Состав для получения сорбента для сбора нефти с поверхности воды. Сорбент для сбора нефти


Сорбент для сбора нефти и нефтепродуктов, способ получения сорбента и способ сбора нефти и нефтепродуктов

Изобретение относится к области экологии. Предложен сорбент, полученный при щелочной обработке гидролизного лигнина с отделением твердых частиц примесей и нейтрализацией суспензии гидролизного лигнина, которую подвергают размолу, затем размолотую суспензию фильтруют до влажности осадка не более 70%, полученный осадок подают на гранулирование, после чего гранулы отправляют на сушку до влажности не более 8%, затем подвергают измельчению до размера частиц не более 5 мм и получают целевой продукт с различным гранулометрическим составом - в виде нефракционированного порошка, гранул с размерами частиц 1-5 мм, мелкодисперсного порошка с размерами частиц менее 1 мм, при этом целевой продукт характеризуется нефтепоглотительной вместимостью от 300 до 600% и временем поглощения загрязнителя с поверхности от 15 до 30 секунд. Способ сбора нефти и нефтепродуктов заключается в том, что на загрязненную поверхность наносят полученный сорбент в виде нефракционированного порошка и/или мелкодисперсного порошка, и/или гранул при удельном расходе сорбента на твердой поверхности около 80% от объема нефти или нефтепродуктов и на водной поверхности до 20%. Технический результат заключается в получении сорбента для очистки поверхности от нефти и нефтепродуктов, обладающего повышенной нефтепоглощающей способностью при небольшом времени контакта с загрязненной поверхностью. 3 н. п. ф-лы, 10 табл.

 

Изобретения относятся к химической промышленности, а именно к сорбентам на основе гидролизного лигнина, предназначенным для сбора нефти и нефтепродуктов с водной и твердой поверхностей.

Известен способ обработки гидролизного лигнина (RU 2094052, А 61 К 35/78, 27.10.1997). Сущность способа: гидролизный лигнин, освобожденный от крупных частей, подвергают тонкому помолу, заливают водным раствором щелочи. После водно-щелочной обработки лигнин промывают от образующихся лигногуминовых веществ, остатков щелочи, доводят до нейтральной реакции и сушат. Предварительно размолотый лигнин перед водно-щелочной обработкой промывают от остатков, минеральной кислоты, песка и пр. Полученный сорбент используют в медицине в качестве энтеросорбента.

Сорбенты на основе гидролизного лигнина могут быть использованы в качестве сорбентов для очистки поверхности от нефти и нефтепродуктов. Требования, предъявляемые к таким сорбентам, сводятся к высокой эффективности сбора нефти и нефтепродуктов при небольшом времени поглощения загрязнения с поверхности. При этом сам сорбент не вносит загрязнений и отвечает экологической безопасности.

Известен способ обработки гидролизного лигнина ((SU 1813051, C 02 G 1/00, 04.04.1991). Сущность изобретения заключается в том, что гидролизный лигнин суспендируют в воде, измельчают при помощи серии электрогидравлических ударов и разделяют на твердый и жидкий компонент, позволяющий освободить целевой продукт от примесей. К недостаткам способа можно отнести то, что процесс измельчения требует сложного оборудования.

Известен сорбент для очистки поверхности воды от нефти и нефтепродуктов (RU 2146318, Е 02 B 15/04, 13.12.1995). Сорбент содержит гидролизный лигнин 45-50% с влажностью 7-12% и 40-50% золы теплоэлектростанций, остальное вода. Нефтепоглощающая способность сорбента равна 3,9 г/г, время контакта 10 минут.

Известен способ сбора нефти и нефтепродуктов с водной поверхности при аварийных разливах (RU 2033389, C 02 F 1/28, E 02 B 15/04, 15.07.1991). На нефтяное пятно наносят сорбент - гидролизный лигнин влажностью 8-15% при объемном расходе 15-35% от объема разлитой нефти и нефтепродуктов. После впитывания нефти полученный пласт извлекают механическими средствами. Способ позволяет при поглотительной способности лигнина 3,3 л/кг длительное время удерживаться с нефтью на поверхности воды. К недостаткам известных сорбентов и способа их использования можно отнести невысокую нефтепоглащающую способность за счет повышенной влажности лигнина.

Задача, на решение которой направлены изобретения, заключается в получении сорбента для очистки поверхности от нефти и нефтепродуктов, обладающего повышенной нефтепоглощающей способностью при небольшом времени контакта с загрязненной поверхностью.

Поставленная задача решена следующим образом. Сорбент для сбора нефти и нефтепродуктов, полученный в процессе щелочной обработки гидролизного лигнина в виде частиц размером не более 5 мм, характеризуется тем, что он выполнен в виде нефракционного порошка и/или гранул с размером частиц 1-5 мм, и/или мелкодисперсного порошка размером частиц менее 1 мм, имеющих нефтепоглотительную вместимость 300-600% при времени поглощения 15-30 секунд, при чем при получении сорбента в процессе щелочной обработки лигнина отделяют твердые частицы примесей, суспензию подвергают размолу и фильтрации с получением осадка с влажностью не более 70%, гранулированием осадка, сушкой гранул до влажности не более 8% и их измельчением с получением целевого продукта. Способ получения сорбента включает щелочную обработку гидролизного лигнина, сушку и отличается тем, что в процессе щелочной обработки гидролизного лигнина отделяют твердые частицы примесей, полученную суспензию подвергают размолу и фильтрации до влажности осадка не более 70%, полученный осадок подают на гранулирование, полученные гранулы сушат до влажности не более 8%, подвергают измельчению до размера частиц не более 5 мм и получают целевой продукт с различным гранулометрическим составом - в виде нефракционированного порошка, гранул с размерами частиц 1-5 мм, мелкодисперсного порошка с размерами частиц менее 1 мм, при этом целевой продукт характеризуется нефтепоглотительной вместимостью от 300-600% и временем поглощения 15-30 секунд. Способ сбора нефти и нефтепродуктов с загрязненной поверхности включает нанесение на нее сорбента и отличается тем, что на поверхность наносят полученный сорбент при его удельном расходе, равном 80% от объема нефти или нефтепродуктов, разлитых на твердой поверхности, или равным 20% от объема нефти и нефтепродуктов на водной поверхности.

Гидролизный лигнин является водонерастворимым веществом сложного состава, включающим конденсированные производные природного полимера лигнина, поли- и олигосахариды, органические кислоты, смолы, зольные элементы. Развитая внутренняя поверхность обуславливает проявление сорбционных свойств.

По гранулометрическому составу сорбент (СОРГ) выпускают в виде трех модификаций: нефракционированный порошок (СОРГ-Л), мелкодисперсный порошок с размерами частиц менее 1 мм (СОРГ-П), гранулы с размером частиц 1-5 мм (СОРГ-Г).

Способ получения сорбента содержит следующую последовательность операций.

- Гидролизный лигнин подают на вибросортировку, где происходит отсев крупной фракции размером свыше 10 мм. Просеянный лигнин шнеком подают в емкость для нейтрализации.

- В емкость для нейтрализации подают горячую воду и раствор едкого натра. Сюда же порционно подают отсортированный лигнин с размерами частиц не менее 10 мм. Загрузку лигнина проводят при включенной мешалке реактора. Тяжелые частицы в полученной суспензии осаждаются на дно и далее их удаляют в отвал.

- Нейтрализацию остаточной серной кислоты, содержащейся в лигнине, осуществляют до достижения рН=6-8, затем процесс прекращают.

- Производят размол суспензии лигнина за счет работы насоса измельчителя. Нейтральная суспензия из емкости подается на измельчитель и вновь возвращается в сборник.

- Размолотую суспензию лигнина из емкости подают насосом на фильтрующие центрифуги. Сгущают до влажности осадка на фильтре не более 70%. По окончании фильтрации осадок влажного прессованного сорбента снимают.

- Обезвоженный сорбент порционно подают в шнековый гранулятор. Гранулированные влажные гранулы отправляют на сушку.

- Влажные гранулы сушат до влажности не более 8% путем продувки воздухом, нагретым до температуры 110-120°С. По окончании сушки гранулы измельчают и фракционируют.

- Измельчение сухого сорбента осуществляют до размера частиц не более 5 мм. Размолотые гранулы и порошок подают на сортировку.

