламина выводится из контактора и затем регенерируется. Очистку углеводорода проводят при 15,5-65,5oC, давлении 0,14-2,1 МПа при соотношении углеводорода: алканоламин = 1:10 (предпочтительно 5). Концентрация алканоламина в водном растворе составляет 5-70%. Для ускорения процесса окисления используют катализаторы - соли металлов VIII группы (предпочтительно фталоцианин кобальта) в количестве 0,01-0,1 г на 100 мл раствора алканоламина в расчете на металл. Недостатками данного способа являются сложность процесса из-за необходимости регенерации раствора алканоламина и большие расходы дорогостоящих этаноламина и катализатора - фталоцианина кобальта. На 1 т углеводорода расходуется ≈ 200 кг раствора алканоламина, содержащего 0,02-0,2 кг катализатора. Кроме того, этот способ не может быть применен для очистки тяжелых нефтей от меркаптанов и сероводорода из-за образования трудноразделяющихся эмульсий с водным раствором алканоламина. Задачей изобретения являются упрощение технологии дезодорирующей очистки углеводородного сырья от сероводорода и легких меркаптанов, снижение расхода алканоламина и расширение области применения способа на очистку тяжелых нефтей, образующих с щелочными растворами стойкие эмульсии. Поставленная задача в предлагаемом способе достигается путем окисления содержащихся в нефти и газоконденсате сероводорода кислородом воздуха в присутствии моноэтаноламина до элементной серы, которая реагирует с легкими меркаптанами с образованием дисульфидов. В нефть или газоконденсат при перемешивании вводят моноэтаноламин в количестве 0,01-0,1 мас.% и воздух в количестве 0,1-0,15 нм3 на 1 моль серы сероводорода и легких меркаптанов C1-C3 и смесь выдерживают при 10-65oC в течение 15-180 мин под давлением 0,2-1,5 МПа. Для ускорения процесса демеркаптанизации в нефть или газоконденсат дополнительно вводят элементную серу в количестве 0,05-0,2 мас.%. Для ускорения реакции окисления сероводорода в моноэтаноламин дополнительно вводят фталоцианиновый катализатор, например дисульфофталоцианин или дихлордиоксидисульфофталоцианин кобальта, из расчета 0,05-1,0 г на 1 т нефти или газоконденсата. Отличительными признаками предлагаемого способа являются проведение технологического процесса в одну стадию и использование не разбавленного водой моноэтаноламина в незначительном количестве 0,01-0,1%. Такое количество моноэтаноламина растворяется в исходном сырье, не требуются сепарация моноэтаноламинного раствора от очищенного сырья и регенерация этого раствора. Присутствие в очищенном сырье примеси моноэтаноламина не снижает его товарного качества, а, наоборот, служит как антикоррозионная добавка. Указанные отличительные признаки предлагаемого технического решения определяют его новизну и изобретательский уровень в сравнении с известным уровнем техники, так как проведение процесса очистки нефти и газоконденсата от сероводорода и легких меркаптанов в одну стадию в присутствии незначительного (каталитического) количества (менее 0,1%) моноэтаноламина (щелочного агента) в литературе не описано, позволяет упростить технологический процесс - исключить стадию регенерации отработанных этаноламинных (щелочных) растворов. Кроме того, предлагаемый способ может быть использован для очистки тяжелых нефтей, образующих с щелочными растворами стойкие эмульсии. В описанном процессе идут следующие основные реакции:

По реакции 2 моноэтаноламин регенерируется, что позволяет применять его в количестве ниже 1 моль на 1 моль h3S.

