Занятие 2. Показатели эффективности извлечения нефти из пластов при их заводнении. Степень извлечения нефти


Повышение - степень - извлечение - нефть

Повышение - степень - извлечение - нефть

Cтраница 1

Повышение степени извлечения нефти и газа из недр-одна из важнейших проблем в области рациональной разработки нефтяных, газовых и газоконденсатных месторождений. Особенно низка она при режиме растворенного газа. Кроме природных имеется много факторов, существенно влияющих на нефтегазоотдачу. Особенно большое значение имеет качество вскрытия нефтегазовых пластов.  [1]

Для повышения степени извлечения нефти из пород применяют так называемое законтурное заводнение: в ряд вспомогательных скважин, окружающих центральную промысловую, закачивают воду, растворы ПАВ или сложные композиции, называемые мицеллярными растворами ( см. гл. VIII, 4), которые улучшают избирательное смачивание водой и тем самым содействуют оттеснению нефти к промысловой скважине.  [2]

Проблема повышения степени извлечения нефти из недр - сложная и многоаспектная. Рассмотреть ее детально в рамках данной работы невозможно. Остановимся лишь очень коротко на современных представлениях западных ( главным обра зом, американских) экспертов о третичных методах разработки как возможном дополнительном источнике получения нефти из уже истощенных месторождений.  [3]

С целью повышения степени извлечения нефти из пластов и более рационального использования природных запасов нефти и газа на смену существующим должны прийти комплексные способы разработки месторождений.  [4]

И в тоже время повышение степени извлечения нефти из недр, разрабатываемых месторождений за счет прогрессивных методов воздействия на пласты является важной народнохозяйственной задачей и остается актуальной по настоящее время.  [5]

Широко приценяются особые способы повышения степени извлечения нефти из ее залежей: нагнетание в нефтяные пласты воды ( законтурное, внутрикон-турное и центральное заводнение), воздуха или газ.  [6]

Для экономики нашей страны существенное значение имеет повышение степени извлечения нефти из истощающихся месторождений, и материалы книги окажутся полезными ученым и специалистам-практикам, занимающимся этой важной народнохозяйственной проблемой.  [7]

В научно-исследовательских работах, проводимых в последние годы, разрабатываются методы повышения степени извлечения нефти из пластов. В некоторых из этих исследований приводятся многочисленные мероприятия, обеспечивающие, при определенных условиях, существенное увеличение конечной нефтеотдачи, повышение эффективности использования балансовых запасов нефти.  [8]

На Федоровском месторождении была реализована описанная в данной работе последовательность применения различных направлений повышения степени извлечения нефти из пласта - использование МУНов и постепенный переход к новой технологии разработки, основанной на широком использовании горизонтальных скважин.  [9]

Снижение налоговой ставки производится на основе обязательного целевого назначения, направленного в первую очередь на повышение степени извлечения нефти. Именно такая активная форма дифференцированного налогообложения успешно применяется во многих странах. При активной форме дифференцированного налогообложения, в отличие от пассивной, налоговая ставка снижается не за то, что недропользователь обладает трудноизвлекаемыми запасами, а за то, что он применяет современные МУН, позволяющие эффективно разрабатывать месторождения с такими запасами и кардинально повышать их нефтеотдачу.  [10]

В последние годы в СССР и за рубежом большое внимание уделяется применению углекислого газа для повышения степени извлечения нефти из недр и интенсификации добычи нефти.  [11]

Технология МНТК-9686 предназначена для применения на месторождениях, вступивших в позднюю стадию разработки и направлена на повышение степени извлечения нефти из заводненных пластов за счет увеличения коэффициента нефтевытес-нения и охвата неоднородных пластов воздействием. Технология МНТК-9686 предусматривает последовательную закачку в пласт: полимердис-персной системы ( ПДС), предназначенной для снижения проницаемости высокопроницаемых зон, водной дисперсии композиции МНТК-9686А, углеводородного растворителя, водного раствора НПАВ и воды. Композиция МНТК-9686А представляет собой смесь, содержащую НПАВ, АПАВ и воду. Механизм улучшения нефтевытеснения основан на образовании в пористой среде нефтевытесняющего агента, являющегося среднефаз-ной микроэмульсией.  [12]

Учитывая большое народнохозяйственное значение увеличения нефтеотдачи пластов в десятой и последующих пятилетках, подготовлена программа комплексных мероприятий направлеи-на ЯдНа повышение степени извлечения нефти из недр.  [13]

Рассмотрены требования к материально-техническим средствам и технике добычи нефти исходя из условий обеспечения охраны недр, окружающей среды и повышения степени извлечения нефти из пластов. Дана оценка эффективности применения вторичных методов увеличения нефтеотдачи.  [14]

Учитывая большое народно-хозяйственное значение проблемы увеличения нефтеотдачи пластов в двенадцатой и последующих пятилетках, разработана программа комплексных научно-технических мероприятий, направленная на повышение степени извлечения нефти из недр.  [15]

Страницы:      1    2    3

www.ngpedia.ru

Повышение - степень - извлечение - нефть

Повышение - степень - извлечение - нефть

Cтраница 2

Учитывая большое народнохозяйственное значение проблемы увеличения нефтеотдачи пластов в десятой и последующих пятилетках, в настоящее время подготовлена программа комплексных мероприятий, направленная на повышение степени извлечения нефти из недр.  [16]

Обосновано, что чередование закачки теплоносителя с ненагретой водой позволяет снизить потери тепла в окружающие горные породы и, вследствие этого, снизить общий расход теплоносителя, а в неоднородных пластах указанный способ нагнетания способствует и повышению степени извлечения нефти из пласта в целом. Предлагаемый способ запроектирован для испытания и дальнейшего промышленного внедрения на Гремихин-ском месторождении Удмуртии.  [18]

Следует отметить, что в калькуляции себестоимости добычи нефти в расходах по искусственному воздействию на пласт отражаются все затраты, связанные не только с повышением пластового давления, но также с проведением всего комплекса мероприятий, способствующих повышению степени извлечения нефти из недр.  [19]

Естественная пластовая энергия не всегда обеспечивает полноту отбора нефти и необходимые темпы разработки нефтяного месторождения. Для повышения степени извлечения нефти из пласта и достижения необходимых темпов разработки в настоящее время широко применяют методы поддержания пластового давления нагнетанием в залежь воды.  [20]

Изучение распределения текущих запасов нефти позволяет судить о выработке запасов и намечать пути рациональной их разработки для достижения наиболее полной выработки. Одним из путей повышения степени извлечения нефти из пластов является, как показывает опыт разработки башкирских месторождений, уплотнение сетки скважин.  [21]

Повышение нефтеотдачи пластов - увеличение извлечения нефти из недр является одной из главных проблем энергообеспечения страны. В связи с этим повышение степени извлечения нефти из недр разрабатываемых месторождений с применением эффективных методов воздействия на пласты является важной народнохозяйственной задачей.  [22]

И все же проблема повышения степени извлечения нефти из недр остается одной из главных.  [23]

Задача формулируется достаточно просто: повышение степени извлечения нефти из пористой среды. Техника и технологии заметно совершенствуются, а средняя нефтеотдача если и растет, то всерьез об этом лучше не говорить. Более половины первоначальных геологических запасов нефти остаются неизвлеченными.  [24]

Основанием для такого предложения служит то обстоятельство, что повышение степени извлечения нефти из недр аналогично приросту извлекаемых запасов.  [25]

Развитие производства продукции органического синтеза предусмотрено на базе рационального использования топливно-энергетических ресурсов, широкого применения нетрадиционных ( ненефтяных) видов сырья, высокоселективных и высокоактивных катализаторов пролонгированного действия. Запланированы разработка широкой номенклатуры и освоение производства поверхностно-активных веществ для повышения степени извлечения нефти из недр, цветных и драгоценных металлов из руд.  [26]

Новые технологические процессы, базирующиеся на последних достижениях науки и техники, обобщении передового производственного опыта, требуют коренного преобразования старых методов производства. В нефтяной промышленности именно технология во многом обеспечивает достижение высоких технико-экономических показателей и повышение степени извлечения нефти из недр. Поэтому важнейшими задачами, стоящими перед нефтедобывающей отраслью, являются создание и внедрение более совершенной технологии разработки нефтяных залежей, и в частности применение новых методов увеличения нефтеотдачи пластов. Наряду с этим ведутся научные изыскания в области совершенствования технологии разработки.  [27]

Изложены физические основы методов увеличения нефтеотдачи, технология их применения в различных горно-геологических условиях, преимущества и недостатки. Рассмотрены требования к материально-техническим средствам и технике добычи нефти, исходя из условий обеспечения охраны недр, окружающей среды и повышения степени извлечения нефти из пластов. Дана оценка эффективности применения вторичных и третичных методов увеличения нефтеотдачи.  [28]

Изложены физические основы методов увеличения нефтеотдачи, технологи - их применения в различных горно-геологических условиях, преимущества и не достатки. Рассмотрены требования к материально-техническим средствам и тех аике добычи нефти, исходя из условий обеспечения охраны недр, окружающей, среды и повышения степени извлечения нефти из пластов. Дана оценка эффек - г. тивности применения вторичных и третичных методов увеличения нефтеотдачи.  [29]

При оценке состояния той или иной области народного хозяйства обычно дается необходимая важнейшая перспектива развития отрасли, включая ее научную баау. В решениях XXIV съезда КПСС сделана оценка существующих методов извлечения нефти, которые оценены как недостаточные, и поставлена задача усилить работы по изысканию новых более эффективных методов разработки нефтяных месторождений и повышению степени извлечения нефти из недр.  [30]

Страницы:      1    2    3

www.ngpedia.ru

Нефтеотдача пластов

СОДЕРЖАНИЕ

ВВЕДЕНИЕ. 2

НЕФТЕОТДАЧА ПЛАСТОВ.. 4

СОВРЕМЕННОЕ СОСТОЯНИЕ РАБОТ ПО НЕФТЕОТДАЧЕ ПЛАСТА.. 6

НЕКОТОРЫЕ ВОПРОСЫ МЕТОДИКИ ОПРЕДЕЛЕНИЯ - КОЭФФИЦИЕНТОВ НЕФТЕОТДАЧИ ПЛАСТОВ ПО ГЕОЛОГО-ПРОМЫСЛОВЫМ ДАННЫМ.. 15

ЗАКЛЮЧЕНИЕ. 25

СПИСОК ЛИТЕРАТУРЫ: 28

Под нефтеотдачей продуктивного пласта в нефтепромысловой практике понимается степень использования природных запасов нефти. Ввиду того, что естественные запасы нефти в недрах земли небезграничны, а открытие новых нефтяных месторождений требует затраты огромных средств и времени; достижение высокой нефтеотдачи пластов уже открытых месторождений имеет исключительно важное значение для страны.

Цель курсовой работы: изучить нефтеотдачу пласта и пути ее увеличения, изучение и определение коэффициентов нефтеотдачи по геолого-промысловым данным.

