Техника и технологии добычи нефти и газа. Технология добычи нефти реферат


Технология добычи нефти и газа — реферат



 

Содержание

 

Введение…………………………………………………………………………..2

1.                  Добыча нефти и газа……………………………………………………...3

2.                  Процесс добычи нефти и газа. Разработка месторождения…..…………6

3.                  Основные осложнения, возникающие при добыче нефти и газа….….…9

4.                  Хранение и транспортировка…………………………….………………..9

Заключение……………………………………………………………………..11

Список литературы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Нефть – это природная горючая маслянистая жидкость, которая состоит из смеси углеводородов самого разнообразного строения. Их молекулы представляют собой и короткие цепи атомов углерода, и длинные, и нормальные, и разветвленные, и замкнутые в кольца, и многокольчатые. Кроме углеводородов нефть содержит небольшие количества кислородных и сернистых соединений и совсем немного азотистых. Нефть и горючий газ встречаются в земных недрах как вместе, так и раздельно. Природный горючий газ состоит из газообразный углеводородов – метана, этана, пропана.

Группы нефтяных и газовых месторождений, подобно месторождениям ископаемого угля, образуют газонефтеносные бассейны. Они, как правило, приурочены к прогибам земной коры, в которых залегают осадочные породы; в их составе имеются пласты хороших коллекторов.В нашей стране давно известен Каспийский нефтеносный бассейн, разработка которого началась в районе Баку. В 20-х годах был открыт Волго-Уральский бассейн, который назвали Вторым Баку. В 50-х годах был выявлен величайший в мире Западно-Сибирский бассейн нефти и газа. Крупные бассейны, кроме того, известны и в других районах страны — от берегов Ледовитого океана до пустынь Средней Азии. Они распространены как на материках, так и под дном морей. Нефть, например, добывается со дна Каспийского моря.

Россия занимает одно из первых мест в мире по запасам нефти и газа. Большое преимущество этих полезных ископаемых — сравнительное удобство их транспортировки. По трубопроводам нефть и газ поступают за тысячи километров на фабрики, заводы и электростанции, где используются как топливо, как сырье для производства бензина, керосина, масел и для химической промышленности

 

 

1.      Добыча нефти и газа

Нефть – это природная горючая маслянистая жидкость, которая состоит из смеси углеводородов самого разнообразного строения. Их молекулы представляют собой и короткие цепи атомов углерода, и длинные, и нормальные, и разветвленные, и замкнутые в кольца, и многокольчатые. Кроме углеводородов нефть содержит небольшие количества кислородных и сернистых соединений и совсем немного азотистых. Нефть и горючий газ встречаются в земных недрах как вместе, так и раздельно. Природный горючий газ состоит из газообразных углеводородов – метана, этана, пропана.

Нефть и горючий газ накапливаются в пористых породах, называемых коллекторами. Хорошим коллектором является пласт песчаника, заключенный среди непроницаемых пород, таких, как глины или глинистые сланцы, препятствующие утечке нефти и газа из природных резервуаров. Наиболее благоприятные условия для образования месторождений нефти и газа возникают в тех случаях, когда пласт песчаника изогнут в складку, обращенную сводом кверху. При этом верхняя часть такого купола бывает заполнена газом, ниже располагается нефть, а еще ниже — вода.

Месторождение нефти и газа — это совокупность залежей нефти и газа, приуроченных к одной или нескольким естественным ловушкам в недрах одной и той же ограниченной по размерам площади, контролируемой единым структурным элементом.

Одни геологи — сторонники гипотезы неорганического происхождения — утверждают, что нефтяные и газовые месторождения образовались вследствие просачивания из глубин Земли углерода и водорода, их объединения в форме углеводородов и накопления в породах — коллекторах.

Другие геологи, их большинство, полагают, что нефть, подобно углю, возникла из органической массы, погребенной на глубину под морские осадки, где из нее выделялись горючие жидкость и газ. Это органическая гипотеза происхождения нефти и горючего газа. Обе эти гипотезы объясняют часть фактов, но оставляют без ответа другую их часть.

Большое преимущество этих полезных ископаемых — сравнительное удобство их транспортировки. По трубопроводам нефть и газ поступают за тысячи километров на фабрики, заводы и электростанции, где используются как топливо, как сырье для производства бензина, керосина, масел и для химической промышленности.

