Большая Энциклопедия Нефти и Газа. Температура помутнения нефти гост


Определение температуры помутнения и температуры текучести нефтепродуктов. Каталожный номер: CPPP-80.

Главная > Оборудование > ДИЗТОПЛИВО, ГОСТ 305 - Топливо дизельное. Технические условия > CPPP-80

ASTM D 2500 - ASTM D 97 - ГОСТ 5066 - ГОСТ 20287

9920-788 Cloud Point automatic tester single stage cooling compressor (for temp. down to -35°C) по запросу
9920-789 Double-head Cloud Point automatic tester single stage cooling compressor (for temp. down to –35°C) по запросу
9920-790 Автоматический анализатор температуры помутнения с двухступенчатым компрессором системы охлаждения (для температур до -85 °C) по запросу
9920-791 Автоматический анализатор температуры помутнения с двухступенчатым компрессором системы охлаждения и двумя аналитическими головками (для температур до -85 °C) 1
3133-172 Компьютер с монитором 19" и принтером согласно спецификациив комплекте:- Монитор 19" LG L1942SE-BF 1280x1024 | 5ms | D-SUB | Black - 1шт.;- Клавиатура Genius KB-06X2 PS/2 Black - 1шт.;- Мышь Genius Net Scroll 110 оптическая PS/2 OEM 800dpi Black - 1шт.;- Системный блок в сборе Гал 8: - 1шт.;- Кабель CC-USB2-AMBM-6 1.8m USB2.0 - 1шт.;- Принтер HP DeskJet D2663 (Ch466C) - 1шт.;- Нетбук Acer Aspire One AOD255-2BQkk | Atom N450 | 10.1" LED | 1024 | 160 | WiFi | CAM | XPH | Black -1шт.;- Электронная книга NEXX NRM-71 Электронная книга Assistant MediaReader AE-702 Black - 1шт.;Программное обеспечение неисключительные права MS Win Pro 7 32-bit Russian DSP OEI DVD (FQC-00790-LC) - 1шт. 1
9920-800 Контейнер для пробы 4
9920-801 Датчик температуры PT100 для пробы (температура помутнения) - см. 9921-049 1
9920-802 Датчик температуры PT100 (температура текучести) - см. 9921-053 1
9920-804 Датчик для детектирования температуры PT100 (требуются два датчика) - см. 9921-054 2
9920-803 Фотоэлектрический детектор 1
9920-805 Уплотнительная прокладка для контейнера для пробы 5
9920-109 Ленточный нагреватель 1
9920-110 Датчик температуры для рубашки охлаждения 1
9920-111 Термореле 1

Возврат к списку

www.petrotech.ru

Определение температуры помутнения и застывания

    Для характеристики низкотемпературных свойств нефтепродуктов введены следующие чисто условные показатели для нефти, дизельных и котельных топлив и нефтяных масел — температура застывания] для карбюраторных, реактивных и дизельных топлив— температура помутнения-, для карбюраторных и реактивных топлив, содержащих ароматические углеводороды, — температура начала кристаллизации. Все эти определения проводятся в строго стандартных условиях и служат для оценки кондиционности товарных продуктов. [c.48]     Для характеристики низкотемпературных свойств нефтепродуктов введены следующие условные показатели для нефти, дизельных и котельных топлив - температура помутнения для карбюраторных и реактивных топлив, содержащих ароматические углеводороды, - температура начала кристаллизации. Метод их определения заключается в охлаждении образца нефтепродукта в стандартных условиях в стандартной аппаратуре. Температура появления мути отмечается как температура помутнения. Причиной помутнения топлив является выпадение кристаллов льда и парафиновых углеводородов. Температурой застывания считается температура, при которой охлаждаемый продукт теряет подвижность. Потеря подвижности вызывается либо повышением вязкости нефтепродукта, либо образованием кристаллического каркаса из кристаллов парафина и церезина, внутри которого удерживаются [c.101]

    ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ ПОМУТНЕНИЯ И ЗАСТЫВАНИЯ [c.173]

