Основные стадии технологии переработки нефти. Термическая переработка нефти


Термический процесс - переработка - нефть

Термический процесс - переработка - нефть

Cтраница 1

Термические процессы переработки нефти и нефтяных фракций связаны с расщеплением углеводородов под влиянием теплового воздействия, которое определяется температурой, давлением и продолжительностью пребывания сырья в зоне высокой температуры. В зависимости от исходного сырья и глубины разложения углеводородов термические процессы проводят при 450 - 720 С и давлении до 7 МПа. К ним относятся термический крекинг, рифор-минг, пиролиз и коксование.  [2]

Термические процессы переработки нефти представляют собой химические процессы получения нефтепродуктов под действием высокой температуры.  [3]

К термическим процессам переработки нефти относятся терми-ческий Крекинг, пиролиз и коксование.  [4]

Наиболее жесткий из термических процессов переработки нефти - пиролиз нефтяного сырья. Высокотемпературный режим процесса при атмосферном давлении сырья в паровой фазе позволяет получить пиролизный газ с большим содержанием олефинов: этилена, пропилена, бутилена. Значение пиролиза нефтяного сырья за последние годы возросло в результате увеличения потребности в олефиновых углеводородах для промышленности органического синтеза. Поэтому внимание отечественной науки привлечено к созданию новых методов пиролиза, позволяющих перерабатывать тяжелые нефтепродукты и сырую нефть. В настоящее время внедрены термоконтактный пиролиз, в котором используется твердый теплоноситель ( шамот, кокс, кварцевый песок), и гомогенный пиролиз в токе водяного пара.  [5]

Пиролиз - наиболее жесткий из термических процессов переработки нефти. Он проводится при температурах 750 - 900 С и предназначается для получения углеводородного газа с высоким содержанием алкенов - этилена, пропилена и бутиленов. Поскольку в современном нефтехимическом синтезе наибольшее применение из алкенов находит этилен, установки пиролиза зачастую называются этиленовыми.  [6]

Пиролиз - наиболее жесткий из термических процессов переработки нефти. Он проводится пр температурах 750 - 900 С и предназначается в основном для получения высокоценных олефиновых углеводородов - сырья нефтехимического синтеза.  [7]

Пиролиз - наиболее жесткий из термических процессов переработки нефти. Он проводится при температурах 750 - 900 С и предназначается для получения углеводородного газа с высоким содержанием алкенов - этилена, пропилена и бутиленов. Поскольку в современном нефтехимическом синтезе наибольшее применение из алкенов находит этилен, установки пиролиза зачастую называются этиленовыми.  [8]

В западноевропейских странах ( в первую очередь в ФРГ) расширяется строительство установок для осуществления термических процессов переработки нефти. Эта тенденция возникла в связи с необходимостью повысить выход из нефти дизельных и легких котельных топлив.  [9]

Пиролиз осуществляется при давлении близком к атмосферному и температуре от 750 до 900 С и является наиболее старым из термических процессов переработки нефти. Первые пиролизные Заводы были построены в России еще в 70 - х годах прошлого века.  [10]

Ненасыщенных углеводородных соединений, кроме цикланов и ароматических в нефтях мало, но они в больших количествах образуются при термических процессах переработки нефти.  [11]

Такие соединения могут образовываться при термических процессах переработки нефти или выделенных из нее продуктов. Наиболее детально изучены фракции нефти, выкипающие до 300 - 350 С.  [12]

По химическому составу углеводороды нефти относятся к следующим классам соединений: парафиновые, нафтеновые и ароматические. Ненасыщенных углеводородных соединений в нефтях мало, но они в большом количестве образуются при термических процессах переработки нефти.  [13]

Природа возникновения практически всех отмеченных дефектов связана с локальным или общим перегревом печных труб, а также с образующимися в процессе эксплуатации отложениями кокса на внутренней поверхности. Данный процесс неизбежен и интенсивность его определяется составом сырья, давления, температуры и другими факторами. Особенно он характерен для печей установок термических процессов переработки нефти ( термический крекинг, коксование), в которых особую значимость приобретает состав сырья и высокие температуры.  [14]

Понимание значения структурной составляющей исследования сложных нефтяных сред следует отнести, по-видимому, ко времени развития представления о коллоидной структуре нефти и нефтяного сырья во всей цепочке процессов добычи, транспорта и переработке нефти. Исходя из коллоидных свойств смолисто-асфальтеновой и смолисто-парафиновой части нефти и нефтяного сырья, объясняются, например, такие важные свойства как вязкость и реологические свойства. При этом исходят из положения, что коллоидные структуры подчиняются строгим закономерностям, в силу которых физико-механические свойства определяются формой, размером и концентрацией частиц, образующих ту или иную коллоидную систему. Эти же факторы в значительной степени определяют и проблему углубления переработки нефти и нефтяных остатков. Структуры коллоидной дисперсности удерживают в своей составе значительную часть легких фракций углеводородов нефтяного сырья, по некоторым оценкам до 50 % от доли коллоидов. Кроме этого в термических процессах переработки нефти при длительном нагревании уже при температурах 300 - 350 С изменения претерпевают не только смолы и асфальтены, но и высокомолекулярные углеводороды и доля смолисто-асфальтеновых части ( структурированная часть) составляет не менее 30 % от подвергшейся переработке сырой нефти. Те же характеристики коллоидов - форма, размеры и концентрация, как в составе исходного сырья так и в динамике технологического процесса, в совокупности с физико-химическими свойствами нефтяных остатков, в значительной степени влияют на эксплуатационные характеристики нефтяных битумов, пеков и коксов.  [15]

Страницы:      1

www.ngpedia.ru

Контрольные вопросы

1. Требования, предъявляемые к нефти, поступающей на завод.

2. Характеристика нефтяных эмульсий.

3. Технологическая схема установки ЭЛОУ.

4. Описание процесса электрообессоливания.

5. Технологическая схема АТ.

6. Технологическая схема ВТ.

Тема 2. Термические процессы переработки нефти

Аннотация

Изучив представленный материал, студент, будет знать теоретические основы термических процессов, их особенности и назначение. Кроме того, студент будет знать принципиальные технологические схемы термических процессов: термического крекинга, висбрекинга и замедленного коксования.

2.1 Теоретические основы термических процессов

К процессам термической деструкции относят термический крекинг, висбрекинг, коксование и пиролиз. Термические процессы в нефтепереработке применяются для углубления переработки нефти, понижения вязкости высококипящих фракций, получения непредельных соединений и кокса.

Термический крекинг – это высокотемпературная (при 500-550оС) переработка углеводородов нефти для получения сырья сажевого производства, бензина, кокса и др.

Висбрекинг – это мягкий термический крекинг (450-500оС) для получения котельного топлива путем снижения вязкости мазутов, гудронов и полугудронов.

Пиролиз – термическое разложение углеводородов под действием высоких температур 700-900оС, чаще всего для получения газообразных непредельных соединений (этилена и пропилена).

Коксование – высокотемпературный процесс получения из остаточного сырья электродного иди топливного кокса (при температуре 490-500оС).

При термической деструкции углеводородов (при температуре 500-900оС) происходит образование продуктов с меньшей молекулярной массой, одновременно имеют место реакции синтеза.

Реакции распада: крекинг, дегидрирование, деалкилирование, дециклизация.

Реакции синтеза: конденсация, полимеризация, дегидроциклизация.

Реакции распада сопровождаются поглощением энергии. Эти реакции эндотермические. Реакции синтеза часто протекают с выделением энергии и их относят к экзотермическим реакциям.

Так как реакции обеих групп протекают с изменением объема, то для них имеет большое значение изменение внешнего давления. Увеличение давления для реакций, идущих с уменьшением объема, приводит к смещению равновесия вправо (к продуктам реакции). Напротив, для реакций, идущих с увеличением объема, сдвиг вправо (в сторону образования продуктов реакции) происходит при понижении давления. Не смотря на то, что термическое разложение происходит с увеличением объема практически все процессы ведут при повышенном давлении( около или более 5МПа). Повышенное давление позволяет подавить реакции глубокого распада, приводящие к повышенному газообразованию, то есть получению нецелевого продукта.

2.2 Промышленные процессы термической переработки нефти и нефтяных фракций

2.2.1.Термический крекинг

Процесс термического крекинга тяжелых нефтяных остатков в последние годы в мировой нефтеперера­ботке практически утратил свое "бензинопроизводящее" значение. В последнее время этот процесс используется для термопод­готовки дистиллятных видов сырья для установок коксования и произ­водства термогазойля( сырья для последующего получения технического углерода (сажи)).

В качестве сырья установки термического крекинга предпочтительно используют ароматизированные высококипящие дистилляты: тяжелые газойли каталитического крекинга, тяжелую смолу пиролиза и экстракты селективной очистки масел.

При термическом крекинге за счет преимущественного протекания реакций дегидроконденсации парафино-нафтеновых углеводородов оьбразуются арены. Образующиеся при крекинге, а также содержащиеся в исходном сырье арены, подвергаются дальнейшей ароматизации.

Основными целевыми продуктами термического крекинга дистиллятного сырья являются термогазойль (фракция 200-480 °С) и дистиллятный крекинг-остаток — сырье установок замедленного коксования — с целью получения высококачествен­ного кокса, например игольчатой структуры. В процессе получают также газ и бензиновую фракцию.