Ловушка – часть природного резервуара, в котором со временем устанавливается равновесное состояние воды, нефти и газа. Так как плотность газа наименьшая, он скапливается в верхней части ловушки. Ниже газа располагается нефть. Вода, как наиболее тяжёлая жидкость, скапливается в нижней части ловушки.

В ловушке любой формы при благоприятных условиях может скопиться значительное количество нефти и газа. Такая ловушка называется залежью. Форма и размер залежи обусловливаются формой и размером ловушки.

Пласт – массив какой-либо породы, представленный в основном в виде горизонтального слоя этой породы, заключённого между двумя слоями других пород. Верхняя поверхность пласта называется кровлей, нижняя – подошвой. Расстояние между кровлей и подошвой называют мощностью пласта.

Ёмкость порового коллектора называется пористостью. Для характеристики величины пористости употребляется коэффициент, который показывает, какую часть от общего объема породы составляют поры.

Различают общую, открытую и эффективную пористость. Общая (полная, абсолютная) пористость — это объем всех пор в породе. Соответственно коэффициент общей пористости представляет собой отношение объема всех пор к объему породы.

При промышленной оценке залежей нефти и газа принимается во внимание открытая пористость. Открытая пористость—объем только тех пор, которые связаны, сообщаются между собой.

В нефтяной геологии, наряду с понятиями общая и открытая пористость, существует понятие эффективная пористость. Она определяется наличием таких пор, из которых нефть может быть извлечена при разработке. Неэффективными считают субкапиллярные и изолированные поры.

Коэффициент эффективной пористости:

kэфф =

 

где Vотк – объём открытых пор данной породы; V – общий объём породы.

Проницаемость — важнейший показатель коллектора, характеризующий свойство породы пропускать через себя жидкость и газ. В зависимости от того, что движется в пористой среде и каков характер движения, проницаемость одной и той же среды может быть различной. Поэтому для характеристики проницаемости нефтесодержащих пород введены понятия абсолютной, фазовой (эффективной) и относительной проницаемости.

Абсолютной проницаемостью называется проницаемость пористой среды, при движении в ней лишь одной какой – либо фазы (газа или однородной жидкости). Абсолютной проницаемостью принято считать проницаемость пород определённую по газу (азоту).

Фазовой (эффективной) проницаемостью называется проницаемость породы для данных газа или жидкости при содержании в породе многофазных систем. Фазовая проницаемость зависит от физических свойств породы и степени насыщенности её жидкостью или газом.

Относительной проницаемостью пористой среды называется отношение фазовой проницаемости этой среды к абсолютной её проницаемости. Проницаемость зависит от размера и конфигурации пор (величины зерен), от плотности укладки и взаимного расположения частиц, от трещиноватости пород.

Коэффициент проницаемости равен:

 

k=.

 

где Q – объёмный расход жидкости через породу за 1 с; F – площадь фильтрации; k – коэффициент пропорциональности, называемый иначе коэффициентом проницаемости породы; μ – динамическая вязкость жидкости; Δp – перепад давления на длине образца породы; L – длина пути, на котором происходит фильтрация жидкости.

Под трещиноватостью подразумевается наличие в горной породе пустот, образованных трещинами. По признаку раскрытия (ширины) трещины делятся на очень узкие (субкапиллярные) 0,0005 – 0,01 мм., узкие (капиллярные) 0,01 – 0,05 мм. и широкие (волосяные) 0,05 – 0,15 мм. и более.

По признаку матрицы трещиноватые породы делятся на породы, у которых матрица проницаемая и пористая (песчаники), и породы, у которых матрица плотная, непроницаемая и непористая (известняки, доломиты).

Коэффициент трещинной пористости обычно небольшой, 0,1 – 1,5%. Но трещиноватость сильно увеличивает проницаемость коллектора.

 

2. Процесс добычи нефти и газа. Разработка месторождения

Продукция нефтяных скважин представляет собой смесь нефти, газа и пластовой минерализованной воды. Очень часто нефть и вода при интенсивном перемешивании образуют эмульсию – смесь, в которой мелко раздробленные капли воды находятся в нефтяной среде во взвешенном состоянии и поэтому не отстаиваются и не сливаются друг с другом. В продукции газовых скважин, кроме газа, может содержаться жидкая фаза в виде капелек и паров воды, а в газоконденсатных скважинах также и жидкие углеводороды. Кроме газа и жидкости, в продукции скважин содержатся механические примеси: частицы песка и глины, выносимые из пласта.