Образующаяся по реакции 2 элементная сера вступает в реакцию с меркаптанами, в первую очередь, с легкими меркаптанами C1-C2, с образованием дисульфидов: 2RSH + So _→ RSSR + h3S (3) Реакция 3 катализируется аминами, т.е. моноэтаноламин катализирует эту реакцию, образующийся сероводород окисляется по реакциям 1 и 2. Введение в нефть или газоконденсат, кроме моноэтаноламина и воздуха, элементной серы ускоряет реакцию 3, т.е. ускоряется процесс демеркаптанизации. Введение элементной серы просто необходимо в случае отсутствия в исходном сырье сероводорода и элементной серы, так как в этом случае реакции 1, 2, 3 не имеют места и демеркаптанизация идет только по очень медленной реакции прямого окисления меркаптанов кислородом воздуха 2RSH + 1/2O2 _→ RSSR + h3O (4) Реакции 2 и 4 катализируются металлофталоцианиновыми катализаторами, например дисульфофталоцианином кобальта (ДСФК) и дихлордиоксидисульфофталоцианином кобальта (ДХОСФК). Необходимое и достаточное количество моноэтаноламина 0,01 - 0,1% установлено на основании экспериментальных данных (см. таблицу). 0,1% моноэтаноламина достаточно для проведения процесса окисления при других оптимальных условиях (температура, давление, время реакции) даже при довольно большой концентрации сероводорода в нефти, что бывает редко (опыты 8, 10 и 13) и нет необходимости в увеличении расхода моноэтаноламина выше 0,1%. С уменьшением количества вводимого моноэтаноламина скорость реакции окисления сероводорода падает. При содержании в нефти или газоконденсате ≈30 ppm сероводорода необходимое количество моноэтаноламина составляет около 100 г на 1 т сырья, т. е. 0,01%. Относительно большой расход моноэтаноламина (3,3 г на 1 г h3S) в этом случае объясняется тем, что часть его расходуется на нейтрализацию присутствующих в нефти и газоконденсате нафтеновых кислот. В случае содержания в нефти или газоконденсате сероводорода и легких меркаптанов C1-C3 ниже 20 ppm просто нет необходимости дезодорации и соответственно внедрения предлагаемого способа очистки. По реакции 2 для окисления 1 моль или 34 г сероводорода требуется 16 г кислорода или 16:0,2 = 80 г воздуха. Около 30% кислорода воздуха не участвует в реакции окисления, уходит с отработанным воздухом. Необходимый расход воздуха для окисления 34 г h3S составляет 80:0,7 = 114 г или 0,088 м3. Часть кислорода воздуха расходуется на побочные реакции, фактически необходимый расход воздуха составляет не менее 0,1 нм3 на 1 моль h3S. В повышении расхода воздуха более 0,15 нм3 на 1 моль сероводорода нет необходимости. Реакция окисления сероводорода идет в жидкой фазе (в нефти) с растворенным кислородом. В 1 т нефти или конденсата при давлении 0,2 МПа растворяется 0,15 - 0,2 нм3 воздуха, что достаточно для окисления 1 - 2 моль сероводорода. При содержании в сырье до 15 моль/т (510 ppm) сероводорода максимально необходимое количество воздуха составляет (0,088 - 0,1)·15 = 1,32 - 1,5 нм3 и для растворения такого количества воздуха требуется давление до 1,5 МПа. Реакция окисления идет и при неполном растворении всего необходимого количества воздуха в жидкой фазе, если обеспечивается эффективное объемное перемешивание. В этом случае израсходованное количество растворенного кислорода в жидкой фазе компенсируется за счет перехода (растворения) кислорода газовой фазы в жидкости. Со снижением температуры скорость реакции замедляется. При температуре ниже 10oC для окисления сероводорода требуется более 10 ч, что на практике осуществить нереально. Меркаптаны при низких температурах не окисляются. В повышении температуры выше 50oC нет необходимости, при этом для дезодорации достаточно 15 мин выдержки. Повышение температуры до 60 - 65oC не ускоряет реакцию окисления сероводорода. Однако если нефть нагревают до 60-65oC с другой целью, например для улучшения сепарации от воды, то процесс окисления может быть проведен и при температурах 60 - 65oC. Выдержка смеси из нефти или газоконденсата с растворенным и эмульгированным воздухом до 3 ч необходима в случае проведения процесса при температурах 10 - 20oC. Дополнительное введение