Способ увеличения нефтеотдачи месторождения и добычи нефти. Способы увеличения добычи нефти


Способ добычи нефти

 

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения нефтеотдачи пластов при их заводнении. Техническим результатом является увеличение добычи нефти при разработке нефтяных месторождений с одновременным снижением обводненности добываемой продукции путем увеличения охвата пласта воздействием и вытеснения остаточной нефти. В способе добычи нефти, включающем закачку в пласт через нагнетательную скважину водного раствора химреагента - оксиэтилированных карбоновых кислот ОКК общей формулы Cnh3n+1COO(C2h5О)mH, где n = 15-20, m = 2-ll с молекулярной массой 344-810, либо их смеси, проталкивание его в пласт водой и отбор нефти через добывающие скважины, дополнительно перед закачкой в водный раствор химреагента вводят органический растворитель при соотношении ОКК или их смеси : органический растворитель – 1:99 – 99:1, причем после закачки проводят технологическую выдержку указанного водного раствора. В качестве органических растворителей могут быть использованы целлозольвы или отходы производства целлозольвов, прямогонные бензины или любой углеводородный растворитель, являющийся компонентом прямогонных бензинов, ацетон, бутанолы. 1 з.п.ф-лы, 3 табл.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для повышения нефтеотдачи пластов при их заводнении.

Известны способы заводнения нефтяных пластов, которые включают закачку в пласт раствора полимера и поверхностно-активных веществ (ПАВ) в виде оторочек [Бурдынь ТА. и др. Методы увеличения нефтеотдачи пластов при заводнении. - М.: Недра, 1983, с. 47-49].

Известные способы недостаточны эффективны при использовании для разработки неоднородных нефтяных пластов.

Известен способ разработки нефтяного пласта, включающий последовательную закачку в пласт водного раствора щелочи с неионогенным ПАВ (НПАВ) и полимера с последующим заводнением и отбор нефти через добывающую скважину. Причем после закачки скважину останавливают для проведения процесса капиллярной пропитки [Пат. РФ №2070282, кл. Е 21 В 43/22, 1996].

Недостатком известного способа является низкая эффективность его при использовании в неоднородных по проницаемости нефтяных пластах.

Наиболее близким по технической сущности и достигаемому эффекту является способ добычи нефти, включающий закачку в пласт через нагнетательную скважину водного раствора химреагента - оксиэтилированных карбоновых кислот (ОКК) общей формулы Cnh3n+1 COO (C2h5O)mH, где n=15-20, m=2-11 с молекулярной массой 344-810 или их смеси, проталкивание водного раствора в пласт водой и отбор нефти через добывающие скважины [Пат. РФ №2178068, кл. Е 21 В 43/22, 2002].

Основным недостатком данного способа является ограниченность его применения только для вытеснения нефти из однородных по проницаемости нефтяных пластов.

Задачей изобретения является увеличение добычи нефти при разработке нефтяных месторождений с одновременным снижением обводненности добываемой продукции путем увеличения охвата пласта воздействием и вытеснения остаточной нефти за счет процесса солюбилизации, а также исключение применения дорогостоящих импортируемых полимеров с целью уменьшения себестоимости добываемой нефти.

Поставленная задача решается тем, что в способе добычи нефти, включающем закачку в пласт через нагнетательную скважину водного раствора химреагента - оксиэтилированных карбоновых кислот (ОКК) общей формулы Cnh3n+1 COO (С2Н4O)mН, где n=15-20, m=2-11 с молекулярной массой 344-810 или их смеси, проталкивание водного раствора в пласт водой и отбор нефти через добывающие скважины, дополнительно перед закачкой в водный раствор химреагента вводят органический растворитель при соотношении ОКК или их смеси: органический растворитель - 1:99-99:1, причем после закачки проводят технологическую выдержку указанного водного раствора.

В качестве органического растворителя используют целлозольвы или отходы производства целлозольвов, прямогонные бензины или любой углеводородный растворитель, являющийся компонентом прямогонных бензинов, ацетон, бутанолы.

Способ добычи нефти может быть применен с высоким эффектом на начальной, средней и поздней стадиях разработки нефтяных месторождений.

В качестве ОКК могут быть использованы оксиэтилированные карбоновые кислоты, выпускаемые отечественной промышленностью: Стеарокс-6 (ГОСТ 8980-75 с изменениями №1, 2, 3), Стеарокс-9 (ТУ 6-36-00203335-82-92), которые представляют собой оксиэтилированную стеариновую кислоту с числом оксиэтильных звеньев 6 и 9 соответственно, и Синтанокс 1720-9 (ТУ 6-14-293-79), который представляет собой смесь оксиэтилированных синтетических жирных кислот фракции C17-C20 с числом оксиэтильных звеньев 9-11 [Поверхностно-активные вещества: Справочник/Абрамзон А.А., Бочаров В.В., Гаевой Г.В. и др.; под ред. А.А.Абрамзона и Г.М.Гаевого. - Л.: Химия, 1979, - 307 с., ТУ 6-36-00203335-82-92, ТУ 6-14-293-79].

В качестве органического растворителя могут применяться оксиэтилированные производные одноатомных алифатических спиртов, например этилцеллозольв (ГОСТ 8313-88), бутилцеллозольв (ТУ 6-01-646-84) и отходы их производства (ОтПр), прямогонные бензины (фракция, выкипающая в пределах начало кипения - 180С) и любые углеводородные растворители, являющиеся компонентами прямогонных бензинов, ацетон (ГОСТ 2603-79), бутанол-1 (ГОСТ 5208-81), бутанол-2 (ГОСТ 9536-79), 2,2-диметилпропанол (ТУ 6-09-4069-75).

При использовании предлагаемого способа вытеснение нефти происходит за счет двух механизмов:

- выравнивания фронта заводнения и увеличения охвата пласта воздействием вследствие снижения скорости фильтрации. Уменьшение подвижности воды достигается повышением структурно-механической прочности раствора при введении ОКК;

- перевода нефти в объем оторочки путем эмульгирования ее с поверхности породы в присутствии ОКК - поверхностно-активного вещества, и органического растворителя.

Таким образом, вытеснение нефти в предлагаемом способе происходит за счет проявления ОКК и загущающих, и поверхностно-активных (эмульгирующих) свойств.

Пример осуществления способа: нефтевытеснение проводят на однородных моделях пласта длиной 25 см и диаметром 1,5 см, заполненных терригенной породой. Образцы пористой среды под вакуумом насыщают пластовой водой с суммарным содержанием солей 55 г/л. Проницаемость насыпной модели 1,3 мкм2. Затем под вакуумом образцы пласта насыщают нефтью вязкостью 220 мПас до остаточной нефтенасыщенности. При вертикальном положении из модели пласта вытесняют нефть водопроводной водой до полной обводненности выходящих проб жидкости из модели пласта (эффективность заводнения 18%). Затем в модель закачивают оторочку водного раствора химреагента с органическим растворителем в количестве, равном одному поровому объему пласта, останавливают процесс нагнетания на время, достаточное для протекания процессов гелеобразования и капиллярной пропитки, и проталкивают ее водопроводной водой до полной обводненности выходящих проб жидкости из модели. Эффективность состава определяют по дополнительно добытой нефти и рассчитывают прирост КНО (коэффициента нефтеотдачи).

В таблице 1 представлены данные о качественном и количественном содержании компонентов в составах, используемых в данном способе добычи нефти, в таблице 2 представлены данные по вязкостным характеристикам и эффективности нефтевытеснения по предлагаемому способу и прототипу.

В случае осуществления способа-прототипа с использованием водного раствора ОКК 0,5-1,0%-ной концентрации для вытеснения нефти вязкостью 220 мПас нефтевытеснение проводили на нефти с вязкостью 22 мПас, коэффициент нефтеотдачи составил 3,8-9,3.

Как видно из данных таблицы 2, использование предлагаемого способа на моделях однородного пласта, насыщенных нефтью с вязкостью 220 мПас, нефтевытесняющий эффект составил 4,52-68,36%.

При осуществлении данного способа добычи нефти за счет вовлечения в разработку трудноизвлекаемых запасов повышается доля нефти в продукции добывающих скважин при сохранении дебита по жидкости и, как следствие, происходит снижение обводненности.

Способ технологичен с точки зрения закачки химреагента в пласт, не требует дополнительных затрат на обустройство промыслов, эффективен на участках, где обводненность продукции добывающих скважин составляет 100%.

Необходимо также отметить, что использование в способе ОКК, обладающих поверхностно-активными свойствами, позволяет снизить устойчивость выходящей водонефтяной эмульсии в продукции добывающих скважин без дополнительной дозировки деэмульгатора (табл.3). Это, в свою очередь, позволит существенно сократить затраты при подготовке нефти.

Из приведенных данных (табл.2) видно, что данный способ позволяет увеличить охват пласта заводнением, повысить коэффициент извлечения нефти по сравнению с прототипом, более экономичен.

Формула изобретения

1. Способ добычи нефти, включающий закачку в пласт через нагнетательную скважину водного раствора химреагента оксиэтилированных карбоновых кислот ОКК общей формулы Cnh3n+1COO(C2h5О)mH, где n = 15-20, m = 2-1 1 с молекулярной массой 344-810 или их смеси, проталкивание водного раствора в пласт водой и отбор нефти через добывающие скважины, отличающийся тем, что дополнительно перед закачкой в водный раствор химреагента вводят органический растворитель при соотношении ОКК или их смеси : органический растворитель = 1:99–99:1, причем после закачки проводят технологическую выдержку указанного водного раствора.

2. Способ по п.1, отличающийся тем, что в качестве органического растворителя используют целлозольвы или отходы производства целлозольвов, прямогонные бензины или любой углеводородный растворитель, являющийся компонентом прямогонных бензинов, ацетон, бутанолы.

www.findpatent.ru

Нефть, Газ и Энергетика: Способы увеличения дебита

Дебит отдельных скважин можно в значительной мере увеличить за счет как внедрения методов интенсификации притока газа, так и улучшения техники и технологии вскрытия пласта усовершенствования оборудования, используемого при эксплуатации скважин.

Методы интенсификации притока газа к забою скважины и ограничения на их применение.

  • гидравлический разрыв пласта (ГРП) и его различные варианты - многократный ГРП, направленный ГРП, ГРП на солянокислотной основе и т.д.;
  • соляная обработка и её варианты;
  • гидропескоструйная перфорация и её сочетания с ГРП и соляной обработкой.

Методы интенсификации не рекомендуется проводить в скважинах с нарушенными эксплуатационными колоннами; с колоннами некачественно зацементированными; в обводнившихся скважинах или в тех, которые могут обводниться после проведения в них работ по интенсификации; в приконтурных скважинах и в скважинах, вскрывших маломощные (2 – 5 м) водоплавающие залежи.

Работы по интенсификации на газовых месторождениях, как правило, начинают тогда, когда месторождение вступает в промышленную разработку. Более рационально их проводить на стадии разведки и опытно-промышленной эксплуатации.

Мероприятия по вскрытию пласта и освоению скважин.
  • бурение горизонтальных скважин;
  • бурение скважин с кустовыми забоями;
  • применение безглинистых растворов при вскрытии продуктивной толщи;
  • вскрытие продуктивных горизонтов с продувкой забоя газом или воздухом;
  • приобщение вышележащих, продуктивных горизонтов без глушения скважины.

Способы усовершенствования техники эксплуатации скважин.

  • раздельная эксплуатация двух объектов одной скважиной;
  • эжекция низконапорного газа высоконапорным;
  • применение плунжерного лифта для удаления с забоя воды;
  • подача на забой поверхностно-активных веществ для очистки скважин от поступающей из пласта воды;
  • усовершенствование конструкции подземного оборудования в коррозийных скважинах и установка в них разгрузочных якорей, пакеров, глубинных клапанов для ввода ингибиторов в фонтанные трубы, комбинирование труб разного диаметра и т.д.

 

www.tehnik.top

Способ увеличения добычи высоковязкой нефти

Изобретение относится к нефтедобывающей промышленности. Технический результат - увеличение добычи высоковязкой нефти из подземной залежи за счет расширения областей залежи, прогреваемых паром и содержащих подвижную нефть. Способ увеличения добычи высоковязкой нефти или битума включает бурение и подготовку залежи к эксплуатации, по меньшей мере, двумя смежными парами горизонтальных параллельных скважин, включающими нагнетательную скважину и расположенную в залежи ниже добывающую скважину для добычи высоковязкой нефти, создание проницаемой зоны между нагнетательной скважиной и добывающей скважиной каждой пары скважин, нагнетание водяного пара по нагнетательным скважинам и одновременное извлечение продукции по добывающим скважинам, давление нагнетания водяного пара в нагнетательной скважине первой пары скважин превышает давление нагнетания в нагнетательной скважине второй смежной пары скважин. При критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину первой пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине второй пары скважин давление нагнетания водяного пара поднимают. При повторных критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину второй пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине первой пары скважин давление нагнетания водяного пара поднимают. Чередующиеся циклы снижения и подъема давления нагнетания водяного пара в нагнетательные скважины смежных пар скважин с предварительным закачиванием изолирующего состава в нагнетательную скважину, в которой запланировано снижение давления закачиваемого водяного пара, повторяют не менее одного раза. 1 пр., 2 ил.

 

Предложение относится к нефтедобывающей промышленности, в частности, к способам увеличения добычи высоковязкой нефти из подземной залежи с применением теплового воздействия.

Известен способ разработки залежи высоковязкой нефти или битума (Патент RU №2287679, МПК Е21В 43/24, опубл. 20.11.2006 г.), направленный на увеличение добычи углеводородной продукции. Способ включает строительство ряда параллельных добывающих двухустьевых горизонтальных скважин, выше ряда параллельных добывающих двухустьевых горизонтальных скважин параллельно ему строят ряд параллельных нагнетательных двухустьевых горизонтальных скважин с расположением в плане нагнетательных скважин между добывающими. При реализации способа нагнетают водяной пар через ряд параллельных нагнетательных двухустьевых горизонтальных скважин с закачкой пара через оба устья каждой нагнетательной двухустьевой горизонтальной скважины, через ряд параллельных добывающих двухустьевых горизонтальных скважин отбирают продукцию, в промежутках между добывающими и нагнетательными двухустьевыми горизонтальными скважинами строят пологие нагнетательные скважины, через которые закачивают растворитель высоковязкой нефти или битума.

Недостатком известного способа является то, что строительство пологих нагнетательных скважин, через которые закачивают растворитель, существенно увеличивает стоимость разработки залежи высоковязкой нефти или битума.