Потребители сажевого сырья предъявляют повышенные требования к его ароматизованности и плот­ности. В термогазойле ограничиваются коксуемость, зольность и содержание смолисто-асфальтеновых веществ.

Термический крекинг дистиллятного сырья по технологическому оформлению установки практически мало чем отличаются от своих предшественников — установок двухпечного крекинга нефтяных остатков бензинового профиля. Это объясняется тем, что в связи с утратой бензинопроизводящего назначения кре­кинг-установок появилась возможность для использования их без суще­ственной реконструкции по новому назначению.

Ранее было установле­но, что при однократном крекинге не удается достичь требуемой глуби­ны термолиза тяжелого сырья из-за опасности закоксовывания змееви­ков печи и выносных реакционных аппаратов. Поэтому большим достижением в совершенствовании их технологии являлась разработка двухпечных систем термического крекинга, в которых в одной из печей проводят мягкий крекинг легко крекируемого исходного сырья, а во второй — жесткий крекинг более термостойких средних фракций термолиза.

На рис. 4 представлена принципиальная технологическая схема установки термического крекинга дистиллятного сырья, которая используется для производства вакуумного термога­зойля.

Исходное сырье после нагрева в теплообменниках подают в ниж­нюю секцию колонны К-3. Эта колонна разделена на две секции полуглухой тарелкой, которая позволяет перейти в верхнюю секцию только парам. Продукты конденсации паров крекинга в верхней секции накапливают­ся в аккумуляторе (кармане) внутри колонны. Потоки тяжелого сырья, отбираемые соответственно с низа колонны, а легко­го сырья из аккумулятора К-3, подают в змеевики трубчатых печей. В печь П-1 подают тяжелое сырье, где оно нагревается до 500оС, а легкое сырье направляют в печь П-2 где нагревают до температуры 550°С и далее два потока направляют для углубления крекинга в выносную реакционную камеру К-1.

Рисунок – 4 Принципиальная технологическая схема установки термического крекинга дистиллятного сырья.

I – сырье, II – бензиновая фракция на стабилизацию, III – тяжелая бензиновая фракция из К-4, IV – вакуумный погон, V – термогазойль, VI – крекинг остаток, VII – газы на ГФУ, VIII – газы и водяной парк вакуум - системе, IX – водяной пар.

Из камеры К-1 продукты крекинга затем подают в испаритель высокого давления К-2, а крекинг-остаток и термогазойль через редукционный клапан направляют в испаритель низкого давления К-4. Газы и пары бензино-керосиновых фракций направляют в колонну К-3.

С верха К-3 и К-4 уходящие газы и пары бензиновой фракции охлаждают в конденсаторе-холодильнике и подают в газосепараторы С-1 и С-2. Газы подают на разделение на газофракционирующую установку (ГФУ), а основное коли­чество бензиновой фракции отправляют на стабилизацию.

Крекинг-остаток, выводимый гудрона получено, % масс.: 5 – газ, 1.3 – головка стабилизации бензина, 20.1 – фракция стабильного бензина, 52.6 – термогазойль, 19.9 – крекинг остаток, 1.1 – потери.

studfiles.net

§ 3. Типы установок для перегонки нефти и мазута

Для перегонки нефти применяют следующие типы установок.

1. Атмосферные (AT), когда процесс осуществляется под действием атмосферного давления в ректификационной колонне. В данном случае из сырой нефти получают нефтепродукты — бензин, керосин, дизельное топливо. Остатком является мазут.

2. Вакуумные (ВТ), когда процесс осуществляется под вакуумом с целью получения высококипящих нефтяных фракций. В данном случае мазут подвергают вакуумной перегонке и получают масляные фракции. Остатком является гудрон.

3. Атмосферно-вакуумные (АВТ), когда атмосферные и вакуумные установки объединены в общую технологическую схему, что способствует более глубокой переработке нефти.

4. Комбинированные атмосферные (КАТ) и комбинированные атмосферно-вакуумные (КАВТ), когда установки электро-обессоливания и электрообезвоживания объединены с AT или с АВТ в единую технологическую схему.

Комбинированные атмосферно-вакуумные установки занимают меньшую территорию, имеют значительно лучшие показатели регенерации тепла (пониженный расход топлива, электроэнергии и пр.). Поэтому на современных заводах сооружаются в основном атмосферно-вакуумные установки, причем в большинстве случаев в комбинации с установками электрообессоливания.

Рис. 127. Схемы теплообмена

Принципиальная схема АВТ следующая (рис. 128). Нефть перекачивается насосом 2 через теплообменник 3, электроде-гидрагоры 5 и через холодильник-конденсатор 10 поступает в теплообменники 12. Здесь она нагревается и через печь / атмосферной части поступает в ректификационную колонну 4. В колонне выделяются бензин, керосин, дизельное топливо. Верхний продукт ректификационной колонны 4 конденсируется в холодильнике-конденсаторе 6, а затем поступает в емкость 7.

Рис. 128. Принципиальная схема АВТ

Часть его из емкости 7 насосом 8 подается на орошение. В нижней части колонны 4 находится остаток, который насосом 14 через печь 9 вакуумной части поступает в вакуумную колонну 11.

В вакуумной колонне в результате ректификации из мазута получают дистилляты смазочных масел. На верхних тарелках колонны скапливаются дистилляты легких масел (фракция 350—400° С), под ними более тяжелых (фракция 350—420° С) и еще ниже самых тяжелых масел (фракция 420—500°С). Из нижней части вакуумной колонны 11 насосом 13 откачивается гудрон.

Гудрон для получения высоковязких остаточных масел (например, авиационных, дизельных) подвергается сложной очистке. Его также можно перерабатывать на битум путем окисления его на битумных установках или использовать как сырье для коксовых установок и для установок термического крекинга.

Дистилляты, полученные в результате прямой перегонки нефти на атмосферных и вакуумных установках, обычно нуждаются в дальнейшей переработке. Лишь дизельное топливо и авиакеросин получают после прямой перегонки.

§ 4. Термические процессы деструктивной переработки нефтяного сырья

При атмосферной и вакуумной перегонке нефтепродукты получают физическим разделением на фракции, которые отличаются температурой кипения.

Термические процессы переработки нефти — это химические процессы получения нефтепродуктов.

Различают следующие основные разновидности термических процессов переработки нефти:

1) термический крекинг нефтяного сырья под высоким давлением;

2) коксование или термический крекинг нефтяных остатков при низком давлении;

3) пиролиз или высокотемпературный термический крекинг под низким давлением жидкого и газообразного нефтяного сырья.

Эти разновидности термических процессов часто называют деструктивной переработкой нефти.

Термический крекинг под высоким давлением— это распад органических соединений нефти под влиянием высоких температур и давления (/ = 470—540° С; р — 4,0— 6,0 МПа). Сырьем в этом случае являются низкооктановый бензин первичной перегонки, керосиновая и дизельная дистиллятные фракции, мазуты первичной перегонки, масляные гуд-роны и др. В результате крекинга получают крекинг-бензин, крекинг-керосин, товарный топочный мазут и крекинг-газ.

Коксование — это термический крекинг тяжелых нефтяных остатков, проводимый с целью получения нефтяного кокса (при давлении р = 0,1—0,4 МПа и / = 450—550° С) или увеличения выхода светлых нефтепродуктов.

Сырьем для коксования являются тяжелые нефтяные остатки: мазуты и гудроны первичной перегонки нефти, крекинг-остатки, асфальты установок очистки масляного производства, смолы пиролиза и др. От состава сырья, его качества и условий проведения процесса зависят выход и качество получаемых продуктов. В результате коксования получают товарный нефтяной кокс, газ, бензин и керосино-газойлевые фракции (дистилляты коксования). Наивысший выход кокса получают при условии содержания в исходном сырье наибольшего количества асфальто-смолистых соединений.

Различают следующие способы коксования: периодический, полунепрерывный и непрерывный.

Периодический способ коксования заключается в том, что процесс ведется в специальных аппаратах, называемых кубами.

Схема коксования приведена на рис. 129. Сырье загружается в куб и одновременно зажигается форсунка. После наполнения куба интенсивной шуровки при 380—400° С начинается выделение дистиллятов, количество которого увеличивается до определенной температуры, после чего подъем температуры замедляется. Затем температура в кубе поднимается до 450—500° С, причем скорость выделения отгона уменьшается. После прекращения выделения отгона образовавшийся

Рис. 129. Схема коксования в кубах:

/ — куб; 2 — разгрузочный люк; 3 — шламовая труба; 4 — конденсатор-холодильник; 5 — газоотделитель; 6 — приемник дистиллята коксования; 7 — бачок для хвостовых погонов; S — аварийный бачок

кокс прокаливают, повышая температуру днища куба до 700— 720° С. Затем куб пропаривается и охлаждается водяным паром.

К недостаткам процесса коксования в кубах относятся: небольшая производительность, значительный расход топлива (до 8%) и металла (быстрый износ куба), трудоемкий и тяжелый способ выгрузки кокса. Кроме того, кубовые батареи громоздки и занимают большую площадь.