    Низкотемпературные свойства. В отличие от бензинов в состав дизельных топлив входят высокомолекулярные парафиновые углеводороды нормального строения, имеющие довольно высокие температуры плавления. При понижении температуры эти углеводороды выпадают из топлива в виде кристаллов различной формы и топливо мутнеет. Возникает опасность забивки топливных фильтров кристаллами парафинов. Принято считать, что температура помутнения характеризует нижний температурный предел возможного применения дизельных топлив. При дальнейшем охлаждении помутневшего топлива кристаллы парафинов сращиваются между собой, образуют пространственную решетку и топливо теряет текучесть. Температура застывания — величина условная и используется для ориентировочного определения возможных условий применения топлива. Этот показатель принят для маркировки дизельных топлив на следующие три марки летнее ( заст. менее -10 °С), зимнее ( заст. менее — 35-45 °С) и арктическое ( заст. менее -55 °С). Применимы для улучшения низкотемпературных свойств дизельных топлив следующие три способа  [c.71]

    Таким образом, переход нефтепродуктов из жидкого состояния в твердое совершается не в одной определенной температурной точке, как это характерно для индивидуальных химических соединений, а в интервале температур. Этот переход всегда сопровождается некоторой промежуточной стадией помутнения, а затем загустевания, при которой нефтепродукт постепенно теряет свою подвижность, застывает. Температура застывания нефтепродукта не является их физической характеристикой, а носит условный характер. Тем не менее значение этой условной величины практически очень велико. Циркуляция масла в системе смазки двигателя, а также подача толлива через топливную систему возможны только в том случае, если нефтепродукт находится в жидком состоянии, при загустевании же он теряет текучесть и не прокачивается. Так же велико значение этого показателя при транспорте нефтепродуктов. При использовании многих нефтепродуктов необходимо изучить их поведение при низких температурах и хотя бы приблизительно знать температуру, при которой нефтепродукт начинает терять свойство текучести и застывает. Методы определения температуры помутнения и застывания приведены в табл. 31. [c.174]

    В лаборатории исследуют качество нефти, поступающей иа перегонную установку, и продукции, уходящей с установки. При анализе нефти определяют ее плотность, содержание солей, воды, светлых фракций. Анализ бензиновых фракций состоит в определении октанового числа, наличия или отсутствия активных сернистых соединений (проба на медную пластинку). Проводят также фракционную разгонку бензина. Для средних дистиллятов — керосиновой и дизельной фракции — анализируют фракционный состав, вязкость, температуры вспышки, застывания или помутнения. [c.157]

    Прокачиваемость топлив для судовых ГТУ оценивается аналогично дизельным топливам по кинематической вязкости, температуре помутнения и застывания, коэффициенту фильтруемости, содержанию воды и механических примесей. Особенностью применения топлив в судовых условиях является повышенная вероятность их обводнения. В связи с этим дополнительно оценивается скорость деэмульсации. Описание методов определения показателей, оцениваемых для дизельных топлив, приведено в гл. 4. [c.180]

    Нефтепродукты представляют собой смесь различных углеводородов с добавкой, в некоторых случаях, специальных присадок и поэтому не имеют постоянной температуры плавления. Агрегатное состояние нефтепродуктов, характеризуется в зависимости от их назначения, одним из следующих показателей температурой начала кристаллизации (авиационные бензины), температурой помутнения (осветительные керосины) температурой застывания (дизельные топлива, мазуты, смазочные масла), температурой размягчения (битумы), температурой каплепадения (пластичные смазки, церезины), температурой плавления (парафины). Методы определения этих показателей со ссылкой на соответствующие ГОСТы приведены в табл. 4.54. [c.26]

    Для оценки низкотемпературных свойств дизельных топлив, вследствие наличия в них высокомолекулярных парафиновых углеводородов, особенно важной характеристикой является их прокачиваемость. При определении температур помутнения и застывания довольно часто наблюдаются значительные расхождения результатов, получаемых в разных лабораториях, что заставляет особенно строго относиться к соблюдению режима испытаний. Поэтому решающую роль в суждении о низкотемпературных свойствах дизельных топлив должны иметь методы, оценивающие их прокачиваемость при заданной температуре. [c.75]

    Температура помутнения и другие низкотемпературные свойства масел зависят от свойств сырья, из которого получено масло. Эти качества улучшаются путем депарафинизации или добавлением депрессаторов. Методы определения температуры помутнения и застывания обычно служат одновременно контролем очистки и смешения масел. [c.25]

    Допускается поставка потребителям топлива марки Л с 1 апреля по 1 октября при минимальной температуре на месте применения топлива не ниже плюс 5° С с температурой застывания не выше 0° С (без определения температуры помутнения) и содержанием воды не более нормы следы . [c.40]