Для сбора нефти и газа, их транспортирования, отделения друг от друга и освобождения от посторонних примесей, а также для замеров добываемой продукции на территории нефтяных промыслов строится система трубопроводов, аппаратов и сооружений, в которых выполняются следующие операции:

1)            сбор и замер продукции скважин;

2)            отделение (сепарация) нефти от газа;

3)            освобождение нефти и газа от воды и механических примесей;

4)            транспорт нефти от сборных и замерных установок до промысловых резервуарных парков и газа до компрессорных станций или газораспределительных узлов;

5)            обезвоживание (деэмульсация) нефти и в ряде случаев её обессоливание и стабилизация, т. е. удаление из неё лёгких углеводородов;

6)            удаление из газа ненужных примесей и отбензинивание его;

7)            учёт добычи нефти и газа и их сдача транспортным организациям.

Добыча природного газа происходит только способом фонтанной эксплуатации скважин. Эксплуатацию скважин, как правило, ведут через подъёмные трубы, но при значительных дебитах и отсутствии в газе твёрдых примесей или агрессивных компонентов скважины во многих случаях одновременно эксплуатируются через подъёмные трубы и затрубное пространство.

Работа газовой скважины контролируется путём соответствующих замеров, регистрацией рабочих параметров и анализом результатов периодических исследований.

Газ из отдельных скважин после замера и сепарации его от влаги и твёрдых примесей направляется в промышленный газосборный коллектор и далее в газосборный пункт, откуда после соответствующей подготовки его для дальнейшего транспортирования поступает в магистральный газопровод.

Под разработкой нефтяных месторождений понимается управление процессом движения нефти и газа в пласте к эксплуатационным скважинам при определённом размещении их на месторождении, темпе и порядке ввода их в эксплуатацию, установлении и поддержании их режима работы и мероприятий по воздействию на пласт.

Рациональную систему разработки выбирают на основании:

1)  геологического изучения залежи;

2)  определения физико-геологической характеристики пласта;

3)  установления режима нефтяного месторождения и продуктивности скважин;

Имея эти данные, рассчитывают несколько вариантов разработки, которые отличаются между собой сетками размещения скважин и степенью их уплотнения. Для каждого варианта определяют текущую добычу нефти из залежи, её изменение во времени, срок разработки и т. д. При этом обязательно следует учитывать запасы естественной пластовой энергии. Если необходимо, применяют искусственные методы воздействия на пласт для поддержания пластового давления.

Для каждого варианта разработки определяют капитальные и эксплуатационные затраты и себестоимость нефти. На основании технико-экономических показателей выбирают наиболее рациональный вариант.

В процессе разработки нефтяной залежи поддерживают необходимый режим работы скважин и темп отбора из пласта, чтобы перемещение газо-, водонефтяного контактов было правильным, и рационально использовалась пластовая энергия.

Для оценки правильности разработки строят графики изменения во времени средних пластовых давлений, текущей добычи нефти, обводнённости нефти, газового фактора и числа действующих скважин. Если необходимо, принимают меры для регулирования процесса эксплуатации отдельных скважин и пласта в целом.

myunivercity.ru

Техника и технология добычи нефти

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

1. ОСНОВНАЯ ЧАСТЬ

1.1 Получение активного ила

1.2 Механизмы повышения нефтеотдачи при использовании активного ила

Возможно вы искали - Реферат: Технико-экономическая эффективность внедрения гибких производственных систем (ГПС)

1.3 Эксперименты по изучению влияния биореагентов на основе активного ила

1.4 Фильтрационные характеристики при использовании активного ила

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Похожий материал - Дипломная работа: Технико-экономические показатели ремонтных работ щековой дробилки СМД-60А

В настоящее время известно и внедряется большое число методов повышения нефтеотдачи пластов. Они различаются по методу воздействия на продуктивные пласты, характеру взаимодействия между нагнетаемым в пласт рабочим агентом и насыщающей пласт жидкостью, видом вводимой в пласт энергии. Все методы повышения нефтеотдачи можно разделить на гидродинамические, физико-химические и тепловые.

Успешность применения методов повышения нефтеотдачи в большой мере зависит от уровня геолого-промысловых исследований нефтепродуктивного пласта, состояния его разработки и свойств, насыщающих пласт нефти, газа и воды.