Полунепрерывный способ коксования иначе называют замедленным коксованием. Процесс этот проводится в специальных аппаратах, называемых коксовыми камерами, которые представляют собой пустотелые цилиндры, рассчитанные на невысокое давление (до 0,4 МПа). Сущность способа: сырье коксования нагревают в печи до 500° С и направляют в коксовую камеру. Здесь сырье находится длительное время и за счет тепла, полученного в печи, коксуется. Из верхней части коксовой камеры уходят легкие дистилляты, в нижней части образуется кокс. После того как камера заполнится на 30—90% коксом, сырье из печи направляется в другую камеру, а из первой выгружается кокс. Таким образом, при данном способе коксования происходит непрерывная подача сырья, выгрузка кокса — периодическая.

Непрерывный способ коксования заключается в следующем: нагретое сырье вступает в контакт с подвижным теплоносителем и коксуется на его поверхности. Образовавшийся кокс вместе с теплоносителем выводится из зоны реакции в регенератор, где часть кокса выжигается. За счет тепла выжигания теплоноситель (кокс) подогревается и возвращается в зону реакции. Кокс может быть крупногранулированным или порошкообразным. Если кокс порошкообразный, коксование происходит в кипящем слое теплоносителя. Здесь выход кокса происходит в меньших количествах.

Наиболее распространен способ замедленного коксования.

Пиролиз — термический крекинг, проводимый при температуре 750—900° С и давлении, близком к атмосферному, с целью получения сырья для химической промышленности.

Сырье для пиролиза: легкие углеводороды, содержащиеся в газах (природных, нефтяных из стабилизационных установок), бензины первичной перегонки, лигроиновая фракция, керосины термического крекинга, керосино-газойлевая фракция в т. п.

Пиролизу может подвергаться жидкое и газообразное нефтяное сырье. При пиролизе газообразных углеводородов температура процесса выше, чем при пиролизе жидкого сырья. Выбор сырья определяется целевым продуктом пиролиза.

В результате пиролиза получают пиролизный газ и смолы (жидкие продукты). Состав газа зависит от условий пиролиза (температуры, времени контакта, качества сырья). Пиролиз может проводиться для получения этилена, пропилена, бутадиена или ацетилена. Этилен — ценное сырье для производства этилового спирта, каучука и других химических соединений.

Из смол при этом процессе получают бензол, толуол, ксилол, нафталин и другие ароматические углеводороды. Наибольший выход этилена имеем при пиролизе парафинистого сырья, наименьший — нафтенового, но при пиролизе нафтенового сырья получают максимальный выход ароматики.

studfiles.net

Термические процессы переработки нефти - Справочник химика 21

    Химическ Таблица 0 ИЙ состав газов различных термических процессов переработки нефти  [c.78]

    ТЕРМИЧЕСКИЕ ПРОЦЕССЫ ПЕРЕРАБОТКИ НЕФТИ [c.166]

    ОБЩИЕ СВЕДЕНИЯ О ТЕРМИЧЕСКИХ ПРОЦЕССАХ ПЕРЕРАБОТКИ НЕФТИ [c.166]

    Еще в прошлом веке стало известно, что под действием высоких температур органические соединения нефти химически видоизменяются, распадаются и вступают в различные вторичные реакции между собой. Это позволило создать новые, так называемые термические процессы переработки нефти, позволяющие получать из нее углеводородные газы, дополнительные количества жидких нефтепродуктов, а также продукт глубокого уплотнения — нефтяной кокс, т. е. такие новые вещества, которых в исходной нефти не было. [c.166]

    Назначение процесса. Пиролиз — наиболее жесткий из термических процессов переработки нефти. Он проводится при температурах 750—900 °С и предназначается в основном для получения высокоценных олефиновых углеводородов — сырья нефтехимического синтеза. [c.204]

    В области термических процессов переработки нефти систематические исследования и разработки проводили М. Д. Тиличеев, А, В, Фрост, [c.74]

    Поданным Е. В. Смидович [121], обобщившей результаты определения тепловых эффектов основных термических процессов переработки нефти, следует, что наибольший эндотермический эффект сопровождает процессы пиролиза легких углеводородов (табл. 81). В этой же таблице представлены характерные параметры процессов термического крекинга, висбрекинга, пиролиза и коксования, позволяющие судить о диапазоне изменения режимных показателей указанных процессов. [c.182]

    Гидроочистка нефтепродуктов прямой перегонки протекает с относительно небольшим выделением тепла (12- 20 ккал/кг сырья) и в результате этого не требуется применять специальных мер для регулирования темпера -туры в реакционной зоне. В случае же гидроочистки продуктов, содержащих значительное количество непредель -ных углеводородов (продукты коксования и других термических процессов переработки нефти), количество выделяющегося тепла столь значительно, что это приводит к чрезмерному повышению температуры в реакторе и к необходимости его секционирования. [c.42]

    Виды термических процессов переработки нефти [c.183]

    В связи с этим нас также интересовала структура крупных нефтеперерабатывающих предприятий США вне зависимости от их принадлежности к той или иной компании. Поэтому для анализа были взяты 10 самых крупных заводов Америки и проанализирована структура этих предприятий. Данные по этим предприятиям приведены в табл. 49 и 50. В табл. 49 приведены характеристики установок первичной переработки и термических процессов переработки нефти, а также установок масляного производства, в табл. 50-каталитических процессов переработки нефти. [c.98]

    Углеводороды нефти относят к следующим группам парафиновые (насыщенные, алканы), нафтеновые (цикланы), ароматические (арены). Ненасыщенных углеводородных соединений, кроме цикланов и ароматических в нефтях мало, но они в больших количествах образуются при термических процессах переработки нефти. [c.22]

    По химическому составу углеводороды нефти относятся к следующим классам соединений парафиновые, нафтеновые и ароматические. Ненасыщенных углеводородных соединений в нефтях мало, но они в большом количестве образуются при термических процессах переработки нефти. [c.4]

    Крекинг — термический процесс переработки нефти или тя желых нефтепродуктов (мазута, смол) для получения легких топлив, масел и газов. [c.110]

    Как следует из табл. 7, для этих газов характерны высокое содержание метана и низкое содержание углеводородов С4, что значительно отличает их от газов других термических процессов переработки нефти. Например, в газах термического крекинга содержится в среднем около 15—17% метана и около 30—33% углеводородов С4, а в газах процесса коксования соответственно 30—33 и 13—17%. Непредельных углеводородов в газах коксования также меньше, чем в газах термического крекинга. [c.17]

    Термические процессы переработки нефти и нефтяных фракций связаны с расщеплением углеводородов под влиянием теплового воздействия, которое определяется температурой, давлением и продолжительностью пребывания сырья в зоне высокой температуры. В зависимости от исходного сырья и глубины разложения углеводородов термические процессы проводят при 450—720 °С и давлении до 7 МПа. К ним относятся термический крекинг, рифор-минг, пиролиз и коксование. Эти методы отличаются друг от друга [c.310]

    Поэтому на заводах США приняты технологические схемы, обеспечивающие глубокую переработку нефти, широко используется процесс каталитического крекинга, развивается процесс гидрокрекинга, значительный удельный вес имеют процессы, позволяющие получать высокооктановые бензины — каталитический риформинг, алкилирование, изомеризация широкое развитие получают процессы гидроочистки нефтепродуктов, а также сырья для каталитических процессов. Роль термических процессов переработки нефти в США непрерывно снижается [13, 14, 15]. [c.9]

    В западноевропейских странах (в первую очередь в ФРГ) расширяется строительство установок для осуществления термических процессов переработки нефти. Эта тенденция возникла в связи с необходимостью повысить выход из нефти дизельных и легких котельных топлив. Так, при сочетании процессов легкого термического крекинга тяжелого сырья (висбрекинга) и термического крекинга мазута выход средних дистиллятов увеличивается при переработке ливийской нефти на 8—10% и при переработке иранской нефти — на 7—9% за счет снижения выхода тяжелого котельного топлива на 13—17% [3]. [c.20]

    Наиболее жесткий из термических процессов переработки нефти — пиролиз нефтяного сырья. Высокотемпературный режим процесса при атмосферном давлении сырья в паровой фазе позволяет получить пиролизный газ с большим содержанием олефинов этилена, пропилена, бутилена. Значение пиролиза нефтяного сырья за последние годы возросло в результате увеличения потребности в олефиновых углеводородах для промышленности органического синтеза. Поэтому внимание отечественной науки привлечено к созданию новых методов пиролиза, позволяющих перерабатывать тяжелые нефтепродукты и сырую нефть. В настоящее время внедрены термоконтактный пиролиз, в котором используется твердый теплоноситель (шамот, кокс, кварцевый песок), и гомогенный пиролиз в токе водяного пара. [c.228]

    Пиролиз осуществляется при давлении близком к атмосферно- му и температуре от 750 до 900°С и является наиболее старым из термических процессов переработки нефти. Первые пиролизные Заводы были построены в России еще в 70-х годах прошлого века. На этих заводах пиролизом керосина получали светильный газ. Позднее было обнаружено, что в смоле пиролиза содержатся ароматические углеводороды — бензол и толуол. Установки пиролиза стали строить для того, чтобы увеличить выработку этих веществ. Особенно много пиролизных установок было построено в период первой мировой войны, поскольку толуол был необходим для получения взрывчатого вещества — тринитротолуола. [c.154]