Нефтеотдача пластов, или степень извлечения подземных запасов нефти, в значительной мере влияет на объем капитальных вложений в поисковое и разведочное бурение, а также на планирование прироста промышленных, перспективных и прогнозных запасов. Кроме того, знание фактической величины нефтеотдачи имеет большое значение для оценки остаточных запасов, эффективности применяемых систем разработки, перспектив и масштабов внедрения новых методов разработки на длительно разрабатываемых залежах. Нефтеотдача пластов зависит от геологических условий залегания нефти в недрах, неоднородности пластов, физических свойств коллекторов и содержащихся в них жидкостей, системы разработки и методой воздействия на пласт, а также от предела экономической рентабельности эксплуатации скважин. Добыча нефти должна расти не только за счет ввода в эксплуатацию новых месторождений, но и за счет увеличения нефтеотдачи разрабатываемых месторождений. Количество остаточной нефти по ряду месторождений определяется десятками и сотнями миллионов тонн. Небольшое увеличение нефтеотдачи пластов равноценно открытию нескольких крупных месторождений. Экономические выводы, связанные с получением дополнительной добычи нефти и использованием промысловых сооружений, будут огромны. Таким образом, перспектива увеличения нефтеотдачи, т.е. решение проблемы максимального извлечения нефти из недр, является одной из крупных народнохозяйственных задач.

Один из показателей эффективности режима работы залежей и в целом процесса ее разработки - нефтеотдача (степень полноты извлечения нефти). Ее характеризуют коэффициентом нефтеотдачи (вводится термин коэффициента нефтеизвлечения), причем различают конечный, текущий и проектный коэффициенты нефтеотдачи.

Под текущим коэффициентом нефтеотдачи (текущей нефтеотдачей) понимается отношение добытого из пласта количества нефти па определенную дату к балансовым (геологическим) ее запасам. Текущая нефтеотдача возрастает во времени по мере извлечения из пласта нефти. Конечный коэффициент нефтеотдачи - это отношение извлеченных запасов нефти (добытого количества нефти за весь срок разработки) к балансовым запасам. Проектный коэффициент нефтеотдачи отличается от конечного (фактического) тем, что он обосновывается и планируется при подсчете запасов нефти и проектировании разработки. На основании экспериментальных и статистических промысловых данных считают, что конечные коэффициенты нефтеотдачи в зависимости от режимов работы залежей могут принимать такие значения:

водонапорный режим... ... ... ... . .0,5-0,8

газонапорный режим... ... ... ... ...0,1-0,4

режим растворенного газа... ... .0,05-0,3

гравитационный режим ……. .0,1-0.2

Так как напорные режимы характеризуются высокими конечными коэффициентами нефтеотдачи, а также высокими темпами отбора нефти, то часто с самого начала разработки целесообразно изменить, естественный режим и принудительно создать в залежи водонапорный или менее эффективный газо-напорный режим. Упругий режим всегда переходит в другой режим. При вытеснении газированной нефти водой нефтеотдача может повышаться за счет того, что часть нефти замещается неподвижным газом.

При напорных режимах, учитывая физическую сторону процесса вытеснения нефти и реальное движение жидкости к системе скважин, коэффициент нефтеотдачи (нефтеизвлечения) представляют (по предложению А.П. Крылова) как произведение коэффициентов вытеснения нефти из пласта и охвата пласта разработкой:

Под коэффициентом вытеснения понимают отношение объема нефти, вытесненной из области пласта, занятой рабочим агентом (водой, газом), к начальному содержанию нефти в этой же области. Как известно из физики пласта, коэффициенты вытеснения зависит в основном от кратности промывки (отношения объема прокачанного, рабочего агента к объему пор), отношения вязкости нефти к вязкости рабочего агента, коэффициента проницаемости, распределения размера пор и характера смачиваемости пород пласта. В гидрофильных высокопроницаемых пористых средах при малой вязкости нефти, по данным М.Л. Сургучева, коэффициент вытеснения нефти водой может достигать 0,8-0,9. В слабопроницаемых частично гидрофобных средах при повышенной вязкости нефти он составляет 0,5-0,65, а в гидрофобных пластах - не более 0,25-0,4. Вместе с тем, при смешивающемся вытеснении нефти газом высокого давления, углекислым газом и мицеллярным раствором, т.е. при устранении существенного влияния капиллярных сил, коэффициент вытеснения достигает 0,95-0,98.

Под коэффициентом охвата понимается отношение объем породы, охваченной вытеснением, ко всему объему нефтесодержащей породы. Он характеризует потери нефти по толщине и площади пласта в зонах стягивающих рядов добывающих скважин, разрезающих рядов нагнетательных скважин, в неохваченных дренированием и заводнением зонах в слабопроницаемых включениях, слоях, линзах, пропластках и застойных зонах, которые контактируют непосредственно с обводненными слоями и зонами или отделеных от них непроницаемыми линзами и слоями. В сильно расчлененных пластах остаточная нефтенасыщенность, которая может достигать 20-80%, существенно зависит от размещения скважин, условий вскрытия пластов в них, воздействия на обособленные линзы и пропластки, соотношения вязкостей нефти и воды и др.

В целом нефтеотдача зависит от многих факторов, пути управления которыми в настоящее время известны или изучаются, ибо большая доля запасов нефти все же остается в пласте. Увеличение коэффициента нефтеотдачи - актуальная и важная народнохозяйственная задача, на решение которой направлены усилия нефтяников.

В нашей стране большое развитие получили научные исследования по поискам и разведке нефтяных и газовых месторождений, а работы по изучению нефтегазоносных толщ, направленные на повышение извлечения геологических (абсолютных) запасов нефти, еще не достигли должного уровня.

В научно-исследовательских институтах проведен целый ряд больших теоретических и экспериментальных исследований, связанных с нефтеотдачей пласта, в результате которых освещены многие вопросы механизма вытеснения нефти водой. Значительная работа проделана по изучению параметров пласта и насыщающих их жидкостей и газов в лабораторных и промысловых условиях геофизическими методами.

Однако в работах институтов еще недостаточно уделяется внимания тематике исследований по нефтепромысловой геологии. Особенно слабо в планах институтов представлена тематика по изучению нефтеотдачи пласта. Во многих институтах нет лабораторий по нефтепромысловой геологии.

В результате отставания научных исследований фактические величины коэффициентов нефтеотдачи для разных геологических условий и различных систем разработки остаются невыясненными.

Представления о величинах коэффициентов нефтеотдачи зачастую складываются по результатам лабораторных исследований. Однако в лабораторных опытах практически невозможно воспроизвести сложные природные условия, влияющие на процесс вытеснения нефти. Поэтому полученные в лабораторных условиях данные могут характеризовать лишь максимальную нефтеотдачу. Так, например, конечные коэффициенты нефтеотдачи, полученные в УфНЙИ по лабораторным данным при вытеснении нефти водой, по девонским пластам Туймазинского месторождения достигают 73-77%, по Шкаповскому месторождению по пласту Д - 73-77%, по пласту Д - 78-74%, по девонскому пласту Чекмагушского месторождения - 71-73%, по угленосному горизонту Арланского месторождения - 60-75%. Не говоря о высоких цифрах нефтеотдачи по Туймазинскому и Шкаповскому месторождениям, совершенно очевидным является недостижимость полученного коэффициента отдачи по Арлану, где вязкость нефти в пластовых условиях достигает 20 сантипуаз.

Завышенные величины коэффициента нефтеотдачи, получаемые в лабораторных условиях, кроме целого ряда других причин, объясняются главным образом неучетом неоднородности пластов и величины водного фактора. Степень неоднородности, включая в это понятие многослойность и расчлененность, в значительной мере влияет на величину коэффициента нефтеотдачи. При исследовании кернов зачастую прокачивают большое количество вытесняющей жидкости, нередко превышающее десять объемов порового пространства исследуемой пористой среды. На практике при разработке нефтяных пластов через нефтяную залежь проходит значительно меньшее количество воды. По пласту XVI Октябрьского района Грознефти, который разрабатывается с 1961 г., водный фактор достиг лишь 3,0. Поэтому при сопоставлении результатов лабораторных и промысловых исследований необходимо учитывать количество воды, прошедшей через пласт пли образец керна.

За последние годы по ряду пластов, находящихся в конечной стадии разработки, проведены определения конечного коэффициента нефтеотдачи по геолого-промысловым данным. Весьма интересные данные получены по месторождениям Азербайджана и Чечено-Ингушской республике. Очень низкие коэффициенты нефтеотдачи получаются при разработке залежей КС: так, на Биби-Эйбате за 25 лет разработки коэффициент отдачи едва достиг 0,1; на Маштаги-Бузовнинском месторождении по горизонтам I-V он равен 0,17, по горизонтам II и III-0,30; на Калинском месторождении по горизонтам 11-12 (первое поле) коэффициент нефтеотдачи составил 0,326. Более высокие коэффициенты отдачи достигнуты при разработке ПК свиты, характеризующейся лучшими коллекторскими свойствами. Так, в Сураханах (юго-восточное поле) по ПК коэффициент нефтеотдачи составил 0,25, по ПК - 0,3; в Буховнах (центральное поле) - 0,28, в Бинагодах - 0,34, в Маштагах (южное крыло) - 0,41. Довольно значительные величины коэффициентов нефтеотдачи получены при разработке пластов с водонапорным режимом: по ПК свите Чахнагляра он составил 0,76, по горизонтам У1 я У1а балаханской свиты в Сураханах достиг 0,80. Получение высоких коэффициентов нефтеотдачи объясняется также большой плотностью разбуривания (до 1,5 га на скважину) и значительными водными факторами.

mirznanii.com

Способ увеличения степени извлечения нефти, газа и других полезных ископаемых из земных недр, вскрытия и контроля пластов месторождений

 

Сущность изобретения: способ увеличения степени извлечения нефти, газа и других полезных ископаемых из земных недр, вскрытия и контроля пластов месторождений содержит размещение в пробуренных скважинах устройств для передачи энергии, в качестве которых используют оптоволоконные кабели. Их концевые части с рабочими головками, излучающими световую энергию, размещают в призабойных зонах пластов полезных ископаемых при наличии вертикальных скважин или во внутрипластовых пространствах - при наличии наклонных и горизонтальных скважин. К оптоволокнам (световодам) оптоволоконных кабелей подключают на поверхности мощные лазеры - оптические квантовые генераторы излучения и создают в пластах области с заданной высокой температурой и высоким внутрипластовым давлением для увеличения степени извлечения нефти, газа и других полезных ископаемых из пластов месторождений. 5 з.п. ф-лы, 2 ил.

Изобретение относится к горной промышленности, а именно к способам разработки и увеличения степени извлечения полезных ископаемых из земных недр и в первую очередь нефти и газа.