- Пылевидная фракция, отделяемая в процессе сортирования, используется в качестве модификации сорбента СОРГ-П, а гранулы - СОРГ-Г.

- Сорбент фасуют, взвешивают и отправляют на хранение.

Полученный сорбент характеризуется следующими физико-химическими характеристикам. СОРГ - аморфный рыхлый порошок или гранулы темно-коричневого цвета без посторонних примесей, нерастворимый в воде, разлагается при температуре свыше 140°С, не токсичен.

В процессе гидролиза и последующей щелочной активации сорбент приобретает пористую структуру и по сорбционным характеристикам является макропористым сорбентом со средним размером пор порядка 1,0 мкм и удельной поверхностью порядка 40 м2/г. Эти особенности определяют хорошую сорбционную емкость сорбента по отношению к нефти и нефтепродуктам.

Нами были проведены испытания СОРГа различных модификаций по показателю нефтепоглотительная вместимость (способность) при комнатной температуре на различных модельных составах: дизельное топливо, масло трансмиссионное, керосин, мазут.

Полученные в ходе испытаний на водной поверхности результаты представлены в таблицах.

Определение сорбционных свойств различных модификаций сорбента

Таблица 1
Сорбционная емкость различных модификаций сорбентов, %
Вид загрязнителяТолщина пленки, ммСОРГ-ЛСОРГ-ПСОРГ-Г
Дизельное топливо0,112214235
1161259122
2214161153
5222202189
Трансмиссионное масло ТМ5-180,1354413
1210268138
2224443214
5379422256
Таблица 2
Сорбционная емкость различных модификаций сорбентов, %
Вид загрязнителяТолщина пленки, ммСОРГ-ЛСОРГ-ПСОРГ-Г
ТАД-171320310-460150-180
3290310-430170-260
5300360-600180-220
Керосин1170220-520170-180
3240220-260140-240
5250230-260160-250

Нефтепродукт - дизельное топливо

Таблица 3Модификация сорбента - СОРГ-Л
Толщина пленки, ммКол-во масла, см3Кол-во израсх. Сорбента, гСорбционная емкость, %
12345
10,119,714122
21197106161
32394160214
45985386222
Таблица 4Модификация сорбента - СОРГ-П
Толщина пленки, ммКол-во масла, см3Кол-во израсх. сорбента, гСорбционная емкость, %
12345
10,119,712142
2119766259
32394212161
45985424202
Таблица 5Модификация сорбента - СОРГ-Г
Толщина пленки, ммКол-во масла, см3Кол-во израсх. сорбента, гСорбционная емкость, %
12345
10,119,74835
21197140122
32394224153
45985452189

Нефтепродукт - масло трансмиссионное ТМ5-18

Таблица 6Модификация сорбента - СОРГ-Л
Толщина пленки, ммКол-во масла, см3Кол-во израсх. Сорбента, гСорбционная емкость, %
12345
10,119,74835
2119784210
32394158224
45985234379
Таблица 7Модификация сорбента - СОРГ-П
Толщина пленки, ммКол-во масла, см3Кол-во израсх. сорбента, гСорбционная емкость, %
12345
10,119,74044
2119766268
3239480443
45985210422
Таблица 8Модификация сорбента - СОРГ-Г
Толщина пленки, ммКол-во масла, см3Кол-во израсх. Сорбента, гСорбционная емкость, %
12345
10,1---
21197128138
32394166214
45985346256
Таблица 9Удельный расход сорбента СОРГ-П для полного поглощения пятна загрязнителя на твердой поверхности
Вид загрязнителяУдельный расход сорбента на твердой поверхности, масс.%
Керосин126
ТАД-17130
Таблица 10Нефтепоглотительная вместимость сорбента СОРГ-Л при сорбции масла трансмиссионного ТАД-17 и мазута
Вид загрязнителяНефтепоглотительная вместимость, масс.%
ТАД-17254
Мазут521

Сорбент СОРГ может быть использован для очистки пресных и соленых водоемов, а также почвы от загрязнений нефтью и нефтепродуктами. Сорбент наносят на загрязненную поверхность известными способами (например, вручную, с помощью залпового выброса и т.п.) и после окончания процесса сорбции отработанный сорбент с загрязнениями удаляют с поверхности. Нефтепоглотительная вместимость сорбента в зависимости от его модификации и вида загрязнения колеблется от 300 до 600%. Время поглощения с поверхности составляет 15-30 секунд (при температуре +20°С).

1. Сорбент для сбора нефти и нефтепродуктов, полученный в процессе щелочной обработки гидролизного лигнина в виде частиц размером не более 5 мм, отличающийся тем, что сорбент выполнен в виде нефракционного порошка, и/или гранул с размером частиц 1-5 мм, и/или мелкодисперсного порошка размером частиц менее 1 мм, имеющих нефтепоглотительную вместимость 300-600% при времени поглощения 15-30 с, причем при получении сорбента в процессе щелочной обработки лигнина отделяют твердые частицы примесей, суспензию подвергают размолу и фильтрации с получением осадка с влажностью не более 70%, гранулированием осадка, сушкой гранул до влажности не более 8% и их измельчением с получением целевого продукта.

2. Способ получения сорбента, включающий щелочную обработку гидролизного лигнина, сушку, отличающийся тем, что в процессе щелочной обработки гидролизного лигнина отделяют твердые частицы примесей, полученную суспензию подвергают размолу и фильтрации до влажности осадка не более 70%, полученный осадок подают на гранулирование, полученные гранулы сушат до влажности не более 8%, подвергают измельчению до размера частиц не более 5 мм и получают целевой продукт с различным гранулометрическим составом в виде нефракционированного порошка, гранул с размерами частиц 1-5 мм, мелкодисперсного порошка с размерами частиц менее 1 мм, при этом целевой продукт характеризуется нефтепоглотительной вместимостью от 300-600% и временем поглощения 15-30 с.

3. Способ сбора нефти и нефтепродуктов с загрязненной поверхности, включающий нанесение на нее сорбента, отличающийся тем, что на поверхность наносят сорбент, охарактеризованный в п.1, при его удельном расходе, равном 80% от объема нефти или нефтепродуктов, разлитых на твердой поверхности, или равным 20% от объема нефти и нефтепродуктов на водной поверхности.

www.findpatent.ru

сорбент для сбора нефти и способ его получения - патент РФ 2479348

Изобретение относится к сорбентам для очистки от нефти водных поверхностей. Сорбент для сбора нефти на поверхности воды содержит (мас.%): порошкообразный углерод - 2,6-3; гидрофобизатор - 3-3,4; полиамидное волокно - 14-24; резиновая крошка - остальное. Сорбент получают перемешиванием компонентов. На предварительно измельченное полиамидное волокно распылением наносят гидрофобизатор. В половину массы резиновой крошки при перемешивании вводят одну треть расчетного количества углерода, массу перемешивают 10-20 минут. Затем постепенно вводят измельченные волокна, после этого вводят оставшуюся половину резинового порошка. Массу перемешивают еще 20 минут и затем в течение 20 минут при перемешивании вносят остальную часть углеродного порошка. После введения всех компонентов состав подвергают перемешиванию еще 10 минут. Согласно изобретению получен новый сорбент, обладающий улучшенной способностью к хранению. Сорбент не слеживается более 2-х лет. 2 н.п. ф-лы, 1 табл.

Изобретение относится к сорбентам для очистки от нефти водных поверхностей, а именно к сорбентам для удаления разлитой нефти и нефтепродуктов с поверхности водоемов.

Разливы нефти периодически происходят во всем мире, и причины их различны. Для защиты окружающей среды необходимо ликвидировать без остатка нефтяные пятна, наносящие невосполнимый ущерб природе. Предпочтительнее всего для этого пользоваться сорбирующими материалами. Нефтяные сорбенты - высокоэффективные вещества, функцией которых является очистка воды и почвы от нефтепродуктов. За счет своей гигроскопичной микроструктуры, пористости и большой удельной поверхности сорбенты впитывают в себя нефть. При этом желательно, чтобы сами сорбенты могли использоваться многократно, были бы недороги и после использования могли быть утилизированы.