фталоцианинов, например ДСФК и ДХОСФК, ускоряет реакцию окисления сероводорода и меркаптанов. При введении менее 0,05 г катализатора каталитический эффект не заметен. В введении более 1,0 г катализатора на 1 т сырья нет необходимости, так как при этом достигается достаточно высокая скорость реакции окисления. Элементную серу вводят при отсутствии ее и сероводорода в исходном сырье для ускорения процесса демекаптанизации. При содержании в исходной нефти или газоконденсате 0,1% меркаптанов для инициирования реакции 3 необходимо вводить около 0,05% элементной серы. По введении более 0,2% серы нет необходимости даже в случае содержания в сырье 0,4 - 0,5% меркаптанов, так как достигается требуемая степень дезодорации. Для введения 0,05 - 0,2% серы в сырье сначала готовят 1 - 2%-ный концентрированный раствор серы в той же нефти или газоконденсате. В этот же раствор вводят и моноэтаноламин. Полученный концентрированный раствор вводят в основной поток нефти или газоконденсата в количестве 1 - 10%. Такой прием позволяет равномерно распределять серу и моноэтаноламин в потоке нефти или газоконденсата в трубопроводе. Предлагаемый способ очистки нефти и газоконденсата от сероводорода и меркаптанов может быть реализован непосредственно на промыслах. Примеры и результаты проверки предлагаемого способа в лабораторных условиях приведены ниже. Примеры 1 - 6. В стеклянную круглодонную колбу объемом 100 мл наливают расчетную навеску моноэтаноламина или раствора ДСФК в моноэтаноламине и наливают расчетное количество (40 - 70 мл) охлажденной до 0oC нестабилизированной нефти или газоконденсата. Колбу плотно закрывают резиновой пробкой и при перемешивании встряхиванием нагревают до температуры выдержки (10 - 65oC) и дают выдержку при периодическом перемешивании. Через определенный интервал времени берут пробы нефти или газоконденсата на анализ. Перед отбором проб содержимое колбы охлаждают до 5 - 10oC. Содержание сероводородной и общей меркаптановой серы (SRSH) определяют потенциометрическим титрованием по ГОСТ 22980-90. Содержание меркаптанов C1-C3 определяют хроматографически. Объем воздуха рассчитывают по разности объемов колбы (100 мл) и сырья с добавками. Объем воздуха во всех опытах был в пределах 0,1 - 0,15 нм3 на 1 моль сероводорода. Давление в колбе создавалось за счет испарения легколетучих компонентов при нагревании холодного сырья. Режимы проведения и результаты лабораторных опытов приведены в таблице. Примеры 7 - 11, 13 - 18 и 21 - 22. Опыты проводят как в примерах 1 - 6, но колбу заполняют кислородом. Этот прием позволяет повысить количество растворенного кислорода в жидкой фазе при одном и том же давлении примерно в 5 раз, т. е. при избыточном давлении 0,01 МПа происходит имитация процесса, проводимого под давлением воздуха 0,5 МПа. В опытах 21-22 в качестве катализатора используют ДХОСФК. Примеры 12, 19, 20. Опыты проводят как в примерах 7-11 и 13-18, но в исходное сырье дополнительно вводят навеску тонкоизмельченной элементной серы. В лабораторных экспериментах использовали моноэтаноламин технический по ТУ. 6-02-915-84, сорт 1 с содержанием моноэтаноламина не менее 98%, диэтаноламина до 1% и воды до 1%. Применяли катализаторы, соответствующие техническим условиям: ДСФК ТУ 6-14-36-75 и ДХОСФК ТУ 6-14-06-107-89. Задачей дезодорирующей очистки нефти и газоконденсата является снижение содержания сероводорода до 20 ppm и меркаптанов C1-C2 также до 20 ppm в расчете на серу, т.е. до установленных в отрасли норм (на меркаптаны C3 в России норма пока не установлены). При содержании в сырье 20 ppm запах сероводорода и меркаптанов в атмосфере рабочей зоны не превышает ПДК. В опытах таблицы показана возможность достижения указанных норм при минимальном расходе моноэтаноламина, одновременно показана невозможность достижения этих норм при пониженном расходе моноэтаноламина, температуре и времени. Минимально необходимое количество моноэтаноламина зависит от содержания в сырье сероводорода: при содержании в сырье 500 ppm сероводородной серы необходимо вводить 0,1% моноэтаноламина (опыт 13), а при содержании ниже 100 ppm