Исследования нефтепродуктивного пласта предполагают изучение особенностей его строения с позиции правильной оценки особенностей геометрии пласта с уточнением трассировки тектонических нарушений, линий выклинивания продуктивной части пласта, детальным расчленением объекта разработки на отдельные пласты и пропласты. Особое внимание следует уделять литологической характеристике пород, слагающих продуктивный пласт. Особенности литологии определяют структуру пористого пространства, что, в свою очередь, влияет на решение использовать тот или иной метод повышения нефтеотдачи. Для принятия решения использовать методы повышения нефтеотдачи очень важно изучение геологических характеристик слагающих пласт пород и насыщающих жидкостей, которые при реализации этих методов вступают во взаимодействие с нагнетаемыми в пласт жидкостями, а это может сопровождаться неблагоприятными для такого применения последствиями. Так, например, при наличии в продуктивном пласте монтмориллонитовых глин и закачке в них пресной воды, щелочи, растворов поверхностно-активных веществ может происходить набухание глин с потерей приемистости скважинами нагнетаемых жидкостей, что делает задачу повышения нефтеотдачи нереализуемой. Если в продуктивном пласте содержатся сильноминерализованные рассолы солей, то при взаимодействии их с закачиваемыми жидкостями возможно выпадение твердых кристаллов в осадок с закупоркой пор пласта.

Применению методов повышения нефтеотдачи должен пред- шествовать тщательный анализ состояния разработки объекта. Наряду с изучением особенностей динамики показателей эксплуатации залежи нефти, с исследованием характера проявления естественного режима и состояния обводненности пластов по площади и разрезу следует выявить характер залегания в пласте остаточных запасов нефти после первичной разработки залежи нефти.

Состояние остаточной нефтенасыщенности является определяющим для выбора метода повышения нефтеотдачи. Если остаточная нефтенасыщенность представлена в неохваченных заводнением линзах или пропластках, то хорошие результаты можно получить при использовании гидродинамических методов повышения нефтеотдачи (циклическое заводнение, метод перемены направления фильтрационных потоков, форсированный отбор жидкости). Если остаточная нефтенасыщенность представлена пленочной нефтью на поверхности породы, то предпочтительными методами повышения нефтеотдачи могут быть физико-химические (закачка ПАВ, мицеллярные растворы, закачка углекислоты и др.).

Очень интересно - Курсовая работа: Технико-экономическое обоснование производства

Особое значение при принятии решения о применении методов повышения нефтеотдачи приобретает углубленное изучение свойств пластовой нефти (вязкость, плотность, содержание фракций, выкипающих при разной температуре и др.) и их изменчивости в пределах залежи. Так, если пластовые нефти характеризуются высокой вязкостью, то разработку таких залежей предпочтительнее вести использованием тепловых методов.

При применении тепловых методов необходимо изучение теплофизических характеристик пород продуктивной части пласта и насыщающих пласт-коллектор жидкостей. Не менее важно изучение температурных условий в залежах нефти.

Работам по применению методов повышения нефтеотдачи пластов должны предшествовать комплексные исследования добывающих и нагнетательных скважин с определением коэффициентов продуктивности, приемистости, давления нагнетания, свойств нефти и газа, газового фактора, обводненности, забойных, пластовых давлений и температуры.

Тщательное, углубленное геолого-промысловое изучение объектов разработки перед применением методов повышения нефтеотдачи — залог успешной реализации поставленной задачи получения высокой нефтеотдачи пластов.

С развитием химической промышленности нашей страны появляется все больше и больше возможностей выделения для нефтедобывающей промышленности химических препаратов с целью использования их для повышения нефтеотдачи.

Вам будет интересно - Дипломная работа: Техническая подготовка производства

В предшествующих пятилетках подготовлены и в настоящее время успешно реализуются несколько проектов с использованием физико-химических методов повышения нефтеотдачи пластов – закачка водорастворимых полимеров, поверхностно-активных веществ, углеводородных газов высокого давления, закачка углекислого газа, щелочи, серной кислоты и др. В настоящее время для увеличения нефтеотдачи пластов применяется метод по закачке в пласт активного ила. Этот метод получил широкое применение на месторождениях Башкортостана.