    Назначение процесса. Пиролиз — наиболее жесткий из термических процессов переработки нефти. Он проводится при температурах 750—900°С и предназначается для получения углеводородного газа с высоким содержанием алкенов — этилена, пропилена и бутиленов. Поскольку в современном нефтехимическом синтезе наибольшее применение из алкенов находит этилен, установки пиролиза зачастую называются этиленовыми. [c.189]

    ГЛАВА 2. ТЕРМИЧЕСКИЕ ПРОЦЕССЫ ПЕРЕРАБОТКИ НЕФТИ [c.14]

    Термические процессы переработки нефти — это химические процессы получения нефтепродуктов. [c.266]

    Природа возникновения практически всех отмечетшых дефектов связана с локальным или общим перегревом печных труб, а также с образующимися в процессе эксплуатации отложениями кокса на внутренней поверхности. Данный процесс неизбежен и интенсивность его определяется составом сырья, давления, температуры и другими факторами. Особенно он характерен для печей установок термических процессов переработки нефти (термический крекинг, коксование), в которых особую значимость приобретает состав сырья и высокие температуры. [c.192]

    Благодаря двойным связям, крекинг-остатки являются полиеновыми кросс-агентами, аналогичные таким известным кросс-агентам, как дивинилбензол, бутадиен, диметакрилаты гликолей. Это свойство использовано для получения ионитов. Ресурсы крекинг-остатков велики в связи с тем, что углубление переработки нефти, повышение отбора светлых нефтепродуктов достигаются вторичными термическими процессами переработки нефти, при которых образуютя крекинг-остатки. [c.609]

    В соответствии с элементным составом основная масса компонентов нефти - углеводороды. Следует отметить, что в нефтях, как правило, отсутст-в>тот епаскщенные углеводороды, относящиеся к классу непредельных (олефины или алкены). Такие соединения могут образовываться при термических процессах переработки нефти или выделенных из нее продуктов. Наиболее детально изучены фракции нефти, выкипающие до 300-350 °С. [c.16]

    Благодаря двойным связям, крекинг-остатки являются полиеновыми кросс-аген-тами, аналогичные таким известным кроссагентам, как дивинилбензол, бутадиен, диметакрилаты гликолей. Эта полифункциональность использовалась автором для получения адсорбентов. Ресурсы крекинг-остатков велики в связи с тем, что углубление объема переработки нефти, повышение отбора светлых нефтепродуктов достигается вторичными термическими процессами переработки нефти. При осуществлении термического крекинга, помимо газов и жидких продуктов образуются крекинг-остатки. [c.612]

chem21.info

Виды термических процессов переработки нефти

    К термическим процессам деструктивной переработки нефтяного сырья относятся термический крекинг и коксование,—Невысокие эксплуатационные свойства как получаемых котельных топлив, так и бензинов термического крекинга и интенсивное развитие каталитических процессов способствовали тому, что новые установки термического крекинга почти не сооружаются, а многие из существующих реконструируются в установки прямой перегонки нефти. Термический крекинг как процесс получения бензина уже в 40-х годах начал интенсивно вытесняться каталитическим крекингом и риформингом. Основным видом термического крекинга остался так называемый висбрекинг, направленный на получение из тяжелых/ нефтяных остатков (гудронов, полугудронов) котельного топлива При этом образуются также углеводородный газ и бензин. Более [c.70]     Промышленные установки термической переработки ТНО существуют с 1912 г., когда были построены первые установки термического крекинга (ТК) для получения бензина. В США к 30-м годам мощности ТК достигли максимальных значений, затем из-за возросших требований к качеству автобензинов процесс ТК практически утратил свое значение и постепенно вытеснился каталитическими. В Европейских странах и (в СССР) развитие ТК задержалось приблизительно на 20 лет. В 60-х годах в этих странах произошло изменение целевого назначения процесса ТК - из бензинопроизводящего он превратился преимущественно в процесс термоподготовки сырья для установок коксования и производства термогазойля. Повышение спроса на котельное топливо, рост в нефтепереработке доли сернистых и высокосернистых нефтей и наметившаяся тенденция к углублению переработки нефти обусловили возрождение и ускоренное развитие процессов висбрекинга ТНО, что позволило высвободить дистиллятные фракции - разбавители гудрона и тем самым увеличить ресурсы сырья для каталитического крекинга. Висбрекинг позволяет использовать и такой альтернативный вариант, при котором проводятся гидрообессеривание глубо. овакуумного газойля с температурой конца кипения до 590 С, а утяжеленные гудроны подвергаются висбрекингу, после чего смешением остатка с гидрогенизатом представляется возможность для получения менее сернистого котельного топлива. Аналогичные тенденции в развитии термических процессов и изменения их целевого назначения произошли и в отечественной нефтепереработке. В настоящее время доля мощностей термического крекинга и висбрекинга в общем объеме переработки нефти составляет соответственно 3,6 и 0,6% (в США - 0,7 и 0,6% соответственно). Построенные в 30-х и 50-х годах установки ТК на ряде НПЗ переведены на переработку дистиллятного сырья с целью производства термогазойля, а на других - под висбрекинг. Однако из-за морального и физического износа часть установок ТК планируется вывести из эксплуатации. Предусматривается строительство новых и реконструкция ныне действующих установок ТК только в составе комплексов по производству, кокса игольчатой структуры в качестве блока термоподготовки дистиллятных видов сырья. Таким образом, мощности ТК, работающих на остаточном сырье, будут непрерывно сокращаться. Предусматривается несколько увеличить мощности висбрекинга за счет нового строительства и реконструкции ряда действующих установок ТК и АТ. [c.65]

    Виды термических процессов переработки нефти [c.183]

    Исходным сырьем для получения современных жидких топлив являются нефть, каменный уголь, сланцы, естественные газы и газы, образующиеся при термических и каталитических процессах переработки нефти и угля. Помимо выделения из нефти содержащихся в ней видов топлива в настоящее время разработан и осуществлен в промышленном масштабе ряд процессов по получению жидких топлив из продуктов, которые в своем составе ке содержали фракций, соответствующих жидким топливам. Современные методы переработки позволяют не просто получать жидкие топлива, но дают возможность направлять процессы с целью получения топлив необходимого качества. В основе этих методов лежат процессы преобразования структуры молек>л углеводородов, составляющих исходное сырье. [c.10]

    Учитывая направление на дальнейшее расширение ресурса моторных топлив за счет углубления переработки нефти, была изучена возможность рационального использования продуктов ее переработки на Уфанефтехим . Большой научный и практический интерес представляли исследования остаточных и дистиллятных продуктов промышленных процессов глубокой переработки нефти. В качестве базовых компонентов перспективных видов высоковязких судовых топлив были использованы тяжелые нефтяные остатки атмос-ферно-вакуумной перегонки нефти, висбрекинга и пропановой деасфальтизации гудрона сернистых и высокосернистых нефтей гудрон, крекинг-остаток и асфальт. Разбавителем и модификатором структуры нефтяных остатков служили средние и тяжелые дистилляты термодеструктивных процессов (каталитического и термического крекингов). Их качественная характеристика приведена в табл.3.6 и 3.7. [c.124]

    Лигроины обоих видов, выделенные из сырой нефти простой перегонкой, характеризуются низким содержанием ароматических соединений и отсутствием ненасыщенных углеводородов. Процессы вторичной переработки, которые обычно служат для превращения в автомобильный бензин продуктов прямой перегонки с низким октановым числом в ходе термического или каталитического крекинга, термического или каталитического риформинга или другими методами, увеличивают содержание аро- [c.77]

    Процесс коксования нефтяных остатков развивался по двум направлениям. Коксованием специальных видов сырья, таких, как пеки пиролиза, некоторые остатки и тяжелые дистилляты, можно получать ценный нефтяной кокс, используемый для изготовления электродов. Кроме того, коксованием прямогонных остатков можно углубить переработку нефти, т. е. помимо кокса получать дистилляты, направляемые на термический или каталитический крекинг, которые являются источником дополнительного количества бензина и дизельного топлива. [c.15]

    Коллоидно-химические представления при рассмотрении физических и физико-химических превращений нефтяного сырья позволяют в некоторых случаях достичь оригинальных результатов при анализе и теоретическом обосновании аномалий, выявленных в ходе экспериментальных исследований, а также при совершенствовании существующих и разработке новых процессов и видов продуктов с заданными функциональными свойствами. Особый интерес при этом представляют процессы переработки и продукты высокомолекулярной составляющей нефти. К подобным процессам можно отнести уже упоминавшиеся ранее вакуумную перегонку мазута, различные виды термического крекинга нефтяного остаточного сырья, производство битумов и т.п. Как правило, интенсификация указанных процессов связана с внешними воздействиями на сырье. Другим, не менее важным направлением является исправление качества конечных продуктов переработки, создание товарной продукции на базе промежуточных и побочных фракций нефтеперерабатывающих установок. [c.239]

    В сырых нефтях сера содержится главным образом в виде органических сернистых соединений, а в дистиллятах и в готовых нефтепродуктах она присутствует как в чистом виде, так и в виде сероводорода и органических соединений. Появление сероводорода и серы в нефтепродуктах объясняется частичным разложением органических сернистых соединений при термическом воздействии в процессе переработки, причем основную массу продуктов распада составляет сероводород, в результате окисления которого образуется сера. [c.177]