Наиболее близким техническим решением является способ добычи углеводородов из подземной залежи гудронного песка или залежи тяжелой нефти (патент RU №2098613, МПК Е21В 43/24, опубл. 10.12.1997 г.), направленный на увеличение добычи углеводородной продукции. Способ включает бурение и подготовку залежи к эксплуатации по меньшей мере двумя парами скважин, имеющих горизонтальные участки, где каждая пара включает нагнетательную скважину, заканчивающуюся в залежи, и добывающую скважину, заканчивающуюся в залежи ниже уровня нагнетательной скважины, причем горизонтальные участки добывающей и нагнетательной скважины как внутри пары, так и отдельно каждой пары параллельны между собой. При реализации способа создают проницаемую зону между нагнетательной скважиной и добывающей скважиной каждой пары скважин, нагнетание водяного пара осуществляют по нагнетательным скважинам, одновременное извлечение углеводородов осуществляют по добывающим скважинам, при этом давление нагнетания пара в нагнетательной скважине первой пары скважин на 50-2000 кПа превышает давление нагнетания в смежной нагнетательной скважине второй пары скважин.

Недостатком известного способа является то, что при длительной эксплуатации в условиях, когда давление нагнетания пара в нагнетательной скважине первой пары скважин превышает давление нагнетания в смежной нагнетательной скважине второй пары скважин, в пласте происходит формирование высокопроницаемых зон, по которым с опережением продвигается основная масса пара, закачиваемого с повышенным давлением. В отдалении от этих зон пласт не прогревается в достаточной степени, а запасы высоковязкой нефти или битума, содержащиеся в непрогретой части пласта, не могут быть добыты. Кроме того, при опережающем продвижении основной массы пара в направлении добывающих скважин возможно критическое обводнение продукции конденсатом водяного пара, а при обводнении, как правило, происходит снижение дебита по нефти.

Технической задачей предложения является увеличение добычи высоковязкой нефти из подземной залежи за счет расширения областей залежи, прогреваемых паром и содержащих подвижную нефть.

Задача решается способом увеличения добычи высоковязкой нефти, включающим бурение и подготовку залежи к эксплуатации по меньшей мере двумя смежными парами горизонтальных параллельных скважин, включающими нагнетательную скважину и расположенную в залежи ниже добывающую скважину для добычи высоковязкой нефти, создание проницаемой зоны между нагнетательной скважиной и добывающей скважиной каждой пары скважин, нагнетание водяного пара по нагнетательным скважинам и одновременное извлечение продукции по добывающим скважинам, давление нагнетания водяного пара в нагнетательной скважине первой пары скважин превышает давление нагнетания в нагнетательной скважине второй смежной пары скважин.

Новым является то, что при критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину первой пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине второй пары скважин давление нагнетания водяного пара поднимают, при повторных критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину второй пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине первой пары скважин давление нагнетания водяного пара поднимают, при этом чередующиеся циклы снижения и подъема давления нагнетания водяного пара в нагнетательные скважины смежных пар скважин с предварительной закачкой изолирующего состава в нагнетательную скважину каждой пары скважин, в которой запланировано снижение давления закачиваемого водяного пара, повторяют не менее одного раза.

Под критическими снижениями дебита высоковязкой нефти и обводнением продукции добывающих скважин следует понимать рост обводнения продукции и снижение дебита высоковязкой нефти, приводящие к экономической нерентабельности эксплуатации. При обводнении, как правило, происходит снижение дебита высоковязкой нефти и возрастают затраты на подъем из скважины смеси высоковязкой нефти с увеличивающимся объемом воды. Также возрастают затраты на подготовку высоковязкой нефти и последующую утилизацию добытой воды. Момент времени, когда эксплуатация становится нерентабельной, определяют в нефтедобывающей организации, ведущей разработку залежи.

На фиг.1 и фиг.2 схематически представлен предлагаемый способ увеличения добычи высоковязкой нефти. Приведен разрез залежи в направлении, перпендикулярном направлению проводки горизонтальной части ствола скважины.

Способ реализуют следующим образом. Подземную залежь 1 (см. фиг.1) высоковязкой нефти разбуривают по меньшей мере двумя смежными парами горизонтальных параллельных скважин 2, 3, 4, 5. Первая пара скважин включает в себя нагнетательную скважину 2, расположенную в верхней части залежи 1, и добывающую скважину 3, расположенную в залежи 1 ниже нагнетательной скважины 2. Вторая пара скважин, смежная первой, включает в себя нагнетательную скважину 4, расположенную в верхней части залежи 1, и добывающую скважину 5, расположенную в залежи 1 ниже нагнетательной скважины 4. Скважины могут быть одно- или двухустьевыми (на фиг.1 и фиг.2 не показано). В скважины 2, 3, 4, 5 на всю длину скважин спускают эксплуатационные колонны (обсадные трубы), перфорированные в интервале продуктивной части залежи (на фиг.1 и фиг.2 не показано). Далее, в первоначально непроницаемой из-за высокой вязкости нефти залежи 1 (см. фиг.1) создают проницаемую зону между нагнетательными скважинами 2, 4 и добывающими скважинами 3, 5 каждой пары скважин. Для этого в скважины 2, 3, 4, 5 спускают колонны насосно-компрессорных труб (на фиг.1 и фиг.2 не показано) и через них закачивают водяной пар. Под действием водяного пара происходит прогрев областей залежи 1, содержащих высоковязкую нефть, из-за увеличения температуры в залежи происходит снижение вязкости нефти и она становится подвижной, таким образом, в залежи 1 создают проницаемую зону. После создания проницаемой зоны закачку водяного пара в добывающие скважины 3, 5 прекращают. Водяной пар закачивают только в нагнетательные скважины 2, 4, а в добывающие скважины 3, 5 спускают на насосно-компрессорных трубах погружные электрические насосы (на фиг.1 и фиг.2 не показано) и ведут добычу высоковязкой нефти.

В процессе разработки в залежи 1 происходит образование областей 6 и 7, содержащих водяной пар. На начальном этапе разработки залежи 1 давление нагнетания водяного пара в нагнетательной скважине 2 первой пары скважин превышает давление нагнетания в нагнетательной скважине 4 второй смежной пары скважин. При длительной эксплуатации в условиях, когда давление нагнетания водяного пара в нагнетательной скважине 2 первой пары скважин превышает давление нагнетания в смежной нагнетательной скважине 4 второй пары скважин, в залежи происходит формирование высокопроницаемых областей 8 (см. фиг.1), по которым с опережением продвигается основная масса водяного пара, закачиваемого с повышенным давлением (относительно давления закачки водяного пара в скважину 4). В отдалении от высокопроницаемых областей 8 (см. фиг.1) залежь не прогревается в достаточной степени, а запасы высоковязкой нефти, содержащиеся в непрогретой области залежи, не могут быть добыты. Кроме того, при опережающем продвижении основной массы водяного пара в направлении добывающих скважин возможно критическое обводнение продукции конденсатом водяного пара, а при обводнении, как правило, происходит снижение дебита высоковязкой нефти. В процессе разработки залежи нефтедобывающая организация определяет обводнение продукции и дебит высоковязкой нефти. При критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину 2 первой пары скважин закачивают изолирующий состав 9 (см. фиг.2) и снижают давление нагнетания водяного пара, а в нагнетательной скважине 4 второй смежной пары скважин давление нагнетания водяного пара поднимают, при повторных критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину 4 второй пары закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине 2 первой пары скважин давление нагнетания водяного пара поднимают. При этом разницу давления в нагнетательных скважинах 2 и 4 смежных первой и второй пар скважин принимают в пределах от 100 кПа до 500 кПа. Затем чередующиеся циклы снижения и подъема давления нагнетания водяного пара в нагнетательные скважины смежных пар скважин с предварительным закачиванием изолирующего состава в нагнетательную скважину, в которой запланировано снижение давления закачиваемого водяного пара, повторяют не менее одного раза. В качестве изолирующих используют известные составы, например, ГАЛКА-Термогель-С (производится ЗАО «ХИМЕКО-ГАНГ» по ТУ 2163-015-00205067-01), кремнийорганический материал для изоляции водопритоков в нефтяных и газовых скважинах АКОР БН 102 (производится в НПФ "НИТПО" по ТУ 2458-001-01172772-99) или другие изолирующие составы, применение которых возможно в условиях высоких температур. Объем состава для закачки в одну скважину, определенный из опыта промысловых работ, составляет от 5,0 м3 до 20,0 м3. Чередующиеся циклы снижения и подъема давления нагнетания водяного пара в нагнетательные скважины 2 и 4 смежных пар скважин приводят к изменению направлений путей продвижения водяного пара в залежи. Предварительная закачка изолирующего состава в нагнетательную скважину 2 или 4 (в ту, в которой запланировано снижение давления закачиваемого водяного пара), приводит к снижению проницаемости ранее сформированных путей продвижения водяного пара в залежи и перенаправлению водяного пара в новые, ранее не подверженные воздействию области залежи 1. Таким образом, происходит расширение областей залежи 1, содержащих водяной пар, приводящее за счет улучшения прогрева к расширению областей залежи 1, содержащих подвижную нефть. Расширение областей залежи 1, содержащих подвижную нефть, ведет к увеличению добычи высоковязкой нефти.

Пример практического применения. Залежь 1 (см. фиг.1) нефти с вязкостью 26,9 Па·с, находящуюся на глубине 98 м, представленную продуктивными пластами толщиной 16 м, разбуривают двумя смежными парами горизонтальных параллельных скважин 2, 3, 4, 5. Все скважины двухустьевые (на фиг.1 и фиг.2 не показано). Первая пара скважин включает в себя нагнетательную скважину 2, расположенную в верхней части залежи 1, и добывающую скважину 3, расположенную в залежи 1 ниже нагнетательной скважины 2. Вторая пара скважин, смежная первой, включает в себя нагнетательную скважину 4, расположенную в верхней части залежи 1, и добывающую скважину 5, расположенную в залежи 1 ниже нагнетательной скважины 4. В скважины 2, 3, 4, 5 на всю длину скважин спускают эксплуатационные колонны (обсадные трубы), перфорированные в интервале продуктивной части залежи (на фиг.1 и фиг.2 не показано). Далее в первоначально непроницаемой из-за высокой вязкости нефти залежи 1 создают проницаемую зону между нагнетательными скважинами 2, 4 и добывающими скважинами 3, 5 каждой пары скважин. Для этого в скважины 2, 3, 4, 5 спускают колонны насосно-компрессорных труб (на фиг.1 и фиг.2 не показано) и через них закачивают водяной пар с температурой 180°C. Содержащая высоковязкую нефть область в залежи 1 прогревается под действием водяного пара, из-за увеличения температуры в залежи вязкость нефти снижается, и она становится подвижной, таким образом, в залежи 1 создают проницаемую зону. После создания проницаемой зоны закачку водяного пара в добывающие скважины 3, 5 прекращают. Водяной пар закачивают только в нагнетательные скважины 2, 4, а в добывающие скважины 3, 5 спускают на насосно-компрессорных трубах погружные электрические насосы (на фиг.1 и фиг.2 не показано) и ведут добычу высоковязкой нефти. При разработке залежи 1 давление нагнетания водяного пара в нагнетательной скважине 2 первой пары скважин составляет 1100 кПа, давление нагнетания в нагнетательной скважине 4 второй смежной пары скважин составляет 700 кПа. По истечении 14 месяцев разработки залежи в указанном режиме нефтедобывающая организация установила критическое обводнение продукции добывающих скважин 3 и 5 до 99% и снижение дебита высоковязкой нефти в 3 раза. В нагнетательную скважину 2 закачали изолирующий состав, в качестве которого использовали 10 м3 кремнийорганического материала АКОР БН 102. Далее, давление нагнетания водяного пара в нагнетательной скважине 2 первой пары скважин снизили до 700 кПа, а в нагнетательной скважине 4 второй смежной пары скважин подняли до 1100 кПа. По истечении 2 месяцев разработки залежи в указанном режиме произошло снижение обводненности продукции добывающих скважин 3 и 5 в среднем на 12%, а дебит высоковязкой нефти возрос в среднем в 1,5 раза. При повторных критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину 4 второй пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине 2 первой пары давление нагнетания водяного пара поднимают.

Применение предлагаемого способа позволяет увеличить добычу высоковязкой нефти из подземной залежи за счет расширения областей залежи, прогреваемых паром и содержащих подвижную нефть, путем снижения проницаемости ранее сформированных путей продвижения водяного пара в залежи и перенаправлению водяного пара в новые, ранее не подверженные воздействию области залежи. Как результат, происходит увеличение конечного коэффициента нефтеотдачи залежи высоковязкой нефти на 5-10%.

Способ увеличения добычи высоковязкой нефти или битума, включающий бурение и подготовку залежи к эксплуатации по меньшей мере двумя смежными парами горизонтальных параллельных скважин, включающими нагнетательную скважину и расположенную в залежи ниже добывающую скважину, создание проницаемой зоны между нагнетательной скважиной и добывающей скважиной каждой пары скважин, нагнетание водяного пара по нагнетательным скважинам и одновременное извлечение углеводородов по добывающим скважинам, давление нагнетания водяного пара в нагнетательной скважине первой пары скважин превышает давление нагнетания в нагнетательной скважине второй смежной пары скважин, отличающийся тем, что при критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину первой пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине второй пары скважин давление нагнетания водяного пара поднимают, при повторных критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину второй пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине первой пары давление нагнетания водяного пара поднимают, при этом чередующиеся циклы снижения и подъема давления нагнетания водяного пара в нагнетательные скважины смежных пар скважин с предварительной закачкой изолирующего состава в нагнетательную скважину каждой пары скважин, в которой запланировано снижение давления закачиваемого водяного пара, повторяют не менее одного раза.

www.findpatent.ru

Способ увеличения добычи высоковязкой нефти

Изобретение относится к нефтедобывающей промышленности. Технический результат - увеличение добычи высоковязкой нефти из подземной залежи за счет расширения областей залежи, прогреваемых паром и содержащих подвижную нефть. Способ увеличения добычи высоковязкой нефти или битума включает бурение и подготовку залежи к эксплуатации, по меньшей мере, двумя смежными парами горизонтальных параллельных скважин, включающими нагнетательную скважину и расположенную в залежи ниже добывающую скважину для добычи высоковязкой нефти, создание проницаемой зоны между нагнетательной скважиной и добывающей скважиной каждой пары скважин, нагнетание водяного пара по нагнетательным скважинам и одновременное извлечение продукции по добывающим скважинам, давление нагнетания водяного пара в нагнетательной скважине первой пары скважин превышает давление нагнетания в нагнетательной скважине второй смежной пары скважин. При критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину первой пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине второй пары скважин давление нагнетания водяного пара поднимают. При повторных критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину второй пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине первой пары скважин давление нагнетания водяного пара поднимают. Чередующиеся циклы снижения и подъема давления нагнетания водяного пара в нагнетательные скважины смежных пар скважин с предварительным закачиванием изолирующего состава в нагнетательную скважину, в которой запланировано снижение давления закачиваемого водяного пара, повторяют не менее одного раза. 1 пр., 2 ил.