1 ОСНОВНАЯ ЧАСТЬ

1.1 Получение активного ила

В НИИнефтеотдача АН Республики Башкортостан разработан новый, перспективный базовый биореагент на основе отходов биологических очистных сооружений (БОС), так называемый избыточный активный ил (ИАИ). Активный ил формируется в процессе биохимической очистки сточных вод в азротенках, затем проходит через вторичные отстойники и избыток ила, который удаляется из системы очистки, используется в технологиях микробиологических методов увеличения нефтеотдачи (МУН). Избыточный активный ил легко образует водную суспензию, совместим с высокоминерализованными сточными водами и соответствует требованиям, предъявляемым к биореагентам, которые применяются для увеличения нефтеотдачи пластов.

В составе избыточного активного ила имеются различные классы органических и неорганических веществ, однако их недостаточно для поддержания активной жизнедеятельности микрофлоры ила в условиях пласта в течение длительного времени. Полученные результаты лабораторных и опытно-промысловых исследований позволили сделать вывод, что для интенсификации микробиологических МУН необходимо разработать на основе избыточного активного ила биореагенты с добавлением различных питательных и стимулирующих добавок. В качестве дополнительного питательного субстрата нами предлагаются культуральная жидкость Acinetobacter sр., отходы производства синтетического глицерина и некоторые полимеры. При добавлении их биохимическая активность избыточно активного ила повышается в несколько раз, газообразующая способность ила возрастает в 5-10 раз, интенсифицируются окислительно-восстановительные процессы с образованием и выделением различных промежуточных и конечных продуктов метаболизма. Разработанные биореагенты на основе отходов БОС могут использоваться не только для увеличения нефтеотдачи, но и для снижения обводненности скважин, в которых большинство других МУН неприменимо или экономически невыгодно.

Похожий материал - Курсовая работа: Техническая эксплуатация и ремонт гидрогенераторов

1.2 Механизмы повышения нефтеотдачи при использовании активного ила

При использовании микробиологических методов дополнительное вытеснение нефти обусловливают те же механизмы, что и при применении физико-химических методов. Преимущество первых заключается в том, что во многих случаях факторы, способствующие нефтевытеснению. создаются непосредственно в пласте, что увеличивает эффективность метода.

Одним из элементов механизма нефтеотдачи при микробиологическом воздействии на пласт является первичное селективное закупоривание. Группа исследователей во главе с Р. Креппом в 80-х годах изучила селективное закупоривание пор и распространение потока флюидов в проточной системе, составленной из двух песчаников различной проницаемости, которые имеют капиллярный контакт. Рост количества бактерий изменял поток флюидов в образцах таким образом, что более 60% его шло через слой низкой проницаемости, причем величина потока флюидов, проходящего через слой низкой проницаемости, увеличилась в 3 раза. Было установлено, что микроорганизмы в основном закупоривали слой высокой проницаемости, при этом происходило вытеснение нефти. Полученный результат привел к созданию гипотезы селективного закупоривания бактериями и их метаболитами слоев высокой проницаемости и изменения в результате этого направления потока флюидов в пласте. Авторы работы в лабораторных экспериментах также установили, что фильтрация модели пластовой воды, содержащей микроорганизмы нефтепромысловых сред, приводит к значительному снижению проницаемости пористой среды.

Авторы данной статьи исследовали фильтрационные характеристики избыточного ила биологических очистных сооружений (БОС) с использованием нефтенасыщенной кварцево-песчанной насыпны модели пласта. Модель насыщали изовязкостной моделью нефти Арланского месторождения (плотность 0,875 г/см/, вязкость 22,0 мПа-с). Как показали полученные результаты, закачка ИАИ в модель пласта (0,5 поровых объемов) сопровождается резким перепадом давления (от 0,0141 до 1,58 МПа) и снижением проницаемости пористых сред (с 2,45 до 0,337 мкм"). Приведенные в таблице i данные гидродинамических исследований нагнетательных скважин методом кривых падения давления (КПД) в опытно-промысловых условиях также подтверждают селективное закупоривание наиболее проницаемых зон пластовой среды после биообработок.

cwetochki.ru

Техника и технологии добычи нефти и газа

     Русский химик Н. Д. Зелинский предложил усовершенствовать крекинг с помощью ускорителей процесса — катализаторов. В качестве катализатора он применил хлористый алюминий. Французскими инженерами был предложен алюмосиликатный катализатор. В его присутствии происходило образование фракций, содержащих высококачественный бензин, пригодный для авиационных двигателей.