Известен [Пат. РФ 2091159, опубл. 27.09.1997] сорбент, содержащий хлопоксодержащие отходы прядильного производства и целлюлозосодержащие отходы сельского хозяйства растительного происхождения, имеющие пространственно-каркасную структуру. Для развития пористой структуры сорбента их предварительно просушивают и измельчают при следующем соотношении компонентов, мас.%: хлопоксодержащий отход 40 - 70, целлюлозосодержащий отход 30-60, причем сорбент содержит хлопоксодержащие и целлюлозосодержащие отходы в виде трехслойного пакета, внешние слои которого содержат хлопоксодержащие отходы, а внутренние - целлюлозосодержащие отходы. В качестве целлюлозосодержащих отходов сорбент содержит соломенную или камышовую сечку и древесные опилки определенного размера в соотношении:

0,5-1,0 мм 60-80

1,0-2,0 мм 15-30

2,0-3,0 мм 5-10

Известен [Заявка Великобритании 20040026619, опубл. 04.12.2004 г.] способ извлечения загрязнений из жидкостей с помощью вулканизированной резины, полученной с заводов по переработке шин. Резину, которая может быть природной, синтетической или их смесью, предварительно гранулируют или истирают, получая гранулы или чешуйки. Вулканизированная резина может быть сформована в плитки или распылена на загрязненную водную поверхность. Повышенную плавучесть достигают введением безводного порошка, термообработкой или промывкой перед применением. Альтернативно, вулканизированная резина в процессе применения тонет, и обрабатываемые водные загрязнения тонут на дне. Типичный состав резиновых частиц следующий: природная или синтетическая резина 35%, сажа 30%, оксид цинка 5%, стеариновая кислота 3%, технические масла 10%, наполнители 10%, органические ускорители 2%, другие компоненты 5%. Этот состав стабилен при температуре от 50°С до 150°С из-за примененного при вулканизации углерода. Когда обработанная таким образом резина адсорбирует нефтяные разливы и плавает очень близко к поверхности воды, ее собирают каким-либо из известных способов и затем либо регенерируют, либо утилизируют.

Известен [Пат. РФ 2108147, опубл. 10.04.1998] поглотитель Сорбойл, который получают простым смешением всех компонентов в обычных условиях, при этом в качестве оборудования может быть использован, например, горизонтальный роторный смеситель для сыпучих материалов. При изготовлении поглотителя в смеситель загружают резиновый порошок, а затем, в процессе перемещения его по смесителю, подают необходимое количество измельченного волокна и порошкообразного углеродного материала. Компоненты равномерно распределяются по рабочему объему смесителя, образуя сыпучую массу, перемещаемую далее на выгрузку.

Резиновый порошок, полученный при переработке изношенных шин, обычно содержит до 5 мас.% измельченных волокон корда, поэтому при смешении добавляют волокна, полученные, например, из отходов коврового, кордного и текстильного производства. Выбор соотношений компонентов определяется их физическим состоянием.

При этом в смеситель загружают компоненты в следующем соотношении:

- порошкообразный углеродный материал из группы "технический углерод, кокс, графит" - 0,5-0,25;

- измельченное волокно из натурального, и/или синтетического, и/или искусственного материала (в частности, из отхода коврового, кордного и текстильного производства - 20-30;

- резиновый порошок (в частности, из отходов производства резиновых изделий или из изношенных резиновых изделий) - остальное.

Если в смеси имеется избыток указанного углеродного материала, то в процессе сорбции наблюдается расслоение поглотителя, в связи с чем поглощающая способность падает.

Недостатком этого состава является и то, что через некоторое время наблюдается его набухание в воде за счет адсорбции воды волоконной составляющей. При длительном хранении происходит разделение и расслоение состава на угольную и резиновую составляющие, и кроме того, через некоторое время наблюдается слеживаемость сорбента, что ведет к ухудшению его эксплуатационных свойств.

Задача, стоявшая перед разработчиками предлагаемого технического решения, состоит в разработке сорбента с хорошей сорбирующей способностью, способного длительное время находиться на поверхности воды, не слеживающегося и не расслаивающегося при хранении.

Сущность предлагаемого решения состоит в том, что разработан новый сорбент для сбора нефти на поверхности воды, включающий порошкообразный углерод, полиамидное волокно и резиновую крошку, имеющий следующий состав, мас.%:

порошкообразный углерод 2,6-3,0
гидрофобизатор 3,0-3,4
полиамидное волокно 14,0-24,0
резиновая крошка остальное.

Кроме того, разработан способ получения этого сорбента, включающий перемешивание компонентов, отличающийся тем, что на предварительно измельченное полиамидное волокно при перемешивании наносят распылением гидрофобизатор, затем в половину массы резиновой крошки при перемешивании постепенно вводят одну треть расчетного количества углерода, массу перемешивают 10-20 минут, и постепенно, в течение 10 минут, вводят измельченные волокна, затем вводят оставшуюся половину резинового порошка, после этого массу перемешивают еще 20 минут, затем в течение 20 минут при перемешивании вносят остальную часть углеродного порошка, и после введения всех компонентов состав подвергают перемешиванию еще 10 минут. В результате получают готовый продукт.

В качестве углеродного порошка может быть использован, например, углерод технический К-354; углерод, соответствующий ГОСТ 7885-86; углерод технический марки № 220, соответствующий ТУ 38 41558, а также другие коммерчески доступные марки, без ограничения.

В качестве гидрофобизатора могут быть использованы коммерческие марки этого продукта, например гидрофобизатор по ГОСТ 13032-77, или другой подобный продукт, без ограничения.

В качестве сырья для резиновой крошки используют отходы шинного производства, отработанные шины и другое вторичное резиновое сырье, которое предварительно подвергают помолу любым известным способом до получения крошки размером от 2 до 10 мм. В качестве волокон применяют измельченное кордовое волокно.

Отличие предлагаемого решения от прототипа состоит в том, что предлагаемый состав при указанном новом соотношении компонентов содержит гидрофобизатор, который наносят на измельченное полиамидное волокно. Подготовленное таким образом волокно сразу же перемешивают с остальными компонентами, при этом происходит налипание на них углерода и мелких частиц резины. В результате образуется новый состав сорбента, в котором компоненты находятся в определенном соотношении. Кроме того, разработан новый способ приготовления сорбента, включающий определенную последовательность введения установленных количеств исходных составляющих и определенное время их перемешивания. Этот способ позволяет получить сорбент с улучшенными свойствами.

ПРИМЕРЫ

Пример 1

Готовят 100 кг сорбента состава, мас.%:

порошкообразный углерод 2,6
гидрофобизатор (ПМС-5)3,4
полиамидное волокно 14,0
резиновая крошка остальное.

Сорбент готовят, вводя в измельчитель сначала резиновый материал в виде крупных кусков неправильной формы, который перемалывают, вводя в него 2 порции по 40 кг с интервалом в 10 минут, и получают резиновую крошку размером около 4-6 мм.

Параллельно готовят полиамидный компонент, для чего распыляют 3,4 кг гидрофобизатора - полиметилсилоксановую жидкость ПМС-5, над поверхностью 14 кг полиамидного волокна при перемешивании. Затем в 40 кг резиновой крошки при перемешивании постепенно вводят 0,8 кг порошкообразного углерода, массу перемешивают 10 минут, и постепенно, в течение 10 минут, вводят измельченные полиамидные волокна, на которые только что нанесен гидрофобизатор, и оставшуюся половину резинового порошка. После их введения массу перемешивают еще 20 минут, затем в течение 20 минут при перемешивании вносят 1,6 кг углеродного порошка, и перемешивание продолжают 10 минут. По завершении перемешивания в бункер выгружают готовый продукт.

Пример 2

Готовят сорбент состава, масс.%:

порошкообразный углерод (ТУ 38 41558) 3,0
гидрофобизатор (ПМС-100р)3,0
полиамидное волокно 24,0
резиновая крошка остальное.

Готовят сорбент в количестве 100 кг. Для этого в измельчитель вводят резиновый материал в виде крупных кусков неправильной формы, который перемалывают, вводя его порциями с интервалом в 10 минут, и получают резиновую крошку размером около 4-6 мм.

Распыляют указанный гидрофобизатор над поверхностью 24 кг измельченного полиамидного волокна, которое перемещают по шнековому смесителю. Резиновый материал в количестве 33 кг от планируемого (требующегося по заданию) количества перемалывают в течение 20 минут.

В полученную крошку постепенно вводят 1 кг порошка углерода, перемешивают 20 минут и постепенно, в течение 10 минут, вводят 24 кг измельченных гидрофобизированных волокон, на которые только что нанесен гидрофобизатор, и затем - остальную часть резиновой крошки. Массу перемешивают еще 20 минут, внося остальную часть углеродного порошка. После введения всех компонентов состав подвергают перемешиванию еще 10 минут.