Предложение относится к нефтедобывающей промышленности, в частности, к способам увеличения добычи высоковязкой нефти из подземной залежи с применением теплового воздействия.

Известен способ разработки залежи высоковязкой нефти или битума (Патент RU №2287679, МПК Е21В 43/24, опубл. 20.11.2006 г.), направленный на увеличение добычи углеводородной продукции. Способ включает строительство ряда параллельных добывающих двухустьевых горизонтальных скважин, выше ряда параллельных добывающих двухустьевых горизонтальных скважин параллельно ему строят ряд параллельных нагнетательных двухустьевых горизонтальных скважин с расположением в плане нагнетательных скважин между добывающими. При реализации способа нагнетают водяной пар через ряд параллельных нагнетательных двухустьевых горизонтальных скважин с закачкой пара через оба устья каждой нагнетательной двухустьевой горизонтальной скважины, через ряд параллельных добывающих двухустьевых горизонтальных скважин отбирают продукцию, в промежутках между добывающими и нагнетательными двухустьевыми горизонтальными скважинами строят пологие нагнетательные скважины, через которые закачивают растворитель высоковязкой нефти или битума.

Недостатком известного способа является то, что строительство пологих нагнетательных скважин, через которые закачивают растворитель, существенно увеличивает стоимость разработки залежи высоковязкой нефти или битума.

Наиболее близким техническим решением является способ добычи углеводородов из подземной залежи гудронного песка или залежи тяжелой нефти (патент RU №2098613, МПК Е21В 43/24, опубл. 10.12.1997 г.), направленный на увеличение добычи углеводородной продукции. Способ включает бурение и подготовку залежи к эксплуатации по меньшей мере двумя парами скважин, имеющих горизонтальные участки, где каждая пара включает нагнетательную скважину, заканчивающуюся в залежи, и добывающую скважину, заканчивающуюся в залежи ниже уровня нагнетательной скважины, причем горизонтальные участки добывающей и нагнетательной скважины как внутри пары, так и отдельно каждой пары параллельны между собой. При реализации способа создают проницаемую зону между нагнетательной скважиной и добывающей скважиной каждой пары скважин, нагнетание водяного пара осуществляют по нагнетательным скважинам, одновременное извлечение углеводородов осуществляют по добывающим скважинам, при этом давление нагнетания пара в нагнетательной скважине первой пары скважин на 50-2000 кПа превышает давление нагнетания в смежной нагнетательной скважине второй пары скважин.

Недостатком известного способа является то, что при длительной эксплуатации в условиях, когда давление нагнетания пара в нагнетательной скважине первой пары скважин превышает давление нагнетания в смежной нагнетательной скважине второй пары скважин, в пласте происходит формирование высокопроницаемых зон, по которым с опережением продвигается основная масса пара, закачиваемого с повышенным давлением. В отдалении от этих зон пласт не прогревается в достаточной степени, а запасы высоковязкой нефти или битума, содержащиеся в непрогретой части пласта, не могут быть добыты. Кроме того, при опережающем продвижении основной массы пара в направлении добывающих скважин возможно критическое обводнение продукции конденсатом водяного пара, а при обводнении, как правило, происходит снижение дебита по нефти.

Технической задачей предложения является увеличение добычи высоковязкой нефти из подземной залежи за счет расширения областей залежи, прогреваемых паром и содержащих подвижную нефть.

Задача решается способом увеличения добычи высоковязкой нефти, включающим бурение и подготовку залежи к эксплуатации по меньшей мере двумя смежными парами горизонтальных параллельных скважин, включающими нагнетательную скважину и расположенную в залежи ниже добывающую скважину для добычи высоковязкой нефти, создание проницаемой зоны между нагнетательной скважиной и добывающей скважиной каждой пары скважин, нагнетание водяного пара по нагнетательным скважинам и одновременное извлечение продукции по добывающим скважинам, давление нагнетания водяного пара в нагнетательной скважине первой пары скважин превышает давление нагнетания в нагнетательной скважине второй смежной пары скважин.

Новым является то, что при критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину первой пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине второй пары скважин давление нагнетания водяного пара поднимают, при повторных критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину второй пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине первой пары скважин давление нагнетания водяного пара поднимают, при этом чередующиеся циклы снижения и подъема давления нагнетания водяного пара в нагнетательные скважины смежных пар скважин с предварительной закачкой изолирующего состава в нагнетательную скважину каждой пары скважин, в которой запланировано снижение давления закачиваемого водяного пара, повторяют не менее одного раза.

Под критическими снижениями дебита высоковязкой нефти и обводнением продукции добывающих скважин следует понимать рост обводнения продукции и снижение дебита высоковязкой нефти, приводящие к экономической нерентабельности эксплуатации. При обводнении, как правило, происходит снижение дебита высоковязкой нефти и возрастают затраты на подъем из скважины смеси высоковязкой нефти с увеличивающимся объемом воды. Также возрастают затраты на подготовку высоковязкой нефти и последующую утилизацию добытой воды. Момент времени, когда эксплуатация становится нерентабельной, определяют в нефтедобывающей организации, ведущей разработку залежи.

На фиг.1 и фиг.2 схематически представлен предлагаемый способ увеличения добычи высоковязкой нефти. Приведен разрез залежи в направлении, перпендикулярном направлению проводки горизонтальной части ствола скважины.

Способ реализуют следующим образом. Подземную залежь 1 (см. фиг.1) высоковязкой нефти разбуривают по меньшей мере двумя смежными парами горизонтальных параллельных скважин 2, 3, 4, 5. Первая пара скважин включает в себя нагнетательную скважину 2, расположенную в верхней части залежи 1, и добывающую скважину 3, расположенную в залежи 1 ниже нагнетательной скважины 2. Вторая пара скважин, смежная первой, включает в себя нагнетательную скважину 4, расположенную в верхней части залежи 1, и добывающую скважину 5, расположенную в залежи 1 ниже нагнетательной скважины 4. Скважины могут быть одно- или двухустьевыми (на фиг.1 и фиг.2 не показано). В скважины 2, 3, 4, 5 на всю длину скважин спускают эксплуатационные колонны (обсадные трубы), перфорированные в интервале продуктивной части залежи (на фиг.1 и фиг.2 не показано). Далее, в первоначально непроницаемой из-за высокой вязкости нефти залежи 1 (см. фиг.1) создают проницаемую зону между нагнетательными скважинами 2, 4 и добывающими скважинами 3, 5 каждой пары скважин. Для этого в скважины 2, 3, 4, 5 спускают колонны насосно-компрессорных труб (на фиг.1 и фиг.2 не показано) и через них закачивают водяной пар. Под действием водяного пара происходит прогрев областей залежи 1, содержащих высоковязкую нефть, из-за увеличения температуры в залежи происходит снижение вязкости нефти и она становится подвижной, таким образом, в залежи 1 создают проницаемую зону. После создания проницаемой зоны закачку водяного пара в добывающие скважины 3, 5 прекращают. Водяной пар закачивают только в нагнетательные скважины 2, 4, а в добывающие скважины 3, 5 спускают на насосно-компрессорных трубах погружные электрические насосы (на фиг.1 и фиг.2 не показано) и ведут добычу высоковязкой нефти.

В процессе разработки в залежи 1 происходит образование областей 6 и 7, содержащих водяной пар. На начальном этапе разработки залежи 1 давление нагнетания водяного пара в нагнетательной скважине 2 первой пары скважин превышает давление нагнетания в нагнетательной скважине 4 второй смежной пары скважин. При длительной эксплуатации в условиях, когда давление нагнетания водяного пара в нагнетательной скважине 2 первой пары скважин превышает давление нагнетания в смежной нагнетательной скважине 4 второй пары скважин, в залежи происходит формирование высокопроницаемых областей 8 (см. фиг.1), по которым с опережением продвигается основная масса водяного пара, закачиваемого с повышенным давлением (относительно давления закачки водяного пара в скважину 4). В отдалении от высокопроницаемых областей 8 (см. фиг.1) залежь не прогревается в достаточной степени, а запасы высоковязкой нефти, содержащиеся в непрогретой области залежи, не могут быть добыты. Кроме того, при опережающем продвижении основной массы водяного пара в направлении добывающих скважин возможно критическое обводнение продукции конденсатом водяного пара, а при обводнении, как правило, происходит снижение дебита высоковязкой нефти. В процессе разработки залежи нефтедобывающая организация определяет обводнение продукции и дебит высоковязкой нефти. При критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину 2 первой пары скважин закачивают изолирующий состав 9 (см. фиг.2) и снижают давление нагнетания водяного пара, а в нагнетательной скважине 4 второй смежной пары скважин давление нагнетания водяного пара поднимают, при повторных критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину 4 второй пары закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине 2 первой пары скважин давление нагнетания водяного пара поднимают. При этом разницу давления в нагнетательных скважинах 2 и 4 смежных первой и второй пар скважин принимают в пределах от 100 кПа до 500 кПа. Затем чередующиеся циклы снижения и подъема давления нагнетания водяного пара в нагнетательные скважины смежных пар скважин с предварительным закачиванием изолирующего состава в нагнетательную скважину, в которой запланировано снижение давления закачиваемого водяного пара, повторяют не менее одного раза. В качестве изолирующих используют известные составы, например, ГАЛКА-Термогель-С (производится ЗАО «ХИМЕКО-ГАНГ» по ТУ 2163-015-00205067-01), кремнийорганический материал для изоляции водопритоков в нефтяных и газовых скважинах АКОР БН 102 (производится в НПФ "НИТПО" по ТУ 2458-001-01172772-99) или другие изолирующие составы, применение которых возможно в условиях высоких температур. Объем состава для закачки в одну скважину, определенный из опыта промысловых работ, составляет от 5,0 м3 до 20,0 м3. Чередующиеся циклы снижения и подъема давления нагнетания водяного пара в нагнетательные скважины 2 и 4 смежных пар скважин приводят к изменению направлений путей продвижения водяного пара в залежи. Предварительная закачка изолирующего состава в нагнетательную скважину 2 или 4 (в ту, в которой запланировано снижение давления закачиваемого водяного пара), приводит к снижению проницаемости ранее сформированных путей продвижения водяного пара в залежи и перенаправлению водяного пара в новые, ранее не подверженные воздействию области залежи 1. Таким образом, происходит расширение областей залежи 1, содержащих водяной пар, приводящее за счет улучшения прогрева к расширению областей залежи 1, содержащих подвижную нефть. Расширение областей залежи 1, содержащих подвижную нефть, ведет к увеличению добычи высоковязкой нефти.

Пример практического применения. Залежь 1 (см. фиг.1) нефти с вязкостью 26,9 Па·с, находящуюся на глубине 98 м, представленную продуктивными пластами толщиной 16 м, разбуривают двумя смежными парами горизонтальных параллельных скважин 2, 3, 4, 5. Все скважины двухустьевые (на фиг.1 и фиг.2 не показано). Первая пара скважин включает в себя нагнетательную скважину 2, расположенную в верхней части залежи 1, и добывающую скважину 3, расположенную в залежи 1 ниже нагнетательной скважины 2. Вторая пара скважин, смежная первой, включает в себя нагнетательную скважину 4, расположенную в верхней части залежи 1, и добывающую скважину 5, расположенную в залежи 1 ниже нагнетательной скважины 4. В скважины 2, 3, 4, 5 на всю длину скважин спускают эксплуатационные колонны (обсадные трубы), перфорированные в интервале продуктивной части залежи (на фиг.1 и фиг.2 не показано). Далее в первоначально непроницаемой из-за высокой вязкости нефти залежи 1 создают проницаемую зону между нагнетательными скважинами 2, 4 и добывающими скважинами 3, 5 каждой пары скважин. Для этого в скважины 2, 3, 4, 5 спускают колонны насосно-компрессорных труб (на фиг.1 и фиг.2 не показано) и через них закачивают водяной пар с температурой 180°C. Содержащая высоковязкую нефть область в залежи 1 прогревается под действием водяного пара, из-за увеличения температуры в залежи вязкость нефти снижается, и она становится подвижной, таким образом, в залежи 1 создают проницаемую зону. После создания проницаемой зоны закачку водяного пара в добывающие скважины 3, 5 прекращают. Водяной пар закачивают только в нагнетательные скважины 2, 4, а в добывающие скважины 3, 5 спускают на насосно-компрессорных трубах погружные электрические насосы (на фиг.1 и фиг.2 не показано) и ведут добычу высоковязкой нефти. При разработке залежи 1 давление нагнетания водяного пара в нагнетательной скважине 2 первой пары скважин составляет 1100 кПа, давление нагнетания в нагнетательной скважине 4 второй смежной пары скважин составляет 700 кПа. По истечении 14 месяцев разработки залежи в указанном режиме нефтедобывающая организация установила критическое обводнение продукции добывающих скважин 3 и 5 до 99% и снижение дебита высоковязкой нефти в 3 раза. В нагнетательную скважину 2 закачали изолирующий состав, в качестве которого использовали 10 м3 кремнийорганического материала АКОР БН 102. Далее, давление нагнетания водяного пара в нагнетательной скважине 2 первой пары скважин снизили до 700 кПа, а в нагнетательной скважине 4 второй смежной пары скважин подняли до 1100 кПа. По истечении 2 месяцев разработки залежи в указанном режиме произошло снижение обводненности продукции добывающих скважин 3 и 5 в среднем на 12%, а дебит высоковязкой нефти возрос в среднем в 1,5 раза. При повторных критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину 4 второй пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине 2 первой пары давление нагнетания водяного пара поднимают.

Применение предлагаемого способа позволяет увеличить добычу высоковязкой нефти из подземной залежи за счет расширения областей залежи, прогреваемых паром и содержащих подвижную нефть, путем снижения проницаемости ранее сформированных путей продвижения водяного пара в залежи и перенаправлению водяного пара в новые, ранее не подверженные воздействию области залежи. Как результат, происходит увеличение конечного коэффициента нефтеотдачи залежи высоковязкой нефти на 5-10%.