Известен способ вытеснения нефти постоянным током при напряжении 10 кВ, согласно которому в эксплуатационной скважине, пробуренной на нефтеносный пласт, размещают устройство передачи энергии для последующего воздействия на него, а именно один из электродов находится в эксплуатационной скважине, а второй электрод устанавливают в любой точке нефтеносного пласта и даже за его пределами, но тоже в скважине, если смежный пласт электропроводен. Направление движения тока по пласту определяют эмпирически. Механизм вытеснения нефти по этому способу может быть объяснен явлением электроосмоса. Минеральный скелет пласта играет роль мембраны между электродами противоположных знаков, находящейся в прямом контакте с нефтью. Под действием электрического поля между электродами возникает осмотическое давление, перемещающее нефть с одного края этой "мембраны" на другой (патент Франции 1268588, кл. E 21 B, 1961). Недостатками способа является то, что он требует очень больших расходов электроэнергии и имеет низкую эффективность, особенно при использовании для увеличения степени извлечения нефти на значительных площадях месторождений и при высоком электросопротивлении пластов и вмещающих их горных пород. Наиболее близким аналогом изобретения является способ увеличения степени извлечения нефти или других ископаемых жидкостей из нефтяных пластов в земле или на море (SU, патент РФ 1838594 А3, кл. E 21 B 43/24, 43/25, 1993, Бюл. N 32), принятый за прототип. В качестве устройства передачи энергии для последующего воздействия на нефтяной пласт используются электроды в двух соседних скважинах и ртуть, которой скважины предварительно заполняются до уровня залегания нефтяного пласта. Затем в нефтяном пласте создаются вибрации с помощью вибраторов с частотой, наиболее близкой к резонансной частоте пласта. Для этого производят вибрирование ртути с помощью вставленных в нее вибраторов и одновременно осуществляют электрическую стимуляцию процесса вибрации посредством приложения переменного электрического напряжения к электродам, расположенным в соседних скважинах. Резонансные вибрации в указанном месторождении будут распространяться наружу и выталкивать нефть из месторождения. Энергия вибраций будет также создавать тепло в месторождении в виде тепла трения между месторождением и находящейся в нем нефтью и это будет создавать увеличенное давление за счет испарения некоторой части нефти и воды. К недостаткам данного способа можно отнести следующее: необходимы большие площади соприкосновения вибраторов со стенками скважин и очень большие затраты энергии, чтобы провибрировать месторождение от пласта и до земной поверхности, что потребует очень больших финансовых затрат; использование ртути в качестве жидких электродов очень опасно из-за ядовитых испарений и экологического загрязнения окружающей среды; эффективность увеличения степени извлечения нефти из месторождения данным способом будет незначительной. Технической задачей, на решение которой направлено изобретение, является повышение эффективности и экономичности разработки нефтегазовых месторождений за счет значительного увеличения степени извлечения нефти, газа и других полезных ископаемых из пластов. Поставленная техническая задача достигается тем, что скважины на месторождении герметизируют пакерами на любом удобном для этого уровне, предварительно размещают в этих скважинах устройства для передачи энергии с поверхности - оптоволоконные кабели, концевые части которых оснащены рабочими головками, излучающими энергию в призабойные зоны вертикальных скважин или во внутрипластовое пространство при наличии наклонных и горизонтальных скважин, подключают к оптоволокнам /световодам/ оптоволоконных кабелей на поверхности мощные лазеры - оптические квантовые генераторы излучения и создают в пластах области с заданной высокой температурой и высоким внутрипластовым давлением для увеличения степени извлечения нефти, газа и других полезных ископаемых из пластов месторождений. При этом на заданных участках скважин вскрывают продуктивные пласты путем разрезки или перфорирования материала обсадных колонн скважин мощным лазерным излучением с дальнейшим испарением жидких и твердых фаз, входящих в состав пластов и вмещающих их горных пород. Кроме того, оптоволоконные кабели размещают в нескольких скважинах месторождений одновременно, создают в пластах необходимое количество областей с заданной высокой температурой и высоким давлением и перемещают эти области во внутрипластовых пространствах путем перемещения излучающих концевых частей оптоволоконных кабелей с рабочими головками по скважинам. Причем при необходимости поддержания заданных величин температур и внутрипластового давления нефти, газа и других полезных ископаемых процесс обработки пластов месторождений мощным лазерным излучением повторяют многократно через необходимые временные интервалы в необходимом порядке и последовательности. В свою очередь, необходимую последовательность определяют либо исходя из возможности равномерной обработки мощным лазерным излучением всей площади пластов на данном месторождении, либо в случаях сложных геологических условий залегания пластов месторождений будут иметь место необходимый в данных условиях порядок и последовательность обработки пластов, предполагающий максимальный эффект воздействия на пласты при минимальных затратах средств. В процессе обработки продуктивных пластов месторождений мощным лазерным излучением через оптоволоконные кабели одновременно по специальному оптоволокну (световоду) осуществляют бесконтактный и дистанционный контроль создаваемых в пластах значений высоких температур, давлений, размеров и форм образованных в пластах полостей, смыкание участков пластов, обработанных лазерным излучением из соседний скважин, получают информацию о составе испаряемых веществ пластов и вмещающих их горных пород. Время, затраченное на обработку пластов, на различных месторождениях будет различным в зависимости от физико-механических, химических характеристик нефтегазовых пластов, состава и вида полезного ископаемого, напряженно-деформированного состояния самих пластов, их обводненности и ряда других факторов. В каждом конкретном случае схема расположения скважин, их вид (вертикальные, наклонные и горизонтальные) и количество, время обработки пластов месторождений, размеры обработанных площадей пластов устанавливают экспериментальным путем с одновременным получением данных контроля за происходящими процессами в пластах, а также путем предварительного лабораторного и математического моделирования данных процессов в заданных условиях для достижения максимального эффекта увеличения степени извлечения полезных ископаемых из пластов. Возможно также построение виртуальных моделей с использованием мощных ЭВМ. В необходимых случаях, особенно после интенсивной добычи полезных ископаемых из пластов, чтобы поддержать заданные давления и температуру нефти и газа в пластах для наиболее полной их добычи из месторождений, возможна многократная обработка пластов путем повторного размещения оптоволоконных кабелей в скважинах и последующего перемещения их излучающих концевых частей с рабочими головками, но уже развернутыми для излучения в другой плоскости относительно ранее выбранного направления обработки пластов, например для испарения водоносного слоя в нефтегазоносных пластах, что тоже позволит резко поднять давление в пластах. Возможна также одновременная обработка нефтегазоносных пластов мощным лазерным излучением из скважин в нескольких взаимно смещенных секторах при оптическом излучении в каждом секторе, расходящемся из излучателей под углом до 40o, что позволяет осуществлять рабочие головки концевых частей оптоволоконных кабелей. Рабочие головки защищены специальными защитными фильтрами, предохраняющими излучатели от загрязнения испаряемыми веществами, и выполнены таким образом, что излучение выходит из них в любом необходимом направлении в зависимости от подключения к лазеру того или иного оптоволокна (световода) в оптоволоконных кабелях. Для перемещения по обсадным колоннам скважин головки снабжены колесами и направляющими лыжами. Многократная обработка пластов особенно актуальна в случаях добычи из месторождений вязкой нефти или при откачке газа из влагонасыщенных скважин с низким пластовым природным давлением, когда газовые скважины могут самозадавливаться водой, поступающей из пластов вместе с газом. Многократная обработка также необходима в призабойной зоне скважин, особенно вертикальных, где с течением времени происходит закупорка трещин и пор парафинами и смолами, содержащимися в нефти. Кроме того, на закрытие трещин и пор сильно влияет также процесс перераспределения напряжений в околоскважнной области пластов. Обработка призабойной зоны скважин мощным лазерным излучением позволяет испарить парафины, смолы и часть вещества пластов, образовать новую дополнительную поверхность и расширить полости около скважин с одновременным повышением температуры и давления, что приводит к перераспределению напряжений. Все это в результате вызывает дополнительный приток нефти и газа в скважины, значительно повышается степень их извлечения из пластов. На фиг.1,2 изображен разрез и план массива горных пород, схема размещения оптоволоконных кабелей с рабочими головками для лазерного излучения в вертикальных скважинах ряда 1 и в наклонно-горизонтальных скважинах ряда 11, показаны возможные направления перемещения рабочих головок оптоволоконных кабелей по скважинам и возможные полости, образованные лазерным излучением в вертикальной и горизонтальной плоскостях нефтегазового пласта. На поверхности разрабатываемого месторождения нефти и газа устанавливают необходимое количество мощных лазеров - оптических квантовых генераторов излучения 1 (см. фиг. 1), которые запитываются от электрической сети и на выходе подключаются к оптоволоконным кабелям. Свет от лазеров, направляемый в оптоволокна (световоды) оптоволоконных кабелей, распространяется в них за счет многократного отражения, практически без потерь. Оптоволокна (световоды) покрыты оболочкой из слоев полимера, который защищает их от механических повреждений. Для данных условий применяют многожильные кабели для подземного залегания. Эти особо стойкие и прочные кабели для использования в экстремальных условиях имеют дополнительные защитные оболочки и стальную броню, а внутренняя конструкция кабелей заполняется гелем, предохраняющим от проникновения воздуха и воды внутрь кабелей. Оптоволокна как бы плавают в незамерзающем геле и могут выдерживать температуры ниже минус 40oC. В качестве элемента прочности используются стальные тросы, которые вместе с оптическими кабелями находятся в одной оболочке. В многожильных кабелях далеко не все оптоволокна (световоды) используются сразу. Некоторые свободные остаются развернутыми на случай неисправностей или для будущих применений, что немаловажно в экстремальных условиях их работы в скважинах. Все лучи достигают концов кабелей практически одновременно. Существующие оптоволоконные кабели имеют полосу пропускания в несколько гигагерц и позволяют передавать излучения лазеров на расстоянии в десятки километров. Они выпускаются в катушках длиной в основном до 2 км, но могут выпускаться производителями и произвольной длины по заказу. В случае необходимости, оптоволоконные кабели наращиваются с помощью сплайсов, т.е. специальных соединительных муфт, обеспечивающих незначительные потери в соединениях. Производители указывают максимальные нагрузки, которые можно приложить к оптоволоконным кабелям - это нагрузки при установке кабелей и рабочие, измеряемые в ньютонах. Кабели обладают достаточной гибкостью и возможностями изгиба с небольшим радиусом. Катушки с оптоволоконными кабелями устанавливают на лебедках 2 с системой направляющих шкивов 3 для подачи кабелей в скважины, пробуренные на нефтегазовый пласт месторождения и оборудованные обсадными колоннами 5. Концы оптоволоконных кабелей снабжены рабочими головками 6, которые опускают до заданной глубины или размещают на заданных расстояниях в скважинах, пробуренных на пласт. На нефтегазовом месторождении пласт в подавляющем большинстве случаев имеет сложное строение и состоит из верхних глинистых слоев 7 и нижних 11, являющихся своеобразными изоляторами и водоупорами, газоносного слоя 8, иногда называемого газовой шапкой месторождения, нефтеносного слоя 9, водоносного слоя 10 в почве пласта. Могут также иметь место различные дополнительные слои и прослои в пласте (на схеме не показаны). Подстилающие пласт слои горных пород 14 могут быть как осадочного, так и магматического происхождения. Скважины надежно герметизируются пакерами 15 на любом удобном уровне над пластом для того, чтобы перекрыть доступ кислорода воздуха в пласт и избежать возможных неприятных последствий (например, взрывов) при смешивании с газом пласта и поднятии температуры в пласте до очень высоких значений, даже до температур плазмы в десяти тысяч градусов. Пакеры 15 извлекаются из скважины после окончания обработки пласта, а до этого служат еще и заглушками для нефти и газа, давление и температура которых после обработки лазерным излучением резко возрастают. На заданных участках нефтегазоносного пласта лазерным излучением из рабочих головок 6 на концах оптовлоконных кабелей в материале обсадных колонн 5 прорезаются окна или отверстия перфорации 13 в вертикальных, горизонтальных и других наклонных плоскостях. Таким образом происходит вскрытие пласта на нескольких заданных участках в процессе перемещения рабочих головок 6 по скважинам в заданных направлениях, указанных на схеме стрелками. Через окна и отверстия перфорации 13 в обсадных колоннах скважин мощное лазерное излучение передают в нефтегазоносный пласт и окружающие его породы. В результате такого воздействия лазерного излучения резко возрастает температура пласта, пород и происходит испарения их твердых и жидких фаз, что в свою очередь приводит к образованию полостей и пустот 16 в вертикальных, горизонтальных и других наклонных плоскостях в пласте и окружающих его горных породах. Следствием такой обработки пласта является также и значительное увеличение давления в нем, что приводит к резкому повышению нефтегазоотдачи из скважин пласта. Пиковая исходная мощность лазерного излучения может достигнуть огромных величин - сотен и тысяч киловатт и оно способно разрушить и испарить любое окружающее вещество. Ресурс лазеров достаточно большой - достигает 1000 ч непрерывной работы. Отраженное лазерное излучение по специальному оптоволокну /световоду/ передает на поверхность в анализирующую и контрольную аппаратуру (с использованием ЭВМ) информацию о происходящем в пласте процесса: температуре, давлении, размерах и форме образованных в пласте полостей, их смыкании, а также о составе испаряемых веществ пласта и вмещающих его горных пород. Можно получить и другую необходимую информацию, например определить скорость образования полостей и другие параметры. Предлагаемый способ увеличения степени извлечения нефти, газа и других полезных ископаемых из земных недр, вскрытия и контроля пластов месторождений применяют следующим образом. На любых месторождениях могут иметь место два вида ситуаций. Первая ситуация, когда на новом месторождении после бурения серии разведочных скважин на пласт становится известно, что давление нефти или газа в плате невысокое или имеют место вязкие нефти, требующие разогрева, или же имеют место высокие напряжения в связи с большой глубиной залегания пласта, которые приводят к быстрому смыканию трещин и пор в околоскважинном пространстве и снижению дебита скважин, а также в других подобных случаях. В этом случае предлагаемый способ используют перед началом эксплуатации нового месторождения. Причем на ряде участков, где пласт уже обработан лазерным излучением, может начинаться промышленная добыча, а на остальных участках пласта обработка может продолжаться по мере бурения новых скважин на пласт параллельно с уже работающими по добыче нефти или газа скважинами. Вторая ситуация - на старом месторождении значительно упал дебит из существующих и интенсивно эксплуатируемых в прошлом скважин, но известно, что запасы нефти и газа еще значительные и необходимо для их полного извлечения увеличить внутрипластовое давление и температуру. В обеих ситуациях скважины (вертикальные, наклонные или горизонтальные), пробуренные на нефтегазоносный пласт месторождения по заранее определенной оптимальной схеме и в определенном сочетании, герметизируют пакерами 15 и предварительно размещают в них оптоволоконные кабели 4 с рабочими головками 6 в их концевых частях (с помощью лебедок 2 и систем направляющих шкивов 3). Подсоединяют кабели к расположенным на поверхности мощным лазерам 1, которые генерируют оптическое квантовое излучение, распространяющееся по оптоволоконным кабелям 4 в заданные участки скважин в пласте. Затем на этих участках пласта лазерным излучателем из рабочих головок 6 в материале обсадных колонн 5 скважин прорезают окна или отверстия перфорации 13 в вертикальных, горизонтальных и других наклонных плоскостях. Таким образом вскрывают пласт на нескольких заданных участках в процессе перемещения рабочих головок 6 кабелей 4 по скважинам с помощью лебедок 2 в заданных направлениях. Через прорезанные окна или отверстия перфорации 13 передают мощное лазерное излучение через рабочие головки 6 в нефтегазоносный пласт и окружающие его горные породы, значительно увеличивают температуру пласта и пород мощным лазерным излучением, вплоть до состояния плазмы с температурой нагрева веществ в несколько тысяч и десятков тысяч градусов Цельсия, испаряют составляющие пласт и породы вещества как в твердых, так и в жидких фазах и тем самым резко увеличивают давление в пласте месторождения, что приводит к значительному повышению нефтегазоотдачи из скважин пласта. При необходимости подобную обработку пласта повторяют многократно через заданные промежутки времени в необходимом порядке и последовательности. Дистанционно и бесконтактно контролируют с помощью отраженного лазерного излучения, передающегося по специально выделенному в кабеле оптоволокну (световоду) на поверхность, происходящий в пласте и породах процесс по изменению величин температур, давлений, определяют размеры и форму образованных в пласте и породах полостей, их смыкание, состав испаряемых веществ пласта и вмещающих его горных пород, скорость образования полостей во времени и другие необходимые параметры. В результате обработки заданных частей нефтегазоносного пласта месторождения мощным лазерным излучением из скважин происходит резкое изменение температурного и напряженно-деформированного состояния пласта и вмещающих его горных пород. Появляются пустоты и свободные пространства в пласте и породах за счет испарения твердых и жидких фаз составляющих их веществ, изменяется система трещин и пор, что после окончания обработки приведет к еще одному перераспределению напряжений от горного давления и это тоже положительно отражается на увеличении притока нефти и газа в скважины. Вязкость нефти в значительной степени будет снижена при повышении температуры, а смоляные и парафиновые составляющие нефти в порах и трещинах будут выжжены или расплавлены. В итоге, после обработки нефтегазоносного пласта месторождения мощным лазерным излучением резко возрастает степень извлечения из него нефти и газа, что позволяет возродить к промышленной эксплуатации даже давно отработанные месторождения при наличии в них еще не извлеченных запасов нефти и газа и приблизиться к практически полному извлечению этих запасов из месторождений как старых, так и новых, потому что обработку пластов месторождений можно осуществлять многократно через необходимые временные интервалы. Таким образом, предложенный способ позволит получить значительный экономический эффект при его использовании и является экологически чистым. Его можно успешно использовать для подземной газификации угольных пластов, что значительно повысит степень извлекаемости угля из земных недр, позволит значительно уменьшить загрязнение окружающей среды вредными отходами горной промышленности (твалами пород, откачанными подземными водами из горных выработок и скважин с высоким содержанием серы и других вредных примесей, попадающих в поверхностные воды) и улучшить экологию территорий, на которых залегают полезные ископаемые. С помощью этого способа можно также уничтожить подземные захоронения и могильники и отходами вредных радиоактивных и химических веществ, испаряя их под землей в плазме лазерного излучения без доступа кислорода воздуха и препятствуя тем самым их распространению подземными водами в другие места. Предлагаемым способом можно добиться выплавления в подземные выработки металлов из рудных жил, тел и линз, например, таких как золото, серебро, никель и ряда других. Предлагаемый способ можно с успехом использовать для геологической разведки месторождений полезных ископаемых, так как появляется возможность с его помощью проходить разведочные скважины и получать одновременно с их проходкой дистанционно и бесконтактно информацию о составе и свойствах горных пород, на которые воздействует мощное лазерное излучение, испаряя и анализируя вещество массива горных пород.