    Температуру помутнения определяют визуально или оптическими методами, отмечая изменение пропускания топливом световых лучей. Температуру застывания оценивают по отсутствию подвижности мениска топлива в пробирке при охлаждении в определенных условиях. Считают, что температура помутнения топлива характеризует их фильтруемость при низких температурах, а температура застывания — прокачиваемость. Однако опыт эксплуатации техники в зимних условиях и результаты исследований показывают, что оба метода не позволяют предсказать поведение топлива в эксплуатационных условиях при низких температурах и служат лишь для ориентировочной оценки температурных пределов применения топлив. [c.49]

    Температуры замерзания, помутнения, застывания и плавления. Температура замерзания контролируется для светлых моторных топлив (бензинов, бензольных, спиртовых), под ней понимают ту максимальную температуру, при которой в топливе при его охлаждении обнаруживаются невооруженным глазом кристаллики льда (или бензола и пр.). Этой температуре предшествует помутнение топлива за температуру помутнения принимают температуру, при которой светлое и прозрачное топливо. -начинает мутнеть вследствие выделения микроскопических капелек воды, кристаллов льда или кристаллов углеводорода. Определение температур замерзания и помутнения указанных топлив производится в приборе по ГОСТ 5066-52. [c.26]

    Топливо должно бесперебойно подаваться по топливоподающей системе (трубопроводы, фильтры, насосы, форсунки). Для обеспечения этого требования топливо должно обладать низкими температурами помутнения и застывания, определенной, не слишком высокой вязкостью (в пределах 2—8 сст при 20° С) и не содержать твердых примесей и воды. Низкотемпературные свойства и вязкость имеют большое значение и для обеспечения всевозможных товаротранспортных операций (перекачки, заправки машин и т. п.). Топлива с высокой температурой застывания вообще непригодны для применения в зимних условиях. Ввиду важности этого показателя обе подгруппы топлива для быстроходных дизелей делятся на летние, зимние и специальные сорта, резко отличающиеся друг от друга по температурам застывания (от —60 до —15° С). [c.136]

    Температуры плавления, застывания, помутнения и кристаллизации. Способы их определения. [c.18]

    Для определения температуры застывания или точки текучести по ASTM применяют тот ке прибор, что и для определения температуры помутнения по ASTM (см. гл. XI V, 2). Под температурой текучести нефтепродуктов понимают ту наинизшую температуру, при которой масло сохраняет подвижность в том случае, если оно предварительно охлаждено без перемешивания в определенных условиях. Процесс определения проводится следующим образом. [c.338]

    Проверку на отсутствие помутнения керосина производят по методу, принятому для определения температуры застывания (ГОСТ 1533—42), включая момент, когда температура охлаждаемого в пробирке керосина достигает минус 12° С, после чего керосин оставляют в охлаждающей смеси при этой температуре еще в течение 5 мин, а затем пробирку вместе с муфтой осторожно вынимают из охлаждающей смеси, не встряхивая керосина вытирают муфту сна- [c.481]

    Примечание. Показатели качества нефтепродуктов определяются методами испытаний по следующим ГОСТам цетановое число — 3122—67, фракционный состав — 2177- 6, кинематическая вязкость — 33—66, кислотность и кислотное чис-сло — 5985—59, зольность — 1461—59, содержание серы — 1771—48, содержание меркаптановой серы — 6975—57, содержание меркаптановой серы потенциометрическим титрованием—9558—60, испытание на медной пластинке — 6321—69, водорастворимые кислоты и щелочи — 6307—60, механические примеси — 6370—59. содержание воды — 2477—65, температура вспышки в закрытом тигле — 6356—52, температура вспышки в открыто.- тигле — 4333—48. условная вязкость — 6258—52. коксуемость — 5987—51, коксуемость 10%-ного остатка дизельного топлива — 5061—49, температура помутнения и начало кристаллизации — 5066—56, температура застывания — 1533—42, содержание сероводорода — 11064—64, содержание смол — 1567—56, определение цвета — щ 2667—52, йодное число — 2070—55 содержание серы хроматным способом — 1431—64, [c.9]

    Приведенные представления о действии депрессорных присадок подтверждаются teм, что в их присутствии температура помутнения топлив изменяется незначительно, поскольку помутнение топлива определяется выделением мелкодисперсной второй фазы. Таким образом, депрессорные присадки препятствуют росту частиц твердой фазы до размеров, при которых заметно ухудшаются эксплуатационные свойства топлив при низких температурах. Однако такой эффект достижим лишь до определенной температуры, несколько меньщей первоначальной температуры застывания топлив. [c.283]