Формула изобретения

Способ увеличения добычи высоковязкой нефти или битума, включающий бурение и подготовку залежи к эксплуатации по меньшей мере двумя смежными парами горизонтальных параллельных скважин, включающими нагнетательную скважину и расположенную в залежи ниже добывающую скважину, создание проницаемой зоны между нагнетательной скважиной и добывающей скважиной каждой пары скважин, нагнетание водяного пара по нагнетательным скважинам и одновременное извлечение углеводородов по добывающим скважинам, давление нагнетания водяного пара в нагнетательной скважине первой пары скважин превышает давление нагнетания в нагнетательной скважине второй смежной пары скважин, отличающийся тем, что при критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину первой пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине второй пары скважин давление нагнетания водяного пара поднимают, при повторных критических снижениях дебита высоковязкой нефти и обводнении продукции добывающих скважин в нагнетательную скважину второй пары скважин закачивают изолирующий состав и снижают давление нагнетания водяного пара, а в нагнетательной скважине первой пары давление нагнетания водяного пара поднимают, при этом чередующиеся циклы снижения и подъема давления нагнетания водяного пара в нагнетательные скважины смежных пар скважин с предварительной закачкой изолирующего состава в нагнетательную скважину каждой пары скважин, в которой запланировано снижение давления закачиваемого водяного пара, повторяют не менее одного раза.

bankpatentov.ru

Способ и устройство для увеличения добычи нефти из нефтяного коллектора

Это изобретение относится к способу и устройству для добычи нефти из береговых и прибрежно-морских коллекторов. Этот способ включает одновременное воздействие на геологическую формацию посредством упругих звуковых волн, создаваемых источником звука, установленным в нефтяной скважине,так, что упругие звуковые волны, которые налагаются, уменьшают силы сцепления в слое между водой/нефтью и пластом горной породы, и посредством колебательного электрического воздействия на тот же самый пласт, например, от тех же скважин, подвергавшихся звуковой обработке, где электричество нагревает геологическую формацию посредством резистивного нагрева и, таким образом, увеличивает давление, устраняя таким образом поверхностные натяжения между поверхностями флюида вследствие колебательного действия ионов в поверхностях флюида и, в дополнение, понижая вязкость флюидов. Этот процесс достигается, когда нефть добывается в скважинах, обработанных таким образом, и поток (фонтан) нефти действует тогда в качестве охлаждающего агента,который отводит тепло, освобождаемое зоной скважины. Изобретение позволяет повысить эффективность добычи нефти по сравнению с известными до сих пор способами добычи нефти из нефтяных коллекторов.

3 Настоящее изобретение относится кобласти добычи нефти, а более точно, к способу И устройству для увеличения добычи нефти из нефтяного коллектора.Углеводороды, известные в качестве сырой нефти, находятся в окружающем мире,обычно, удерживаемыми в песчаниках различных пористостей. Коллекторы залегают в местах, находящихся от нескольких метров до нескольких тысяч метров ниже поверхности земли и морского дна и в значительной степени различаются по величине и сложности, что касается их содержаний свободной воды и газа, давлений и температур.Нефть добывается посредством скважин, пробуренных в формациях. Скважина, сама по себе, представляет сложную конструкцию, включающуюобсадные трубы, которые защищают ствол скважины от самой формации и давлений текучих сред коллектора. В зависимости от глубины, обсадные трубы подвергаются ступенчатому уменьшению в диаметре. Другими словами, диаметр трубы уменьшается с увеличением глубины. Можно использовать обсадные трубы диаметром 127 см в верхних областях и 7,5 - дюймовые обсадные трубы диаметром 19,05 см в нижних областях.Нефть, как таковая, дренируется из продуктивного пласта ( продуктивной свиты),посредством отверстий, образованных сверлением в обсадной трубе, причем впоследствии поднимается к поверхности по трубам, которые называются лифтовой колонной. Эта лифтовая (насосно компрессорная) колонна цетрируется внутри обсадных труб посредством специальных центраторов таким образом, чтобы кольцевой канал существовал между лифтовой колонной и обсадной колонной.Первоначально нефть добывается благодаря тому, что первичное давление в коллекторе является более высоким, чем действие комплексных сил прилипания флюида (текучей среды ) к пористой среде. Когда в процессе добычи давление понижается, достигается точка равновесия, 51294 в которой силы адгезионного взаимодействияявляются более значительными, чем остаточное давление в продуктивном пласте. В этих условиях, большая часть нефти все еще остается в коллекторе. Оценивается, что в глобальном среднем значении это должно равняться приблизительно 85 нефти,которая находилась там первоначально,однако, показатели добычи в значительной степени варьируются от одного коллектора к другому. В качестве примера мы упоминаем Экофишское месторождение, в Северном море, где показатель добычи нефти первичными методами (фонтанным или насосным) составлял 17 первоначальной нефти в месторождении ( ОО 1 Р ) и Стетфджордское, где упомянутый показатель оценивается в 45 добычи нефти первичными методами (ОО 1 Р).Поэтому целью всех разработанных способов является увеличение добычи нефти,связанное с преодолением этих сил сцепления. Теоретическая базадля того, чтобы объяснять причину этих сил сцепления,является следующейСмачиваемость представляет один из основных параметров, которые воздействуют на местоположение, поток и распределение коллекторных флюидов. Смачиваемость коллектора воздействует на его капиллярное давление, его относительную проницаемость,его поведение при нагнетании воды, его дисперсию и его электрические свойства.В системе нефть/вода/порода,смачиваемость представляет критерий родственной связи ( сродства), которую порода демонстрирует относительно нефти или воды. Смачиваемость пород коллектора(продуктивного пласта) варьируется от сильно смоченной водой до сильнодемонстрирует никакого сильного сродства относительно любого флюида, тогда говорится, что ее смачиваемость должна бытьнейтральной или промежуточной. Некоторые коллекторы демонстрируют смачиваемость, которая являетсягетерогенной или локализованной, и существующие компоненты сырой нефти являются сильно адсорбированными в отдельных участках. Таким образом, часть породы становится сильно смоченной нефтью, междутем как остальная часть может быть сильно смоченной водой. В других коллекторах может устанавливаться такое состояние, которое называется смешанной смачиваемостью, так как нефть остается локализованной в более крупных порах,смоченных нефтью, в виде непрерывных каналов, которые пропускаются породой,между тем как вода остается заключенной в пределы самых малых пор, смоченных водой.В настоящее время используются три способа, чтобы количественно измерять смачиваемость угол контакта, метод Амотта и способ Горного бюро США. Посредством угла контакта измеряется смачиваемость сырой нефти соляным раствором на поверхности полированного минерала. Этот способ служит для того, чтобы верифицировать влияние таких факторов как температура, давление и химикаты на смачиваемость.Считается, что большинство минералов, присутствующих в нефтяных коллекторах, особенно силикатов, являются первоначально смоченными водой. Аренитовые коллекторы были отложенными в водных окружающих средах, в которые позже мигрировала нефть. В ходе этого процесса смачиваемость минералов коллектора могла изменяться адсорбированием полярных соединений или отложений органического вещества, как по отдельности, так и в совокупности,первоначально присутствующих в сырой нефти. Молекулы с крайними полярностями могут адсорбироваться на поверхности породы, образуя тонкую органическуюспособствовать образованию смоченной нефтью поверхности. В зависимости от температуры и давления в коллекторе такие механизмы могут изменять степень смачиваемости. Небольшое исследование было проведено для того, чтобы определить,каким образом механическое вмешательство может воздействовать на смачиваемость. Смачиваемость системы нефть/вода/порода зависит от адсорбции и десорбции полярных соединений (электрических диполей ) в сырой нефти на поверхности минерала, которые, в свою очередь, зависят от типа растворимости этих соединений в флюиде коллектора.Чтобы начинать решение проблемы смачиваемости, необходимо связывать эти электрические диполи с механическим воздействием таким образом, чтобы смачиваемости не позволялось возвращаться к ее первоначальному состоянию.Проницаемость представляет способность пористой породы проводить флюиды, то есть свойство, которое отличает благоприятные условия, при которых флюид может протекать через пористую среду, когда подвергается влиянию приложения градиента давления. Проницаемость определяется законом Дарси,будучи макроскопическим свойством пористой среды. Проницаемость,очевидно,имеет отношение к геометрии пористой структуры, ее пористости, извилистости и распределению размера пор.Понятие относительной проницаемости используется в ситуациях, в которых два несмешиваемых флюида, такие как нефть и вода, протекают одновременно через пористую среду. Эта проницаемость не зависит от скорости потока и свойств флюида,а зависит исключительно от насыщенностей флюидами внутри пористой среды. Изменение относительной проницаемости является крайне необходимым фактором в технологии исследования и разработки коллектора, поскольку таковой составляет доминирующий фактор для знания свойств потока в нефтяном коллекторе.проницаемости тогда является наиболее важным фактором, чтобы повышать коэффициент охвата коллектора при вытеснениях нефти водой. Необходимо сказать, что вытеснение полимерами представляет метод, наиболее часто используемый в контроле подвижности. Растворимые в воде полимеры добавляются к воде, которая должна нагнетаться, с целью улучшения отношения подвижностей посредством повышения вязкости и понижения проницаемости охваченных зон,и таким образом, предупреждается преждевременный прорыв воды. Достаточно много исследований проводилось с целью создания полимеров,достаточно недорогостоящих для этой цели,однако до сих пор без большого успеха. С-КАПИЛЛЯРНЫЕ СИЛЫ Равновесное насыщение в нефтяном коллекторе перед началом его разработки регулируется геометрией породы и характеристиками текучих сред. Так как вода и углеводороды представляют собой несмешиваемые флюиды ( текучие среды ),существует перепад давлений - капиллярное давление - между этими двумя флюидными фазами. Если смоченный флюид являетсяпреодолеваться перепадом давлений для того,чтобы вытеснять фазу смоченного флюида из этих пор.Отношение между приложенным перепадом давлений ( эквивалентным капиллярному давлению ) и насыщением характеризует распределение размеров пор. Кривая критического капиллярного давления,измененного для пород коллектора, служит для того, чтобы индицировать распределение нефти в коллекторе, и поэтому является главным параметром, чтобы предсказывать насыщение нефтью на различных глубинах.Обычно капиллярное давление измеряется методом центрифугирования,посредством которого образец горной породы с первоначальными насыщенностями8 флюидами коллектора погружается всмачивающую жидкость и центрифугируется с рядом выбранных угловых скоростей. Для каждой скорости определяется средняя насыщенность образца, и таковая, в свою очередь, затем коррелируется к соответствующему капиллярному давлению,посредством достаточно трудоемких числовых вычислений ( метод Хасслера Бруннера ).Так как капиллярное давление может препятствовать добыче нефти, в частности, в случае малых пор, очень важно быть в состоянии контролировать или понижать критическую точку капиллярности в добыче нефти третичными методами.Обычно применяются химические методы, основанные на тензоактивностях,такие как поверхностно-активные добавки,чтобы снижать межфазное натяжение. Однако, результаты, описанные в соотвествующей литературе, показывают,что использование тензоактивностей представляет ограниченные результаты,обусловленные высокой стоимостью этих продуктов и их большим потреблением горной породой коллектора.Силы молекулярного взаимодействия,которые существуют между двумя слоями различных или одинаковых веществ, являются теми, которые генерируют адгезионные или когезионные силы, соответственно.В случае флюида в пористых горных породах, адгезионные силы будут существовать между флюидом и стенками пор. Такие силы, в частности, появляются в нефтяной фазе, в качестве следствия полярных составляющих в углеводородах.По всей вероятности, адгезионные силы являются более слабыми, чем капиллярные силы, упоминавшиеся выше.Поскольку нефть играет господствующую роль в мировой экономике,огромные усилия прилагаются для того, чтобы увеличить в объеме добычу, в дополнение к так называемой добыче нефти первичными методами или истощению природногоизвестными, рассмотренными влитературе по этому предмету, а также в старых И современных патентных документах.Самой старой технологией, И по этой причине наиболее хорошо известной,является технология нагнетания воды или газа в нагнетательную скважину для повышения давления и, таким образом,выжимания немного больше нефти из скважины. Другие хорошо известные технологии состоят из различных химических и термических методов, среди которых мы упоминаем следующие далее примеры, взятые из книги ЕпЬапсеоЬН Кесоуегу, 1, Рипоашептав апоАпа 1 узезЬуЕ.С.Вопа 1 с 1 оп, (311. сыпшдапап,апд Леи, Е 1 еу 1 ег 1985.(щелочей) - Этот метод требует предварительной промывки, чтобы ПОДГОТОВИТЬ коллектор, И нагнетаниящелочного раствора или раствора щелочного полимера, который образует поверхностноактивные добавки по месту, чтобы освобождать нефть. После этого вводится раствор полимера, чтобы регулировать подвижность, и буровой раствор (вода),чтобы вытеснять химические продукты и нефть, получаемые в результате этого процесса добычи, в направлении эксплуатационных скважин.Нагнетание углекислого газа - Этот способ представляет процесс вытеснения нефти смешивающимся агентом, который является адекватным для многих коллекторов. Обычно наиболее осуществимым является использование запаса СО 2, сопровождаемого чередующимися нагнетаниями воды и СО 2 (Ч/АС ).Нагнетание пара - Тепло от пара,нагнетаемого в коллектор тяжелой нефти,снижает вязкость нефти, обеспечивая таким образом ее более легкое вытеснение через формацию в направлении эксплуатационных скважин.Циклическое воздействие паром - В этом процессе, который обычно предшествует непрерывному нагнетанию пара, нагнетание происходит в эксплуатационные скважины в- возвращения к эксплуатации. Эти циклы повторяются до тех пор, пока показатель добычи не будет становиться меньше, чем минимальный уровень рентабельности.Внутрипластовое горение - Этот процесс охватывает зажигание и контролируемое сжигание нефти внутри пласта, пользуясь нагнетанием чистого кислорода или воздуха в качестве поддерживающих горение агентов. Освобожденное тепло и газы под высоким давлением делают легким вытеснение тяжелых нефтепродуктов в направлении эксплуатационных скважин.Руководство ТЬегша 1 Кесоуегу, Ьу М 1 сЬае 1 Ргатз, Мопогарп Уо 1 ише 7, Непгу Ь. ВоЬегту Зегйез 1986, рассматривает технологию, вовлеченную в добычу нефти тепловыми методами, цель которой состоит в том, чтобы нагревать коллектор различными способами. Это руководство также раскрывает другие применения нагрева коллектора и предлагает технические решения использованиянагреваформациивокругзоны скважины посредством электрической энергии. Электрический ток проводится посредством изолированного кабелепровода кэкрану из нержавеющей стали в забое участка скважины. Затем ток вытекает из экрана,проходит через нефть в забое скважины,через обсадную трубу и возвращается к заземленному кабелепроводу у поверхности. В дополнение к проблемам электрических соединений в забое скважины, когдаток течет через жидкость, большая часть энергии теряется в земных пластах, даже если их удельное сопротивление является ниже, чем удельное сопротивление коллектора. Это происходит потому, что ток должен проходить расстояние в сотни раз более длинное в земном пласте.Так как эти системы могут справляться только с частью адгезионных сил, большие усилия прилагались и прилагаются, чтобы решить эту проблему, повышая, таким образом, добычу нефти применением более тщательно разработанных способов.