Формула изобретения

1. Способ увеличения степени извлечения нефти, газа и других полезных ископаемых из земных недр, вскрытия и контроля пластов месторождений, согласно которому в скважинах, пробуренных на месторождениях размещают устройства передачи энергии для последующего воздействия на продуктивные пласты, отличающийся тем, что в качестве устройств для передачи энергии используют оптоволоконные кабели, размещают их концевые части с рабочими головками, излучающими световую энергию, в призабойных зонах пластов полезных ископаемых при наличии вертикальных скважин или во внутрипластовых пространствах при наличии наклонных и горизонтальных скважин, подключают к оптоволокнам (световодам), оптоволоконных кабелей на поверхности мощные лазеры оптические квантовые генераторы излучения и создают в пластах области с заданной высокой температурой и высоким внутрипластовым давлением для увеличения степени извлечения нефти, газа и других полезных ископаемых из пластов месторождений. 2. Способ по п. 1, отличающийся тем, что на заданных участках скважин вскрывают продуктивные пласты путем разрезки или перфорирования материала обсадных колонн скважин мощным лазером излучением с дальнейшим испарением через эти прорези твердых и жидких фаз веществ, входящих в состав пластов и вмещающих их горных пород. 3. Способ по п.1, отличающийся тем, что оптоволоконные кабели размещают в нескольких скважинных месторождений одновременно, создают в пластах необходимое количество областей с заданной высокой температурой и высоким давлением и перемещают эти области во внутрипластовых пространствах путем перемещения излучающих концевых частей оптоволоконных кабелей с рабочими головками по скважинам, пробуренным по пластам полезных ископаемых месторождений. 4. Способ по п.1, отличающийся тем, что при необходимости поддержания заданных величин температур и внутрипластовых давлений нефти, газа и других полезных ископаемых, процесс обработки пластов месторождений мощным лазерным излучением повторяют многократно через необходимые временные интервалы с одновременным излучением в нескольких взаимно смещенных на определенный угол по отношению к друг другу секторах с расхождением лучей в каждом секторе на определенный угол. 5. Способ по п.1, отличающийся тем, что в процессе обработки пластов месторождений мощным лазерным излучением через оптоволоконные кабели, одновременно осуществляют по их специальным оптоволокнам (световодам) бесконтактный и дистанционный контроль создаваемых в пластах значений высоких температур, давлений, размеров и форм, образованных в пластах и породах полостей, их смыкание, получают информацию о составе испаряемых веществ пластов и вмещающих их горных пород и о других необходимых параметрах процесса обработки пластов. 6. Способ по п.1, отличающийся тем, что обработку пластов мощным лазерным излучением через скважины осуществляют в необходимом порядке и последовательности.

РИСУНКИ

Рисунок 1, Рисунок 2

www.findpatent.ru

Добавки для извлечения нефти из нефтяных пластов

Изобретение относится к использованию добавок, способных увеличить извлечение нефти из нефтяных пластов. Способ повышения нефти из карбонатных пластов включает растворение в воде или солевом растворе в количестве 0,01-20% четвертичных полиаминов указанной формулы, где n≥1; R1 представляет собой Н, СН3, СН2СН3, Cnh3n+1; R2 представляет собой Н2СНОНСН2, СН2, СН2СН=СН2, R3 представляет собой СН3, СН2СН3, Cnh3n+1; R4 представляет собой СН2, СН2СН=СН3; и если R2 и R4 представляют собой аллильные группы, то совместно они могут образовывать алифатические циклические структуры; соотношение между атомами углерода и азота (C/N) находится в интервале от 2 до 30, и последующее введение в скважину. Технический результат - повышение степени извлечения нефти. 2 н. и 13 з.п. ф-лы, 30 пр., 4 табл., 5 ил.

 

Настоящее изобретение относится к использованию добавок, способных увеличить степень извлечения нефти из нефтяных пластов, предпочтительно карбонатных нефтяных пластов с низкой проницаемостью.

Точнее, изобретение относится к использованию добавок, способных модифицировать смачиваемость породы со смачиваемой нефтью на смачиваемую водой без понижения при этом межфазного натяжения (термин "смачиваемая нефтью" относится к поверхности, по существу смоченной нефтью, и наоборот, термин "смачиваемая водой" относится к поверхности, преимущественно смоченной водой).

Примерно половина всех известных месторождений в мире относится к карбонатному типу. Специфическая природа пластов этих месторождений наряду с тем, что они обычно имеют трещины, низкую проницаемость и смочены нефтью, обуславливает трудность извлечения нефти: степень извлечения обычно гораздо ниже 30%.

Это происходит потому, что в процесс извлечения попадает только сырая нефть, находящаяся в трещинах, тогда как нефть, содержащаяся внутри скелета породы, удерживается в результате отрицательного капиллярного давления вследствие того, что пористый скелет смочен нефтью.

То, что карбонатные пласты преимущественно смочены водой, является результатом многолетних физико-химических взаимодействий между углеводородами и поверхностью породы, и в частности взаимодействий между карбоксильными компонентами, присутствующими в сырой нефти, которые могут быть выражены количественно посредством кислотного числа нефти, и поверхностью породы. Из этого соображения следует, что можно добиться восстановления состояния поверхности до начальных условий, когда поверхность смочена водой, просто поспособствовав освобождению этих компонентов.