достаточно введение 0,01% моноэтаноламина; в опыте 1 при 40oC за 180 мин содержание сероводородной серы упало до 6 ppm, степень очистки составила

Как видно из таблицы, дезодорация от сероводорода карбоновой нефти достигается при введении 0,05-0,1% моноэтаноламина и температуре 40oC и выше за ≈ 15 мин, при введении 0,01-0,02% моноэтаноламина требуется время 30-180 мин. В газоконденсате окисление h3S идет медленнее. При содержании 0,05% моноэтаноламина и 0,5 г/т ДСФК для дезодорации при 40oC требуется около 2 ч (опыт 15), при отсутствии ДСКФ ≈ 3 ч (опыт 13).

Дезодорация может быть проведена и при 10-20oC, но в этих случаях требуются повышенные расходы реагентов и длительное (≈ 3 ч) время (опыты 8, 13, 14). В опытах, приведенных в таблице, исходная карбоновая нефть содержала 13 ppm меркаптанов C1-C2, что ниже нормы, и 97 ppm меркаптанов C3, в том числе 87 ppm изопропилмеркаптана. В опыте 10 при 60oC после очистки содержание меркаптанов C1-C2 составило менее 2 pmm (следы), а меркаптаны C3 снизилось до 40 ppm. В опыте 9 при введении 0,05% моноэтаноламина за 15 мин норма по сероводороду не достигнута из-за недостаточного количества моноэтаноламина и времени окисления, что подтверждается опытами 3, 8 и 10, в которых норма достигнута. При содержании в сырье менее 110 ppm h3S в процессе окисления сероводорода при 40oC содержание меркаптанов не изменялось (опыты 1-6, 18) из-за низкой концентрации h3S и низкой температуры. При дезодорации сырья с высоким содержанием сероводорода был получен положительный эффект - одновременно с окислением сероводорода наблюдалось снижение концентрации меркаптанов, в первую очередь легких меркаптанов С1-С2, которые в опытах 9 и 10 в очищенном сырье практически отсутствовали, в опытах 15 и 16 отсутствовали меркаптаны C1-C2 и в газоконденсате. Меркаптаны при низкой температуре не окисляются, окисление меркаптанов не происходит также при отсутствии сероводорода. Заметное снижение содержания меркаптанов наблюдается при введении элементной серы (опыты 12, 19, 20), а также при повышенных температурах (опыты 9, 10, 16). Эффективная очистка от сероводорода может быть достигнута как за счет увеличения расходов моноэтаноламина или ДСФК, так и за счет удлинения времени реакции, т. е. при дезодорации нефти или газоконденсата на промыслах оптимальные режимы процесса следует выбирать с учетом цен и расходов реагентов, объема производства и условий дезодорации (t, τ ) в пределах, указанных в изобретении. Замена ДСФК не более дорогостоящий ДХОСФК заметного эффекта не дает. По сравнению с известным способом предлагаемый способ имеет следующие преимущества. 1. Предлагаемый способ позволяет упростить технологию очистки нефти и газоконденсатов от сероводорода и легких меркаптанов, так как отсутствует стадия регенерации водно-этаноламинного раствора. 2. Предлагаемый способ может быть применен для очистки тяжелых карбоновых нефтей, образующих с щелочными растворами трудноразделяющиеся эмульсии.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ дезодорирующей очистки нефти и газоконденсата от сероводорода и легких меркаптанов путем их окисления кислородом воздуха в присутствии моноэтаноламина при давлении 0,2 - 1,5 МПа, отличающийся тем, что моноэтаноламин вводят в нефть или газоконденсат при перемешивании в количестве 0,01 - 0,1 мас. %, воздух вводят в количестве 0,1 - 0,15 нм3 на один моль серы сероводорода и меркаптанов C1 - C3 и процесс проводят при температуре 10 - 65oC в течение 15 - 180 мин. 2. Способ по п.1, отличающийся тем, что для ускорения реакции демеркаптанизации в нефть или газоконденсат дополнительно вводят элементную серу в количестве 0,05 - 0,2 мас.%. 3. Способ по пп. 1 и 2, отличающийся тем, что процесс проводят в присутствии фталоцианинового катализатора, например дисульфофталоцианина или дихлордиоксидисульфофталоцианина кобальта, в количестве 0,05 - 1,0 г на 1 т нефти или газоконденсата.

bankpatentov.ru

состав для нейтрализации сероводорода и легких меркаптанов в нефтяных средах - патент РФ 2241018

Изобретение относится к химическим составам, в частности к средствам для нейтрализации сероводорода и легких метил-, этилмеркаптанов в нефтяных средах, и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности. Состав для нейтрализации сероводорода и легких меркаптанов содержит 16-35% нитрита щелочного металла, 3-30% азотсодержащего основного и/или щелочного реагента и до 100% воды. В качестве нитрита щелочного металла он преимущественно содержит нитрит натрия, а в качестве азотсодержащего основного и щелочного реагентов - алканоламин (моно-, триэтаноламин, метилдиэтаноламин), и/или аммиак, и/или гидроксид натрия, калия. Техническим результатом является повышение эффективности нейтрализации сероводорода и одновременно легких метил-, этилмеркаптанов в нефти и нефтепродуктах, снижение кислотности и коррозионности очищенного сырья, а также расширение ассортимента доступных, дешевых и технологичных (некоррозионных и стабильных при транспортировании и хранении) химических реагентов-нейтрализаторов для промысловой очистки сероводород- и меркаптансодержащих нефтей. 3 з. п. ф-лы.

Изобретение относится к химическим составам, в частности к средствам для нейтрализации сероводорода и/или легких метил-, этилмеркаптанов в нефтяных средах, и может быть использовано в нефтедобывающей и нефтеперерабатывающей промышленности.

Известен состав для нейтрализации сероводорода в продукции нефтяных скважин, включающий полиглицерины - продукты отходов производства глицерина и водный раствор хлористого натрия при следующем соотношении компонентов, об. %: полиглицерины 60-90 и водный раствор хлористого натрия 10-40 (пат. РФ №2136864, Е 21 В 43/22, 37/06, 1999 г.).

Недостатком указанного состава является недостаточно высокая нейтрализующая способность по отношению к сероводороду (3,7 объема сероводорода на 1 объем нейтрализатора) и легким меркаптанам, в результате чего требуется применение больших объемов нейтрализатора, что приводит к увеличению материальных затрат и снижению эффективности процесса в целом.

Известно применение около 40%-ного водного раствора гексаметилентетрамина (ГМТА), предварительно полученного взаимодействием ~37%-ного водного раствора формальдегида (формалина) с аммиаком для нейтрализации сероводорода и меркаптанов в нефти и нефтепродуктах (пат. США №5213680, C 10 G 29/20, 1993 г.).

Однако указанный состав не обеспечивает эффективную нейтрализацию сероводорода и особенно легких меркаптанов в нефти и нефтепродуктах из-за низкой реакционной способности ГМТА по отношению к сероводороду и легким меркаптанам при обычных температурах, в результате чего требуется проведение процесса при повышенных температурах (выше 82-100°С) и высоком расходе применяемого нейтрализатора (до 100 тыс. ррm). Это приводит к повышенным энергозатратам на нагрев исходного сырья и снижению эффективности процесса в целом.