    Процесс обогащения углеродом и обеднения водородом при термической переработке нефти можно выразить в виде следующего ряда высокомолекулярных веществ углеводороды —> смолы —) асфальтены прямогонных остатков —> асфальтены крекинг-остатков карбены карбоиды. Каждый последующий член этого ряда отличается от предшественника меньшим содержанием водорода, большей ароматизацией и конденсированностью полициклической структуры, большим удельным весом и меньшей растворимостью. [c.517]

    Рассмотрены методы получения и использования данных кинетических исследований для установления вида кинетических уравнений и определения кинетических параметров промышленных органических реакций, применяемых в органическом синтезе, переработке нефти, угля, природного газа. Приведены кинетические характеристики для термических, термоокислительных и каталитических реакций индивидуальных веществ, полимерий и сложных углеводородных смесей, осуществляемых в промышленных процессах пиролиза, окисления, полимеризации крекинга, платформинга, синтезов углеводородов и кислородсодержащих соединений. [c.334]

    Как видно из табл. 14, в более высококипящих продуктах содержание серы возрастает. Некоторая часть серы многих сернистых нефтей удаляется с газообразными продуктами в виде сероводорода в процессе переработки. При термическом крекинге в сероводород конвертируется не более 10% всех сернистых соединений, в то время как при каталитическом крекинге эта величина достигает 50% [c.20]

    Коксование. Широкое развитие крекинг-процесса привело к увеличению отбора светлых фракций из нефти и утяжелению нефтяных остатков. Утилизация последних может быть осущ,ествлена лишь путем специальной глубокой переработки. Тяже.лые остатки бедны водородом и при термическом разложении, наряду с легкими продуктами, неизбежно должно получиться значительное количество кокса. Возможны два принципиально различных метода переработки тяжелых нефтяных остатков деструктивная гидрогенизация, при которой к сырью при его переработке добавляется некоторое количество водорода, и коксование, т. е. получение максимально возможного количества свет.лых продуктов за счет удаления из сырья углерода в виде кокса. Процесс коксования представляет собой по существу деструктивную перегонку сырья, в качестве которого применяются вязкие крекинг-остатки, смолистые гудроны прямой гонки, пиролизный пек и т. д. Реже используются мазут или отбензиненная нефть. [c.234]

    Характеризуя особенности высокомолекулярных соединений нефти, мы все время имели в виду нативные, т. е. химически неизмененные соединения, находящиеся в сырой нефти, а не вещества, выделяемые из различных продуктов переработки нефти. Это обстоятельство должно быть особо подчеркнуто, так как оно имеет принципиальное значение. Практика переработки нефти показала, что при термическом воздействии на нефть интенсивно идут как процессы крекинга, так и уплотнения исходного материала [8—10]. Так, например, при пиролизе керосиновой фракции нефти (т. кип. 180—300°) образуется значительное количество конденсированных систем ароматических углеводородов (нафталин, антрацен, фенантрен и др.). Между тем в исходном керосине эти структуры отсутствуют совсем или встречаются в крайне незначительных количествах преимущественно гомологи нафталина. [c.205]

    В зависимости от назначения нефтеперерабатывающих установок (прямая перегонка, термический и каталитический крекинг вакуумная установка, вторичная перегонка и др.) трубчатые печи имеют некоторые отличия друг от друга. Но основным и общим назначением всех трубчатых печей является нагрев циркулирующих по трубам нефти и нефтепродуктов, необходимый для технологического процесса переработки. Общий вид трубчатых печей с установкой горелочных устройств различных конструкций показан на рис. 10. 1 и 10. 2. ( [c.201]

    Термический крекинг в том виде, как он применялся до последнего времени с целью получения бензинов, в схемы современных нефтеперерабатывающих заводов не включают, так как получаемые бензины имеют низкую антидетонационную характеристику. Термический крекинг может быть сохранен на заводах с неглубокой переработкой нефти при отсутствии процесса коксования. В этом случае тяжелые нефтяные остатки подвергаются легкому крекингу с получением в основном топливного мазута. [c.39]

    Первая часть учебника включает разделы, посвященные физико-химическим свойствам и классификации нефтей и нефтепродуктов, физическим методам переработки природных углеводородных газов, процессам подготовки нефти к переработке и технологии первичной переработки нефти. Вторая часть посвящена технологии вторичных методов переработки нефти и газа (термических, каталитических и гидрогенизационных), предназначенных для производства различных видов топлив и сырья для нефтехимической промышленности. В третьей части изучаются процессы очистки нефтепродуктов с целью придания им товарных качеств и технология производства специальных продуктов. [c.9]

    Однако объективная реальность свидетельствует о том, что к середине текущего столетия при сохранении ведущей роли традиционных ископаемых топлив должны быть созданы необходимые технические и экономические предпосылки для обязательного перехода к альтернативным источникам энергии, а нефть должна занять свое главенствующее место в отрасли органического синтеза для выпуска промышленных и бытовых товаров народного потребления химического профиля. Это связано с истощением запасов, нарастающей тенденцией по существенному ухудшению качества и обеднению нефтяного сырья, а также увеличением ее стоимости (высокая стоимость разведки, добычи и транспортировки) до тех пределов, когда производство топлив будет уже экономически невыгодным. В этом случае Ярославский нефтеперерабатывающий завод может быть не только топливным предприятием, но и стать центром нефтехимического синтеза, обладающим мощной сырьевой базой для промышленности органического синтеза. Сырьем для этого могут явиться отходящие газы первичной нефтепереработки, газы легкого крекинга — висбрекинга и гидрокрекинга, риформинга и планирующихся к строительству новых термических и каталитических процессов переработки нефтяного сырья, а также низкооктановые бензины и другие малоценные фракции, получаемые в качестве побочных продуктов практически на всех каталитических установках и используемые сегодня только в виде газообразных или жидких топлив на технологические нужды завода. [c.305]

    Термический и каталитический крекинг. Крекинг жидких нефтепродуктов является основным методом современной переработки нефти в авиационные и другие виды топлива этот лее метод служит основным источником получения искусственных углеводородных газов. Сущность крекинга заключается в нагревании нефтепродуктов до температуры 450—650° С вследствие чего высокомолекулярные углеводороды исходного сырья разлагаются, а часть образовавшихся при этом осколков молекул, взаимодействуя между собой, образуют другие углеводороды. Процесс крекинга осуществляется как при атмосферном, так и при повышенном давлении (до 70 атм или 6,9 МПа), как в присутствии катализатора, так и без него. Крекинг нефтепродуктов в присутствии катализаторов получил название каталитического крекинга в отличие от термического крекинга, осуществляемого без катализатора. [c.195]

    Термический распад углеводородов (крекинг) также приводит к большому количеству продуктов реакции. Процесс этот имеет огромное значение в виду колоссальной важности проблемы переработки нефти и нефтяных газов. [c.174]

    При термическом воздействии в процессах переработки нефти все сернистые соединения, как правило, разлагаются, выделяя часть серы в виде сероводорода, причем стойкость их к температуре повышается от меркаптанов к дисульфидам и сульфидам. Относительно более стойкими оказываются сернистые соединения, определяемые по Фараджеру как остаточная сера. Содержание сернистых соединений по фракциям возрастает, за некоторыми исключениями, от низкокипяш их фракций к высококипящим. Эта закономерность сохраняется и при разгонке на более узкие фракции, как показано на рис. 14 для трех образцов нефтей основных месторождений Башкирии. [c.33]

    К технологическим потерям нефтеперерабатывающих заводов относятся все виды потерь, связанных с процессом переработки нефти. Они составляют основную часть потерь нефтепродуктов. Результаты анализа работы заводов показали, что значительную долю об- I щезаводских потерь составляют потери на технологических установках — в первую очередь на установках подготовки нефти, атмосферно-вакуумной перегонки нефти, термического и каталитического крекинга и про-. изводства масел. [c.35]

    При переработке агрессивных сернистых нефтей и мазутов наблюдается интенсивная коррозия оборудования. Основными агентами, определяющими коррозийную активность сернистых нефтей восточных месторождений, являются сероводород, сернистые соединения, содержание которых доходит до 6%, и водные растворы минеральных солей, образующие с нефтью стойкие эмульсии. В зависимости от рабочих температур коррозия аппаратуры, в которой перерабатывают сернистые нефти, может быть двух видов низкотемпературная и высокотемпературная. Первая возникает до температуры 250°, вторая — при более высоких температурах. Наиболее агрессивным сернистым соединением в нефтях является сероводород. Коррозийное действие сероводорода в присутствии воздуха объясняется процессами, протекающими в парогазовой среде и сопровождающимися выделением активной серы, которая реагирует с металлом корпуса аппарата, образуя сульфиды железа. При низкотемпературной коррозии сильным коррозийным агентом является также соляная кислота, образующаяся во время гидролиза хлористого магния при температурах свыше 106°. В случае высокотемпературной коррозии наиболее коррозийноактивнымп веществами являются свободная сера, сероводород и меркаптаны. Сульфиды, полисульф1ВДы и другие высокомолекулярные сернистые соединения, содержащиеся в сернистых нефтях, с повышением температуры подвергаются термическому распаду с образованием агрессивных форм серы, сероводорода и др. Глубина термического распада зависит от типа сернистых соединений, рабочей температуры н в известной степени процесса переработки. При переработке агрессивных нефтей корродирует аппаратура, изготовленная из углеродистой стали, па установках термического крекинга, атмосферно-вакуумных трубчаток, электрообессоливания и др. [c.65]