Начиная с середины девяностых многие лаборатории направили исследования на поиск добавок, которые при добавлении к вводимой воде способны повысить степень извлечения нефти из карбонатных пластов.

Все до сих пор разработанные способы основаны на использовании поверхностно-активных агентов или полимерных поверхностно-активных агентов, некоторые из которых доказали свою способность обращать смачиваемость породы, так что захваченная нефть может спонтанно высвобождаться.

Однако одной из характеристик поверхностно-активных агентов является то, что они снижают межфазное натяжение нефть-вода, а это в процессе вытеснения нефти водой приводит к значительному уменьшению капиллярного давления - движущей силы явления.

Это приводит к медленной кинетике вытеснения, что и обуславливает значительное уменьшение промышленного использования этих добавок.

Даже если эта проблема и признана специалистами в данной области, до сих пор не было найдено ее решения.

В настоящее время обнаружено, что конкретная группа добавок способна модифицировать смачиваемость породы без снижения межфазного натяжения вода-нефть в отличие от поверхностно-активных агентов.

Таким образом создается ситуация, благоприятствующая инверсии капиллярного давления, при этом его абсолютное значение остается высоким, при этом добиваются спонтанного высвобождения нефти с более высокими степенями извлечения нефти, чем удавалось получить до сих пор.

Следовательно, такие величины, как межфазное натяжение и смачиваемость, рассматриваются как независимые переменные, тогда как в принятом до сих пор подходе, в котором подразумевалось использование поверхностно-активных веществ, эти две величины с необходимостью объединяли.

Этот аспект имеет особую важность, принимая во внимание то, что за последние годы во множестве лабораторий направляли усилия на поиск добавок, способных повысить нефтеотдачу карбонатных нефтяных пластов, и при этом не обнаружили добавок, которые не понижают межфазную поверхность.

Принимая это во внимание, задачей настоящего изобретения является применение четвертичных полиаминов формулы (I) для извлечения нефти из пластов

где n≥1,

R1 представляет собой H, Ch4, Ch3Ch4, Cnh3n+1,

R2 представляет собой h3CHOHCh3, Ch3, Ch3CH=Ch3,

R3 представляет собой Ch4, Ch3Ch4, Cnh3n+1,

R4 представляет собой Ch4, Ch3CH=Ch3.

Если R2 и R4 представляют собой аллильные группы, то совместно они могут образовывать алифатические циклические структуры, соотношение между атомами углерода и азота (C/N) находится в интервале от 2 до 30.

Соотношение между атомами углерода и азота (C/N) находится в интервале от 2 до 20, а более предпочтительно от 2 до 12.

n предпочтительно ≥2.

Доказано, что применение предлагаемых в изобретении полиаминов особенно эффективно для извлечения нефти из карбонатных пластов.

Предлагаемые полиамины не имеют поверхностно-активных свойств, они растворимы в воде и особенно растворимы в солевых растворах.

Предпочтительные катионные полиамины - это полиамины, имеющие формулы II, III или IV, представленные ниже:

Структуры III и IV представляют собой полимер, полученный циклизацией хлорида диаллилдиметиламмония, и в этом случае R1 и R3 представляют собой Ch4, тогда как R2 и R4 представляют собой две аллильные группы, которые циклизуются в ходе полимеризации.

В частности, самые лучшие результаты были получены при использовании хлорида полидиаллилдиметиламмония (поли-ДАДМАХ, III/IV), который имеется в продаже под торговым названием FLOC 572 (компания "3F Chimica"). Это вещество и использовали в приведенных ниже примерах.

В целях настоящего изобретения можно и удобно также использовать сополимеры четвертичных полиаминов, например полиамины/полиакриламиды; полиамины/полиамиды, полиамины/полиэтиленоксиды и добавки, полученные при кватернизации продукта реакции Манниха, полученного взаимодействием формальдегида, полиакриламида и вторичного амина.

Во всех этих случаях молярная доля сополимера должна быть ниже 30%, предпочтительно ниже 20%.

Предлагаемые в изобретении полиамины (или сополимеры) не обладают поверхностно-активными свойствами, то есть они не изменяют межфазного натяжения сырой нефти. В частности, они не понижают межфазного натяжения сырой нефти до величин меньше 2 мН/м. Они предпочтительно поддерживают межфазное натяжение нефти на уровне более 5 мН/м, а еще более предпочтительно на уровне более 10 мН/м.

Предлагаемые полиамины имеют значительно улучшенные - в отношении кинетики высвобождения нефти - характеристики по сравнению с характеристиками катионных поверхностно-активных агентов, обычно используемых для таких применений.

Другим объектом настоящего изобретения также является способ повышения степени извлечения нефти из пластов, который включает приготовление водного или солевого раствора четвертичных полиаминов в концентрациях в интервале от 0,01% до 20% и последующее введение его в скважину.

Предпочтительно использовать полиамины в концентрациях в интервале от 0,01% до 10%, а еще более предпочтительно от 0,05% до 5%.

Применение предлагаемых полиаминов в качестве добавок в процессе извлечения нефти, захваченной скелетом породы, составляющей пласты, предпочтительно карбонатные, приводит к инверсии смачиваемости породы без изменения межфазного натяжения. Следовательно, кинетика вытеснения, которую обычно нарушают добавки, снижающие межфазное натяжение, ускоряется и становится совместимой со временем закачивания воды.

Более того, отсутствие поверхностно-активных свойств этих полимеров уменьшает возможные проблемы, связанные с образованием пены и эмульсий, которые могут возникнуть на некоторых стадиях производства (например, в сепараторах), если используют поверхностно-активные агенты.

Предлагаемые в изобретении добавки были выбраны при помощи двух тестов.

Первый состоит в качественной оценке эффективности удаления нефти из карбонатного порошка, тогда как второй связан с количественной оценкой способности исследуемых добавок вытеснять нефть.

Эти два способа просты и эффективны для проведения быстрой проверки добавок, подходящих для удаления нефти.

Первый способ основан на способности добавки удалять нефть и позволяет легко провести предварительную проверку и выбор исследуемых добавок.

В частности, этот метод включает предварительную обработку карбонатного порошка сырой нефтью и последующее диспергирование предварительно обработанного порошка в растворах добавок с определенной концентрацией.

Эффективность предварительной обработки зависит от типа сырой нефти (в частности, от ее кислотного числа), температуры и длительности. Условия проведения теста подразумевают использование сырой нефти с кислотным числом >0,25, при этом температура находится в интервале от 60 до 90°C, а длительность предварительной обработки составляет >10 дней.

Предпочтительно работать с сырой нефтью, имеющей кислотное число >1,0 при температуре 80°C и при длительности обработки 10 дней.

Эффективность предварительной обработки заключается в возможности воспроизвести сильно смоченную нефтью карбонатную породу.

Для корректной интерпретации данных обязательно нужно использовать сырую нефть с межфазным натяжением >10, то есть не загрязненную поверхностно-активными агентами, добавленными во время процесса производства.

Второй способ позволяет количественно оценить способность вытеснять нефть, присущую тем добавкам, которые продемонстрировали положительный результат в предварительном тесте 1.

Тест проводят, используя слои породы, которые смачивают нефтью путем соответствующей предварительной обработки сырой нефтью, и оценивая изменение их массы (с использованием высокоточных весов, соединенных с компьютером) через некоторое время после погружения в раствор испытываемой добавки.

Предварительную обработку снова проводят, используя сырую нефть с более высоким кислотным числом (по меньшей мере выше 0,25), при этом выдерживая породу в нефти в течение по меньше мере недели при температуре >60°C. При последовательном использовании двух способов возможно быстро, просто и эффективно провести отбор многочисленных добавок.

Были оценены четыре вида нефти для тестов на выдержку карбонатных порошков и дисков породы. Два вида, обозначенные как A и B, были получены с месторождения на юге Италии (оба были взяты в устье скважины). Другие два вида, обозначенные C и D, были взяты с месторождения на севере Италии. Из двух последних видов сырой нефти образец C был взят в устье скважины, в то время как D - из объема нефти. В целях сравнения в качестве модельного углеводорода использовали гептан.

В таблице 1 указаны кислотные числа и межфазное натяжение четырех образцов нефти, использованных в нашем исследовании.

Самые лучшие результаты были получены с использованием нефти С, поступающей с месторождения на севере Италии. Лучшие характеристики этой нефти обусловлены высоким значением кислотного числа, связанным с высоким значением межфазного натяжения (характерным для сырой нефти, не загрязненной поверхностно-активными агентами).

Образец нефти D был фактически признан негодным, так как он, по-видимому, оказался загрязнен поверхностно-активными агентами (об этом говорит низкое значение межфазного натяжения), вероятно, введенными в объем нефти (в качестве деэмульгаторов, ингибиторов коррозии и т.д.) во время процесса сепарации нефти. В этом отношении следует помнить, что присутствие поверхностно-активных агентов, добавляемых к используемой сырой нефти, может поставить под угрозу исследование смачиваемости.

В тех случаях, когда речь идет о порошках, были использованы карбонаты с различным составом и размером частиц (мрамор, портландцемент, карбонат кальция и микродол).

Что же касается добавок, были исследованы поверхностно-активные агенты, растворимые в воде, представляющие различные группы промышленных поверхностно-активных агентов (ионные, неионные и полимерные). В частности, додецилсульфат натрия (ДСН) и диоктилсульфосукцинат натрия (ДОССН) были проанализированы в качестве анионных поверхностно-активных агентов; бромид додецилтриметиламмония (ДТАБ) и бромид цетилтриметиламмония (ЦТАБ) - в качестве катионных поверхностно-активных агентов; различные этоксилаты и некоторые полиглюкозиды (АПГ) - в качестве неионных поверхностно-активных агентов. Atlox 4912 (компания «Uniqema») был выбран в качестве полимерного поверхностно-активного агента.

Исследованные полимеры (не обладающие поверхностной активностью) представляли собой растворимые в воде промышленные полимеры компании «3F Chimica» с различной молекулярной массой и с различными зарядами (катионные и анионные), а в качестве сравнения были проанализированы два катионных полимера компании «Floger».

ПРИМЕРЫ

Результаты тестов представлены в таблицах 2 и 3. Тесты были проведены в соответствии с процедурами, описанными в тесте 1 и тесте 2, детально представленными ниже.

В частности, целью теста 1 было провести быструю предварительную качественную проверку исследуемых добавок, а затем лучше оценить характеристики наиболее интересных продуктов при помощи количественного анализа, проводимого при помощи теста 2. Так как последний тест более длительный и трудоемкий, его проводили только для наиболее подходящих добавок.

Тест 1. Качественная оценка добавок по эффективности удаления сырой нефти из предварительно обработанных порошков. Тест проводили в две фазы.

а. Выдержка карбонатного порошка.

Тест состоит в предварительной обработке порошка в течение 10 дней при постоянной температуре (80°C) в нефти C. Выдержку проводили в стальных вращающихся цилиндрах.

По завершении выдержки образцы фильтровали на фильтровальной бумаге и оставляли для просушки. Выдержанный порошок (фиг.1) взвешивали (4 г) в пробирках, а водные растворы (12 г) исследуемых добавок добавляли к нему в концентрации 0,1% (при этом контролировали pH всех протестированных растворов).

Образцы перемешивали при помощи вортекса в течение 2 минут. Визуально наблюдалось выделение нефти.