    Проблема получения низкозастывающих моторных топлив (а также масел) может быть решена включением в схемы НПЗ нового эффективного и весьма универсального пропесса — каталитической гидродепарафинизации (КГД) нефтяных фракций. Процессы КГД находят в последние годы все более широкое применение за рубежом при получении низкозастывающих реактивных и дизельных топлив, смазочных масел и в сочетании с процессом каталитического риформинга (селекто-фор-минга) — высокооктановых автобензинов. В зависимости от целевого назначения в качестве сырья КГД могут использоваться бензиновые, керосино-газойлевые или масляные фракции прямой перегонки нефти. Процесс КГД основан на удалении из нефтяных фракций н-алкановых углеводородов селективным гидрокрекингом в присутствии металло-цеолитных катализаторов на основе некоторых типов узкопористых цеолитов (эрионита, морденита, 52М-5 и др.). Селективность их действия обусловлена специфической пористой структурой через входные окна могут проникать и контактировать с активными центрами (обладающими бифункциональными свойствами) только молекулы н-алкановых углеводородов определенных размеров. В результате проведения процесса КГД (в условиях, сходных с режимами процессов гидрообессеривания газойля) достигается значительное (на 25...60°С) снижение температуры застывания и температуры помутнения и улучшение фильтруемости денормализатов КГД при выходах 70...90 % и одновременном образовании высокооктановых бензинов. Процесс КГД наиболее эффективен при облагораживании сырья, содержащего относительно невысокое количество -алканов (менее 10%), переработка которого традиционными процессами депарафинизации по экономическим и технологическим причинам нецелесообразна. Использование процесса КГД позволяет значительно расширить сырьевую базу производств дизельных топлив зимних и арктических сортов. [c.854]

    В частности, предельная температура топлива, при которой расход его уменьшается до определенного значения, возможно, будет лучше характеризовать эксплуатационные свойства дизельного топлива, чем температуры помутнения и застывания. Предложено несколько вариантов лабораторного оформления таких методов. На рис. 21 представлена модификация прибора, в котором фильтрование ведется в вакууме. Основным узлом прибора является фильтрующий элемент 5, закрепленный в латунном корпусе 4. В качестве фильтрующего материала рекомендована сплющенная сетка с отверстиями стороной 40 мкм. Корпус с фильтром помещен в пробирку 3 с испытуемым топливом 6 и соединен с пипеткой 9 емкостью 20 мл, на которой имеется метка 10 на высоте 200 мм от нижнего края латунного корпуса. Пробирка с топливом и фильтром помещена в охлажда- [c.47]

    Вторая половина основной программы исследований посвящена определению свойств товарных фракций нефти, направляемых на различные процессы переработки, бензиновых, керосиновых, дизельных, масляных фракций и остатков. Для бензиновых фракций определяют плотность, фракционный состав, содержание общей и тиольной (меркаптановой) серы, кислотность, октановое и йодное числа для керосиновых — плотность, фракционный состав, кинематическую вязкость, теплоту сгорания, высоту некоптящего пламени, кислотность, температуры вспышки, начала кристаллизации, содержание ароматических углеводородов, общей и тиольной серы, йодное число для дизельных фракций — плотность, вязкость, фракционный состав, содержание общей и тиольной серы, температуру вспышки, застывания, помутнения, коксуемость, цетановое число, кислотность и йодное число. [c.9]

    Лаборант товарной лаборатории, как правило, проводит три или четыре различных вида анализов. Например, один лаборант Ж разряда проводит анализы по определению зольности, цвета, фракционного состава, другой лаборант Ж разряда определяет анилиновую точку, механические примеси массовым путем, температуру застывания, температуру помутнения, содержание масла в парафине, содержание воды. [c.219]

    Существует нес1солько способов определения температуры помутнения и застывания моторных топлив. Мы опишем наиболее расиространенные из нпх. [c.343]