     Однако жизнь шла вперед. Бензиновые двигатели внутреннего сгорания становились все быстроходнее, все мощнее и в то же время все легче и меньше по размерам. Этого удалось достичь, повышая степень сжатия топлива в цилиндрах двигателя. Однако в момент сильного и быстрого сжатия паровоздушная смесь преждевременно взрывалась — детонировала. Это приводило к стукам в двигателе и потере мощности. Борьба с детонацией на долгое время стала главной задачей улучшения методов нефтепереработки. Оказалось, что различные углеводороды, содержащиеся в бензинах, детонируют с различной легкостью. Углеводороды с сильно разветвленными цепочками атомов, а также ароматические детонировали труднее, чем углеводороды с нормальной цепочкой атомов углерода.

     Способность бензинов противостоять детонации характеризуют так называемым октановым числом: чем оно выше, тем бензин лучше. Значит, и нефть: нужно перерабатывать так, чтобы получать бензины с возможно большими октановыми числами. Кроме каталитического крекинга появились новые процессы нефтепереработки — риформинг, платформинг. Особое значение в них получили реакции ароматизации нефтяных углеводородов, открытые и разработанные советскими химиками. Промышленность стала даже на путь синтеза углеводородов с разветвленной цепью (изооктана и триптана), чтобы использовать их как добавки к бензинам и повышать, таким образом, антидетонационные свойства. Особенно успешно стали применять специальные добавки к топливу — так называемые антидетонаторы. Добавленные в небольшом количестве к бензину, они значительно повышают его октановое число. Таков тетраэтилсвинец (сокращенно ТЭС). Бензин с этим антидетонатором (этилированный) очень ядовит. Будьте всегда осторожны с этилированным бензином: не обливайте им руки, старайтесь, чтобы бензин случайно не попал вам в рот или в глаза.

     Теперь найден лучший антидетонатор, чем ТЭС. Это вещество со сложным названием — циклопентадиенилтрикарбонил марганца, или ЦТМ. Как видно из названия, это органическое вещество содержит марганец. Скоро появятся в гаражах “марганцевые” бензины.

     Казалось, переработка нефти решила все проблемы, поставленные перед ней автомобильными и авиационными конструкторами. Но жизнь шла вперед, и на смену двигателям внутреннего сгорания пришли реактивные и ракетные двигатели. Оказалось, что здесь не нужны высокие октановые числа. Наоборот, лучшее топливо — это углеводороды с прямыми малоразветвленными цепочками атомов углерода или кольчатые, и притом не бензиновые фракции, а керосиновые и солярные. Все наоборот! И снова поиск, снова открытия, снова изменения нефтепереработки.

      И это еще не все! До сих пор речь шла о применении нефтепродуктов в качестве топлива. Менялись типы двигателей: от паровых машин к дизелям, к бензиновым моторам, потом к реактивным двигателям. Но в них использовалось только тепло образующееся при сгорании топлива!

      Для химика-органика сжигание нефтяных углеводородов — непростительное расточительство. Ведь эти углеводороды так нужны для химического синтеза! Из них можно сделать так много ценных химических продуктов! И нефтехимический синтез выступил мощным конкурентом транспорта в потреблении нефти. Прежде всего пошли в дело нефтяные газы, состоящие из углеводородов с маленькими цепочками атомов углерода — от 1 до 5. Из этилена СН2 = СН2 можно получать этиловый спирт, а из него — синтетический каучук (СК). Из этилена же получается прекрасный широко известный полимер полиэтилен. Из пропилена СН3СН = СН2 можно получить изопропиловый спирт и ацетон; пропилен нужен для производства фенола, наконец, из него можно получить полипропилен и акрилонитрил—сырье для производства синтетической шерсти. Другие нефтяные газы тоже находят важное применение в нефтехимическом синтезе. Значит нефтепереработку нужно вести иначе. Нужно получать как можно больше газов, молекулы которых содержат двойные связи между атомами углерода.

      Между нефтью — топливом и нефтью — химическим сырьем началась напряженная борьба.

      Конечно, в настоящее время и в ближайшее время нефть будут использовать главным образом как топливо. Однако доля нефти, расходуемая на химическую переработку, непрерывно возрастает.