Тест 2. Тест на вытеснение нефти.

Диски породы "Leccese" предварительно обрабатывали в образце нефти С в течение 1 недели при 80°С. Породу погружали в нефть в вакууме, чтобы удостовериться, что она полностью пропиталась сырой нефтью.

Образцы породы подвешивали в корзинке на соединенные с компьютером весы.

Анализ проводили путем погружения пропитанных нефтью образцов породы "Leccese" в водный раствор исследуемых добавок и регистрации изменения их массы во времени.

Измерения межфазного натяжения

Измерения межфазного натяжения проводили для продуктов, которые продемонстрировали в ходе тестов хорошие результаты, для того чтобы оценить их поверхностно-активные свойства.

Измерения проводили тремя различными инструментами в зависимости от величины измеряемого межфазного натяжения. В случае низкого межфазного натяжения измерение проводили при помощи способа вращающейся капли ("Data Physics"), тогда как в случае значений межфазного натяжения выше чем 2 мН/м использовали тензиометр ("Kruss") и способ висячей капли ("Data Physics").

Примеры 1-14

В соответствии с процедурой, описанной для теста 1, оценивали способность соединений, перечисленных в таблице 2, удалять нефть.

В таблице 2 приведены результаты, связанные с основными исследованными поверхностно-активными агентами в сравнении с водой, раствором карбоната натрия, хлоридом этилендиаммония (и соответствующим основанием) как представителем простой азотсодержащей молекулы с четвертичным атомом азота, не находящимся в составе полимера.

На фиг.2 показана фотография, отражающая выделение нефти для некоторых из использованных поверхностно-активных агентов: ДОССН (диоктилсульфосукцината натрия), ДСН (додецилсульфата натрия), ДТАБ (бромида додецилтриметиламмония), ЦТАБ (бромида цетилтриметиламмония).

Как можно видеть, только два катионных поверхностно-активных агента (ДТАБ и особенно ЦТАБ) способны удалить нефть.

Результаты показывают, что при условиях сильного поглощении нефти породой (при таких условиях, которые были созданы в тестовых испытаниях) механизмы, вовлеченные в удаление нефти, - это не снижение межфазного натяжения или солюбилизация нефти внутри мицелл, а позитивный заряд катионных поверхностно-активных агентов. В этом отношении следует помнить, что недавно было показано, что катионные поверхностно-активные агенты дают возможность лучше выделять нефть по сравнению с другими группами поверхностно-активных агентов. Принято считать, что катионный поверхностно-активный агент способен образовать комплекс с кислыми компонентами, абсорбированными породой, и удалить их из нее, и тем самым вновь восстановить смоченную водой поверхность посредством механизма образования ионных пар.

Примеры 15-28

В соответствии с процедурой, описанной для теста 1, оценивали способность полимерных соединений, отличающихся зарядом и молекулярной массой, удалять нефть.

Был проанализирован ряд соединений 3F Chimica ("Floc") в сравнении с двумя полимерами "Floger" (DP-PT, DP-FO). Катионные полимеры обычно используют в качестве дефлоккулянтов для очистки воды. Характеристики исследованных продуктов отражены в таблице 3; исследованы были полиакриламиды, катионные полиамины (и полимерный хлорид полидиаллилдиметиламония, коротко называемый поли-ДАДМАХ).

Таблица 3 содержит информацию о протестированных соединениях и результатах теста.

Как можно видеть из таблицы 3, только несколько катионных полиаминов способны удалять сырую нефть, в частности полимер, обозначенный как Floc 572 (хлорид полидиметилдиаллиаммония, фиг.3), который продемонстрировал отличные результаты теста.

Фотография на фиг.3 демонстрирует способность удалять нефть со стороны Floc 572 по сравнению с поверхностно-активными агентами. Фотография также показывает, что катионный полимер DP/PT не работает.

Фотография на фиг.4 относится к сравнению между растворами ЦТАБ и полимером Floc 572 при 0,1%. Фотография демонстрирует различные характеристики этих двух добавок, что проявляется в различном межфазном натяжении их водных растворов: поверхностно-активный агент фактически растворяет нефть внутри мицелл, что обуславливает образование темного раствора, а полимер, наоборот, четко отделяет нефть.

Таблица 4 показывает межфазное натяжение Floc 572 в сравнении с ЦТАБ. Можно увидеть, что полимер не обладает поверхностно-активными свойствами, фактически он слегка понижает поверхностное натяжение воды и межфазное натяжение с гептаном и сырой нефтью А.

Тест 2 проводили с обеими добавками, чтобы количественно оценить характеристики Floc 572 в сравнении с катионным поверхностно-активным агентом ЦТАБ.

Пример 29

В соответствии с процедурой, описанной для теста 2, оценивали способность ЦТАБ и Floe 572 вытеснять нефть.

Результаты тестов показаны на фиг.5. На оси ординат отложено измерение массы по отношению к изначальной сухой массе. Можно наблюдать, что при погружении породы в воду определяют слабое уменьшение ее массы, а это значит, что вода удаляет избыточную нефть. И наоборот, как поверхностно-активный агент, так и полимерный раствор вызывают увеличение относительной массы, и если первый дает только незначительный эффект, то второй вызывает изменение 2,8%.

Пример 30

В соответствии с процедурой, описанной для теста 2, оценивали способность раствора Floc 572 в 2% KCl вытеснять нефть по сравнению с таким же солевым раствором, содержащим 0,1% ЦТАБ.

Полученные результаты аналогичны результатам, полученным в примере 29. Тест снова показал, что полимер более эффективен для замещения нефти, и подтвердил, что более высокое капиллярное давление, обусловленное высоким межфазным натяжением, облегчает вытеснение нефти из породы, что приводит к повышению степени извлечения нефти.

Таблица 1
Межфазное натяжение деминерализованная вода/нефть и кислотное число исследованных видов сырой нефти
Виды сырой нефти Происхождение нефти Межфазное натяжение (25°C) Кислотное число (мг/г) KOH
A (35°С API*) Из скважины в южной Италии 16 0,17
B (32°С API) Из скважины в южной Италии 21,5 0,23
D Из скважины в северной Италии 0,5 0,54
C (19°С API) Из скважины в северной Италии 18 (при 40°C) 0,78
* по шкале API (Американский нефтяной институт)
Таблица 2
Способность основных поверхностно-активных агентов удалять нефть по сравнению с водой, раствором карбоната натрия и хлоридом этилендиаммония
Примеры Водный раствор Результаты Тест 1 pH γi (мН/м) сырая нефть γi (мН/м) гептан
Пример 1 Деминерализованная вода нет 6 21,5 48,3
Пример 2 Na2CO3 0,1% легкое удаление 11,3 25,6 48
Пример 3 Хлорид этилендиаммония нет 5,1
Пример 4 Этилендиамин 0,1% нет 10,9
Пример 5 ДСН 0,1% нет 4,2 8
Пример 6 ДОССН 0,1% нет 6,9 8,9 14
Пример 8 ЦТАБ 0,1% да 6,8 0,29 2,73
Пример 9 ЦТАБ 0,001% нет 6,8 17 14
Пример 11 ЦТАБ 0,1% в Na2CO3 да 10,9 0,01
Пример 12 ДТАБ 0,1% да 6,8 0,25 1,24
Пример 13 Glucopon 215 0,1% нет 9 2,5
Пример 14 Tween 85 0,1% нет 7,7 1,3
Таблица 3
Способность полимерных соединений, различающихся зарядом и молекулярной массой, удалять нефть
Примеры 15-28 Водный раствор pH Тип и плотность заряда Молекулярная масса Результаты теста 1
Пример 15 DP-FO 1% полиакриламид 4,87 заряд + нет
Пример 16 DP/PT 2130 полиакриламид 7,2 заряд + нет
Пример 17 FLOC 572 хлорид полидиметилдиаллилммония 5,6 заряд + средний средняя да
Пример 18 FLOC 575 полиамин 5,41 заряд + высокий низкая нет
Пример 19 FLOC 576 полиамин 4,4 заряд + высокий средняя незначительно
Пример 20 SED AM 482 полиамин 5,01 низкая незначительно
Пример 21 Floc 412 полиметилен полиамин 4,45 нет
Пример 22 Sedifloc 435 С полиакриламид 4,27 заряд + низкий низкая нет
Пример 23 Sedifloc 438 С полиакриламид 4,12 заряд + высокий низкая нет
Пример 24 FLOC 1403 С полиакриламид 4,68 заряд + низкий средняя нет
Пример 25 FLOC 1408 С полиакриламид 5,63 заряд + средний средняя нет
Пример 26 FLOC 1405 С полиакриламид 5,14 заряд + высокий средняя нет
Пример 27 Sedifloc 710 полиакриламид 6,5 заряд - низкий высокая нет
Пример 28 Sedifloc 740 полиакриламид 7,1 заряд - высокий высокая нет
Таблица 4
Сравнение поверхностного натяжения полимера (Floc 572) и поверхностно-активного агента (ЦТАБ)
Продукт pH γs (мН/м) γi (мН/м) нефть A γi (мН/м) гептан
Деминерализованная вода 6 72 21,5 48,3
Floc 572 0,1% 6,49 54 21 23,78
ЦТАБ 0,1% 6,8 33 0,29 2,73

1. Применение четвертичных полиаминов формулы (I) для извлечения нефти из карбонатных пластовгде n≥1;R1 представляет собой Н, СН3, СН2СН3, Cnh3n+1;R2 представляет собой Н2СНОНСН2, СН2, СН2СН=СН2;R3 представляет собой СН3, СН2СН3, Cnh3n+1;R4 представляет собой СН3, СН2СН=СН2;если R2 и R4 представляют собой аллильные группы, то совместно они могут образовывать алифатические циклические структуры; соотношение между атомами углерода и азота (C/N) находится в интервале от 2 до 30.

2. Применение четвертичных полиаминов по п.1, где n≥2.

3. Применение четвертичных полиаминов по п.1, где соотношение между атомами углерода и азота (C/N) находится в интервале от 2 до 20.

4. Применение четвертичных полиаминов по п.3, где соотношение между атомами углерода и азота (C/N) находится в интервале от 2 до 12.

5. Применение по п.1, где четвертичные полиамины выбирают из следующих структур:

6. Применение по п.1, где четвертичный полиамин представляет собой хлорид полидиаллилдиметиламмония.

7. Применение по п.1, где полиамины сополимеризованы с полимерами, выбранными из группы, состоящей из полиакриламидов, полиамидов, ПЭО, добавок, полученных при кватернизации продукта реакции Манниха, полученного взаимодействием формальдегида, полиакриламида и вторичного амина.

8. Применение по п.7, где молярная доля полимера ниже, чем 30%.

9. Применение по п.8, где молярная доля полимера ниже, чем 20%.

10. Применение по п.1, где полиамины поддерживают межфазное натяжение сырой нефти на уровне >2 мН/м.

11. Применение по п.10, где полиамины поддерживают межфазное натяжение сырой нефти на уровне >5 мН/м.

12. Применение по п.11, где полиамины поддерживают межфазное натяжение сырой нефти на уровне >10 мН/м.

13. Способ повышения степени извлечения нефти из карбонатных пластов, который включает растворение полиаминов по п.1 в воде или в солевом растворе в концентрациях в интервале от 0,01% до 20% и последующее введение в скважину.

14. Способ по п.13, где полиамины присутствуют в концентрациях в интервале от 0,01% до 10%.