<a href="http://kzpatents.com/30-5129-sposob-i-ustrojjstvo-dlya-uvelicheniya-dobychi-nefti-iz-neftyanogo-kollektora.html" rel="bookmark" title="База патентов Казахстана">Способ и устройство для увеличения добычи нефти из нефтяного коллектора</a>

kzpatents.com

Способ увеличения нефтеотдачи месторождения и добычи нефти

Изобретение предназначено для нефтедобывающей и газодобывающей промышленности как в разрабатываемых месторождениях, так и в закрытых в связи с высокой обводненностью пластов. Обеспечивает повышение эффективности способа. Сущность изобретения: способ включает определение суточных амплитуд земных приливов, обусловленных силами притяжения Луны и Солнца и суточного вращения Земли вокруг своей оси, циклическую закачку воды в пласт через скважины и непрерывную добычу флюида. Согласно изобретению предварительно определяют количество добываемого флюида, его обводненность и добычу нефти в зависимости от объема закачки воды на текущий период времени. Затем определяют суточные амплитуды земных приливов, обусловленные силами притяжения Луны и Солнца и суточного вращения Земли вокруг своей оси, последовательно в течение, по крайней мере, 28 суток на площади месторождения. Выделяют последовательные периоды изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд с последующим определением в каждом периоде фазы последовательного уменьшения суточных амплитуд земных приливов от максимальной до минимальной и ее длительности. Определяют фазу последовательного увеличения суточных амплитуд земных приливов от минимальной до максимальной и ее длительность. Строят графики зависимости добычи флюида и извлечения нефти, нормированные к единице времени, от объемов закачки воды на площади месторождения за весь период добычи. Определяют минимально возможный объем закачки воды в скважины для месторождения по точке пересечения графиков добычи флюида и извлечения нефти. Затем проводят циклическую закачку воды в скважины в период длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов и длительности первой половины последующей фазы увеличения последовательных суточных амплитуд земных приливов. При этом объем закачки воды постепенно сокращают в сторону минимального объема, после чего осуществляют непрерывную добычу флюида. При этом выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд осуществляют путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов. 1 з.п. ф-лы, 2 ил.

Изобретение относится к нефтедобывающей промышленности и может быть использовано для увеличения нефтеотдачи пластов и добычи нефти как в разрабатываемых месторождениях, так и в закрытых в связи с высокой обводненностью пластов, а также в газодобывающей промышленности.

В настоящее время в нефтедобывающей промышленности многие высокопродуктивные месторождения вступили в стадию падающей добычи нефти, для которой стала характерной высокая обводненность продукции (до 95% и более). После окончания эксплуатации, как правило, в недрах (преимущественно в микротрещинах и порах) остается от 50 до 80 процентов балансовых запасов нефти. Длительная эксплуатация месторождений приводит к необходимости применения новых способов увеличения нефтеотдачи пластов и добычи нефти, которые пока остаются малоэффективными, особенно на поздней стадии разработки.

Известны способы увеличения нефтеотдачи пласта и добычи нефти, включающие непрерывную и циклическую закачку воды в скважины для транспортировки флюида за счет создаваемой разности давления в направлении от закачивающих скважин к добывающим (RU, №2078917, 1997 г., №2092681, 1997 г., №2233971, 2004 г., №2224100, 2004 г.).

Недостатком данных способов является низкая нефтеотдача пласта и добыча нефти, т.к. закачка воды проводится под высоким давлением для ускоренного продвижения флюида по трещинам к добывающим скважинам и по мере вытеснения нефти из трещин вода постепенно заполняет эти трещины, запирает насыщенное нефтью поровое пространство и тем самым препятствует образованию относительного вакуума в трещинах в периоды их расширения от приливных движений Земли, а также процессу высасывания нефти из пор в трещины, по которым в дальнейшем происходит транспортировка флюида к добывающим скважинам. В результате этого происходит быстрое увеличение обводненности флюида. Кроме того, при больших объемах закачки воды в пласт нередко происходят гидроразрывы в земной коре, а также возбужденные землетрясения. Следовательно, объемы закачиваемой воды, и в том числе суточные, которые проникают и остаются непосредственно в пласте, должны быть ограниченными и не превышать объемов вытесненной из пласта нефти в течение всего периода добычи.

Циклическая закачка является более перспективной, так как ее можно связать с цикличностью приливных движений Земли и она дает возможность в периоды прекращения закачки увеличивать интенсивность извлечения нефти из пор в трещины. Недостатком циклической закачки воды в скважины, применяемой на некоторых месторождениях, является то, что она недостаточно полно учитывает процессы расширения и сжатия трещин земной коры в связи с периодическими солнечно-лунными приливами, как, например, при известной полусуточной закачке длительностью 8-12 часов, либо учитывает процессы расширения и сжатия трещин случайно, когда при более длительных периодах циклической закачки воды в скважины (например, до 20 суток в месяц) в них попадают как периоды времени больших амплитуд суточных земных приливов, которые способствуют интенсивному извлечению нефти из пор в трещины, так и периоды времени малых амплитуд суточных земных приливов, когда интенсивность извлечения нефти из пор в трещины невысокая, особенно при избытках воды под высоким давлением в трещинах. В результате этого эффективность циклической закачки снижается. Кроме того, при циклической закачке воды, которая также используется для поддержания высокого давления в пластах, как правило, на практике тоже проводится закачка больших объемов воды, соизмеримых с объемами при непрерывной закачке, причем за более короткие сроки. И это нередко приводит к тем же гидроразрывам земной коры. При этом обводненность добываемого флюида при такой циклической закачке не уменьшается в зависимости от общего объема закачки воды.

Нефть в начальной стадии разработки месторождений преимущественно откачивается из наполненных ею трещин без закачки воды в скважины за счет собственного внутреннего давления пласта. В дальнейшем по мере падения напорного давления и уменьшения запасов нефти начинается закачка воды в зону нефтеносного пласта, которая постепенно вытесняет оставшуюся нефть из трещин и частично из пор и начинает увеличивать обводненность добываемого флюида. И если бы не было периодического расширения и сжатия трещин земной коры в связи с приливными движениями Земли, которые извлекают нефть из пор в трещины, то по прошествии небольшого времени откачивалась бы только закачиваемая вода без нефти.

Все горные породы пронизаны иерархической системой трещин, и чем крупнее размер трещины, тем их меньше, а чем она мельче, тем их больше (известный закон повторяемости размеров трещин, или объемов «кусковатости» среды, или землетрясений разных энергий, являющихся результатом подвижек по трещинам разных размеров).

Жидкость, закачиваемая в горные породы, заполняет все свободное пространство, то есть и трещины, и частично поры, освободившиеся от нефти, при этом скорость продвижения флюида в нефтеносных породах земной коры, по экспериментальным данным, соответствует величине порядка 10 м в час, в то время как теоретические расчеты скорости продвижения флюида, проведенные для порового пространства, дают значения, на порядок меньшие. И трещины являются главной причиной превышения скоростей продвижения флюида над расчетными скоростями в поровом пространстве, поскольку флюид ускоренно продвигается по пути наименьшего сопротивления, то есть по трещинам.

Лунно-солнечные приливы периодически расширяют и сжимают трещины земной коры с разными амплитудами во времени и, соответственно, изменяют уровень флюида в пластах и в наполненных флюидом скважинах в зависимости от вращения Земли вокруг своей оси и расположения Луны и Солнца относительно Земли, а также периодически создают в этих трещинах относительный вакуум и тем самым уподобляются действию крупномасштабного насоса, который высасывает нефть из пор в трещины в периоды относительного вакуума, а затем способствует транспортировке флюида по трещинам при их сжатии.

В длительно разрабатываемых месторождениях и в отдельных скважинах, где обводненность добываемого флюида достигает 98-100%, добыча нефти прекращается. Возобновление добычи нефти через несколько лет снова обнаруживает повышенное содержание нефти на закрытых ранее месторождениях. Это объясняется тем, что прекращение закачки воды на длительный период времени способствует перераспределению воды в пространстве и падению давления в пласте, что позволяет более свободно и широко раскрываться и сжиматься трещинам пласта и обеспечивать извлечение нефти из пор в трещины. И все это обнаруживается и подтверждается после начала нового цикла добычи нефти. Высокая обводненность флюида на таких месторождениях после возобновления добычи нефти быстро восстанавливается.

Наиболее близким по технической сущности к предлагаемому изобретению является способ повышения нефтеотдачи и добычи нефти, включающий внешние периодические физические воздействия на нефтесодержащий пласт в зависимости от ежесуточных солнечно-лунных воздействий на земную кору (RU, патент №2217581, 2003 г.). В качестве одного из внешних воздействий в известном способе используют периодическую закачку воды в скважины в течение 8-12 часов в сутки во время сжатия трещин земной коры при солнечно-лунном отливе.

Недостатком данного способа является низкая нефтеотдача пласта и добыча нефти, т.к. скорость проникновения воды по трещинам ограничена (около 10 м в час) и за небольшой период времени (8-12 часов), пока происходит ежесуточное сжатие трещин земной коры и проводится закачка воды в скважины, вода не всегда успевает достигнуть мест основного размещения нефти в пласте и зон добывающих скважин, расположенных, как правило, в нескольких километрах от закачивающих. Вода достигает основного нефтяного пространства и зоны добывающих скважин преимущественно позже, когда уже начинается лунно-солнечный прилив и расширение трещин земной коры. В это время закачиваемая вода начинает всасываться в раскрывающиеся трещины и тем самым снижает образующийся в них относительный вакуум, поэтому интенсивность извлечения нефти из пор в трещины снижается.

Предлагаемым изобретением решается задача повышения эффективности нефтеотдачи пласта и добычи нефти. Техническим результатом является повышение нефтеотдачи и добычи нефти за счет увеличения количества извлеченной нефти из пор в трещины путем прекращения закачки воды в те дни, когда происходит наибольшее расширение и сжатие трещин земной коры, и за счет уменьшения обводненности флюида путем уменьшения объема закачки и увеличения вакуума при расширении трещин.

Технический результат достигается в способе увеличения нефтеотдачи пласта и добычи нефти, включающем предварительное определение количества добываемого флюида, его обводненности и добычи нефти в зависимости от объемов закачки воды на текущий период времени, последовательное определение суточных амплитуд земных приливов, обусловленных силами притяжения Луны и Солнца и суточного вращения Земли вокруг своей оси, в течение, по крайней мере, 28 суток на площади месторождения, выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд с последующим определением в каждом периоде фазы последовательного уменьшения суточных амплитуд земных приливов от максимальной до минимальной и ее длительности и фазы последовательного увеличения суточных амплитуд земных приливов от минимальной до максимальной и ее длительности, построение графиков зависимости добычи флюида и извлечения нефти, нормированных к единице времени, от объемов закачки воды на площади месторождения за весь период добычи, определение минимального возможного объема закачки воды в скважины для месторождения по точке пересечения графиков добычи флюида и извлечения нефти, циклическую закачку воды в пласт через скважины в период длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов и длительности первой половины следующей фазы увеличения последовательных суточных амплитуд земных приливов, постепенное сокращение объема закачки воды в сторону минимального возможного объема и непрерывную добычу флюида, при этом выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд осуществляют путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов.

Отличительными признаками предлагаемого способа являются предварительное определение количества добываемого флюида, его обводненности и добычи нефти в зависимости от объема закачки воды на текущий период времени, последовательное определение суточных амплитуд земных приливов в течение, по крайней мере, 28 суток на площади месторождения, выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд с последующим определением в каждом периоде фазы последовательного уменьшения суточных амплитуд земных приливов от максимальной до минимальной и ее длительности и фазы последовательного увеличения суточных амплитуд земных приливов от минимальной до максимальной и ее длительности, построение графиков зависимости добычи флюида и извлечения нефти, нормированных к единице времени, от объемов закачки воды на площади месторождения за весь период добычи, определение минимального возможного объема закачки воды в скважины для месторождения по точке пересечения графиков добычи флюида и извлечения нефти, циклическая закачка воды в пласт через скважины в период длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов и длительности первой половины последующей фазы увеличения последовательных суточных амплитуд земных приливов, постепенное сокращение объема закачки воды в сторону минимального возможного объема, выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд осуществляют путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов. Это позволяет повысить нефтеотдачу месторождения и добычу нефти.

Предварительное определение количества добываемого флюида, его обводненности и добычи нефти в зависимости от объемов закачки воды на текущий период времени необходимо для определения предельных максимальных достигнутых значений параметров нефтедобычи месторождения на текущий момент времени, при которых наблюдается высокая степень обводненности и низкая добыча нефти. Дальнейшая разработка нефтяного месторождения не приводит к повышению добычи нефти, уменьшению обводненности и увеличению нефтеотдачи пласта.

Последовательное определение суточных амплитуд земных приливов в течение, по крайней мере, 28 суток на площади месторождения позволяет выделить последовательные периоды изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд в течение, по крайней мере, 28 суток.

Определение в каждом периоде фазы последовательного уменьшения суточных амплитуд земных приливов от максимальной до минимальной и ее длительности и фазы последовательного увеличения суточных амплитуд земных приливов от минимальной до максимальной и ее длительности позволяет определить дни (сутки), когда происходят наибольшее и наименьшее расширение и сжатие трещин земной коры.

Построение графиков зависимости добычи флюида и извлечения нефти, нормированных к единице времени, от объемов закачки воды на площади месторождения за весь период добычи необходимо для определения минимального возможного объема закачки воды в скважины для месторождения по точке пересечения графиков добычи флюида и извлечения нефти, расчетов обводненности добываемого флюида и добычи нефти в зависимости от объемов закачки воды.

Циклическая закачка воды в пласт через скважины в период (во время) длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов и длительности первой половины последующей фазы увеличения последовательных суточных амплитуд земных приливов, когда интенсивность извлечения нефти из пор в трещины и приемистость нагнетательных скважин уменьшаются, необходима для уменьшения (ограничения) объемов закачки воды в скважины, которая обеспечивается малыми значениями суточных амплитуд земных приливов и небольшой приемистостью скважин. Наибольшая эффективность извлечения нефти из пор в трещины в пласте обеспечивается только частью воды, которая замещает высвобождаемое пространство от добываемой нефти. Другая, большая, часть воды выходит за пределы зоны добычи нефти. Суточные объемы закачки воды, которые проникают и остаются непосредственно в пласте (в это время), должны быть равномерными и не должны значительно превышать суточные объемы (извлекаемой из флюида) добычи нефти для предотвращения гидроразрывов и возбужденных землетрясений и не должны быть настолько малыми, чтобы происходили просадочные явления земной поверхности. Большие объемы закачки воды обычно связаны с необходимостью поддержания высокого давления в пластах для ускоренной транспортировки флюида, а также в связи с имеющейся проблемой утилизации воды из добываемого флюида при добыче нефти. Однако избыток воды не способствует извлечению нефти из пор в трещины, а лишь значительно увеличивает обводненность добываемого флюида. Поэтому возникает необходимость утилизации добываемой воды путем перекачки ее избытков за пределы нефтяного пласта на достаточном от него удалении. Этот процесс будет относительно недолгим, так как после первой же утилизации воды за пределы месторождения объемы ее закачки в пласт и обратное извлечение ее вместе с флюидом будут уменьшаться.

Выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд можно провести путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов.