    В состав производных газов, полученных при термической ][ термокаталнтической переработки нефти и нефтепродуктов, содержится значительное количество не-пасыщенных олефиновых углеводородов. Выход углеводородных газов зависит главным образом от вида и характера процесса пе[)сработки. Так, при термическом крекинге выход газа составляет 8—14%, прп каталитическом крекинге 16—28%, при пиролизе 40—47%. [c.104]

    Особое место среди азотсодержащих соединений занимают пор-фирины. В нефтях они находятся как в свободном состоянии (четыре пиррольных кольца), так и в виде комплексов, содержащих азоторганические соединения и органические производные ванадия и никеля. Несмотря на значительную термическую стабильность азотистых соединений в процессах переработки нефти, особенно термокаталитических, образуется аммиак, что указывает на частичное их разложение. При некоторых процессах очистки, например гидроочистке, из нефтепродуктов удаляется значительное количество серосодержащих соединений (в виде сероводорода) и частично азотсодержащих (в виде аммиака) и кислородсодержащих (в виде водяных паров). [c.12]

    При термическом крекинг-процессе, как правило, образуются парафиновые и ненасыщенные углеводороды олефинового (алкены) и диолефинового (алкадеиды) рядов, что является одним из наиболее характерных отличий термического крекинг-процесса от других видов переработки нефти. [c.8]

    Широкое применение коллоидно-химических представлений для описания нефтяных дисперсных систем привело к изменению в последнее десятилетие принципиальных подходов к разработке новых и совершенствованию существующих технологий. К ним можно отнести разработку новых видов профилактических средств, таких как Универсин, Северин, судовых топлив, полиграфических красок, ингибиторов пара-финоотложения для углеводородных конденсатов, а также интенсивные технологии первичной переработки нефти, термического и каталитического крекинга, производства битумов и т.п. (2-5). Следует отметить, что многие исследования находятся до настоящего времени в стадии разработки, однако уже сейчас видно, что нетрадиционные методы физико-химической механики НДС позволяют достаточно эффективно воздействовать на технологические процессы с целью их интенсификации. [c.6]

    В сырой нефти и нефтепродуктах содержится большое количество водо- и водомаслорастворимых естественных ПАВ, которые влияют на эмульгируемость нефти с водой, коррозионные свойства не( гги и т. д. К естественным ПАВ, содержащимся в нефтях и нефтепродуктах, относятся кислород, серо- и азотсодержащие соединения, смолистоас-фальтеновые вещества, нафтеновые кислоты и т. п. В процессе подготовки и переработки нефти водорастворимые ПАВ удаляются с водной фазой (переходят в сточные воды), а маслорастворимые ПАВ в первоначальном виде или в виде продуктов превращения концентрируются в тяжелых фракциях (маслах, гудронах и т. п.). В легких фракциях переработки нефти также обнаруживаются маслорастворимые ПАВ, которые в значительной степени определяют термическую стабильность, коррозионность, антифрикационные и другие функциональные свойства нефтепродуктов. [c.24]

    Содержание сернистых соединений в нефтях различно. Например, в грозненских, эмбенских, бакинских, западноукраинских оно не превышает 0,30—0,25%, в ферганских, башкирских, татарских, волжских — 2,0—3,5, в чусовской — до 5,5%. Количественное содержание сернистых соединенний в битуме зависит от вида нефти и метода ее переработки. При окислении тяжелых нефтяных остатков в процессе производства окисленных битумов происходит количественное перераспределение сернистых соединений. При переработке нефти могут происходить и качественные изменения сернистых соедпнений, например, распад термически неустойчивых сульфидов и дисульфидов с образованием сероводорода и меркаптанов. [c.27]

    Работы последних лет (1, 2, 3) показывают, что при различных процессах термической переработки нефти и ее отдельных фракций образуется значительное количество производных стирола. Не исключена возможность, что подобные углеводороды образуются и при каталитических процессах, но в силу своей высокой реакционной способности в присутствии катализатора они претерпевают вторичные превращения, которые приводят к образованию других конечных продуктов, в частности к повышенному образованию кокса. Мамедалиев (2) показал, что арилолефины ксилольной и высших фракций при обработке серной кислотой полимеризуются и выводятся в виде полимеров при перегонке очищенных продуктов. При контакте аналогичных фракций с алюмосиликатом (200—350°, 3—5 атм) арилолефины полностью очищаются за счет перераспределения водорода. Необычным оказывается тот факт, что в продуктах пиролиза не обнаружено значительных количеств пропенилбен-зола. Поэтому представилось целесообразным изучить превращение этого углеводорода на алюмосиликате. [c.80]

    Однако пока основная часть серы, содержащейся в нефти, сжигается вместе с нефтяными топливами и попадает в атмосферу в виде сернистого ангидрида. Меньшая часть серы выделяется в виде сернистого водорода вместе с напутными газами из скважин и образуется в процессах термической переработки нефти и обессеривания. [c.40]

    Все нефти СО держат то или иное количество сернистых соединений. Последние в дестиллатах нефти под влиянием термического разложения (крэкинг, пер егонка) или процессов очистки претерпевают, как мы увидим ниже, изменения, в результате чего характер сернистых соединений в дестиллатах отличается от сернистых соединений, присутствующих в нефтях. Содержание серы в нефтях СССР (за исключением пермской, стерлитамакской и шорсинской) незначительно, в то время как нефти Канады, Тексаса и Мексики особенно богаты серой, содержание которой в некоторых из них доходит до 5%. Из классов сернистых соединений в нефтях обнаружено присутствие дисульфидов (С Н2 8)2, сульфидов (С Н2 1)25 и производных тиофена. Кроме того сера входит в состав асфальтовых и смолистых веществ. Продукты переработки нефти могут содержать серу в виде следующих соединений  [c.18]

    Рассмотрим, где и из каких величин складывается рентабельность энергофондов в процессе производства. Известно, что производство потребительных стоимостей (то есть определенных видов нефтепродуктов) распадается на ряд довольно самостоятельных технологических процессов или их совокупностей. К таким процессам на современном нефтеперерабатывающем заводе широкого профиля относятся подготовка и первичная переработка нефти, термическое и каталитическое крекирование, риформирование, газофрак-ционирование, производство масел и др. [c.17]

    Асфальтены крекинг-остатков и других высокосмолистых остатков, получаемых в процессах высокотемпературной переработки нефти, весьма заметно отличаются по своим свойствам и составу от асфальтенов, выделенных из сырых нефтей и их остатков при прямой перегонке. Они характеризуются более высоким отношением С Н, меньшей растворимостью, более высокой степенью конденоированности ароматического ядра и более высоким процентным содержанием С-атомов ароматической природы и меньшим процентным содержанием С-атомов алифатического характера и более низким молекулярным весом. Причем тенденция к изменению в данном направлении состава в свойств асфальтенов тяжелых остатков термической переработки нефти выражена тем сильнее, чем более жесткие температурные условия применялись в процессе, и завершается образованием из асфальтенов карбенов. Таким образом, процесс обогащения углеродом и обеднения водородом в процессах термической переработки нефти можно выразить в виде следующего, ряда высокомолекулярных веществ углеводороды-> смолы асфальтены прямогонных остатков -> асфальтены крекинг-остатков карбены карбоиды. [c.348]

    Крекинг — процесс деструктивной переработки нефти или ее фракций, проводимый для увеличения выхода легких продуктов и повышения их качества, гл. обр. для получения легких моторных топлив, иногда для других це.лей. При К. преобладает распад тяжелых молекул, но его нельзя отождествлять только с деструкцией, т. к. наряду с этим при К. происходят сложные процессы синтеза и перестройки молекул углеводородов. Различают дна основных вида К., осуществляемый только под воздействием пысокой темп-ры,— термический — и К., происходящий при одновременном воздействии высокой темп-ры и катализаторов — каталитический. Дальнейшая классификация процессов производится в зависимости от условий ведения процесса (томп-ра, давление), назначения, вида сырья и технологич. оформления. Известны пек-рыс другие виды К., напр, с водяиым паром или под давление.м водорода (гидрокрекинг), или же окислительный К. [c.394]

    Как уже упоминалось, описанные виды сырья используются для производства высших спиртов в промышленном масштабе. В литературе в качестве сырья для процесса оксосинтеза рекомендуются и более сложные углеводородные смеси, являющиеся продуктами вторичной переработки нефти (дистиллаты термического крекинга гудронов и дезароматизовапных фракций) и продуктами полукоксования сернистых углей, сланцев и других ископаемых [12—18]. [c.93]