15. Способ по п.14, где полиамины присутствуют в концентрациях в интервале от 0,05% до 5%.

www.findpatent.ru

способ определения коэффициента извлечения нефти при нелинейной фильтрации - патент РФ 2504654

Изобретение относится к разработке углеводородных залежей сложного геологического строения с неоднородными, в том числе низко проницаемыми коллекторами. Техническим результатом является повышение точности, надежности и значительное уменьшение времени определения значения коэффициента извлечения нефти (КИН). Способ включает лабораторные и геофизические исследования фильтрационно-емкостных свойств горной породы, в том числе коэффициентов пористости, проницаемости, нефтенасыщенности и вытеснения нефти, определение поля градиентов давления по площади залежи. Причем коллекторские и фильтрационно-емкостные свойства определяются в расширенном диапазоне давления и линейной скорости, соответственно до 1 10-4 МПа/м и 1 10-4 м/сутки, на базе полученных данных и результатов ГИС. Определяют статистическую поровую гидродинамсческую и энергетическую структуру горной породы залежи, в том числе подвижных (извлекаемых) запасов углеводородов в поле градиентов давления, а КИН рассчитывают как долю порового объема залежи с подвижными запасами углеводородов (нефти) в поле градиентов давления средне статистического участка, приходящегося на одну добывающую скважину, имеющего среднестатистические параметры ФЕС горной породы залежи с типовым полем градиентов давления рассматриваемой технологической схемы разработки. 1 пр., 3 табл., 3 ил.

Рисунки к патенту РФ 2504654

Изобретение относится к разработке углеводородных залежей сложного геологического строения с неоднородными, в том числе низко проницаемыми коллекторами. Эффективность процесса разработки месторождений нефти определяется коэффициентом извлечения нефти (КИН). Надежность способа определения КИН дает возможность выбора эффективных технологических решений, обеспечивающих полноту извлечения геологических запасов нефти.

В 50-х годах академик А.П. Крылов предложил следующую простую формулу для расчета величины КИН [1. Крылов А.П. Состояние теоретических работ по проектированию разработки нефтяных месторождений и задачи по улучшению этих работ. // Опыт разработки нефтяных месторождений и задачи по улучшению этих работ. - М. Гостоптехиздаст, 1957. - С.116-139.],

где коэффициент вытеснения нефти водой Кв отражает эффективность процесса вытеснения на микроуровне, а коэффициент охвата вытеснением Kохв - эффективность процесса заводнения на макроуровне. В теории и практике разработки месторождений нефти данная формула и ее многочисленные уточнения [2. Закиров И.С., Корпусов В.И. Коррекция структуры формулы для КИН. // Нефтяное хозяйство. - 2006. - 1. - С.66-68.] стали применяться для установления достигаемой величины Kохв, так как знание Kохв позволяет корректировать число, плотность, местоположение пробуренных или проектных добывающих и нагнетательных скважин. При этом предполагается, что Kв является константой во времени, что не подтверждается на практике. K в зависит от многих факторов: проницаемости, пористости, начальной нефтенасыщенности, песчанистости, расчлененности и др [3. Закиров С.Н. и др. Новые представления о коэффициентах вытеснения, охвата и извлечения нефти // Теория и практика применения методов увеличения нефтеотдачи пластов.// Доклады ||| Международного научного симпозиума - М. 2011. - С.117-122; 4. Лебединец Н.П., Юсупов P.M. Экспертный анализ коэффициентов нефтеизвлечения. // Теория и практика применения методов увеличения нефтеотдачи пластов.// Доклады ||| Международного научного симпозиума - М. 2011. - С.133-137].

Практика показывает, чем выше неоднородность коллектора, его анизотропия, тем меньше надежность оценок КИН. В большинстве случаев Государственный комитет по запасам (ГКЗ) рассматривает и утверждает численное значение КИН, обоснованное с использованием программных комплексов. Последние включают геологическое и гидродинамическое моделирование. Современное программное обеспечение позволяет выполнить построение геологической модели с высокой степенью детализации (вплоть до разрешения 0,2 м по вертикали - на уровне разрешения каротажа) и в полной мере учесть все особенности геологического строения залежей в трехмерных трехфазных гидродинамических моделях. Методика определения КИН залежей предусматривает создание трехмерной геологической, а затем гидродинамической модели пласта. В них заложены коэффициенты пористости, проницаемости, начальной нефтенасыщенности, песчанистости, расчлененности и вытеснения нефти по лабораторным исследованиям фильтрационно-емкостных свойств (ФЕС) керна. Производится адаптация модели путем воспроизведения истории разработки или опробований ранее пробуренных скважин, а затем прогноз технологических параметров моделируемой системы разработки для заданной схемы расстановки скважин и режимов их эксплуатации. КИН определяется как отношение объема нефти, извлеченной скважинами при экономически рентабельных дебитах, к объему геологических запасов.

Наиболее полно возможности гидродинамической оценки эффективности извлечения нефти рациональными схемами разработки изложены в патенте РФ «Способ разработки нефтяного месторождения с искусственным поддержанием пластового давления» [5. Патент РФ № 2190761, 7 Е21В 43/20, 2002], который взят за прототип. По результатам анализа геолого-физических условий разработки месторождения (лабораторные и геофизические исследования) определяют зависимость остаточной нефтенасыщенности от градиента давления между линиями нагнетания вытесняющих агентов и отбора пластовых флюидов. Используя полученную зависимость, варьируют размещением нагнетательных и эксплуатационных скважин в зависимости от распределения зон остаточной нефтенасыщенности и категориями этих скважин.

Недостатками прототипа являются невозможность использования способа, учитывающего нелинейную зависимость остаточной нефтенасыщенности от градиента давления, на начальной стадии составления проекта разработки залежи и высокая степень неопределенности искомой зависимости на стадии разработки из-за отсутствия методов определения реального распределения остаточных запасов по площади разрабатываемой залежи.

Методы и средства определения структуры породы коллекторов и ФЕС, используемые в гидродинамических моделях, регламентированы государственными и отраслевыми стандартами. В частности, ГОСТ 26450.1-85 и ОСТ 39-181-85 регламентируют определение коэффициента пористости, ГОСТ 26450.2-85 и ОСТ 39-235-89 - коэффициента абсолютной и фазовой проницаемости породы коллекторов, ОСТ 39-195-86 - коэффициента вытеснения нефти водой. По стандартам ФЕС коллектора следует определять: «при линейной скорости фильтрации 1-5 м в сутки, если нефтенасыщенность менее 20% и проницаемость коллектора менее 10-3 мкм2, при линейной скорости 0,1-1,0 м в сутки, если нефтенасыщенность и проницаемость больше указанных значений.

Недостатком регламентов и соответствующих гидродинамических моделей является ограничение области определения по перепаду давления 1 10-3-3 10-1 МПа. Этот перепад давления на единичном образце керна длиной ~30 мм достигается при минимальном градиенте давления около 0,03 МПа/м. Выполнение требования нормативных документов обеспечить линейную скорость фильтрации 0,1-5,0 м/сут на разном типе коллектора обеспечивается при градиентах давления более 0,1 МПа/м.

Столь высокие значения градиента давления характерно для призабойной зоны пласта. На удалении от ствола скважины в теле пласта градиенты давления на порядки меньше. В этой области исследования проницаемости и ФЕС керна крайне ограничены. Недостатком стандартов является и общий методологический подход: образец керна или составленная из нескольких образцов модель коллектора характеризуется конкретной величиной пористости, проницаемости и остаточной нефтенасыщенности.

Таким образом, уже на начальном этапе получения исходных данных для геологических и гидродинамических моделей пласта искусственно сглажена сложная структура породы коллекторов. Высокие градиенты давления исключают проявление нелинейных эффектов и формально обеспечивают применимость линейной гидродинамики Дарси и ее модификаций. С этим, например, связано удовлетворительное совпадение принятых на ГКЗ значений КИН с фактическими на залежах с однородными высокопроницаемыми коллекторами типа Мартымья-Тетеревской и завышенное в 1,5-3 раза значение КИН на неоднородных сложнопостроенных залежах типа Кетовской и Талинской.

Задачей, стоящей перед изобретением, является повышение надежности и сокращение трудоемкости определения КИН при разработке неоднородных сложнопостроенных залежей.

Задача решается тем, что в дополнение к лаборатрным и геофизическим исследованиям фильтрационно-емкостных свойств горной породы и определению градиентов давления по площади залежи:

1. Расширяют диапазон исследования коллекторских свойств образцов керна по величине перепада давления в сторону его минимальных значений до 1 10-4 МПа/м и по линейной скорости фильтрации до 1 10-4 м/сутки.

2. Определяют плотность распределения коллекторских свойств в объеме керна (пористости, проницаемости и доли перового объема с подвижным флюидом) во всем интервале градиентов давления и линейной скорости фильтрации.

3. Строят по результатам лабораторных и геофизических исследований (ГИС) статистическую поровую, гидродинамическую (по проницаемости) и энергетическую структуру запасов углеводородов (УВ). При этом энергетическая структура характеризует долю порового объема коллектора заданной проницаемости с подвижным флюидом при соответствующем градиенте давления.

4. Строят типовое для принятой технологии разработки поле градиентов давления по площади и мощности залежи.

5. Определяют численное значение КИН как долю подвижных запасов на площади разработки, приходящуюся на типовую скважину-залежь (С-3) в созданном по проекту энергетическом поле градиентов давления, при условии, что геологическая модель горной породы коллектора, приписанной типовой скважине, соответствует среднестатистической по залежи.

Изобретение поясняется чертежами, где на фиг.1 показана статистическая поровая структура коллектора, на фиг.2 - гидродинамическая структура коллектора, а на фиг.3 - доля подвижных запасов в поровых каналах.

В основу изобретения положено представление о случайном характере распределения независимых характеристик коллектора, таких как пористость, проницаемость, геометрия поровых каналов, в сколь угодно малом объеме горной породы. По мере роста объема горной породы случайность переходит в свою противоположность - статистическую закономерность, что позволяет залежь или ее часть представить в виде единичной скважины.

Скважина-залежь (С-3) наделяется средними, приходящимися на скважину по проекту разработки, размерами, запасами УВ, водонасыщенностью, статистической поровой, гидродинамической и энергетической структурой, а также типовым для принятой технологии разработки полем градиентов давления по площади и мощности залежи.

Вероятность наличия подвижных запасов dWi в объеме коллектора dVj определяется как произведение вероятностей i-того события по пористости Kпi, проницаемости Kпрi и величине градиента давления Fdpi, обеспечивающей подвижность флюида

где

.

p(Kп), p(Kпр), p(Kохв)) - плотность распределения соответствующих характеристик.

Интегрированием dWij по нефтенасыщенному интервалу пористости и объему коллектора определяется доля перового объема С-З с подвижным УВ флюидом. Очевидно, что в поле градиентов давления, которое обусловлено соответствующей технологией разработки, извлечь можно лишь подвижные запасы нефти. Соответственно подвижную долю запасов УВ в зоне питания типовой скважины можно считать технологическим коэффициентом извлечения нефти КИН залежи. Расчет подвижных запасов УВ описанным способом осуществляется на современных ПВЭМ использованием разработанного программного обеспечения.

Пример расчета КИН для Красноленинского месторождения.

Талинская площадь Красноленинского месторождения, блок 46,

Объект разработки - ЮК10-11,,

Система разработки - рядная с поддержанием пластового давления,

Средняя площадь питания на 1 скважину - 25 га,

Нефтенасыщенная мощность - 21 м,

Пластовые условия: температура - 99°С, давление - 22.3 МПа.