     А совсем недавно появился еще один возможный потребитель нефти. Он пока еще “младенец”, и ему много нефти не нужно. Но как знать? Это микробиологическая переработка нефти на... белки. Нашлись бактерии, которые хорошо живут на нефти потребляя ее в пищу. Нефть исчезает, бактерии растут. Постепенно (и не так уж медленно) исчезает значительная часть нефти, и вместо нее образуется масса клеток бактерий, содержащая много белка, которой можно использовать как корм. В настоящее время предпринимаются попытки вырастить такие бактерии, которые поглощали бы из нефти только ненужные примеси. Это может привести к появлению микробиологических нефтеочистительных заводов, побочной продукцией которых будет кормовой белок.

      До сих пор шла речь о газах нефтепереработки. Однако есть и природный газ, образующий громадные скопления в толще земли. Природный газ в основном состоит из метана СН4. Он добывается в громадных количествах и используется как горючее для промышленных и бытовых целей. Вместе с нефтяными газами, сопутствующими нефти, и газам нефтепереработки природный газ является важным источником для синтеза разнообразных органических веществ. Самый большой химический потребитель газа — промышленность полимерных материалов.

 

Использование нефти

     Из  нефти выделяют разнообразные продукты, имеющие большое практическое значение. В начале от нее отделяют растворенные углеводороды (преимущественно метан). После отгонки летучих углеводородов нефть нагревают. Первыми переходят в газообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом, можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают три основные фракции, которые затем подвергаются дальнейшему разделению.

     В настоящее время из нефти получают тысячи продуктов. Основными группами являются жидкое топливо, газообразное топливо, твердое топливо (нефтяной кокс), смазочные и специальные масла, парафины и церезины, битумы, ароматические соединения, сажа, ацетилен, этилен, нефтяные кислоты и их соли, высшие спирты. Эти продукты включают горючие газы, бензин, растворители, керосин, газойль, бытовое топливо, широкий состав смазочных масел, мазут, дорожный битум и асфальт; сюда относятся также парафин, вазелин, медицинские и различные инсектицидные масла. Масла из нефти используются как мази и кремы, а также в производстве взрывчатых веществ, медикаментов, чистящих средств, наибольшее применение продукты переработки нефти находят в топливно-энергетической отрасли. Например, мазут обладает почти в полтора раза более высокой теплотой сгорания по сравнению с лучшими углями. Он занимает мало места при сгорании и не дает твердых остатков при горении. Замена твердых видов топлива мазутом на ТЭС, заводах и на железнодорожном и водном транспорте дает огромную экономию средств, способствует быстрому развитию основных отраслей промышленности и транспорта.

     Энергетическое  направление в использовании  нефти до сих пор остается главным  во всем мире. Доля нефти в мировом  энергобалансе составляет более 46%.

     Однако  в последние годы продукты переработки  нефти все шире используются как сырье для химической промышленности. Около 8% добываемой нефти потребляются в качестве сырья для современной химии. Например, этиловый спирт применяется примерно в 150 отраслях производства. В химической промышленности применяются формальдегид (HCHO), пластмассы, синтетические волокна, синтетический каучук, аммиак, этиловый спирт и т.д. Продукты переработки нефти применяются и в сельском хозяйстве. Здесь используются стимуляторы роста, протравители семян, ядохимикаты, азотные удобрения, мочевина, пленки для парников и т.д. В машиностроении и металлургии применяются универсальные клеи, детали и части аппаратов из пластмасс, смазочные масла и др. Широкое применение нашел нефтяной кокс, как анодная масса при электровыплавке. Прессованная сажа идет на огнестойкие обкладки в печах. В пищевой промышленности применяются полиэтиленовые упаковки, пищевые кислоты, консервирующие средства, парафин, производятся белково-витаминные концентраты, исходным сырьем, для которых служат метиловый и этиловый спирты и метан. В фармацевтической и парфюмерной промышленности из производных переработки нефти изготовляют нашатырный спирт, хлороформ, формалин, аспирин, вазелин и др.

     Производные нефтесинтеза находят широкое применение и в деревообрабатывающей, текстильной, кожевенно-обувной и строительной промышленности. Использование газа

     Природный газ широко применяется в качестве горючего в жилых частных и многоквартирных домах для отопления, подогрева воды и приготовления пищи; как топливо для машин, котельных, ТЭЦ и др. Сейчас он используется в химической промышленности как исходное сырьё для получения различных органических веществ, например пластмасс. В XIX веке природный газ использовался в первых светофорах и для освещения (применялись газовые лампы).