Готовый продукт выгружают в бункер.

Для подтверждения возможности применения различных гидрофобизаторов приведены дополнительные примеры получения сорбента и его составы, см. Таблицу. Способы нанесения разных типов гидрофобизаторов не отличаются.

В некоторых отдельных случаях может подбираться только вид их распыления (в разогретом виде или в виде раствора), если этого требует вязкость применяемого гидрофобизатора), однако это не является предметом данного изобретения. Выбор гидрофобизатора определяется его доступностью, удобством применения в данной технологии и экологическими свойствами.

Новый сорбент обладает улучшенной способностью к хранению, поскольку при хранении в течение 2-х лет не наблюдалось его расслаивания на компоненты

Сравнительные испытания сорбента, приготовленного по прототипу, показали, что плавучесть известного сорбента составляла до 40 дней, а расслаивание наблюдалось через 11 месяцев хранения.

При введении гидрофобизатора, но при простом перемешивании компонентов (то есть не по заявляемому способу получения), расслаивание сорбента наблюдалось через 12 месяцев хранения.

Сорбент, полученный согласно предлагаемому изобретению, сохраняет плавучесть не менее 80 дней, не слеживается за 24 месяца хранения и более.

Таким образом, решена задача, стоявшая перед авторами изобретения: разработаны новый состав и способ его получения, позволивший улучшить однородность и антислеживаемость сорбента, благодаря чему предотвращается расслоение состава на компоненты при хранении.

Предлагаемый способ получения позволяет получать материал сорбента строго определенного однородного состава. Улучшение эксплуатационных свойств проявляется также в увеличении срока неслеживаемости товарного продукта до 2-х лет и более. Сорбент после 2-х лет хранения (в экспериментальных условиях) показал поглотительную способность нефть/сорбент не менее 8 см3 /1 см3.

Испытания в рабочих условиях в акватории Мурманского порта показали, что сорбент поглощает нефть в массовом соотношении нефть/сорбент, равную 8 см3 /1 см3, время достижения равновесного состава - 10-15 минут. При этом сохраняется плавучесть поглотившего сорбента в течение 80-90 суток. Это позволяет собирать его в течение длительного времени, проводя неоднократно промежуточную регенерацию. Отработанный сорбент может быть использован в качестве компонента асфальтовых покрытий или как топливо для промышленных предприятий.

Таким образом, в результате создания предлагаемого изобретения решается задача, стоявшая перед авторами изобретения.

ТАБЛИЦА
Пример Состав Свойства**
Порошкообразный углерод, мас.% Гидрофобизатор П-мид вол-но*, мас.% Резин. крошка, мас.% 1С, мес. 2С, дней
ТипМас.%
1 23 45 67 8
1 2,6 технический марки К-354ПМС-5 3,4 14,0 до 10026 95
2 3,0 ТУ 38-41558 ПМС-100 3,024,0 2690
3 2,8ПМС-400 3,0 20,025
42,6 Бутилолеат (ВО) 3,320,2 2485
5 3,0Бутил стеарат 3,0 18,024
62,6 Стеарат кальция 3,424,0 2482
7 2,8Стеарат натрия 3,2 20,024 82
8 3,0 Мылонафт***3,4 24,0 2485
9 3,0Жирные кислоты C12-24 3,020,0 2480
* - полиамидное волокно.
** - 1С - слеживаемость не наблюдается, месяцев; 2С - плавучесть, дней.
*** - техническая смесь натриевых солей нафтеновых кислот, получаемая как отход при щелочной очистке керосиновых, газойлевых и соляровых дистиллятов нефти. М. - мазеобразный продукт от соломенно-желтого до темно-коричневого цвета с неприятным запахом.

Все перечисленные в таблице сорбенты не расслаивались в течение срока испытания (см. столбец 7 Таблицы).

Сорбирующая способность составляла от 6 до 8 г/см3 и более.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Сорбент для сбора нефти на поверхности воды, включающий порошкообразный углерод, полиамидное волокно и резиновую крошку, имеющий следующий состав, мас.%:

порошкообразный углерод 2,6-3
гидрофобизатор 3-3,4
полиамидное волокно 14-24;
резиновая крошкаостальное

2. Способ получения сорбента по п.1, включающий перемешивание компонентов, отличающийся тем, что на предварительно измельченное полиамидное волокно при перемешивании наносят распылением гидрофобизатор, затем в половину массы резиновой крошки при перемешивании постепенно вводят одну треть расчетного количества углерода, массу перемешивают 10-20 мин, и постепенно в течение 10 мин вводят измельченные волокна, затем вводят оставшуюся половину резинового порошка, после этого массу перемешивают еще 20 мин, затем в течение 20 мин при перемешивании вносят остальную часть углеродного порошка и после введения всех компонентов состав подвергают перемешиванию еще 10 мин.

www.freepatent.ru

Сорбент для сбора нефти и нефтепродуктов С-ВЕРАД

Сорбент для сбора нефтепродуктов торговой марки С-ВЕРАД – это инновационное и, по сути своей, уникальное изделие с высокой впитывающей способностью. Будучи гидрофобными (водоотталкивающими), они идеально подходят для удаления нефтепродуктов. Сорбент С-ВЕРАД для сбора нефтепродуктов используются для устранения разливов углеводородов как на твердой поверхности (бетон, грунт, земля), так и на воде. Сорбенты для нефтепродуктов являются водоотталкивающими и плавучими – сорбент будет держаться на поверхности воды до 100%-го намокания – 100 суток, используются для поглощения углеводородов.

Минеральный сорбент С-Верад для сбора нефтепродуктов представляет из себя серебристо желтые гранулы размером от 0,5 до 2 мм, относится к группе НГ (негорючие) – он не горит сам по себе и не поддерживает горение других веществ., поэтому его можно эффективно и безопасно применять в условиях, когда предъявляются требования к пожарной и взрывобезопасности, а именно – в случае ликвидации разлива любых нефтепродуктов. Кроме того, С-ВЕРАД – абсолютно инертен и устойчив к действию различных агрессивных веществ, поэтому его с успехом используют для сбора разливов кислот, щелочей и других токсичных жидкостей. Обработка сорбента бактериальным препаратом, специально разработанного нашей компанией, позволила достичь того, что процесс деструкции просорбированного нефтепродукта начинается уже как на поверхности сорбента, так и в порах внутри гранул, которые имеют пористую структуру. Этим достигается большое преимущество перед прочими материалами для сбора разливов, а именно – простота утилизации. Отработанный сорбент собирается и вывозится для хранения на обычный полигон, согласно Паспорту Безопасности, где в течение 3 месяцев происходит окончательная биодеградация нефтепродукта. Способность к биоремедиации, в некоторых случаях, позволяет вообще отказаться от вывоза. Во-первых, процесс ремедиации может происходит прямо на месте разлива; во-вторых, в случае тилизации выжиганием, собранный продукт сгорает, а негорючий сорбент может использоваться повторно.Этот процесс можно повторять 3-4 раза.

Сорбент С-ВЕРАД очень удобен в использовании – не разносится ветром, не пачкается, не липнет к оборудованию, процесс сорбции начинается сразу в момент контакта.

Возможности и преимущества сорбента С-ВЕРАД для сбора нефти, нефтепродуктов, дизтоплива, кислот, щелочей, жиров и масел:

  • Пожаробезопасность, взрывобезопасность
  • Гидрофобность
  • Способность к биоремедиации
  • Экономичность
  • Могут использоваться не только на улице, но и в закрытом помещении
  • Удобство использования

Области применения сорбента С-ВЕРАД для сбора нефти, нефтепродуктов и масел:

  • Ликвидация разлива любых нефтепродуктов на грунте, земле, бетоне и др. твердых поверхностях
  • Ликвидация разливов жидкостей под оборудованием и станками в производственных помещениях, на складах, базах, станциях
  • Сбор разливов жидкостей на основе нефтепродуктов и масел в стоках, каналах, прудах, озерах, реках и других водоемах

www.cverad.ru

Сорбент для сбора нефти

 Уникальный сорбент  для сбора нефти

 

Сорбент для сбора нефти Бос

Стремительный рост нефтедобывающей и нефтехимической промышленности привёл к учащению различных аварий, разливов нефти и нефтепродуктов. Сегодня существует множество способов локализации и сбора таких загрязнений. Особой популярностью пользуется сорбент нефти – специальное вещество, позволяющее быстро и эффективно очищать от нефтепродуктов водные и твёрдые поверхности.