Характеристика ФЕС горной породы.

Средний коэффициент проницаемости - Кпр=184 мД

Средний коэффициент пористости - Кп=0,16

Коэффициент нефтенасыщенности - Кн=0,85

Остаточный коэффициент нефтенасыщенности - Кон=0,32

КИН Талинской площади Красноленинского месторождения, ЮК 10-11 утверждался ГКЗ неоднократно, понижаясь от значения более 0,4 до текущего 0,257.

Технология определения КИН заявленным способом. По результатам имеющихся лабораторных исследований керна и ГИС строится статистическая поровая и гидродинамическая структура коллектора Фиг.1 и 2.

Проводятся дополнительные исследования коллекторских свойств образцов керна при низких градиентах давления до 1 10-4 МПа/м и линейной скорости фильтрации до 1 10-4 м/сутки. С учетом дополнительных исследований определяется энергетическая структура коллектора Фиг.3, Табл.1. Она отражает нелинейные свойства процесса фильтрации флюидов в неоднородных сложнопостроенных коллекторах. Напряжение сдвига F(Kпр) в Табл. 1 описывает затраты энергии на перемещение флюида на 1 м в поровых каналах коллектора с i-той проницаемостью. График на Фиг.3 характеризует долю подвижных запасов в поровых каналах коллектора средне статистической проницаемости в поле приложенных сил. Очевидно, что интегральная доля подвижных запасов есть не что иное, как коэффициент вытеснения в интерпретации Крылова А.П. В отличии от последнего и от прототипа в предложенном способе доля подвижных запасов является функцией пористости, проницаемости, свойств флюида и величины градиента давления в каждой точке горной породы залежи.

Определяется поровый объем и геологические запасы нефти, приходящиеся на типовую скважину С-З, которым приписывается статистическая структура горной породы залежи Табл. 2.

В упрощенном для наглядности варианте разобьем коллектор скважины С-З на три типа: суперколлектор, коллектор и неколлектор по величине средней проницаемости, а зону питания скважины С-З на три участка по радиусам удаленности от забоя. Это позволяет перейти от интегрирования к суммированию по аргументам.

Поле давлений и соответствующие выделенным участкам градиенты давлений определены решением обобщенного уравнения Дарси как для скважины С-З, так и для ее участков.

Необходимые исходные данные для расчетов и результаты определения КИН по залежи, по участкам и по выделенным типам коллекторов приведены в Табл.1, 2.

Таблица 1
Характеристика коллектора приписанного скважине С-З
Тип коллектора Проницаемость, мВДоля коллектора, % Напряжение сдвига, МПа/см2
Неколлектор 13450,02300
Коллектор166 350,00220
Суперколлектор600 200,00061
Коллектор скважины С-3 184100-
Таблица 2
Результаты определения КИН
1 Скважина-залежь, С-З, радуис, м 0,2-5050-166166-282
Геологические запасы нефти, тыс.м3 в том числе:22,4 224,7466,0
21. Суперколлектор 4,4844,9197,2
2. Коллектор 7,7478,6163,1
3. Неколлектор 10,08101,2209,7
3Поле градиентов давления, МПа/м0,0149 0,004650,00310
4Доля подвижных запасов, в том числе: 0,2340,152 0,123
1. Суперколлектор 0,4950,3430,291
2. Коллектор 0,3910,2790,187
3. Неколлектор 0,00000,000
5Извлекаемые запасы нефти, КИН0,135

Значение КИН в упрощенном варианте способа составляет 0,135 при фактически достигнутом 0,11 при обводненности 0,95. Расчет извлеченных за 5 лет запасов нефти на программном комплексе Eclipse с использованием статистической поровой, гидродинамической и энергетической структуры дает КИН=0,105 при обводненности 85%

Ниже в таблице приведены для сравнения результаты расчета КИН залежей, разрабатываемых в режиме поддержания пластового давления (ППД). Расчеты проведены по гидродинамическим (ГД) моделям и приняты ГКЗ. Здесь же приведены фактические КИН залежей при обводненности более 95% и полученные предложенным способом значения КИН-НЛ с учетом нелинейной фильтрации на базе статистической поровой, гидродинамической и энергетической структуры коллекторов.

Таблица 3
КИН залежей в режиме ППД методами ГД-моделирования и с учетом нелинейной фильтрации (КИН-НЛ) в коллекторе типовой скважины С-З
Юрские залежи КИН, %
Факт на 1.01.04По ГД моделям КИН-НЛ*
ВГФ± КИН %По P КИН %
Мортымья-Тетеревская 0,5080,515 1,80,4981,6
Южно-Тетеревская 0,3960,4062,5 0,4359,8
Восточно-Тетеревская 0,4270,4331,4 0,4211,4
Талинская0,110 0,257134 0,1054,5
Кетовская0,098 0,3202260,094 4,1
*- без учета использованных методов повышения нефтеотдачи

Предложенный способ расчета КИН на базе статистической структуры запасов Талинской площади ЮК10-11 и Кетовского ЮВ1 месторождения без адаптации дает значения КИН в режиме ППД соответственно 10.9 и 10.0% в согласии с фактическими - 11 и 9.8%. Утвержденные ГКЗ извлекаемые запасы нефти по этим залежам - 25.7 и 32% соответственно, выполненные с использованием самых современных ГД - моделей пласта, завышают КИН в 2 раза и более. По залежам с относительно однородной структурой коллектора Мартымья-Тетеревской площади рассчитанные КИН по ГД-модели и предложенным способом хорошо согласуются с реально достигнутой нефтеотдачей.

Следовательно, предложенный способ определения КИН сложнопстроенных залежей с неоднородной структурой коллектора в соответствии с поставленной задачей упрощает и повышает надежность прогноза нефтеотдачи. При этом использование модели скважина-залежь не только сокращает на порядок время расчета КИН, но и дает распределение подвижных запасов по площади залежи и по гидродинамическому типу коллекторов. Это позволяет принимать эффективные геолого-технические решения по повышению нефтеотдачи.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ определения коэффициента извлечения нефти при нелинейной фильтрации, включающий лабораторные и геофизические исследования фильтрационно-емкостных свойств горной породы, в том числе коэффициентов пористости, проницаемости, нефтенасыщенности и вытеснения нефти, определение поля градиентов давления по площади залежи, отличающийся тем, что коллекторские и фильтрационно-емкостные свойства определяются в расширенном диапазоне давления и линейной скорости соответственно до 1·10-4 МПа/м и 1·10-4 м/сутки, на базе полученных данных и результатов ГИС определяется статистическая поровая гидродинамическая и энергетическая структура горной породы залежи, в том числе подвижных (извлекаемых) запасов углеводородов в поле градиентов давления, а КИН рассчитывается как доля порового объема залежи с подвижными запасами углеводородов (нефти) в поле градиентов давления среднестатистического участка, приходящегося на одну добывающую скважину, имеющего среднестатистические параметры ФЕС горной породы залежи с типовым полем градиентов давления рассматриваемой технологической схемы разработки.

www.freepatent.ru

Занятие 2. Показатели эффективности извлечения нефти из пластов при их заводнении.

Цель:

Понять назначение параметров, характеризующих эффективности извлечения нефти

Задание:

Определить детерминированное распределение нефтенасыщенности и свойств нефти по всему объему залежи.

Опыт применения различных методов увеличения нефтеотдачи пластов показывает, что эффективность процессов зависит от того, насколько выбранный метод, запроектированная система размещения скважин и реализованная технология процесса учитывали реальное состояние остаточных запасов нефти.

Различие между этими видами заводнения нефтяных скважин могут быть очень большими, но выражаются они одними и теми же показателями:

коэффициент дренирования залежей коэффициент охвата пластов заводнением коэффициент вытеснения нефти водой из пористой среды

На показатели эффективности заводнения влияют следующие факторы:

I.На коэффициент дренирования залежей –

1. Расчлененность, прерывистость (монолитность), сбросы пластов.

2. Условия залегания нефти, газа и воды в пластах.

3. Размещение добывающих и нагнетательных скважин относительно границ выклинивания пластов.

4. Состояние призабойных зон пластов, как следствие качества вскрытия и изменения при эксплуатации.

II.На коэффициент охвата пластов заводнением –

1. Макронеоднородность пластов (слоистость, зональная изменчивость свойств).

2. Трещиноватость, кавернозность (тип коллектора).

3. Соотношение вязкостей нефти и вытесняющего рабочего агента.

III.На коэффициент вытеснения нефти водой –

1. Микронеоднородность пористой среды по размеру пор и каналов (средняя проницаемость).

2. Смачиваемость поверхности пор, степень гидрофильности и гидрофобности среды.

3. Межфазное натяжение между нефтью и вытесняющей водой.

Занятие 3.Достигаемые значения нефтеотдачи пластов в зависимости от различных факторов показателей эффективности заводнения.

Цель:

Понять различие коэффициентов нефтеотдачи.

Задание:

При анализе разработки нефтяных месторождений оценить степень использования запасов в частично выработанных зонах залежи

Коэффициент нефтеотдачи можно вычислить, пользуясь отношением разности начальной Sн и остаточной S0 нефтенасыщенности пород залежи к начальной нефтенасыщенности, т.е. b=( Sн –S0 )/Sн.

Из определения коэффициента нефтеотдачи следует, что он не характеризует физически возможную предельную полноту нефтеизвлечения, показывая только ту долю нефти, которая может быть извлечена из залежи при разработке ее до экономически целесообразного предела. Таким образом, понятие «коэффициент нефтеотдачи» является , по существу, условным: оно определяет только ту часть балансовых запасов, извлечение которых экономически целесообразно. Физически возможная добыча нефти из залежей может быть несколько больше.

Коэффициент физической нефтеотдачи bфиз – это относительная величина, показывающая, какая часть балансовых запасов нефти может быть извлечена из пласта при данном режиме, независимо от времени и себестоимости добычи нефти, т.е. ценой любых затрат: bфиз=(Qни +DQ)/Qнб,

где DQ – количество нефти, добываемой из залежи после достижения экономически рентабельного предела разработки до физически возможного извлечения нефти.

При анализе разработки нефтяных месторождений возникает необходимость в оценке степени использования запасов в частично выработанных зонах залежи. Для такой оценки в общем случае, независимо от метода воздействия или при отсутствии искусственного воздействия на залежь, можно пользоваться коэффициентом использования запасов, который в отличие от коэффициента нефтеотдачи характеризует незавершенный , продолжающийся процесс разработки залежи.

Коэффициентом использования запасов bи называется относительная величина, показывающая, какая доля извлекаемых запасов нефти извлечена из залежи, не выработанной до предела экономической рентабельности разработки:

где - суммарная добыча нефти из залежи с начала разработки до какого-то определенного момента времени t; Qi(t) – функция годового отбора нефти в зависимости от времени разработки.

В частом случае при вытеснении нефти из пласта водой или другими агентами, т.е. при искусственном воздействии на залежь, для оценки степени использования запасов нефти в частично выработанной залежи можно пользоваться коэффициентом выработки, также характеризующим незавершенный процесс разработки залежи.

Коэффициент выработки bв – это относительная величина, показывающая, какая доля балансовых запасов нефти извлекается из залежи (или части ее), не выработанной до предела экономической рентабельности разработки при вытеснении нефти различными агентами (водой, газом, взаимно смешивающимися жидкостями и т.д.):

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

zdamsam.ru