    Нефть является смесью, главным образом, различных углеводородов парафинового, нафтенового и ароматического рядов, к которым в небольшом количестве примешаны кислородные, азотистые и сернистые соединения. По своим физико-химическим свойствам входящие в состав сырой нефти углеводороды сильно отличаются друг от друга. Широкое развитие на протяжении последних десятилетий автотранспорта, авиации и других видов транспорта с двигателями внутреннего сгорания, применяющими жидкие топлива и в особенности наиболее легкие фракции нефти — бензины, привело к тому, что получение бензина обычными способами, например, прямой гонкой нефти, не в состоянии удовлетворить потребность в жидких моторных горючих. Это вызвало появление и быстрое распространение целого ряда новых технологических процессов, как крекинг и гидрогенизация нефтяных остатков. Параллельно с этим росли использование других видов сырья, гидрогенизация угля, пиролиз жидких продуктов переработки твердого топлива и полимеризация газов и др. Разработан и промышленно осуществлен также целый ряд синтетических способов получения углеводородов, по своему фракционному составу близких к бензинам. Из этих процессов следует отметить каталитический процесс получения синтетического бензина из водяного газа и т. д. Так как процессы термической переработки нефти и продуктов перегонки углей требуют высоких температур и, следовательно, значительной затраты тепла, то в последнее время (в период 1937—1938 гг.) осуществлен ряд процессов крекинга с использованием катализаторов, что дало возможность осуществлять эти процессы нри относительно невысоких температурах и при пони кенном или даже при атмосферном давлении. Наиболее удачным из этих процессов является разработанный в США метод каталитического крекинга X аудр и (Ноис1гу), протекающий при невысоких температурах и давлениях и даю-пщй при сравнительно небольших капитальных затратах прекрасное. моторное топливо. [c.581]

chem21.info

Основные стадии технологии переработки нефти

Цель переработки нефти (нефтепереработки) — производство нефтепродуктов, прежде всего, различных топлив (автомобильных, авиационных, котельных и т. д.) и сырья для последующей химической переработки

Первичные процессы

Первичные процессы переработки не предполагают химических изменений нефти и представляют собой ее физическое разделение на фракции.

Подготовка нефти

Нефть поступает на НПЗ в подготовленном для транспортировки виде. На заводе она подвергается дополнительной очистке от механических примесей, удалению растворённых лёгких углеводородов (С1-С4) и обезвоживанию на электрообессоливающих установках (ЭЛОУ).

Атмосферная перегонка

Нефть поступает в ректификационные колонны на атмосферную перегонку (перегонку при атмосферном давлении), где разделяется на несколько фракций: легкую и тяжёлую бензиновые фракции, керосиновую фракцию, дизельную фракцию и остаток атмосферной перегонки — мазут. Качество получаемых фракций не соответствует требованиям, предъявляемым к товарным нефтепродуктам, поэтому фракции подвергают дальнейшей (вторичной) переработке.

Материальный баланс атмосферной перегонки западно-сибирской нефти

ПРЕДЕЛЫ ВЫКИПАНИЯ, °С ВЫХОД ФРАКЦИИ, % (МАСС.) Газ Бензиновые фракции Керосин Дизельное топливо Мазут Потери
1,1%
<62С 4,1%
62—85С 2,4%
85—120С 4,5%
120—140С 3,0%
140—180С 6,0%
180—240С 9,5%
240—350С 19,0%
49,4%
1,0%

Вакуумная дистилляция

Вакуумная дистилляция — процесс отгонки из мазута (остатка атмосферной перегонки) фракций, пригодных для переработки в моторные топлива, масла, парафины и церезины и другую продукцию нефтепереработки и нефтехимического синтеза. Остающийся после этого тяжелый остаток называется гудроном. Может служить сырьем для получения битумов.

Вторичные процессы

Целью вторичных процессов является увеличение количества производимых моторных топлив, они связаны с химической модификацией молекул углеводородов, входящих в состав нефти, как правило, с их преобразованием в более удобные для окисления формы.

По своим направлениям, все вторичные процессы можно разделить на 3 вида: Углубляющие. Каталитический крекинг, термический крекинг, висбрекинг, замедленное коксования, гидрокрекинг, производство битумов и т.д. Облагораживающие. Риформинг, гидроочистка, изомеризация и т.д. Прочие. Процессы по производству масел, МТБЭ, алкилирования, производство ароматических углеводородов и т.д.

Риформинг

Риформингу подвергаются бензиновые фракции с пределами выкипания 85-180°С[1]. В результате риформинга бензиновая фракция обогащается ароматическими соединениями и его октановое число повышается примерно до 85. Полученный продукт (риформат) используется как компонент для производства автобензинов и как сырье для извлечения ароматических углеводородов.

Каталитический крекинг

Сырьем для каталитического крекинга служат атмосферный и легкий вакуумный газойль, задачей процесса является расщепление молекул тяжелых углеводородов, что позволило бы использовать их для выпуска топлива. В процессе крекинга выделяется большое количество жирных(пропан-бутан) газов, которые разделяются на отдельные фракции и по большей части используются в третичных технологических процессах на самом НПЗ. Основными продуктами крекинга являются пентан-гексановая фракция (т. н. газовый бензин) и нафта крекинга, которые используются как компоненты автобензина. Остаток крекинга является компонентом мазута.

Гидрокрекинг

Гидрокрекинг — процесс расщепления молекул углеводородов в избытке водорода. Сырьем гидрокрекинга является тяжелый вакуумный газойль (средняя фракция вакуумной дистилляции). Главным источником водорода служит газ риформинга. Основными продуктами гидрокрекинга являются дизельное топливо и т. н. бензин гидрокрекинга (компонент автобензина).

Коксование

Процесс получения нефтяного кокса из тяжелых фракций и остатков вторичных процессов.

Удаление серы

Изомеризация

Процесс получения углеводородов изостроения (изопентан, изогексан) из углеводородов нормального строения. Целью процесса является получение сырья для нефтехимического производства(изопрен из изопентана) и высокооктановых компонентов автомобильных бензинов.

Алкилирование

Алкилирование — введение алкила в молекулу органического соединения. Алкилирующими агентами обычно являются алкилгалогениды, алкены, эпоксисоединения, спирты, реже альдегиды, кетоны, эфиры, сульфиды, диазоалканы.

Экстракция ароматики

Примечания

  1. ↑ [1]Смидович Е. В. Технология переработки нефти и газа. Ч.2-я. М.: Химия, 1980

См. также

Wikimedia Foundation. 2010.

dal.academic.ru

азы нефтепереработки термической переработки нефт

    Ниже рассматриваются перспективы развития основных процессов нефтепереработки в России. Первичная переработка нефти. Возможные пути совершенствования атмосферно-вакуумных установок по переработке нефти заключается в увеличении отбора фракций от потенциала. Как правило, российские установки по сравнению с зарубежными аналогами не добирают светлых фракций на 3-5% их модернизация позволит выйти на уровень лучших западных производств. Термические процессы, к которым в первую очередь относятся висбрекинг, термический крекинг и коксование. На Западе все эти процессы направлены главным образом на увеличение светлых нефтепродуктов. В России для получения котельного топлива пониженной вязкости целесообразно использовать установки висбрекинга, которые, по-видимому, будут строиться или реконструироваться из установок по первичной переработке нефти. Термический крекинг. Новые установки строить нецелесообразно, а старые - какое-то время могут функционировать, пока не будут списаны в связи с большой энергоемкостью. Пиролиз. Установки пиролиза бензиновых фракций распространены на заводах ведущих нефтяных держав с целью получения этилена - сырья для выпуска полиэтилена. На российских заводах планируется реконструкция установок с целью увеличения производительности и использования в качестве сырья более тяжелых фракций. Коксование. Как уже отмечалось, на российских заводах наиболее распространены установки замедленного коксования, вырабатывающие рядовой кокс и светлые продукты невысокого качества. В перспективе планируется перевод этих установок на получение игольчатого кокса при наличии соответствующего сырья, строительство установки прокалки кокса с целью приближения его к мировому уровню. Строительство новых установок замедленного коксования может сдерживаться отсутствием установок по облагораживанию бензинов коксования и легкого [c.369]     Крекингом называется вторичный процесс переработки нефтепродуктов, проводимый с целью повышения общего выхода бензина. Применение вторичных процессов в нефтепереработке позволяет увеличить на 30—35% выход светлых продуктов (моторных топлив), повысить их антидетонационные свойства и термическую стабильность, а также расширить диапазон производимого переработкой нефти химического сырья. [c.129]

    К продуктам нефтепереработки, применяемым для пиролиза, относятся непредельные газовые- потоки установок термической переработки нефти и каталитического крекинга, прямогонный бензин и бензин-рафинат с установок экстракции ароматических углеводородов. [c.221]

    Коррозионная агрессивность автомобильных бензинов — мало исследованная область применения топлив, несмотря на то -что изучение коррозионных свойств бензинов начато более 40 лет тому назад. По-видимому, толчком для исследований коррозионных свойств бензинов послужили два обстоятельства во-первых, появление в составе товарных автомобильных бензинов продуктов термических процессов вторичной переработки нефти, углеводороды которых склонны к окислению с образованием кислых продуктов и, во-вторых, вовлечение в нефтепереработку сернистых нефтей, что привело к увеличению содержания сернистых соединений в товарных бензинах. [c.288]