Известно применение смеси 50-100%-ной азотной кислоты с железом, взятым в количестве 0,1-1,0% для окислительной очистки нефти, нефтепродуктов и газоконденсата от сернистых соединений, в т.ч. от сероводорода и легких меркаптанов (пат. РФ №2134285, C 10 G 17/02, 1999 г.).

Основным недостатком указанной окислительной смеси является ее высокая коррозионная агрессивность по отношению к обычным конструкционным материалам. Кроме того, применение смеси 50-100%-ной азотной кислоты с железом для нейтрализации сероводорода и меркаптанов приводит к загрязнению очищенной нефти железом и повышению ее кислотного числа. Повышение кислотности (до 20 мг КОН/100 мл нефти) и, следовательно, коррозионности нефти требует проведения последующей промывки очищенной нефти водным раствором щелочи, что приводит к усложнению и удорожанию процесса очистки в целом (Саппаева А.М. Жидкофазная демеркаптанизация нефтей и газовых конденсатов. Автореферат дисс. на соискание уч. степени канд. техн. наук. М.: РГУ им И.М.Губкина, 1999. - 25 с.).

Известен состав для окислительной очистки нефти от сернистых соединений, включающий 50-96%-ный водный раствор муравьиной кислоты и 30-90%-ный водный раствор пероксида водорода, взятые в мольном соотношении НСООН: h3O2 в пределах от 1:4 до 4:1, предпочтительно 1:1 (пат. США №5310479, C 10 G 19/02, 1994 г.). Указанный состав обладает высокой окислительной способностью по отношению к сернистым соединениям, в т.ч. к сероводороду и легким меркаптанам. Однако, как и смесь азотной кислоты с железом, он обладает чрезвычайно высокой коррозионной агрессивностью, а также низкой химической стабильностью при хранении (из-за быстрого самопроизвольного разложения пероксида водорода и содержащейся надмуравьиной кислоты).

В качестве прототипа был взят нейтрализатор сероводорода, состоящий из пероксида водорода и воды. В преимущественном варианте применения он представляет собой 20-50%-ный водный раствор пероксида водорода, который берут из расчета не менее 20 мл (в расчете на 35%-ный раствор Н2О2) на 1 г нейтрализуемого сероводорода (пат. ФРГ №3151133, C 10 G 27/12, 1983 г.; РЖ "Химия", 9П246П, 1984 г.).

Основным недостатком указанного нейтрализатора является недостаточно высокая эффективность, особенно по отношению к легким меркаптанам, что не позволяет получить товарную нефть с низким остаточным содержанием сероводорода и легких метил-, этилмеркаптанов, удовлетворяющую современным требованиям в соответствии с ГОСТ Р 51858-2002 на подготовленную нефть. Кроме того, пероксид водорода является малостабильным продуктом, самопроизвольно разлагающимся на воду и кислород при транспортировании и хранении, поэтому требуется транспортирование и хранение его в специальных, предварительно пассивированных алюминиевых цистернах при температуре не выше 30°С и не ниже минус 30°С; при работе с ним не допускается использование аппаратуры и трубопроводов из нелегированной и низколегированной стали, чугуна и других конструкционных материалов, являющихся катализаторами разложения пероксида водорода (см. ГОСТ 177-88. Водорода перекись. М.: Изд-во стандартов. 1988. С. 2, 3, 5 и 12). Эти недостатки, а также сравнительно большой расход и высокая стоимость пероксида водорода, загрязнение очищенной нефти образующейся коррозионной элементной серой, препятствуют практическому применению водных растворов пероксида водорода в качестве нейтрализатора для дезодорирующей очистки сероводородсодержащих нефтей в промысловых условиях.

В основу настоящего изобретения положена задача создания состава для нейтрализации сероводорода и легких меркаптанов в нефтяных средах, обладающего высокой эффективностью по отношению к сероводороду и одновременно к легким метил-, этилмеркаптанам, и обеспечивающего получение товарной нефти в соответствии с ГОСТ Р 51858-2002 при снижении его расхода, а также технологичностью для практического применения в промысловых условиях. Изобретение одновременно решает задачу снижения кислотности и коррозионности очищенного сырья за счет применения состава, обладающего нейтрализующей способностью по отношению к содержащимся в сырье нефтяным (нафтеновым) кислотам.

Поставленная задача решается тем, что состав для нейтрализации сероводорода и легких меркаптанов в нефтяных средах, включающий окислитель и воду, в качестве окислителя содержит нитрит щелочного металла и дополнительно содержит азотсодержащий основной и/или щелочной реагент при следующем соотношении компонентов, мас.%:

Нитрит щелочного металла 16-35

Азотсодержащий основной и/или щелочной реагент 3-30

Вода До 100

В качестве нитрита щелочного металла предлагаемый состав преимущественно содержит нитрит натрия, а в качестве азотсодержащего основного и щелочного реагентов - алканоламин, и/или аммиак, и/или гидроксид щелочного металла (натрия и/или калия). В качестве алканоламина состав преимущественно содержит моно-, триэтаноламин, метилдиэтаноламин или их смеси.