Производственная компания «АМВРОС» предлагает вашему вниманию биоокисляющий сорбент "БОС" для сбора нефти , обладающий адсорбирующими свойствами. Этот уникальный продукт сохраняет плавучесть на протяжении нескольких суток. Биосорбент используется для локализации нефтеразлива и оперативной ликвидации утечек нефти, может быть использован для биоразложения нефтеуглеводородов, осевших на дно водоёмов. Применение биоокисляющего сорбента активизирует природные процессы самоочищения. Биосорбент применяется как автономно, так и в сочетании с традиционными средствами механического сбора. Процесс биодеструкции нефтеуглеводородов идёт также в донных отложениях и береговой зоне, в том числе в анаэробных условиях.

Материал прост в использовании и удобен в хранении. Высококачественный и надёжный сорбент для сбора нефтепродуктов позволяет предотвратить экологическую катастрофу и сохранить окружающую среду в неизменном виде.

 

Сорбент БОС изготавливается на специализированных площадках Головного завода, Колпинской слюдяной фабрики и площадке ООО «АМВРОС».

Открытое акционерное общество "Головной завод" 192289, Санкт-Петербург, Обухово, Грузовой проезд, дом 13.

ЗАО Санкт-Петербургская Слюдяная фабрикаАдрес: 196650, Россия, Санкт-Петербург, Колпино, ул. Финляндская, д.31

 

Мы предлагаем компаниям и предприятиям комплексное решение задач по предотвращению и устранению аварийных разливов нефти, мазута, бензина и других нефтепродуктов. Если вы хотите купить сорбент для нефтепродуктов, свяжитесь с нами  по телефону  +7 921 406 24 84 или через форму ЗАКАЗАТЬ ОБРАТНЫЙ ЗВОНОК.

 

 Биоокисляющие сорбенты:

  • рекомендованы к применению специализированными службами России: Госсанэпиднадзора, Минприроды, Министерства по чрезвычайным ситуациям;

  • превосходят по своим характеристикам зарубежные аналоги;

  • выпускаются в промышленных объемах на специализированных предприятиях России;

  • поставляются по заказам как отдельных предприятий, так и территориальных служб для ликвидации нефтяных загрязнений и создания аварийных запасов;

  • изготавливаются с учетом специфики использования.

Возможности:

  • очищают от нефтезагрязнений морские и пресные воды, прибрежную зону, почву;

  • имеют каскадный принцип действия на пятно нефтеразлива, состоящий в последовательной реализации свойств поверхностно-активного модификатора, сорбента носителя эффективных нефтеокисляющих микроорганизмов;

  • обладают экологической чистотой компонентов и обеспечивают безопасность окружающей среды;

  • имеют оптимальный подбор компонентов для каждого объекта, что значительно повышает эффективность действия;

  • обеспечивают активное разложение углеводородов нефти микроорганизмами как на поверхности воды, так и под водой, а также в донных отложениях и береговой зоне.

Применение:

        при очистке водной поверхности:

  • нанесение сорбента на загрязненные нефтепродуктами участки воды осуществляется в зависимости от площади загрязнения подручными средствами или специальными распылителями с судов или с авиации.

  • действия биоокисляющего сорбента проявляется в первые минуты после его нанесения. Пятно нефтепродуктов удерживается на месте и начинает разбиваться на отдельные участки. Нефть сорбируется гранулами препарата соединяясь вместе в отдельные фрагменты, которые или удаляются механически, или остаются на плаву. Микроорганизмы сорбента через 3-4 недели в зависимости от температуры воды окисляют углеводороды нефти на 85-95 % до двуокиси углерода и воды. 

        при очистке грунта:

  • внесение биоокисляющего сорбента в грунт, загрязненный нефтепродуктамина необходимую глубину осуществляется вручную или с помощью сельскохозяйственной техники. При содержании нефтепродуктов в грунте 0,2 – 10 % и глубине нефтезагрязнения 5 – 40 см, на 1м2 площади вносится 200 – 900 г препарата,

  • при концентрации нефтепродуктов в грунте свыше 10 % применяется модификация биоокисляющего сорбента с более высоким содержанием нефтеокисляющих микроорганизмов,

  • разрушение нефтеуглеводородов грунта происходит на 90 – 95 % до двуокиси углерода и воды.

Характеристики биоокисляющих сорбентов для очистки воды и грунта:

 

    Насыпная плотность

кг /м3

140-500

    Размер гранул

мм

1-5

    Сорбционная емкость

кг нефти/кг сорбента

7-9

    Флотационная способность в течение 30 суток

%

40-85

    Относительная гидрофобность

%

70-85

    Доля переработанной нефти (биодеструктивная активность) через 10 суток

 

 

    В аэробных условиях в интервале температур

    +10°С – +25°С

    0°С – +10°С

%

75-90

 

12-20

    В анаэробных условиях в интервале температур

    +10°С – +25°С

    0°С – +10°С

%

 

20-35

12-20

    Изменение биодеструктивной активности после 3 лет хранения

%

15-20

 

amvros-ecology.ru

Сорбенты для сбора нефтепродуктов - СинержиСорб(SynergySorb) собренты для нефтепродуктов

 

Характеристика

Сорбент для нефтепродуктов SynergySorb®/СинержиСорб® ПС-150 изготовлен из экологически чистого растительного сырья по уникальной запатентованной технологии. Сорбент предназначен для ликвидации разливов нефти и нефтепродуктов, а также для промышленной очистки оборудования, емкостей и резервуаров.

Уникальность сорбента SynergySorb®/СинержиСорб® ПС-150 заключается в способности связывать поглощенные углеводороды, превращая их из жидкого состояния в стабильный порошок с полным отсутствием десорбции при любом внешнем воздействии – нагревании, давлении или смывании водой. На поверхностях, очищенных с помощью сорбента SynergySorb®/СинержиСорб® ПС-150, полностью отсутствует масляная пленка. Это принципиально новый уровень очистки с гарантированным результатом.

При ликвидации разливов сорбент SynergySorb®/СинержиСорб® ПС-150 наносится на загрязнённую поверхность при помощи подручных инструментов либо специального оборудования (воздуходувок, пескоструйных пистолетов), а также непосредственно из тарных мешков. Для очистки поверхности использованный сорбент удаляется подручными средствами или промышленными пылесосами, а при сборе нефтенасыщенного сорбента с воды   – сетчатыми черпаками или лопатами. При работе с сорбентом не требуется особых мер предосторожности.

Важным преимуществом сорбента SynergySorb®/СинержиСорб® ПС-150 является его экологическая безопасность, максимально возможная среди сорбентов. У потребителя отсутствует проблема утилизации – насыщенный углеводородами сорбент через дилера передается производителю для дальнейшего использования в производстве.

Сорбционная емкость (по нефти), %

Не менее 350

Насыпная плотность, кг/м3

350-450

Время поглощения, минут

1-10, в сложных условиях до 30*

Кислотность

pH-нейтрален

Диапазон рабочих температур

От +5ºС и выше

* Скорость поглощения зависит от вязкости сорбируемого продукта

www.synergysorb.ru

Состав для получения сорбента для сбора нефти с поверхности воды

 

Использование: в области охраны окружающей среды, для сбора разлитой нефти с поверхности пресных и морских водоемов. Сущность: состав для получения сорбента для сбора нефти с поверхности воды содержит ингредиенты при следующем соотношении, мас. %: порофор 1-3; алюмометилсиликонат натрия (реагент Петросил-2М) 0,5-1,0; мочевиноформальдегидная смола - остальное. 5 табл.

Изобретение относится к области охраны окружающей среды, в частности к сбору разлитой нефти с поверхности пресных и морских водоемов.