Способ увеличения нефтеотдачи месторождения и добычи нефти поясняется чертежами, где на фиг.1 показаны изменения суточных амплитуд земных приливов в виде деформаций расширения и сжатия с их верхней и нижней огибающими, на фиг.2 - графики добычи флюида и извлечения нефти в зависимости от объема закачки воды.

Способ увеличения нефтеотдачи месторождения и добычи нефти осуществляется следующим образом.

Предварительно определяют количество добываемого флюида, его обводненность и добычу нефти в зависимости от закачки воды на текущий период времени. Известным способом расчета гравитационных земных приливов (Мельхиор П. Земные приливы. - М.: Мир, 1968, 483 с.), обусловленных силами притяжения Луны и Солнца и суточного вращения Земли вокруг своей оси, определяют последовательно в течение, по крайней мере, 28 суток суточные амплитуды земных приливов на площади месторождения. Выделяют последовательные периоды изменений суточных амплитуд земных приливов от максимальной Amax до максимальной Amax амплитуд. Определяют в каждом периоде фазу последовательного уменьшения суточных амплитуд земных приливов от максимальной Amax до минимальной Amin и ее длительность и фазу последовательного увеличения суточных амплитуд земных приливов от минимальной Amin до (следующей) максимальной Аmax и ее длительность. Строят графики зависимости добычи флюида и извлечения нефти, нормированные к единице времени, от объемов закачки воды на площади месторождения за весь период добычи. Определяют минимально возможный объем закачки воды в скважины для месторождения по точке пересечения графиков добычи флюида и извлечения нефти. Затем проводят циклическую закачку воды в скважины во время длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов и длительности первой половины последующей фазы увеличения последовательных суточных амплитуд земных приливов во всех последовательных периодах. А объем закачки воды постепенно сокращают в сторону минимального объема из расчета 25-30 процентов (и более) от установленного объема закачки на текущий период времени через каждый месяц до достижения максимальной добычи нефти на данном месторождении, связанной с остатками потенциальных запасов нефти. Уменьшение объемов закачки воды проводят через любой интервал времени (1-30 суток и т.д.), равный нормированному времени учета текущей добычи нефти. После каждого уменьшения объема закачки воды в скважины через установленный нормированный промежуток времени добычи нефти определяют количество добываемого флюида, его обводненность и добычу нефти. Сокращение объемов закачки воды в сторону минимального объема из расчета на 25-30% и более в месяц от установленного объема закачки воды на текущий период времени может быть ускорено в зависимости от получаемых результатов по увеличению добычи нефти через каждый нормированный промежуток времени. Выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд осуществляют путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов. Длительности фаз последовательного уменьшения и увеличения суточных амплитуд земных приливов каждого периода определяются путем деления длительностей каждой фазы на 2 равные части по времени. Количество добываемого флюида находится в прямой зависимости от объемов закачки воды в скважины: у=1,1009х-188776. Это означает, что сколько воды закачивается, столько же флюида (за минусом добычи нефти) и откачивается. Учитывая, что удельные веса воды, флюида и нефти отличаются между собой незначительно, можно в данном случае условно приравнивать добычу флюида и нефти в единицах у=т/мес с закачкой воды в единицах объемов x=м3/мес. Как видно из фиг.2, объемы закачки воды на месторождении уменьшились примерно в 3 раза, и во столько же раз уменьшилась добыча флюида. А добыча нефти при этом уменьшилась, но не в связи с уменьшением объемов закачки воды, а в связи с постепенным истощением запасов нефти в трещинах пласта. Повышенные объемы закачки воды в этой стадии добычи препятствуют увеличению количества нефти и увеличивают обводненность.

Конкретный пример осуществления способа увеличения нефтеотдачи месторождения и добычи нефти

Предварительно определяли количество добываемого флюида, его обводненность и добычу нефти в зависимости от объема закачки воды на текущий период времени. Объем закачки воды на текущий период добычи составил 1200000 куб.м в мес. Подставляя это значение в формулу добычи флюида получим: у=1,1009×1200000-188776=1132304 т/мес. При этом количество добычи нефти составило: ул=-0,0037×1200000+74904=70464 т/мес. Эта величина добычи нефти составляет 6,2% от количества добываемого флюида, равного 1132304 т/мес. Обводненность флюида составила величину: Q=100%-6,2%=93,8%. Известным способом расчета гравитационных земных приливов, обусловленных силами притяжения Луны и Солнца и суточного вращения Земли вокруг своей оси, определяли последовательно в течение, по крайней мере, 28 суток суточные амплитуды земных приливов на площади месторождения. Выделяли последовательные периоды изменений суточных амплитуд земных приливов от максимальной Аmax до максимальной Аmax амплитуд. Выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд осуществляли путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов. Определяли в каждом периоде фазу последовательного уменьшения суточных амплитуд земных приливов от максимальной Аmax до минимальной Аmin и ее длительность τ1 и фазу последовательного увеличения суточных амплитуд земных приливов от минимальной Amin до (следующей) максимальной Аmax и ее длительность τ2. Длительность 1-го периода изменений суточных амплитуд земных приливов от Аmax до следующего Аmax составила 11 суток, а длительность 2-го периода изменений суточных амплитуд земных приливов от Аmax до следующего Аmax составила 17 суток, и сумма длительностей обоих периодов составляет 28 суток (фиг.1). Длительность τ1 фазы последовательного уменьшения суточных амплитуд земных приливов 1-го периода от Аmax до Аmin изменений суточных амплитуд земных приливов в соответствии с проекцией на ось времени составила 6 суток, из которых первые 3 суток, равные 1/2 τ1, относятся к периоду (времени), когда значения амплитуд суточных земных приливов большие, и вторые 3 суток, также равные 1/2 τ1, относятся к периоду (времени), когда значения амплитуд суточных земных приливов маленькие. Длительность τ2 фазы последовательного увеличения суточных амплитуд земных приливов 1-го периода изменений суточных амплитуд земных приливов от Amin до Аmax в соответствии с проекцией на ось времени составила 5 суток, из которых первые 2,5 суток, равные 1/2 τ2, относятся к периоду (времени), когда значения амплитуд суточных земных приливов маленькие, и вторые 2,5 суток, также равные 1/2 τ2, относятся к периоду (времени), когда значения амплитуд суточных земных приливов большие. Длительность τ1 первой фазы последовательного уменьшения суточных амплитуд земных приливов 2-го периода изменений суточных амплитуд земных приливов от Аmax до Amin в соответствии с проекцией на ось времени составила 9,5 суток, из которых первые 4,75 суток, равные 1/2 τ1, относятся к периоду (времени), когда значения амплитуд суточных земных приливов большие, и вторые 4,75 суток, также равные 1/2 τ1, относятся к периоду (времени), когда значения амплитуд суточных земных приливов маленькие. Длительность τ2 второй фазы последовательного уменьшения суточных амплитуд земных приливов 2-го периода изменений суточных амплитуд земных приливов от Amin до Аmax в соответствии с проекцией на ось времени составляет 7,5 суток, из которых первые 3,75 суток, равные 1/2 τ2, относятся к периоду (времени), когда значения амплитуд суточных земных приливов маленькие, и вторые 3,75 суток, также равные 1/2 τ2, относятся к периоду (времени), когда значения амплитуд суточных земных приливов большие. Следующая половина фазы последовательного уменьшения суточных амплитуд земных приливов после вступления значения Аmax относится уже к новому 1-му периоду изменений суточных амплитуд земных приливов следующего 28-суточного прилива, обусловленного новым оборотом Луны вокруг Земли. В течение 28 суток каждого месяца происходят по два периода земных приливов в пределах от 9 до 19 суток и, следовательно, по два отрезка времени, когда значения амплитуд суточных земных приливов маленькие, общая продолжительность которых составляет 14 суток, а также по два отрезка времени, когда значения амплитуд (размахов) суточных земных приливов большие, продолжительность которых также составляет в сумме 14 суток. Определять длительности фаз последовательного уменьшения суточных амплитуд земных приливов и последовательного увеличения суточных амплитуд земных приливов можно по разнице между максимальными Аmax и минимальными Аmin значениями амплитуд земных приливов в каждой фазе, разделенной пополам, где на ось времени суток проецируются уровни половин разницы амплитуд в каждой фазе. И эти определения могут быть проведены как по верхней огибающей максимумов амплитуд суточных приливов, так и по нижней огибающей минимумов амплитуд суточных приливов. Затем строили графики зависимости добычи флюида и извлечения нефти, нормированные к единице времени, от объемов закачки воды на площади месторождения за весь период добычи. Далее определяли минимально возможный объем закачки воды в скважины для месторождения, т.е. когда количество добываемого флюида равно количеству добываемой нефти, то есть обводненность флюида, должна быть равной нулю, по точке пересечения графиков добычи флюида и извлечения нефти. Для оценки минимального объема закачки воды в скважины на рассматриваемом месторождении необходимо использовать экспериментальные данные, представленные на фиг.2 - график добычи флюида (у) и левую часть графика добычи нефти (ул). Свободный член в уравнении (ул) определяет уровень добычи нефти, когда наклон графика при параметре x составляет величину минус 0,0037. И этот коэффициент в уравнении определен по экспериментальным данным добычи нефти, полученным до и во время текущего периода добычи. Следовательно, с дальнейшим уменьшением объемов закачки воды количество добываемой нефти увеличивается. Для того чтобы определить, какое количество воды должно закачиваться в точке пересечения обоих графиков, когда обводненность флюида становится равной нулю, необходимо приравнять оба уравнения на фиг.2: 1,1009x-188776=-0,0037х+74904, или: 1,1946х=263680, следовательно х=239000 куб.м/мес. Это минимальное количество закачиваемой воды, при котором по графику фиг.2 количество добываемого флюида равно количеству добываемой нефти. Следовательно, с учетом точности измерений и допустимого приравнивания добычи нефти в единицах т/мес к объемам закачки воды в м3/мес минимальный объем закачки воды в пласт составил: х=240000 куб.м/мес. Затем проводили циклическую закачку воды в скважине в 1-ом периоде изменений суточных амплитуд земных приливов во время длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов в течение 3 суток и длительности первой половины последующей фазы увеличения последовательных суточных амплитуд земных приливов в течение 2,5 суток, всего в течение 5,5 суток в первом периоде изменений суточных амплитуд земных приливов. После этого закачка воды прекращалась в течение длительности второй половины фазы увеличения последовательных амплитуд суточных земных приливов в 1-ом периоде изменений суточных амплитуд земных приливов, составляющем 2,5 суток, и в первой фазе 2-го периода изменений суточных амплитуд земных приливов в течение 4,75 суток. В результате чего период прекращения закачки воды в скважины в конце 1-го периода изменений суточных амплитуд земных приливов и начала 2-го периода изменений суточных амплитуд земных приливов составил 7,25 суток. Далее следовали аналогичные отрезки времени закачки и прекращения закачки воды в скважины во 2-ом периоде изменений суточных амплитуд земных приливов и после него. А объем закачки воды постепенно сокращали в сторону минимального объема от установленного на текущий период времени значения 1200000 куб.м в мес до 300000 куб.м в мес. В течение первого месяца циклической закачки объем закачки был уменьшен примерно на 25% от установленного, то есть до 900000 куб.м в мес. Количество добычи нефти при этом увеличилось на 776 т в мес, то есть от 70464 т в мес до 71240 т в мес. В течение следующего месяца объем закачки воды был уменьшен примерно на 42% от тех же 1200000 куб.м в мес, то есть до 700000 куб.м в мес. При этом объем добычи нефти увеличился еще на 1074 т в мес, то есть до 72314 т в мес. Наибольший объем добычи нефти на месторождении был достигнут при уменьшении объемов закачки воды примерно до 300000 куб.м в мес, который составил около 73800 т в мес, что составляет увеличение добычи нефти на 3330 тыс. т через 4 мес, то есть на 5% от первоначальной добычи до начала применения нового способа циклической закачки воды в скважины с уменьшением объемов закачки воды и с учетом приливных движений Земли. При этом из расчетов объема добываемого флюида по формуле на фиг.2, который составил 141500 т в мес при закачке воды в скважины в объеме 300000 куб.м в мес, обводненность добываемого флюида составила 48% (67700 куб.м воды), а доля добычи нефти от объема флюида составила 52% (73800 т в мес). Для постоянной поддержки пониженного давления в зонах добывающих скважин и обеспечения постоянного притока флюида в эти зоны от зон закачивающих скважин добыча флюида проводится постоянно как в периоды закачки воды в скважины, так и в периоды прекращения закачки воды. Непрерывная добыча нефти значительно компенсирует недостаток давления, связанный с уменьшением объемов закачки воды в скважины.

Предлагаемый способ увеличения нефтеотдачи месторождения и добычи нефти позволяет повысить эффективность увеличения нефтеотдачи пластов за счет дополнительного раскрытия трещин и извлечения нефти из пор в трещины и добычи нефти, позволяет вести непрерывную разработку как действующих, так и закрытых в связи с высокой обводненностью месторождений или скважин, экономит значительные средства на бурение новых скважин и поиски новых месторождений нефти. Уменьшение объемов закачки воды в скважины и добычи флюида обеспечивает значительную экономию электроэнергии, уменьшаются возможности возникновения гидроразрывов в пластах, а также возбужденных землетрясений, связанных с чрезмерными объемами закачки воды.

Формула изобретения

1. Способ увеличения нефтеотдачи месторождения и добычи нефти, включающий определение суточных амплитуд земных приливов, обусловленных силами притяжения Луны и Солнца, и суточного вращения Земли вокруг своей оси, циклическую закачку воды в пласт через скважины и непрерывную добычу флюида, отличающийся тем, что предварительно определяют количество добываемого флюида, его обводненность и добычу нефти в зависимости от объема закачки воды на текущий период времени, суточные амплитуды земных приливов определяют последовательно в течение, по крайней мере, 28 сут на площади месторождения, выделяют последовательные периоды изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд с последующим определением в каждом периоде фазы последовательного уменьшения суточных амплитуд земных приливов от максимальной до минимальной и ее длительности, и фазы последовательного увеличения суточных амплитуд земных приливов от минимальной до максимальной и ее длительности, строят графики зависимости количества добываемого флюида и извлеченной нефти, нормированных к единице времени, от объемов закачки воды на площади месторождения за весь период добычи, определяют минимально возможный объем закачки воды в скважины для месторождения по точке пересечения графиков добычи флюида и извлечения нефти, а циклическую закачку воды в скважины проводят в период длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов и длительности первой половины последующей фазы увеличения последовательных суточных амплитуд земных приливов, при этом объем закачки воды постепенно сокращают в сторону минимального объема.