    Минеральное масло - это многокомпонентная система, застывание которой является сложным и многостадийным процессом, зависящим от взаимодействия отдельных компонентов, их взаимного растворения и др. В минеральном масле при понижении температуры в первую очередь зарождаются и растут кристаллы парафина. С появлением мелких кристаллов масло мутнеет и эта температура называется температурой помутнения loudpoint). В дальнейшем кристаллы парафина растут, соединяются, слипаются и в конечном итоге образуют кристаллический каркас, масло становится неподвижным, желеобразным. Таким образом, температура застывания фактически является температурой желеобразования. Между кристаллическим каркасом масло еще остается жидким и при встряхивании или перемешивании текучесть всей массы масла может частично восстановиться. Такой процесс затвердевания, как специфический процесс кристаллизации, зависит от скорости охлаждения и от термической и механической предыстории масла (низкотемпературного режима, интенсивности и продолжительности принудительного течения, в интервале времени до измерения температуры застывания). Поэтому при определении этой температуры требуется строгое соблюдение предписанной процедуры охлаждения и выдержки жидкости. [c.38]

    Эти эмпирические величины важны для характеристики поведения нефтепродуктов при низких температурах. Метод их определения [299—300] заключается в охлаждении образца нефтепродукта стандартным методом в стандартной аппаратуре температура появления мути отмечена как температура помутнения, а температура, ниже которой продукт не будет протекать, как обычно, — температурой застывания. Температура помутнения есть температура начального высаждения парафина или других твердых продуктов. Контроль за скоростью охлаждения здесь особенно важен для вязких нефтей, так как быстрое охлаждение дает заниженные результаты. Нефти, не содержащие или почти не содержащие парафина, такие, как нефти нафтенового типа, пе показывают температуры помутнения. Температура застывания для большинства нефтей является результатом выса-ждепия парафина, в данном случае до степени, достаточной, чтобы получить вязкую пластичную массу соединившихся кристаллов. Обеспарафиненные нефти, температура застывания которых зависит лишь от вязкости, сгущаются до стекловидных продуктов. Для таких нефтей температура застывания соответствует 5 ООО ООО сст. [c.202]

    При температуре выше температур помутнения и застывания большинство моторных масел ведут себя как простые жидкости, при низких же температурах они склонны становиться сложными жидкостями. Размеры и значение этого физического изменения при низкпх температурах могут быть иллюстрированы па примере консистентных смазок, являющихся по определению ASTM сложными жидкостями. [c.56]

    Смазочные масла. В сложных машинах и механизмах, особенно в двигателях внутреннего сгорания, масло выполняет различные функции, а именно уменьшает трение между поверхностями движущихся деталей, снижая их износ, и непрерывно очищает их от различных механических примесей, все время смывая накапливающиеся продукты загрязнения отводит тепло от нагревающихся деталей и предохраняет их от коррозии в двигателях внутреннего сгорания уплотняет поршни в цилиндрах двигателя (улучшает компрессию). Чтобы масло могло выполнять эти функции, оно должно обладать высокой маслянистостью, обеспечивающей создание адсорбированной пленки на смазываемых деталях в зависимости от условий работы должно иметь определенную вязкость и возможно более высокий индекс вязкости (малое изменение вязкости с изменением температуры) быть стаШльным, т. е. возможно меньше менять свои свойства при хранении в узлах трения, подвергающихся высокому нагреванию, быть термически устойчивым возможно меньше реагировать с кислородом воздуха как при хранении, так и при работе во всех возможных условиях работы быть подвижным и иметь низкие температуры помутнения и застывания иметь малую испаряемость и высокую температуру вспышки содержать возможно меньшее количество органических кислот, т. е. иметь кислотное число не выше обусловленного стандартом не содержать активных сернистых соединений, свободных минеральных кислот, механических примесей и воды возможно меньше содержать различных минеральных солей, т. е. при сгорании масла количество золы должно быть минимальным  [c.148]

    Тмшературу застывания дистиллятных фракций можно вычислить по опубликованной номогреше L31, яная температуру застывания отдельных составляющих смесь компонентов. ПЬ приведенной авторами номограмме можно определять и температуру помутнения, зная свойства составяящ1а смесь компонентов. Эта номограмма аналогична вышеописанной для определения температуры вспышки смеси 131, [c.124]

    Интересно отметить стремление определять состав смеси л-крезола и п-крезола колориметрическим методом с переводом отдельных компонентов, например, в иитропроизводные [3] отрицательным моментом является то, что на результаты определения влияют остальные гомологи фенола. Также по температуре застывания состав м-, п-крезоловой фракции можно определять лишь для чистых смесей. В производственных условиях этот способ не применяется [15]. Не рекомендуется определять состав фенол-крезоловой смеси по температуре помутнения [16]. Длительным и неудобным является также метод определения состава крезоловой смеси в виде крезоксиуксусной кислоты [42]. [c.377]

chem21.info

Температура - помутнение - Большая Энциклопедия Нефти и Газа, статья, страница 3

Температура - помутнение

Cтраница 3

Температура помутнения, при которой начинается выпадение парафинистых частиц, зависит не только от состава масла, но и от содержания фреона в растворе, и она понижается с увеличением его концентрации.  [31]