Известны составы для получения легких порошкообразных сорбентов, частицы которых представляют собой полые пластмассовые микросферы, получаемые методом распылительной сушки композиций на основе фенолформальдегидных (ф/ф) или мочевиноформальдегидных (м/ф) смол. В указанные композиции для регулирования отдельных свойств микросфер дополнительно вводят химические модифицирующие добавки. Например, в авт.св. N 666136, кл. C 02 F 1/28 защищен состав на основе м/ф смол, в который для повышения сорбционной активности сорбента в результате придания ему гидрофобного характера смачиваемости дополнительно вводят фуриловый спирт. В авт. св. N 1134233, кл. C 02 F 1/28 также защищен состав на основе м/ф смол, дополнительно содержащий диэтиламин для придания сорбенту повышенной водостойкости, гидрофобности и сорбционной активности. Состав по авт. св. N 1341164, кл. C 02 F 1/28 на основе м/ф смол дополнительно содержит поверхностно-активное вещество МЛ-80 для придания сорбенту стабильности его сорбционных свойств. Наиболее близким из известных технических решений к заявляемому изобретению является состав для получения сорбента для сбора нефти с поверхности воды [1] . Данный состав на основе м/ф смол с целью повышения сорбционной активности сорбента дополнительно содержит кремнийорганическую жидкость ГКЖ-10 при следующем соотношении ингредиентов, мас.%: порофор 1 - 3; ГКЖ-10 2 - 3; м/ф смола - остальное. Общими недостатками перечисленных технических решений, в том числе и принятого за прототипа, являются: сравнительно низкая механическая прочность частиц сорбентов, что вызывает их разрушение при распылении на пленку нефти; сравнительно низкая структурная прочность гелеобразной массы, образующейся частицами сорбента с адсорбированной нефтью, что затрудняет ее сбор механическими средствами; снижаются сорбционные свойства сорбентов после их регенерации; сравнительно низкая водостойкость, что ведет к частичному насыщению частиц сорбента водой и тем самым к снижению сорбционной емкости. Задачей изобретения является улучшение эффективности сбора разлитой нефти за счет повышения механической прочности частиц сорбента и структурной прочности гелеобразной массы при одновременном сохранении сорбционных свойств после многократной регенерации сорбента. Решение данной задачи достигается тем, что состав для получения сорбента, содержащий мочевиноформальдегидную смолу и порофор, дополнительно содержит алюмометилсиликонат натрия (реагент Петросил-2М) при следующем соотношении ингредиентов, мас.%: Порофор - 1 - 3 Алюмометилсиликонат натрия - 0,5 - 1,0 Мочевиноформальдегидная смола - Остальное Сопоставительный анализ заявляемого технического решения и прототипа показывает, что хотя в том и в другом случае в составы дополнительно вводится кремнийорганическая жидкость, но наличие в заявляемом составе алюмометилсиликоната натрия (реагента Петросил-2М) приводит к существенному улучшению сорбционной активности сорбента, его механической прочности и особенно прочности гелеобразной массы по сравнению с известными составами, в том числе с составом прототипа. Это свидетельствует о том, что заявляемое техническое решение соответствует критерию "новизна". Кроме того, проведенный анализ показал, что неизвестно применение алюмометилсиликоната натрия в известных технических решениях с целью улучшения сбора разлитой нефти. Поэтому заявляемое техническое решение соответствует критерию "существенные отличия". Алюмометилсиликонат натрия (реагент Петросил-2М) выпускается Данковским химзаводом по ТУ 6-02-1296-84 и представляет собой водорастворимую кремнийорганическую жидкость. Известная область ее применения: для регулирования вязкостных и структурно-механических свойств глинистых буровых растворов при бурении скважин (авт. св. N 1153545). Отдельно сам реагент Петросил-2М в качестве сорбента для сбора разлитой нефти не применяется. Мочевиноформальдегидные смолы выпускаются предприятиями химической промышленности по ГОСТ 14231-69. Они представляют собой вязкие жидкости с содержанием сухого вещества 60 - 70%. Применяются для получения пенопластов, клеев, лаков, пластмасс и т.д. Отдельно сама смола в качестве сорбента для сбора нефти не применяется. Порофор марки ЧХЗ-57 (азобутиронитрил) выпускается по ТУ 6-03-365-79 в ПО "Корунд" (г. Дзержинск), представляет собой белый порошок и применяется в качестве реагента-газообразователя при получении пенопластов. При нагревании выше 60oC порофор разлагается с выделением азота (Энциклопедия полимеров. Т. 3, - М.: Советская энциклопедия, 1977, с. 155). Отдельно порофор в качестве сорбента для сбора нефти не применяется. Технология получения сорбента для сбора разлитой нефти из предлагаемого состава следующая. В реакторе смешивают в необходимых соотношениях мочевиноформальдегидную смолу (например, марки УКС), порофор (марки ЧХЗ-57) и алюмометилсиликонат натрия (марки Петросил-2М). Затем полученную композицию подвергают распылительной сушке, подавая ее насосом в распыливающее устройство (форсунку или центробежный диск), находящееся в верхней части сушильной камеры. Температура на входе в сушильную камеру поддерживают равной 275oC, а на выходе 110oC. Во время падения частицы распыленной композиции в атмосфере горячих газов под действием тепла происходит одновременное отверждение смолы и разложение порофора с выделением азота, который раздувает частицу композиции в полую микросферу. На дне сушильной камеры скапливается готовая продукция - микросферические частицы сорбента. Примеры конкретного приготовления предлагаемого состава и сорбента из него. Пример 1. Перемешивают в реакторе 1 кг порофора, 0,5 кг алюмометилсиликоната натрия и 98,5 кг мочевиноформальдегидной смолы в течение 1 ч. Затем готовую композицию подвергают распылительной сушке при температуре на входе в сушильную камеру 275oC и на выходе 110oC. Пример 2. Перемешивают в реакторе 2 кг порофора, 0,7 кг алюмометилсиликоната натрия и 97,3 кг мочевиноформальдегидной смолы в течение 1 ч. Затем готовую композицию подвергают распылительной сушке при температуре на входе в сушильную камеру 275oC и на выходе 110oC. Пример 3. Перемешивают в реакторе 3 кг порофора, 1 кг алюмометилсиликоната натрия и 96 кг мочевиноформальдегидной смолы в течение 1 ч. Затем готовую композицию подвергают распылительной сушке при температуре на входе в сушильную камеру 275oC и на выходе 110oC. В табл. 1 представлены предлагаемые компонентные составы (составы 1 - 5) и состав прототипа по авт. св. N 1088785 (состав 6) для получения сорбентов для сбора нефти. Причем в составе 1 содержание ингредиентов взято ниже заявляемых значений, в составах 2 - 4 ингредиенты содержатся в пределах заявляемых значений, а в составе 5 содержание ингредиентов выше заявляемых значений. В лабораторных условиях проведена оценка некоторых физико-механических свойств сорбентов, полученных из составов, приведенных в табл. 1. Эти свойства оценивали по следующим методикам. Плотность сорбентов определяли по стандартной методике согласно ТУ 6-05-221-258-75. Водостойкость определяли путем взвешивания после сушки до постоянного веса оставшихся на плаву микросферических частиц при выдержки в воде навески сорбента в течение 60 суток. Механическую прочность оценивали по величине гидростатического давления, при котором в автоклаве разрушалось 50% по весу микросфер. Результаты лабораторных исследований представлены в табл. 2. Как следует из данных табл. 2, сорбент, получаемый из предлагаемого состава при оптимальных соотношениях ингредиентов (составы 2 - 4), обладает низкой плотностью, высокой водостойкостью и гидростатической прочностью. Если соотношение ингредиентов в составе меньше предлагаемых значений (состав 1), то из-за недостаточного содержания в составе порофора образуется много монолитных сферических частиц, которые тонут в воде. Поэтому у данного сорбента низкий показатель водостойкости (68%) при сравнительно хорошей гидростатической прочности (28,2 МПа). Если соотношение ингредиентов в составе выше предлагаемых значений (состав 5), то из-за избытка порофора образуется много крупных вспененных сферических частиц. Они имеют низкую плотность и гидростатическую прочность, поскольку у них очень тонкая оболочка. Из-за избытка порофора также образуются микросферы с дефектами в виде отверстий и тонких пор в оболочке частиц. Поэтому в воде они сразу тонут. Сорбент, полученный из состава прототипа (состав 6), существенно уступает по водостойкости и гидростатической прочности предлагаемому сорбенту. Эксперименты по сбору разлитой нефти с поверхности воды в лабораторных условиях производились по следующей методике. На поверхность воды, налитой в широкий цилиндрический сосуд с делениями, наливается навеска нефти, которая образует на поверхности воды пленку определенной толщины. Затем нефть равномерно распыляет сорбент, который, сорбируя нефть, образует с ней гелеобразную массу. Ее удаляют с поверхности воды механическим способом и взвешивают. С помощью пластометра Ребиндера по глубине погружения конуса в гелеобразную массу под действием нагрузки определяют структурную (пластическую) прочность массы. После отмыва растворителем частиц сорбента от нефти их высушивают и взвешивают, рассчитывая удельный расход сорбента. Степень очистки воды от нефти оценивали на приборе Дина и Старка. В табл. 3 приведены результаты опытов. Толщина пленки нефти во всех опытах была одинаковой, равной 1 мм. Применялась безводная нефть Арланского месторождения Башкирии, имеющая следующую краткую характеристику: плотность 0,845 г/см3, вязкость при 20oC 2,56 сП, содержание, %: смол 26, асфальтенов 3,3, парафина 1,4, масел 11,2%. Как следует из анализа данных табл. 3, по таким показателям как удельный расход сорбента, количество собранной нефти на единицу веса сорбента и степень очистки воды от нефти, предлагаемый сорбент (составы 2 - 4) находится на том же уровне, что и сорбент из состава прототипа (состав 6). Однако прочность гелеобразной массы при использовании предлагаемого состава почти в два раза выше, чем при использовании состава прототипа. Высокая прочность гелеобразной массы позволит избежать ее разрушения (диспергирования) при ветровом или волновом воздействии (например, в морских условиях) и облегчит удаление с поверхности воды механическими средствами. Кроме того, расход кремнийорганической добавки Петросил-2М в предлагаемом составе в 3 - 4 раза ниже, чем кремнийорганической добавки ГКЖ-10 в составе прототипа. В лабораторных условиях проведены опыты по многократному сбору разлитой нефти одним и тем же сорбентом после его регенерации. Они проводились в следующей последовательности. После первого сбора нефти с поверхности воды, оценки удельного расхода сорбента, степени очистки воды от нефти и структурной прочности гелеобразной массы производили регенерацию сорбента путем экстракции отмыва растворителем, его высушивали и вновь распыляли на вновь налитую навеску нефти. Опыты в такой последовательности повторяли многократно (до 10 раз). В табл. 4 приведены данные, полученные в результате указанных экспериментов. Так как разлитая на воде нефть в реальных условиях под воздействием ветра, волнения, солнца окисляется и частично переходит в эмульгированное состояние, то важно было оценить способность сорбентов сорбировать нефть из эмульсии. Эмульсию первого рода типа "нефть в воде" готовили путем интенсивного перемешивания нефти и воды, взятых в соотношении 1 : 1, с помощью миксера "Воронеж" при скорости вращения 9000 об/мин. Чтобы эмульсия была стабильной, в нее дополнительно вводили эмульгатор (сульфонол) в объемных долях 0,2%. В приготовленную эмульсию вводили навеску сорбента в количестве 5% от объема нефти в эмульсии. Смесь перемешивали 10 мин и оставляли в покое на 30 мин. Частицы сорбента вместе с адсорбированной нефтью всплывали на поверхность, образуя гелеобразную массу. Ее удаляли механическим способом и замеряли структурную прочность. С помощью прибора Дина и Старка определяли остаточное содержание нефти в воде, тем самым оценивали степень удаления нефти из эмульсии. Аналогичные опыты повторяли с навесками сорбентов в 10% от объема нефти в эмульсии. В табл. 5 приведены результаты опытов. Данные табл. 5 свидетельствуют о том, что сорбент из предлагаемого состава при оптимальных соотношениях ингредиентов (составы 2 - 4) способен при расходе порядка 10% (от объема нефти в эмульсии) практически полностью удалить нефть из эмульсии (93 - 98%). Несколько ниже эти значения при расходе сорбента 5% (82 - 90%). Структурная прочность образующейся гелеобразной массы также зависит от расхода сорбента: чем больше расход, тем выше структурная прочность. Что касается сорбент из состава прототипа (состав 6), то он существенно уступает предлагаемому сорбенту и по степени удаления нефти из эмульсии и по прочности образующейся гелеобразной массы. Таким образом, сорбент из предлагаемого состава имеет следующие технико-экономические преимущества по сравнению с сорбентами из известных составов: высокая водостойкость и гидростатическая прочность, что позволяет его эффективно и многократно применять для сбора разлитой нефти; сорбент с адсорбированной нефтью образует гелеобразную массу с высокой структурной прочностью, что позволяет избежать ее диспергации, рассеивания по водной поверхности при ветровом и волновом воздействии; сорбент эффективен и для удаления эмульгированной нефти; экономический эффект может быть получен за счет многократного применения данного сорбента для сбора разлитой нефти.