     Природный  газ, получаемый с промыслов, содержит посторонние примеси: твердые частицы (песок и окалину), конденсат тяжелых углеводородов, водяные пары и часто сероводород и углекислый газ. Присутствие твердых частиц в газе приводит к быстрому износу соприкасающихся с газом деталей компрессоров. Твердые частицы засоряют и портят арматуру газопровода и контрольно-измерительные приборы; скапливаясь на отдельных участках газопровода, они сужают его поперечное сечение.

     Жидкие частицы, оседая в пониженных участках трубопровода, также вызывают уменьшение площади его поперечного сечения. Они, кроме того, оказывают корродирующее действие на трубопровод, арматуру и приборы.

Сероводород —  весьма вредная примесь. В количествах, больших 0,01 мг на 1л воздуха рабочей зоны, он ядовит. При промышленном использовании газа содержащийся в нем сероводород отрицательно сказывается на качестве выпускаемой продукции. В присутствии влаги сероводород вызывает сильную коррозию металлов.  

 

      Заключение

     Нефть – ценнейшее природное ископаемое, открывшее перед человеком удивительные возможности "химического перевоплощения". Всего производных нефти насчитывается уже около 3 тысяч. Нефть занимает ведущее место в мировом топливно-энергетическом хозяйстве. Ее доля в общем потреблении энергоресурсов непрерывно растет. Нефть составляет основу топливно-энергетических балансов всех экономически развитых стран. В настоящее время из нефти получают тысячи продуктов.

     В проблеме рационального использования  нефти и газа большое значение имеет повышение коэффициента их полезного использования. Одно из основных направлений здесь предполагает углубление уровня переработки нефти в целях обеспечения потребности страны в светлых нефтепродуктах и нефтехимическом сырье. Другим эффективным направлением является снижение удельного расхода топлива на производство тепловой и электрической энергии, а также повсеместное снижение удельного расхода электрической и тепловой энергии во всех звеньях народного хозяйства.

      Борьба  с потерями нефти, нефтепродуктов и  природных газов является важнейшим мероприятием по оздоровлению природы. Очистка отходов производства с утилизацией управляемых веществ – наиболее перспективный путь охраны окружающей среды.

      В настоящее широко используются механические очистительные установки и сооружения – нефтеловушки, песколовки, пруды-испарители, пруды для отстоя, кварцевые фильтры, деэмульгаторы и другие устройства. Но наиболее эффективным методом очистки сточных вод нефтеперерабатывающих заводов является биохимический. Суть этого процесса заключается в том, что сточные воды, миновав сложную сеть отстойников, попадают в бассейны – аэротенки биологической очистки. Мириады микроорганизмов нескольких десятков видов обитающих в аэротенках, поедают органические соединения, а не органические расщепляют на более простые, выводят в осадки. После очистки вода насыщается кислородом. Такие очистные сооружения, оборудованные сложным комплексом сложным комплексом различных установок, обеспечивают глубокую очистку промышленных стоков, возвращая в реки практически чистую воду, ничем не угрожающую живым организмам.

      Особую  важность в охране природы приобретает  рекультивация земель после проведения на них геолого-съемочных и геофизических  работ, бурения всех видов скважин, особенно глубоких. Благодаря своевременной рекультивации земель прекращается загрязнение воздуха и вод, усыхание и гибель растительности, снижение урожайности сельскохозяйственных культур, улучшается микроклимат и санитарно-гигиенические условия.  

 

    Информационные источники

1. Судо М. М. Нефть и горючие газы в современном мире. – М.: Недра, 1984.

2. Тарасенко  Г.В. Образование нефти и тектоника  плит скольжения// Международная  конференция "Геология, поиск  нефтяных и газовых месторождений  Прикаспийской впадины и территорий  Каспийского моря". 18-20 сентября 2007 г. РГУ нефти и газа им. Губкина, г. Москва.

3. Стадников  Г.Л. Происхождение углей и  нефти // М.: – третье переработанное  и дополненное издание АН СССР, - 1937, - с. 544.

4. Алексин А.  Г., Алексеев С. П. Что такое.  Кто такой. Издательство «Педагогика-Пресс», г. Москва, 1992г.

stud24.ru