Температура помутнения характеризует температуру, при которой начинают выделяться из топлива кристаллы парафина; последние, задерживаясь на топливных фильтрах, могут вызвать прекращение подачи топлива в двигатель. Температура помутнения топлива обыкновенно на 5 - 10 выше температуры застывания.  [32]

Температура помутнения указывает на склонность топлив по-глощатн при низких температурах влагу из воздуха. При дальнейшем охлаждении эта влага образует кристаллики льда, которые засоряют топливоподающую аппаратуру, что недопустимо при эксплуатации особенно авиационных двигателей.  [33]

Температура помутнения определяет начало выделения кристаллов растворенного в топливе парафина или поглощенной им воды.  [34]

Температура помутнения в сухих углеводородах не замечена. Не замечена она и во влажных цикланах и алканах.  [35]

Температуры помутнения, застывания и предельной фильтруемости - эти три показателя характеризуют в настоящее время прокачиваемость дизельного топлива при отрицательных температурах.  [36]

Температура помутнения, определяемая по ГОСТ 5066 - 56, долгое время являлась основным эксплуатационным показателем для оценки низкотемпературных свойств дизельных топлив. При этом считалось, что температурный предел применения топлив должен быть на 5 С выше температуры помутнения топлива.  [38]

Температура помутнения растворителя с различным содержанием ацетона в зависимости от содержания в нем влаги.  [39]

Температура помутнения моторного топлива определяется по ГОСТ 5066 - 56 как температура, при которой топливо в условиях испытаний начинает мутнеть.  [40]

Температура помутнения раствора масла с фреоном должна быть возможно более низкой, желательно ниже ожидаемой температуры кипения. При содержании в масле парафинов около 0 4 % температура помутнения его раствора с фреоном-12 равна - 20 С. Если содержание парафинов снижается до 0 05 %, температура помутнения понижается примерно на 10; поэтому масла для холодильных машин должны тщательно очищаться от парафинов.  [41]

Температура помутнения маслофреоно-вого раствора должна быть возможно более низкой.  [42]

Температуру помутнения определяют визуально или оптическими методами, отмечая изменение пропускания топливом световых лучей. Температуру застывания оценивают по отсутствию подвижности мениска топлива в пробирке при охлаждении в определенных условиях. Считают, что температура помутнения топлива характеризует их фильтруемость при низких температурах, а температура застывания - прокачиваемость. Однако опыт эксплуатации техники в зимних условиях и результаты исследований показывают, что оба метода не позволяют предсказать поведение топлива в эксплуатационных условиях при низких температурах и служат лишь для ориентировочной оценки температурных пределов применения топлив.  [43]

Температуру помутнения керосина определяют по ГОСТ 20287 - 74, включая момент, когда температура охлаждаемого в пробирке керосина достигает минус 15 С для марок КО-30, КО-25 и КО-22, а также керосина марки КО-25, которому в установленном порядке присвоен государственный Знак качества, и минус 12 С для марки КО-20. После чего керосин выдерживают еще 5 мин в охлаждающей смеси при этой температуре, а затем пробирку вместе с муфтой осторожно вынимают из охлаждающей смеси, не встряхивая керосина, вытирают муфту снаружи и проверяют отсутствие помутнения керосина в проходящем свете.  [44]

Температуру помутнения ПАВ, недостаточно растворимых в воде, невозможно определить.  [45]

Страницы:      1    2    3    4

www.ngpedia.ru

Температура - помутнение - дизельное топливо

Температура - помутнение - дизельное топливо

Cтраница 1

Температура помутнения дизельных топлив при добавлении к ним депрессатора понижается весьма незначительно, всего на 1 - т - 5 С. Это означает, что эти присадки практически не влияют на кристаллизацию парафина в топливе, а следовательно, на фильтруемость и прокачиваемость топлива по топливоподающей системе.  [1]

Определение температуры помутнения дизельного топлива производят с предварительным обезвоживанием и без обезвоживания. Для предварительного обезвоживания его взбалтывают со свежепрокаленным сульфатом натрия или с зерненым хлористым кальцием и фильтруют через сухой фильтр.  [2]