Формула изобретения

Состав для получения сорбента для сбора нефти с поверхности воды, содержащей порофор и мочевиноформальдегидную смолу, отличающийся тем, что для улучшения эффективности сбора разлитой нефти за счет повышения водостойкости и гидростатической прочности частиц сорбента, а также повышения структурной прочности гелеобразной массы при одновременном сохранении сорбционных свойств сорбента после его многократной регенерации, состав дополнительно содержит алюмометилсиликонат натрия (реагент Петросил-2М) при следующем соотношении ингредиентов, мас.%: Порофор - 1 - 3 Алюмометилсиликонат натрия (реагент Петросил-2М) - 0,5 - 1,0 Мочевиноформальдегидная смола - Остальноез

РИСУНКИ

Рисунок 1, Рисунок 2

www.findpatent.ru

Магнитный сорбент для сбора нефти, масел и нефтепродуктов

Изобретение может быть использовано для удаления нефти, масел и нефтепродуктов с поверхности воды и поверхностного слоя почвы или грунта. Сорбент выполнен гранулированным. Диаметр гранул составляет 1-3 мм. В состав сорбента входят магнитный наполнитель в виде металлического порошка из оксидов Fe3O4 с размером частиц 5-10 мкм, в количестве 8-12%, низинный торф в количестве 75-80% и атактический полипропилен в количестве 8-17%. Низинный торф предварительно перед смешиванием высушен при температурах 105, 120 и 150°С в течение двух, одного и получаса соответственно. Сорбент обладает магнитными свойствами, высокой поглощающей способностью и плавучестью. 1 з.п. ф-лы, 2 табл., 3 пр.

 

Изобретение относится к области производства сорбентов для удаления нефти и нефтепродуктов из воды, других жидких сред, а также с поверхностного слоя почвы или грунта.

Известен способ получения сорбента, предназначенного для удаления нефти и нефтепродуктов, обладающего плавучестью, высокой поглощающей способностью, включающего вулканизат на основе изопренового каучука и вулканизирующую систему, а также - латексную пенорезину (RU 2104780, опубл. 20.02.1998). Однако этот сорбент не обладает магнитными свойствами, что затрудняет сбор и утилизацию уже поглощенных нефти и нефтепродуктов.

Известен пористый магнитный сорбент (RU 2241537, опубл. 10.02.2014), включающий полимерную пористую матрицу и магнитный материал. В качестве полимерной матрицы он содержит пористый сшитый или сверхсшитый полимер со степенью сшивки не менее 60%, удельной поверхностью 800-1900 м2/г и содержанием открытых пор 60-100% от суммарного объема пор, а в качестве магнитного материала содержит магнитный наполнитель с размером частиц от 1 мкм при следующем соотношении компонентов, мас.%:

вышеуказанный сшитый или
сверхсшитый пористый полимер
со степенью сшивки не менее 60% 35-85
вышеуказанный магнитный
наполнитель 15-65

Недостатком указанного сорбента является сравнительно сложная технология его изготовления с использованием веществ - экологических загрязнителей.

Наиболее близким к предлагаемому изобретению является порошкообразный магнитный сорбент для сбора нефти, масел и других углеводородов (RU 2462303, опубл. 27.09.2012).

Указанный порошкообразный магнитный сорбент для сбора нефти, масел и других нефтепродуктов, представляющий собой продукт горнообогатительных комбинатов, содержит ферромагнетики железной руды в виде Fe3O4 и/или Fe2O3 и неорганическое связующее в виде диоксида кремния SiO2 из той же руды при следующем соотношении (мас.%):

Fe3O4 и/или Fe2O 5-59
SiO2 41-95

При этом поверхность сорбента гидрофобизирована высокомолекулярным органическим реагентом, состоящим из углеводородного раствора изобутиламина или гексиламина, или аминового реагента, использованного при флотационном обогащении железной руды.