2. Способ увеличения нефтеотдачи месторождения и добычи нефти по п.1, отличающийся тем, что выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд осуществляют путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов.

bankpatentov.ru

Способ увеличения нефтеотдачи месторождения и добычи нефти

Изобретение предназначено для нефтедобывающей и газодобывающей промышленности как в разрабатываемых месторождениях, так и в закрытых в связи с высокой обводненностью пластов. Обеспечивает повышение эффективности способа. Сущность изобретения: способ включает определение суточных амплитуд земных приливов, обусловленных силами притяжения Луны и Солнца и суточного вращения Земли вокруг своей оси, циклическую закачку воды в пласт через скважины и непрерывную добычу флюида. Согласно изобретению предварительно определяют количество добываемого флюида, его обводненность и добычу нефти в зависимости от объема закачки воды на текущий период времени. Затем определяют суточные амплитуды земных приливов, обусловленные силами притяжения Луны и Солнца и суточного вращения Земли вокруг своей оси, последовательно в течение, по крайней мере, 28 суток на площади месторождения. Выделяют последовательные периоды изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд с последующим определением в каждом периоде фазы последовательного уменьшения суточных амплитуд земных приливов от максимальной до минимальной и ее длительности. Определяют фазу последовательного увеличения суточных амплитуд земных приливов от минимальной до максимальной и ее длительность. Строят графики зависимости добычи флюида и извлечения нефти, нормированные к единице времени, от объемов закачки воды на площади месторождения за весь период добычи. Определяют минимально возможный объем закачки воды в скважины для месторождения по точке пересечения графиков добычи флюида и извлечения нефти. Затем проводят циклическую закачку воды в скважины в период длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов и длительности первой половины последующей фазы увеличения последовательных суточных амплитуд земных приливов. При этом объем закачки воды постепенно сокращают в сторону минимального объема, после чего осуществляют непрерывную добычу флюида. При этом выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд осуществляют путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к нефтедобывающей промышленности и может быть использовано для увеличения нефтеотдачи пластов и добычи нефти как в разрабатываемых месторождениях, так и в закрытых в связи с высокой обводненностью пластов, а также в газодобывающей промышленности.

В настоящее время в нефтедобывающей промышленности многие высокопродуктивные месторождения вступили в стадию падающей добычи нефти, для которой стала характерной высокая обводненность продукции (до 95% и более). После окончания эксплуатации, как правило, в недрах (преимущественно в микротрещинах и порах) остается от 50 до 80 процентов балансовых запасов нефти. Длительная эксплуатация месторождений приводит к необходимости применения новых способов увеличения нефтеотдачи пластов и добычи нефти, которые пока остаются малоэффективными, особенно на поздней стадии разработки.

Известны способы увеличения нефтеотдачи пласта и добычи нефти, включающие непрерывную и циклическую закачку воды в скважины для транспортировки флюида за счет создаваемой разности давления в направлении от закачивающих скважин к добывающим (RU, №2078917, 1997 г., №2092681, 1997 г., №2233971, 2004 г., №2224100, 2004 г.).

Недостатком данных способов является низкая нефтеотдача пласта и добыча нефти, т.к. закачка воды проводится под высоким давлением для ускоренного продвижения флюида по трещинам к добывающим скважинам и по мере вытеснения нефти из трещин вода постепенно заполняет эти трещины, запирает насыщенное нефтью поровое пространство и тем самым препятствует образованию относительного вакуума в трещинах в периоды их расширения от приливных движений Земли, а также процессу высасывания нефти из пор в трещины, по которым в дальнейшем происходит транспортировка флюида к добывающим скважинам. В результате этого происходит быстрое увеличение обводненности флюида. Кроме того, при больших объемах закачки воды в пласт нередко происходят гидроразрывы в земной коре, а также возбужденные землетрясения. Следовательно, объемы закачиваемой воды, и в том числе суточные, которые проникают и остаются непосредственно в пласте, должны быть ограниченными и не превышать объемов вытесненной из пласта нефти в течение всего периода добычи.

Циклическая закачка является более перспективной, так как ее можно связать с цикличностью приливных движений Земли и она дает возможность в периоды прекращения закачки увеличивать интенсивность извлечения нефти из пор в трещины. Недостатком циклической закачки воды в скважины, применяемой на некоторых месторождениях, является то, что она недостаточно полно учитывает процессы расширения и сжатия трещин земной коры в связи с периодическими солнечно-лунными приливами, как, например, при известной полусуточной закачке длительностью 8-12 часов, либо учитывает процессы расширения и сжатия трещин случайно, когда при более длительных периодах циклической закачки воды в скважины (например, до 20 суток в месяц) в них попадают как периоды времени больших амплитуд суточных земных приливов, которые способствуют интенсивному извлечению нефти из пор в трещины, так и периоды времени малых амплитуд суточных земных приливов, когда интенсивность извлечения нефти из пор в трещины невысокая, особенно при избытках воды под высоким давлением в трещинах. В результате этого эффективность циклической закачки снижается. Кроме того, при циклической закачке воды, которая также используется для поддержания высокого давления в пластах, как правило, на практике тоже проводится закачка больших объемов воды, соизмеримых с объемами при непрерывной закачке, причем за более короткие сроки. И это нередко приводит к тем же гидроразрывам земной коры. При этом обводненность добываемого флюида при такой циклической закачке не уменьшается в зависимости от общего объема закачки воды.

Нефть в начальной стадии разработки месторождений преимущественно откачивается из наполненных ею трещин без закачки воды в скважины за счет собственного внутреннего давления пласта. В дальнейшем по мере падения напорного давления и уменьшения запасов нефти начинается закачка воды в зону нефтеносного пласта, которая постепенно вытесняет оставшуюся нефть из трещин и частично из пор и начинает увеличивать обводненность добываемого флюида. И если бы не было периодического расширения и сжатия трещин земной коры в связи с приливными движениями Земли, которые извлекают нефть из пор в трещины, то по прошествии небольшого времени откачивалась бы только закачиваемая вода без нефти.

Все горные породы пронизаны иерархической системой трещин, и чем крупнее размер трещины, тем их меньше, а чем она мельче, тем их больше (известный закон повторяемости размеров трещин, или объемов «кусковатости» среды, или землетрясений разных энергий, являющихся результатом подвижек по трещинам разных размеров).

Жидкость, закачиваемая в горные породы, заполняет все свободное пространство, то есть и трещины, и частично поры, освободившиеся от нефти, при этом скорость продвижения флюида в нефтеносных породах земной коры, по экспериментальным данным, соответствует величине порядка 10 м в час, в то время как теоретические расчеты скорости продвижения флюида, проведенные для порового пространства, дают значения, на порядок меньшие. И трещины являются главной причиной превышения скоростей продвижения флюида над расчетными скоростями в поровом пространстве, поскольку флюид ускоренно продвигается по пути наименьшего сопротивления, то есть по трещинам.

Лунно-солнечные приливы периодически расширяют и сжимают трещины земной коры с разными амплитудами во времени и, соответственно, изменяют уровень флюида в пластах и в наполненных флюидом скважинах в зависимости от вращения Земли вокруг своей оси и расположения Луны и Солнца относительно Земли, а также периодически создают в этих трещинах относительный вакуум и тем самым уподобляются действию крупномасштабного насоса, который высасывает нефть из пор в трещины в периоды относительного вакуума, а затем способствует транспортировке флюида по трещинам при их сжатии.

В длительно разрабатываемых месторождениях и в отдельных скважинах, где обводненность добываемого флюида достигает 98-100%, добыча нефти прекращается. Возобновление добычи нефти через несколько лет снова обнаруживает повышенное содержание нефти на закрытых ранее месторождениях. Это объясняется тем, что прекращение закачки воды на длительный период времени способствует перераспределению воды в пространстве и падению давления в пласте, что позволяет более свободно и широко раскрываться и сжиматься трещинам пласта и обеспечивать извлечение нефти из пор в трещины. И все это обнаруживается и подтверждается после начала нового цикла добычи нефти. Высокая обводненность флюида на таких месторождениях после возобновления добычи нефти быстро восстанавливается.

Наиболее близким по технической сущности к предлагаемому изобретению является способ повышения нефтеотдачи и добычи нефти, включающий внешние периодические физические воздействия на нефтесодержащий пласт в зависимости от ежесуточных солнечно-лунных воздействий на земную кору (RU, патент №2217581, 2003 г.). В качестве одного из внешних воздействий в известном способе используют периодическую закачку воды в скважины в течение 8-12 часов в сутки во время сжатия трещин земной коры при солнечно-лунном отливе.

Недостатком данного способа является низкая нефтеотдача пласта и добыча нефти, т.к. скорость проникновения воды по трещинам ограничена (около 10 м в час) и за небольшой период времени (8-12 часов), пока происходит ежесуточное сжатие трещин земной коры и проводится закачка воды в скважины, вода не всегда успевает достигнуть мест основного размещения нефти в пласте и зон добывающих скважин, расположенных, как правило, в нескольких километрах от закачивающих. Вода достигает основного нефтяного пространства и зоны добывающих скважин преимущественно позже, когда уже начинается лунно-солнечный прилив и расширение трещин земной коры. В это время закачиваемая вода начинает всасываться в раскрывающиеся трещины и тем самым снижает образующийся в них относительный вакуум, поэтому интенсивность извлечения нефти из пор в трещины снижается.

Предлагаемым изобретением решается задача повышения эффективности нефтеотдачи пласта и добычи нефти. Техническим результатом является повышение нефтеотдачи и добычи нефти за счет увеличения количества извлеченной нефти из пор в трещины путем прекращения закачки воды в те дни, когда происходит наибольшее расширение и сжатие трещин земной коры, и за счет уменьшения обводненности флюида путем уменьшения объема закачки и увеличения вакуума при расширении трещин.

Технический результат достигается в способе увеличения нефтеотдачи пласта и добычи нефти, включающем предварительное определение количества добываемого флюида, его обводненности и добычи нефти в зависимости от объемов закачки воды на текущий период времени, последовательное определение суточных амплитуд земных приливов, обусловленных силами притяжения Луны и Солнца и суточного вращения Земли вокруг своей оси, в течение, по крайней мере, 28 суток на площади месторождения, выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд с последующим определением в каждом периоде фазы последовательного уменьшения суточных амплитуд земных приливов от максимальной до минимальной и ее длительности и фазы последовательного увеличения суточных амплитуд земных приливов от минимальной до максимальной и ее длительности, построение графиков зависимости добычи флюида и извлечения нефти, нормированных к единице времени, от объемов закачки воды на площади месторождения за весь период добычи, определение минимального возможного объема закачки воды в скважины для месторождения по точке пересечения графиков добычи флюида и извлечения нефти, циклическую закачку воды в пласт через скважины в период длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов и длительности первой половины следующей фазы увеличения последовательных суточных амплитуд земных приливов, постепенное сокращение объема закачки воды в сторону минимального возможного объема и непрерывную добычу флюида, при этом выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд осуществляют путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов.

Отличительными признаками предлагаемого способа являются предварительное определение количества добываемого флюида, его обводненности и добычи нефти в зависимости от объема закачки воды на текущий период времени, последовательное определение суточных амплитуд земных приливов в течение, по крайней мере, 28 суток на площади месторождения, выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд с последующим определением в каждом периоде фазы последовательного уменьшения суточных амплитуд земных приливов от максимальной до минимальной и ее длительности и фазы последовательного увеличения суточных амплитуд земных приливов от минимальной до максимальной и ее длительности, построение графиков зависимости добычи флюида и извлечения нефти, нормированных к единице времени, от объемов закачки воды на площади месторождения за весь период добычи, определение минимального возможного объема закачки воды в скважины для месторождения по точке пересечения графиков добычи флюида и извлечения нефти, циклическая закачка воды в пласт через скважины в период длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов и длительности первой половины последующей фазы увеличения последовательных суточных амплитуд земных приливов, постепенное сокращение объема закачки воды в сторону минимального возможного объема, выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд осуществляют путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов. Это позволяет повысить нефтеотдачу месторождения и добычу нефти.

Предварительное определение количества добываемого флюида, его обводненности и добычи нефти в зависимости от объемов закачки воды на текущий период времени необходимо для определения предельных максимальных достигнутых значений параметров нефтедобычи месторождения на текущий момент времени, при которых наблюдается высокая степень обводненности и низкая добыча нефти. Дальнейшая разработка нефтяного месторождения не приводит к повышению добычи нефти, уменьшению обводненности и увеличению нефтеотдачи пласта.

Последовательное определение суточных амплитуд земных приливов в течение, по крайней мере, 28 суток на площади месторождения позволяет выделить последовательные периоды изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд в течение, по крайней мере, 28 суток.

Определение в каждом периоде фазы последовательного уменьшения суточных амплитуд земных приливов от максимальной до минимальной и ее длительности и фазы последовательного увеличения суточных амплитуд земных приливов от минимальной до максимальной и ее длительности позволяет определить дни (сутки), когда происходят наибольшее и наименьшее расширение и сжатие трещин земной коры.

Построение графиков зависимости добычи флюида и извлечения нефти, нормированных к единице времени, от объемов закачки воды на площади месторождения за весь период добычи необходимо для определения минимального возможного объема закачки воды в скважины для месторождения по точке пересечения графиков добычи флюида и извлечения нефти, расчетов обводненности добываемого флюида и добычи нефти в зависимости от объемов закачки воды.

Циклическая закачка воды в пласт через скважины в период (во время) длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов и длительности первой половины последующей фазы увеличения последовательных суточных амплитуд земных приливов, когда интенсивность извлечения нефти из пор в трещины и приемистость нагнетательных скважин уменьшаются, необходима для уменьшения (ограничения) объемов закачки воды в скважины, которая обеспечивается малыми значениями суточных амплитуд земных приливов и небольшой приемистостью скважин. Наибольшая эффективность извлечения нефти из пор в трещины в пласте обеспечивается только частью воды, которая замещает высвобождаемое пространство от добываемой нефти. Другая, большая, часть воды выходит за пределы зоны добычи нефти. Суточные объемы закачки воды, которые проникают и остаются непосредственно в пласте (в это время), должны быть равномерными и не должны значительно превышать суточные объемы (извлекаемой из флюида) добычи нефти для предотвращения гидроразрывов и возбужденных землетрясений и не должны быть настолько малыми, чтобы происходили просадочные явления земной поверхности. Большие объемы закачки воды обычно связаны с необходимостью поддержания высокого давления в пластах для ускоренной транспортировки флюида, а также в связи с имеющейся проблемой утилизации воды из добываемого флюида при добыче нефти. Однако избыток воды не способствует извлечению нефти из пор в трещины, а лишь значительно увеличивает обводненность добываемого флюида. Поэтому возникает необходимость утилизации добываемой воды путем перекачки ее избытков за пределы нефтяного пласта на достаточном от него удалении. Этот процесс будет относительно недолгим, так как после первой же утилизации воды за пределы месторождения объемы ее закачки в пласт и обратное извлечение ее вместе с флюидом будут уменьшаться.

Выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд можно провести путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов.