Заявляемый нейтрализатор сероводорода и легких меркаптанов вышеуказанного состава представляет собой подвижную прозрачную жидкость от желтого до светло-коричневого цвета с температурой застывания не выше минус 20°С, плотностью в пределах 1,13-1,35 г/см3 (в зависимости от соотношения компонентов) и величиной показателя рН от 11 до 14. В качестве исходного сырья для приготовления предлагаемого состава преимущественно используют нитрит натрия технический по ГОСТ 19906 или натрий азотистокислый в растворе по ТУ 38-1021278-90 (выпускаемые в крупнотоннажном масштабе для применения в качестве ингибитора атмосферной коррозии и для других целей), а в качестве азотсодержащего основного реагента преимущественно используют моноэтаноламин технический по ТУ 6-02-918-84 или триэтаноламин технический по ТУ 6-02-916-79, а в качестве щелочного реагента - гидроксид натрия по ГОСТ 2263 или ГОСТ 11078, или калия по ГОСТ 9285. Указанные виды исходного сырья производятся отечественной промышленностью в крупнотоннажном масштабе и являются доступными, недорогими продуктами, т.е. с точки зрения обеспеченности исходным сырьем, предлагаемый состав является промышленно применимым.

Технология приготовления состава проста и заключается в растворении найденных оптимальных количеств исходных компонентов (нитрита щелочного металла и щелочного реагента) в пресной или химочищенной воде, или паровом конденсате при обычных температурах и атмосферном давлении, поэтому может быть реализована в реагентном цехе нефтедобывающего предприятия. Технология применения предлагаемого состава заключается в непрерывной дозировке найденного оптимального количества нейтрализатора, предпочтительно из расчета 4-9 г на 1 г нейтрализуемых сероводорода и легких метил-, этилмеркаптанов, в поток сернистой нефти с температурой в пределах 20-100°С, предпочтительно 30-70°С, при атмосферном или повышенном давлении (давление не оказывает влияния на скорость реакций окисления и степень нейтрализации сероводорода и легких меркаптанов). На установках подготовки сернистых нефтей после ступени термохимического обезвоживания потоки нефти обычно имеют температуру в пределах 40-70°С, поэтому дополнительный подогрев очищаемой нефти при применении предлагаемого нейтрализатора не требуется. Поскольку предлагаемый нейтрализатор является водно-солевым раствором и практически нерастворим в нефти и нефтепродуктах, для улучшения диспергирования его в очищаемом сырье целесообразно дозировать нейтрализатор в поток нефти перед центробежным нефтеперекачивающим насосом, являющимся эффективным смесительным устройством, или вводить в трубопровод в поток нефти с турбулентным движением через эффективное распыливающее устройство. Следует указать, что для улучшения диспергирования нейтрализатора в нефти и ускорения реакций окисления в состав нейтрализатора может быть дополнительно введено эффективное количество (до 1%) водорастворимого поверхностно-активного вещества (ПАВ) типа сульфонола, ОП-10 или водорастворимого межфазного катализатора типа четвертичной аммониевой соли и т.п.

Необходимость и целесообразность дополнительного введения в состав нейтрализатора азотсодержащего основного и/или щелочного реагента обусловлена тем, что в кислой и нейтральной средах, т.е. в среде нефти и нефтепродуктов нитриты окисляют сероводород и легкие меркаптаны с низкой скоростью и выделением нежелательных оксидов азота (NO и NO2), а в присутствии найденного оптимального количества щелочного агента - с достаточно высокой скоростью и с образованием аммиака, который далее взаимодействует с содержащимися в нефти нефтяными (карбоновыми) кислотами, тем самым достигается снижение кислотности очищенной нефти. Следует указать, что эффективное снижение кислотности и коррозионности сырой нефти при обработке ее газообразным или жидким аммиаком при температурах 20-50°С и выше описано в пат. США №6258258, C 10 G 17/00, 2001 г. При применении предлагаемого состава аммиак образуется в результате протекания реакций окисления сероводорода нитритом непосредственно в нефти и далее расходуется на нейтрализацию нефтяных кислот и других кислых примесей (диоксида углерода, фенолов и т.п.), в результате чего отпадает необходимость специальной обработки нефти аммиаком с целью снижения ее кислотности и коррозионности. Дополнительное введение азотсодержащего основного реагента обусловлено также тем, что нитриты селективно окисляют сероводород в элементную серу, которая в присутствии амина в качестве катализатора далее взаимодействует с содержащимися в нефти меркаптанами, в т.ч. легкими метил-, этилмеркаптанами, в результате чего исключается загрязнение очищенной нефти коррозионной элементной серой. Гидроксиды, карбонаты, фосфаты щелочных металлов не обладают каталитической активностью в реакции элементной серы с меркаптанами, поэтому целесообразно вводить их в состав совместно с амином (с целью снижения расхода алканоламина). Предлагаемая концентрация амина и/или щелочи (3-30%) является оптимальной, т.к. снижение ее менее 3% приводит к снижению скорости реакций окисления, а увеличение выше 30% - к уменьшению растворимости нитрита и кристаллизации при применении нейтрализатора в зимнее время. Предлагаемая концентрация нитрита (16-35%) также является оптимальной, т.к. применение более разбавленного состава (менее 16%) приводит к увеличению затрат на транспортирование и хранение больших объемов нейтрализатора и увеличению содержания воды в очищенной нефти, а увеличение концентрации выше 35% нецелесообразно из-за выпадения осадка при применении нейтрализатора в зимнее время.