Технология получения сухого железорудного концентрата включает последовательно процессы дробления железной руды, магнитной сепарации, обратной флотации катионными поверхностно-активными веществами, фильтрации и сушки. В процессе обратной флотации от руды отделяют не оксиды железа, а примесь кварц. Флотацию кварца проводят в щелочной среде с применением ацетатных солей эфиров первичных моно- и диаминов при депрессии минералов железа щелочным крахмалом. Оставшаяся пульпа обогащается минералами железа. Пульпу фильтруют, полученную пасту сушат для получения сухого концентрата. Сухой железорудный концентрат и хвосты после обратной флотации содержат амины.

Недостатком выбранного прототипа является сравнительно сложная технология изготовления, относительно высокая стоимость гранул и сравнительно низкая плавучесть уже поглотивших нефть гранул из-за большого их удельного веса.

Технической проблемой, решаемой заявляемым изобретением, является повышение плавучести магнитного сорбента, поглощающей способности по отношению к нефти и нефтепродуктам, а также снижение экологических и технологических затрат на его изготовление.

Для решения указанной проблемы заявляемый в качестве изобретения магнитный сорбент для сбора нефти, масел и нефтепродуктов выполнен в виде гранул диаметром 1-3 мм и содержит порошок Fe3O4, окисленный атактический полипропилен и низинный торф. Низинный торф предварительно подвергнут последовательной трехступенчатой сушке: при 105°С в течение двух часов, при 120°С в течение одного часа и при 150°С в течение 30 минут.

Соотношение компонентов (мас.%) в составе заявляемого сорбента следующее:

порошок Fe3O4 8-12
окисленный атактический полипропилен 8-17
низинный торф 75-80

Размер частиц порошка Fe3O4 (магнитного наполнителя) при смешивании компонентов в частном случае составляет 5-10 мкм, возможно применение иного размера. Так как размеры торфяного порошка находятся в диапазоне от нескольких мкм до нескольких мм, то выбор размера частиц магнитного наполнителя осуществляется согласно соотношению их удельных поверхностей.

Чтобы торф обладал высокой поглощающей способностью, необходимо, чтобы он был достаточно сухим, но при этом имел строго определенную влажность, не меняя некоторой пороговой величины, которая по литературным данным составляет не более 0,05 мас.%. Установлено, что превышение температуры сушки 120°С приводит к избыточному удалению влаги из массы торфа, поскольку после 120°С резко снижается влажность, а следовательно, пористость и поглощающая способность торфа. Данная техническая проблема решается тем, что для получения пористого магнитного сорбента низинный торф, согласно изобретению, подвергают последовательной ступенчатой сушке при 105, 120 и 150°С в течение двух, одного и получаса соответственно. В ходе экспериментов было установлено, что с повышением температуры по ступенчатому механизму поглощающая способность торфа, как сорбента, существенно увеличивается. После того, как ступенчато высушенный низинный торф в количестве 75-80% смешивают с порошком Fe3O4 в количестве 8-12% и с окисленным атактическим полипропиленом в количестве 8-17%, а затем высушивают и гранулируют в виде шариков-сфер диаметром 1-3 мм, полученный сорбент наряду с магнитными свойствами обладает повышенной плавучестью и поглощающей способностью. Процентное соотношение компонентов получено экспериментальным путем. В таком соотношении обеспечивается наилучший результат по удалению нефти и нефтепродуктов.

При очистке загрязненной поверхности сначала устраивают ограждающие боны, поверхность которых покрывается магниточувствительным материалом. После включения внешнего электромагнитного поля, ограждающие боны удерживаются на воде, при необходимости сталкиваются в нужном фокусе и не дают расплываться нефтяному пятну, что особенно важно при аварийных ситуациях.

В качестве магниточувствительного материала можно использовать окисленный атактический полипропилен (как связующее), смешанный с порошком Fe3O4, что в значительной мере упрощает процесс сбора и утилизации нефтепродуктов.

Получение и применение сорбента показано на конкретных примерах.

Пример 1

Низинный торф Орловского месторождения Томской области последовательно высушивают при 105, 120 и 150°С в течение 2, 1, 0.5 часа соответственно, смешивают с порошком Fe3O4 размером частиц 5-10 мкм и гидрофобным связующим - окисленным атактическим полипропиленом и формируют гранулы-шары диаметром 1 мм.

Поверхность ограждающих бонов также покрывается смесью окисленного атактического полипропилена с порошком Fe3O4 любым способом, например, распылителем-краскопультом, кистью и т.д. После этого в воду, объемом 10 литров, заливают нефть объемом 1 литр, которая расплывается по поверхности. Нефтяное или масляное пятно в воде ограничивается магнитными бонами. Затем в воду с нефтяным пятном засыпают предлагаемый магнитный сорбент на основе торфа в количестве 100 г/м2 поверхности площади пятна. Поглощающая способность гранул очень высокая, их плавучесть сохраняется в течение месяца. Данный состав, как сорбент, обладающий магнитными свойствами, был испытан не только для извлечения нефтепродуктов из воды, но и из грунта или почвы.

После включения источника внешнего электромагнитного поля магнитные ограждающие боны стягиваются в сторону уменьшения площади пятна разлива нефтепродукта, магнитные гранулы сорбента собираются в агрегаты с той силой и в той мере, которая необходима и которая контролируется величиной внешнего магнитного поля. После этого их легко удалять (извлекать из среды: воды или почвы) и утилизировать. Гранулы после центрифугирования могут подвергаться регенерации и подготавливаться к повторному многократному использованию.

Приведенный состав магнитного сорбента с размером гранул 1 мм для примера 1 отвечает следующему содержанию ингредиентов (в мас.%):

низинный торф 75
порошок Fe3O4 8
окисленный атактический полипропилен 17

Пример 2

Сорбент на основе торфа, обладающий магнитными свойствами, выполненный по примеру 1, но с размером гранул 2 мм и содержанием ингредиентов следующего состава (в мас.%):

низинный торф 77
порошок Fe3O4 10
окисленный атактический полипропилен 13

Пример 3

Магнитный сорбент по примеру 1, выполненный с размером гранул

диаметром 3 мм при следующих соотношениях ингредиентов (в мас.%):

низинный торф 80
порошок Fe3O4 12
окисленный атактический полипропилен 8

Полученные свойства и характеристики сорбента для составов, указанных в примерах 1-3, отражены в таблицах 1, 2.

Для сравнения подобные испытания были проведены для сорбента по прототипу с содержанием 8% Fe3O4, 92% SiO2 и следами амина. Полученные данные также приведены в таблицах 1, 2.

Свойства сорбента для извлечения нефти и нефтепродуктов из воды и водных растворов

Свойства сорбента для извлечения нефти и нефтепродуктов из почвы

Состав магнитного сорбента по примеру 2, как в таблице 1 (для воды), так и в таблице 2 (для почвы) является оптимальным.

При этом, по сравнению с прототипом, предложенный магнитный сорбент, как видно из таблиц, превосходит по своей эффективности. Изготовление сорбента превосходит прототип по технологической простоте и экономическим затратам на его создание. Огромные запасы торфа, как местного сырья, отходов магнитного наполнителя и атактического полипропилена позволяют широко варьировать состав сорбента.

Использование клея на основе окисленного атактического полипропилена, смешанного с порошком Fe3O4, для покрытия поверхности ограждающих бонов позволяет управлять процессом очистки среды от нефти и нефтепродуктов с помощью предлагаемого сорбента, как при загрязнении водной среды, так и почвы или грунта.

1. Магнитный сорбент для сбора нефти, масел и нефтепродуктов, выполненный в виде гранул диаметром 1-3 мм, содержащий порошок Fe3O4, окисленный атактический полипропилен и низинный торф, предварительно подвергнутый последовательной трехступенчатой сушке: при 105°С в течение двух часов, при 120°С в течение одного часа и при 150°С в течение 30 минут, при этом он содержит компоненты при следующем соотношении (мас.%):

порошок Fe3O4 8-12
окисленный атактический полипропилен 8-17
низинный торф 75-80

2. Магнитный сорбент по п. 1, отличающийся тем, что размер частиц порошка Fe3O4 составляет 5-10 мкм.

www.findpatent.ru