Способ увеличения нефтеотдачи месторождения и добычи нефти поясняется чертежами, где на фиг.1 показаны изменения суточных амплитуд земных приливов в виде деформаций расширения и сжатия с их верхней и нижней огибающими, на фиг.2 - графики добычи флюида и извлечения нефти в зависимости от объема закачки воды.

Способ увеличения нефтеотдачи месторождения и добычи нефти осуществляется следующим образом.

Предварительно определяют количество добываемого флюида, его обводненность и добычу нефти в зависимости от закачки воды на текущий период времени. Известным способом расчета гравитационных земных приливов (Мельхиор П. Земные приливы. - М.: Мир, 1968, 483 с.), обусловленных силами притяжения Луны и Солнца и суточного вращения Земли вокруг своей оси, определяют последовательно в течение, по крайней мере, 28 суток суточные амплитуды земных приливов на площади месторождения. Выделяют последовательные периоды изменений суточных амплитуд земных приливов от максимальной Amax до максимальной Amax амплитуд. Определяют в каждом периоде фазу последовательного уменьшения суточных амплитуд земных приливов от максимальной Amax до минимальной Amin и ее длительность и фазу последовательного увеличения суточных амплитуд земных приливов от минимальной Amin до (следующей) максимальной Аmax и ее длительность. Строят графики зависимости добычи флюида и извлечения нефти, нормированные к единице времени, от объемов закачки воды на площади месторождения за весь период добычи. Определяют минимально возможный объем закачки воды в скважины для месторождения по точке пересечения графиков добычи флюида и извлечения нефти. Затем проводят циклическую закачку воды в скважины во время длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов и длительности первой половины последующей фазы увеличения последовательных суточных амплитуд земных приливов во всех последовательных периодах. А объем закачки воды постепенно сокращают в сторону минимального объема из расчета 25-30 процентов (и более) от установленного объема закачки на текущий период времени через каждый месяц до достижения максимальной добычи нефти на данном месторождении, связанной с остатками потенциальных запасов нефти. Уменьшение объемов закачки воды проводят через любой интервал времени (1-30 суток и т.д.), равный нормированному времени учета текущей добычи нефти. После каждого уменьшения объема закачки воды в скважины через установленный нормированный промежуток времени добычи нефти определяют количество добываемого флюида, его обводненность и добычу нефти. Сокращение объемов закачки воды в сторону минимального объема из расчета на 25-30% и более в месяц от установленного объема закачки воды на текущий период времени может быть ускорено в зависимости от получаемых результатов по увеличению добычи нефти через каждый нормированный промежуток времени. Выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд осуществляют путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов. Длительности фаз последовательного уменьшения и увеличения суточных амплитуд земных приливов каждого периода определяются путем деления длительностей каждой фазы на 2 равные части по времени. Количество добываемого флюида находится в прямой зависимости от объемов закачки воды в скважины: у=1,1009х-188776. Это означает, что сколько воды закачивается, столько же флюида (за минусом добычи нефти) и откачивается. Учитывая, что удельные веса воды, флюида и нефти отличаются между собой незначительно, можно в данном случае условно приравнивать добычу флюида и нефти в единицах у=т/мес с закачкой воды в единицах объемов x=м3/мес. Как видно из фиг.2, объемы закачки воды на месторождении уменьшились примерно в 3 раза, и во столько же раз уменьшилась добыча флюида. А добыча нефти при этом уменьшилась, но не в связи с уменьшением объемов закачки воды, а в связи с постепенным истощением запасов нефти в трещинах пласта. Повышенные объемы закачки воды в этой стадии добычи препятствуют увеличению количества нефти и увеличивают обводненность.

Конкретный пример осуществления способа увеличения нефтеотдачи месторождения и добычи нефти

Предварительно определяли количество добываемого флюида, его обводненность и добычу нефти в зависимости от объема закачки воды на текущий период времени. Объем закачки воды на текущий период добычи составил 1200000 куб.м в мес. Подставляя это значение в формулу добычи флюида получим: у=1,1009×1200000-188776=1132304 т/мес. При этом количество добычи нефти составило: ул=-0,0037×1200000+74904=70464 т/мес. Эта величина добычи нефти составляет 6,2% от количества добываемого флюида, равного 1132304 т/мес. Обводненность флюида составила величину: Q=100%-6,2%=93,8%. Известным способом расчета гравитационных земных приливов, обусловленных силами притяжения Луны и Солнца и суточного вращения Земли вокруг своей оси, определяли последовательно в течение, по крайней мере, 28 суток суточные амплитуды земных приливов на площади месторождения. Выделяли последовательные периоды изменений суточных амплитуд земных приливов от максимальной Аmax до максимальной Аmax амплитуд. Выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд осуществляли путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов. Определяли в каждом периоде фазу последовательного уменьшения суточных амплитуд земных приливов от максимальной Аmax до минимальной Аmin и ее длительность τ1 и фазу последовательного увеличения суточных амплитуд земных приливов от минимальной Amin до (следующей) максимальной Аmax и ее длительность τ2. Длительность 1-го периода изменений суточных амплитуд земных приливов от Аmax до следующего Аmax составила 11 суток, а длительность 2-го периода изменений суточных амплитуд земных приливов от Аmax до следующего Аmax составила 17 суток, и сумма длительностей обоих периодов составляет 28 суток (фиг.1). Длительность τ1 фазы последовательного уменьшения суточных амплитуд земных приливов 1-го периода от Аmax до Аmin изменений суточных амплитуд земных приливов в соответствии с проекцией на ось времени составила 6 суток, из которых первые 3 суток, равные 1/2 τ1, относятся к периоду (времени), когда значения амплитуд суточных земных приливов большие, и вторые 3 суток, также равные 1/2 τ1, относятся к периоду (времени), когда значения амплитуд суточных земных приливов маленькие. Длительность τ2 фазы последовательного увеличения суточных амплитуд земных приливов 1-го периода изменений суточных амплитуд земных приливов от Amin до Аmax в соответствии с проекцией на ось времени составила 5 суток, из которых первые 2,5 суток, равные 1/2 τ2, относятся к периоду (времени), когда значения амплитуд суточных земных приливов маленькие, и вторые 2,5 суток, также равные 1/2 τ2, относятся к периоду (времени), когда значения амплитуд суточных земных приливов большие. Длительность τ1 первой фазы последовательного уменьшения суточных амплитуд земных приливов 2-го периода изменений суточных амплитуд земных приливов от Аmax до Amin в соответствии с проекцией на ось времени составила 9,5 суток, из которых первые 4,75 суток, равные 1/2 τ1, относятся к периоду (времени), когда значения амплитуд суточных земных приливов большие, и вторые 4,75 суток, также равные 1/2 τ1, относятся к периоду (времени), когда значения амплитуд суточных земных приливов маленькие. Длительность τ2 второй фазы последовательного уменьшения суточных амплитуд земных приливов 2-го периода изменений суточных амплитуд земных приливов от Amin до Аmax в соответствии с проекцией на ось времени составляет 7,5 суток, из которых первые 3,75 суток, равные 1/2 τ2, относятся к периоду (времени), когда значения амплитуд суточных земных приливов маленькие, и вторые 3,75 суток, также равные 1/2 τ2, относятся к периоду (времени), когда значения амплитуд суточных земных приливов большие. Следующая половина фазы последовательного уменьшения суточных амплитуд земных приливов после вступления значения Аmax относится уже к новому 1-му периоду изменений суточных амплитуд земных приливов следующего 28-суточного прилива, обусловленного новым оборотом Луны вокруг Земли. В течение 28 суток каждого месяца происходят по два периода земных приливов в пределах от 9 до 19 суток и, следовательно, по два отрезка времени, когда значения амплитуд суточных земных приливов маленькие, общая продолжительность которых составляет 14 суток, а также по два отрезка времени, когда значения амплитуд (размахов) суточных земных приливов большие, продолжительность которых также составляет в сумме 14 суток. Определять длительности фаз последовательного уменьшения суточных амплитуд земных приливов и последовательного увеличения суточных амплитуд земных приливов можно по разнице между максимальными Аmax и минимальными Аmin значениями амплитуд земных приливов в каждой фазе, разделенной пополам, где на ось времени суток проецируются уровни половин разницы амплитуд в каждой фазе. И эти определения могут быть проведены как по верхней огибающей максимумов амплитуд суточных приливов, так и по нижней огибающей минимумов амплитуд суточных приливов. Затем строили графики зависимости добычи флюида и извлечения нефти, нормированные к единице времени, от объемов закачки воды на площади месторождения за весь период добычи. Далее определяли минимально возможный объем закачки воды в скважины для месторождения, т.е. когда количество добываемого флюида равно количеству добываемой нефти, то есть обводненность флюида, должна быть равной нулю, по точке пересечения графиков добычи флюида и извлечения нефти. Для оценки минимального объема закачки воды в скважины на рассматриваемом месторождении необходимо использовать экспериментальные данные, представленные на фиг.2 - график добычи флюида (у) и левую часть графика добычи нефти (ул). Свободный член в уравнении (ул) определяет уровень добычи нефти, когда наклон графика при параметре x составляет величину минус 0,0037. И этот коэффициент в уравнении определен по экспериментальным данным добычи нефти, полученным до и во время текущего периода добычи. Следовательно, с дальнейшим уменьшением объемов закачки воды количество добываемой нефти увеличивается. Для того чтобы определить, какое количество воды должно закачиваться в точке пересечения обоих графиков, когда обводненность флюида становится равной нулю, необходимо приравнять оба уравнения на фиг.2: 1,1009x-188776=-0,0037х+74904, или: 1,1946х=263680, следовательно х=239000 куб.м/мес. Это минимальное количество закачиваемой воды, при котором по графику фиг.2 количество добываемого флюида равно количеству добываемой нефти. Следовательно, с учетом точности измерений и допустимого приравнивания добычи нефти в единицах т/мес к объемам закачки воды в м3/мес минимальный объем закачки воды в пласт составил: х=240000 куб.м/мес. Затем проводили циклическую закачку воды в скважине в 1-ом периоде изменений суточных амплитуд земных приливов во время длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов в течение 3 суток и длительности первой половины последующей фазы увеличения последовательных суточных амплитуд земных приливов в течение 2,5 суток, всего в течение 5,5 суток в первом периоде изменений суточных амплитуд земных приливов. После этого закачка воды прекращалась в течение длительности второй половины фазы увеличения последовательных амплитуд суточных земных приливов в 1-ом периоде изменений суточных амплитуд земных приливов, составляющем 2,5 суток, и в первой фазе 2-го периода изменений суточных амплитуд земных приливов в течение 4,75 суток. В результате чего период прекращения закачки воды в скважины в конце 1-го периода изменений суточных амплитуд земных приливов и начала 2-го периода изменений суточных амплитуд земных приливов составил 7,25 суток. Далее следовали аналогичные отрезки времени закачки и прекращения закачки воды в скважины во 2-ом периоде изменений суточных амплитуд земных приливов и после него. А объем закачки воды постепенно сокращали в сторону минимального объема от установленного на текущий период времени значения 1200000 куб.м в мес до 300000 куб.м в мес. В течение первого месяца циклической закачки объем закачки был уменьшен примерно на 25% от установленного, то есть до 900000 куб.м в мес. Количество добычи нефти при этом увеличилось на 776 т в мес, то есть от 70464 т в мес до 71240 т в мес. В течение следующего месяца объем закачки воды был уменьшен примерно на 42% от тех же 1200000 куб.м в мес, то есть до 700000 куб.м в мес. При этом объем добычи нефти увеличился еще на 1074 т в мес, то есть до 72314 т в мес. Наибольший объем добычи нефти на месторождении был достигнут при уменьшении объемов закачки воды примерно до 300000 куб.м в мес, который составил около 73800 т в мес, что составляет увеличение добычи нефти на 3330 тыс. т через 4 мес, то есть на 5% от первоначальной добычи до начала применения нового способа циклической закачки воды в скважины с уменьшением объемов закачки воды и с учетом приливных движений Земли. При этом из расчетов объема добываемого флюида по формуле на фиг.2, который составил 141500 т в мес при закачке воды в скважины в объеме 300000 куб.м в мес, обводненность добываемого флюида составила 48% (67700 куб.м воды), а доля добычи нефти от объема флюида составила 52% (73800 т в мес). Для постоянной поддержки пониженного давления в зонах добывающих скважин и обеспечения постоянного притока флюида в эти зоны от зон закачивающих скважин добыча флюида проводится постоянно как в периоды закачки воды в скважины, так и в периоды прекращения закачки воды. Непрерывная добыча нефти значительно компенсирует недостаток давления, связанный с уменьшением объемов закачки воды в скважины.

Предлагаемый способ увеличения нефтеотдачи месторождения и добычи нефти позволяет повысить эффективность увеличения нефтеотдачи пластов за счет дополнительного раскрытия трещин и извлечения нефти из пор в трещины и добычи нефти, позволяет вести непрерывную разработку как действующих, так и закрытых в связи с высокой обводненностью месторождений или скважин, экономит значительные средства на бурение новых скважин и поиски новых месторождений нефти. Уменьшение объемов закачки воды в скважины и добычи флюида обеспечивает значительную экономию электроэнергии, уменьшаются возможности возникновения гидроразрывов в пластах, а также возбужденных землетрясений, связанных с чрезмерными объемами закачки воды.

1. Способ увеличения нефтеотдачи месторождения и добычи нефти, включающий определение суточных амплитуд земных приливов, обусловленных силами притяжения Луны и Солнца, и суточного вращения Земли вокруг своей оси, циклическую закачку воды в пласт через скважины и непрерывную добычу флюида, отличающийся тем, что предварительно определяют количество добываемого флюида, его обводненность и добычу нефти в зависимости от объема закачки воды на текущий период времени, суточные амплитуды земных приливов определяют последовательно в течение, по крайней мере, 28 сут на площади месторождения, выделяют последовательные периоды изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд с последующим определением в каждом периоде фазы последовательного уменьшения суточных амплитуд земных приливов от максимальной до минимальной и ее длительности, и фазы последовательного увеличения суточных амплитуд земных приливов от минимальной до максимальной и ее длительности, строят графики зависимости количества добываемого флюида и извлеченной нефти, нормированных к единице времени, от объемов закачки воды на площади месторождения за весь период добычи, определяют минимально возможный объем закачки воды в скважины для месторождения по точке пересечения графиков добычи флюида и извлечения нефти, а циклическую закачку воды в скважины проводят в период длительности второй половины фазы уменьшения последовательных суточных амплитуд земных приливов и длительности первой половины последующей фазы увеличения последовательных суточных амплитуд земных приливов, при этом объем закачки воды постепенно сокращают в сторону минимального объема.

2. Способ увеличения нефтеотдачи месторождения и добычи нефти по п.1, отличающийся тем, что выделение последовательных периодов изменений суточных амплитуд земных приливов от максимальной до максимальной амплитуд осуществляют путем построения контуров верхней и нижней огибающих максимумов и минимумов последовательных суточных амплитуд земных приливов.

www.findpatent.ru