Анализ отобранных в процессе поиска известных технических решений показал, что в науке и технике нет объекта, аналогичного по заявляемой совокупности признаков и наличием свойств, что позволяет сделать вывод о соответствии его критериям "новизна" и "изобретательский уровень".

Для доказательства соответствия заявленного объекта критерию "промышленная применимость" ниже приведены конкретные примеры приготовления нейтрализатора (примеры 1-3) и испытания его на эффективность нейтрализации сероводорода и легких меркаптанов в нефти и нефтяной фракции (примеры 4-7).

Пример 1. В емкость, снабженную механической мешалкой, загружают 75 г натрия азотистокислого в растворе по ТУ 38.1021278-90 марки Б с массовой концентрацией нитрита 295 г/дм3 и при перемешивании порциями добавляют 25 г моноэтаноламина (МЭА) технического по ТУ 6-02-915-84, и полученный водно-щелочной раствор нитрита натрия перемешивают 0,5 ч при комнатной температуре для получения однородного продукта. Полученную композицию состава, мас.%: нитрит натрия - 18,5, МЭА -25 и вода - остальное с величиной рН 11,7 и плотностью 1,15 г/см3 применяют для нейтрализации сероводорода и легких меркаптанов в нефти (пример 4) и нефтяной фракции (пример 7).

Пример 2. В емкость по примеру 1 загружают 52 г воды и 35 г кристаллического нитрита натрия технического по ГОСТ 19906. После полного растворения нитрита в полученный раствор при перемешивании добавляют 5 г гидроксида натрия по ГОСТ 2263, а затем - 8 г моноэтаноламина. Полученный раствор перемешивают в течение 0,5 ч для получения однородного продукта. Полученную композицию состава, мас.%: нитрит натрия - 35, гидроксид натрия - 5, МЭА -8 и вода -52 с плотностью 1,31 г/см3 применяют для нейтрализации сероводорода и легких меркаптанов в нефти (пример 5).

Пример 3. В емкость по примеру 1 загружают 50 г воды, 30 г нитрита натрия технического и 5 г гидроксида натрия. После полного растворения нитрита и гидроксида натрия в полученный раствор при перемешивании добавляют 15 г триэтаноламина технического (ТЭА) по ТУ 6-02-916-79 и перемешивают в течение 0,5 ч для получения однородного продукта.

Полученную композицию состава, мас.%: нитрит натрия - 30, гидроксид натрия - 5, ТЭА - 15 и вода - 50 с плотностью 1,31 г/см3 применяют для нейтрализации сероводорода и легких меркаптанов в нефти (пример 6).

Пример 4. Испытание композиции на эффективность нейтрализации сероводорода и легких метил-, этилмеркаптанов в нефти. В термостатированную реакционную колбу с мешалкой вводят 0,26 мл (0,3 г) нейтрализатора по примеру 1, затем загружают 100 мл (92 г) высокосернистой карбоновой нефти, содержащей 0,2 мас.% эмульсионной воды, 0,025 мас.% (250 ppm) сероводорода и 0,082 мас.% меркаптановой серы, в т.ч. 0,011 мас.% (110 ppm) легких метил-, этилмеркаптанов. Массовое соотношение нейтрализатор: сероводород + метил-, этил-меркаптаны в реакционной смеси составляет 9:1, т.е. удельный расход нейтрализатора (расходный коэффициент) составляет 9 г/г. Реакционную смесь интенсивно перемешивают при температуре 50°С в течение 3 ч и проводят количественный анализ очищенной нефти на содержание остаточного сероводорода и легких меркаптанов, и рассчитывают степень очистки нефти. Степень очистки нефти от сероводорода составляет 100% и от легких метил-, этилмеркаптанов - 87%, т.е. предлагаемый нейтрализатор по примеру 1 при расходном коэффициенте 9 г/г обеспечивает эффективную нейтрализацию сероводорода и легких метил-, этилмеркаптанов и позволяет получить товарную нефть, соответствующую нормам ГОСТ Р 51858-2002 по содержанию сероводорода и метил-, этилмеркаптанов.