При определении температуры помутнения дизельных топлив их предварительно обезвоживают обычным способом. Перед помещением пробирки с испытуемым образцом в охладительную смесь ее предварительно нагревают на водяной бане до 50 С, а затем охлаждают на воздухе до 30 С.  [3]

При определении температуры помутнения дизельных топлив их предварительно обезвоживают обычным способом.  [4]

Следует различать метод анилиновых точек ( соотношение анилин: топливо 1: 1) и метод критической температуры растворения. Для оценки дизельных топлив больше подходит последний метод, так как температура помутнения дизельных топлив больше зависит от соотношения смеси.  [5]

Температуру, при которой топливо или масло мутнеют и теряют прозрачность вследствие выделения капелек воды и кристаллов парафина, называют температурой помутнения По изменению температуры помутнения можно установить наличие в топливе или масле растворенной воды и твердых парафинов. Чем больше содержится в топливе растворенной воды, тем выше температура помутнения. Температура помутнения дизельного топлива обычно на 5 - 10 выше его температуры застывания.  [6]

При понижении температуры наиболее высокоплавкие углеводороды выпадают из топлива в виде кристаллов различной формы; топливо мутнеет. Возникает опасность забивки фильтров этими кристаллами. Поэтому температура помутнения дизельных топлив должна быть несколько ниже возможной температуры применения. Однако топлива хорошо прокачиваются и при температурах ниже температуры помутнения. Если топливный фильтр стоит в подкапотном пространстве и подогревается в результате теплоизлучения двигателя, то температура окружающей среды, при которой можно применять топливо, может оказаться значительно ниже температуры его помутнения.  [8]

Температура помутнения определяет начало выпадения из топлива в виде кристаллов высокоплавких углеводородов ( парафинов, алканов), которых в дизельных топливах значительно больше, чем в бензинах. Возникает опасность забивки топливных фильтров кристаллами парафиновых углеводородов. В связи с этим температура помутнения дизельных топлив должна быть несколько ниже возможной температуры применения топлива.  [9]

Для улучшения низкотемпературных свойств дизельных и более тяжелых топлив все больше применяют депрессорные присадки. Наиболее эффективные из них представляют собой полимерные соединения. При введении 0 02 - 0 1 % ( масс.) такой присадки температура помутнения дизельного топлива не изменяется, а температура застывания снижается на 20 - 30 С. При этом улучшаются прокачиваемость и фильтруемость топлив при температуре ниже температуры помутнения. Считают, что депрессорные присадки препятствуют сращиванию выпавших кристаллов твердых углеводородов. Происходит это либо вследствие адсорбции присадки на кристаллах, либо ее участия в процессе кристаллизации углеводороде, внедрения в кристаллические структуры и затруднения таким способом образования твердого каркаса. Применение депрессорных присадок к топливам позволяет во многих случаях избежать дорогостоящего процесса депара-финизации и увеличить ресурсы сырья для производства зимних сортов дизельных и более тяжелых топлив.  [10]

Для обеспечения надежной подачи топлива в цилиндры двигателя в зимнее время большое значение имеет также температура застывания топлива. Температурой застывания дизельных топлив называется та температура, при которой топливо, находящееся в стандартной пробирке, теряет способность изменять свой уровень в течение 1 мин. Для надежной работы двигателя эта температура должна быть на 5 - 10 С ниже температуры окружающего воздуха при эксплуатации автомобиля. Дополнительно ГОСТ предусматривает определение температуры помутнения дизельного топлива. Это определение по ГОСТ 5066 - 49 заключается в охлаждении испытываемого топлива и установлении температуры, при которой наступает его помутнение вследствие начала кристаллизации углеводородов, входящих в его состав.  [11]

Температурой застывания называют такую температуру, при которой жидкое топливо в процессе охлаждения теряет текучесть. Этим показателем определяется возможность применения топлива при низких температурах. Для большинства дизельных топлив температура застывания находится в пределах от - 10 до - 45 С. Различают еще температуру помутнения, при которой в топливе появляются кристаллы застывающих углеводородов и воды; появление в топливе значительного количества кристаллов означает прекращение его подачи через фильтры в жиклеры и форсунки. Температура помутнения дизельного топлива обычно на 5 - 10 С выше температуры застывания.  [12]

Страницы:      1

www.ngpedia.ru