Пример 5. Испытание нейтрализатора по примеру 2 на эффективность нейтрализации сероводорода и легких метил-, этилмеркаптанов в нефти проводят аналогично и в условиях примера 4, но при удельном расходе (расходном коэффициенте) нейтрализатора 4,5 г/г. Степень очистки нефти от сероводорода составляет 100% и от легких метил-, этилмеркаптанов - 89%, т.е. нейтрализатор по примеру 2 при расходном коэффициенте 4,5 г/г обеспечивает эффективную нейтрализацию сероводорода и легких метил-, этилмеркаптанов и позволяет получить товарную нефть по ГОСТ Р 51858.

Пример 6. Испытание нейтрализатора по примеру 3 на эффективность нейтрализации сероводорода и метил-, этилмеркаптанов в нефти проводят аналогично и в условиях примера 4, но при удельном расходе нейтрализатора 7 г/г. Степень очистки нефти от сероводорода составляет 100% и от легких меркаптанов - 98%, т.е. нейтрализатор по примеру 3 при расходном коэффициенте 7 г/г обеспечивает эффективную нейтрализацию сероводорода и легких меркаптанов, и позволяет получить товарную нефть по ГОСТ Р 51858.

Пример 7. В реакционную колбу по примеру 4 вводят 0,12 мл нейтрализатора по примеру 1, затем загружают 100 мл прямогонной нефтяной фракции н.к. - 300°С, применяемой в качестве растворителя парафина в нефтедобыче и содержащей 0,01 мас.% сероводорода, 0,01 мас.% легких метил-, этилмеркаптанов, с кислотностью 9,9 мг КОН/100 мл. Массовое соотношение нейтрализатор: сероводород + метил-, этилмеркаптаны в реакционной смеси составляет 9:1, т.е. расходный коэффициент составляет 9 г/г. Реакционную массу перемешивают при 50°С в течение 3 ч, и затем проводят количественный анализ очищенной фракции на содержание остаточных сероводорода и легких меркаптанов, определяют ее кислотность по ГОСТ 5985 и коррозионность испытанием на медной пластинке. Степень очистки сырья от сероводорода составляет 100%, от легких меркаптанов - 98%, и его кислотность - 1,9 мг КОН/100 мл. При этом очищенная фракция испытание на медной пластинке выдерживает, т.е. достигается снижение кислотности, а также токсичности продукта для применения в качестве растворителя парафина в нефтедобыче.

Сравнительный эксперимент показал, что при применении известного нейтрализатора - 30%-ного водного раствора пероксида водорода (прототипа), степень очистки высокосернистой карбоновой нефти от сероводорода составляет 90%, от легких меркаптанов - 35%, т.е. известный нейтрализатор не обеспечивает эффективную нейтрализацию сероводорода и легких меркаптанов, и не позволяет получить товарную нефть по ГОСТ Р 51858. Сравнительный эксперимент по очистке прямогонной нефтяной фракции н.к. -300°С показал, что очищенное сырье содержит элементную серу, и испытание на медной пластинке не выдерживает, т.е. известный нейтрализатор не обеспечивает снижение кислотности и коррозионности очищенного продукта.

Данные, представленные в примерах 4-6 показывают, что предлагаемый состав обладает высокой эффективностью нейтрализации сероводорода и одновременно легких метил-, этилмеркаптанов в нефтяных средах и обеспечивает получение товарной нефти, удовлетворяющей современным требованиям ГОСТ Р 51858 по содержанию сероводорода и метил-, этилмеркаптанов при снижении расхода нейтрализатора. Данные примера 7 показывают, что предлагаемый нейтрализатор обеспечивает также снижение кислотности и коррозионности очищенного сырья. Кроме того, предлагаемый нейтрализатор, в отличие от известного, является некоррозионным и стабильным при транспортировании и хранении продуктом, что позволяет использовать его для промысловой очистки сероводород и меркаптансодержащих нефтей.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Состав для нейтрализации сероводорода и легких меркаптанов в нефтяных средах, включающий окислитель и воду, отличающийся тем, что в качестве окислителя он содержит нитрит щелочного металла и дополнительно содержит азотсодержащий основной и/или щелочной реагент при следующем соотношении компонентов, мас.%:

Нитрит щелочного металла 16-35

Азотсодержащий основной и/или

щелочной реагент 3-30

Вода До 100

2. Состав по п.1, отличающийся тем, что в качестве нитрита щелочного металла он содержит нитрит натрия.

3. Состав по пп.1 и 2, отличающийся тем, что в качестве азотсодержащего основного реагента он содержит алканоламин и/или аммиак, а в качестве щелочного реагента - гидроксид натрия и/или калия.

4. Состав по п.3, отличающийся тем, что в качестве алканоламина он содержит моно-, триэтаноламин, метилдиэтаноламин или их смеси.

www.freepatent.ru