    Углеводородные газы различных источников, главнейшими из которых являются природные и попутные нефтяные газы, а также газы нефтепереработки, служащие в настоящее вре.мя основным нефтехимическим сырьем для производства полимеров, относятся к различным гомологическим рядам а) парафинов — метан, этан, пропан, бутан и пентан углеводороды этой группы встречаются в природном и попутном нефтяном газе, а также образуются при термических и каталитический процессах переработки нефти, угля и других горючих ископаемых б) олефинов — этилен, пропилен, бутилен, образующиеся при термических и каталитических процессах переработки нефти, а также при пиролизе и дегидрировании углеводородных газов группы парафинов в) диолефинов — главными представителями этого ряда, имеющими большое практическое значение, являются бутадиен и изопрен наиболее экономично получение их при дегидрировании углеводородов группы а и б г) ацетилена — получают крекингом или пиролизом углеводородов парафинового ряда. [c.8]

    Промышленные установки термической переработки ТНО существуют с 1912 г., когда были построены первые установки термического крекинга (ТК) для получения бензина. В США к 30-м годам мощности ТК достигли максимальных значений, затем из-за возросших требований к качеству автобензинов процесс ТК практически утратил свое значение и постепенно вытеснился каталитическими. В Европейских странах и (в СССР) развитие ТК задержалось приблизительно на 20 лет. В 60-х годах в этих странах произошло изменение целевого назначения процесса ТК - из бензинопроизводящего он превратился преимущественно в процесс термоподготовки сырья для установок коксования и производства термогазойля. Повышение спроса на котельное топливо, рост в нефтепереработке доли сернистых и высокосернистых нефтей и наметившаяся тенденция к углублению переработки нефти обусловили возрождение и ускоренное развитие процессов висбрекинга ТНО, что позволило высвободить дистиллятные фракции - разбавители гудрона и тем самым увеличить ресурсы сырья для каталитического крекинга. Висбрекинг позволяет использовать и такой альтернативный вариант, при котором проводятся гидрообессеривание глубо. овакуумного газойля с температурой конца кипения до 590 С, а утяжеленные гудроны подвергаются висбрекингу, после чего смешением остатка с гидрогенизатом представляется возможность для получения менее сернистого котельного топлива. Аналогичные тенденции в развитии термических процессов и изменения их целевого назначения произошли и в отечественной нефтепереработке. В настоящее время доля мощностей термического крекинга и висбрекинга в общем объеме переработки нефти составляет соответственно 3,6 и 0,6% (в США - 0,7 и 0,6% соответственно). Построенные в 30-х и 50-х годах установки ТК на ряде НПЗ переведены на переработку дистиллятного сырья с целью производства термогазойля, а на других - под висбрекинг. Однако из-за морального и физического износа часть установок ТК планируется вывести из эксплуатации. Предусматривается строительство новых и реконструкция ныне действующих установок ТК только в составе комплексов по производству, кокса игольчатой структуры в качестве блока термоподготовки дистиллятных видов сырья. Таким образом, мощности ТК, работающих на остаточном сырье, будут непрерывно сокращаться. Предусматривается несколько увеличить мощности висбрекинга за счет нового строительства и реконструкции ряда действующих установок ТК и АТ. [c.65]

    Возрастающая потребность в моторных топливах с высоким октановым числом для двигателей со степенью сжатия 9—10, потребовала значительного углубления переработки нефти с целью более эффективного ее использования и модернизации действующих нефтеперерабатывающих заводов. Это было достигнуто за счет интенсивного внедрения в нефтепереработку новых термических и каталитических процессов, позволивших в 1,5—1,8 раза увеличить выход светлых продуктов. В результате к 1989 году глубина переработки нефти, которая оценивается количеством целевых нефтепродуктов, отбираемых из нефти при ее переработке  [c.121]

    Промышленные газы (газы нефтепереработки). Их источником являются газы, растворенные в нефти и выделяющиеся при первичной перегонке на установках АТ и АВТ, а также образующиеся в процессе деструктивной переработки нефти. В зависимости от состава различают предельные и непредельные газы. Предельные газы состоят из углеводородов метанового ряда получают их на установках первичной перегонки нефти, а также в процессах каталитического риформинга и гидрокрекинга. Некоторое количество предельных газов образуется также на установках вторичной перегонки бензинов, гидроочистки дистиллятов. Непредельные газы содержат углеводороды метанового и этиленового ряда, а также некоторое количество диенов вырабатываются они на установках термического и каталитического крекинга, пиролиза и коксования. [c.247]

    Промышленность химической переработки нефти зародилась в США в 1919—1920 гг. своим возникновением она обязана исследовательским работам, проведенным во время первой мировой войны. В двадцатых-тридцатых годах в этой промышленности развивались главным образом методы производства и использования простейших олефинов — этилена, пропилена и бутиленов. Этилен получали прямым крекингом жидких нефтяных фракций или пропана. Пропилен и бутилены получали либо одновременно с этиленом при этих прямых крекинг-процессах, либо выделяли как побочные продукты из газов при переработке нефти, в особенности после того, как внедрение термического риформинга, а позднее каталитического крекинга и каталитического риформинга приблизило химические процессы нефтепереработки к их промышленному осуществлению. [c.19]

    Состав газа нефтеперерабатывающего завода зависит от того, какие процессы осуществляются на данном заводе. Основным источником газа являются процессы деструктивной переработки нефти (термический и каталитический крекинг, коксование, каталитический риформинг) на установках прямой перегонки нефти выделяется лишь небольшое количество газа (газ, растворенный в нефти). В газах крекинга и коксования наряду с насыщенными углеводородами содержится довольно много олефинов и некоторое количество водорода. Газ каталитического риформинга богат водородом (до 60 объемн. %) и содержит только предельные углеводороды. Такое различие состава газов, выделяющихся при разных процессах нефтепереработки, обусловливает неодинаковый состав газов разных заводов и колебания состава газа даже в пределах одного завода. Нестабильность состава нефтезаводских газов несколько усложняет их переработку. [c.20]

    Деструктивные термические н каталитические превращения смолисто-асфальтено-вых соединений, входящих в состав нефтяных остатков, являются основой вторичной переработки нефти. Это одна из развитых многотоннажных отраслей нефтепереработки. Литература по химии и технологии деструктивных процессов вторичной переработки нефти достаточно большая. Применение нефтепродуктов вторичной переработки нефти также широко известно [9], см. также и раздел 2 настоящей книги. [c.65]

    Характерным показателем технического развития нефтепереработки является увеличение относительной доли вторичных процессов в сравнении с перерабатываемой нефтью. За период с 1970 по 1985 гг. эта доля увеличилась с 31,9 до 72,7%, включая новые термические и каталитические процессы глубокой переработки нефти в соответствии с мировыми тенденциями. [c.14]

    Сроки и темпы перехода промышленного органического синтеза с угольного сырья на нефтегазовое и с ацетилена на низшие олефины в разных странах были не одинаковы. В странах Западной Европы, Японии и СССР преобладание низших олефинов в сырьевой базе отрасли стало заметным с 60-х гг. В США этилен и пропилен, полученные из газов крекинга при переработке нефти, применяли наряду с ацетиленом в химической промышленности уже в 20—30-е гг. [3], а современный процесс производства низших олефинов — термический пиролиз углеводородов с водяным паром — выделился из процессов нефтепереработки и превратился в основной промышленный метод получения этилена и пропилена в период 1920—1940 гг. Работы в области производства и химического использования нефтяного и газового сырья проводились в эти же годы и в СССР. Вскоре после окончания войны вступили в строй нефтехимические заводы в гг. Сумгаите, Грозном, Куйбышеве, Уфе, Саратове, Орске и других городах. На этих предприятиях синтетический этанол, изопропанол и ацетон вырабатывались на основе этилена и пропилена, полученных в процессе пиролиза углеводородного сырья [4]. [c.6]

    Соотношение бензин дизельное топливо на НПЗ Западной Европы в пользу дизельного топлива, поскольку в этих странах осуществляется интенсивная дизелизация автомобильного транспорта. По насыщенности НПЗ вторичными процессами, прежде всего углубляющими переработку нефти, западно-европейские страны значительно уступают США. Доля углубляющих нефтепереработку процессов (каталитический крекинг, термический крекинг, гидрокрекинг и алкилирование) на НПЗ США и Западной Европы составляет соответственно 72 и 43%. [c.661]

    Получение сырья для нефтехимической промышленности в основном базируется на двух ведущих процессах переработки нефти - термическом пиролизе (этилен и другие низшие оле-фины) и каталитическом риформинге (бензол и другие ароматические углеводороды). Нефтепереработка обеспечивает также выработку таких важных продуктов, как моторные топлива (бензин, дизельное топливо и др.). Относительная ограниченность запасов нефти при высоких объемах ее добычи, ухудшение качества неф и вновь открываемых месторождений и, как следствие, значительный рост затрат на их разработку обусловливают изменение структуры и диверсификацию сырьевого баланса для получения моторных топлив и органического синтеза. В этом отношении большую перспективу имеет уголь. [c.253]

    В книге, завершающей серию, рассмотрены актуальные вопросы и описаны важнейшие достижения в области переработки нефти и нефтехимической промышленности. Содержание книги разбито на разделы экономика и направления дальнейшего развития (состав нефтей и его влияние на схему переработки) процессы нефтепереработки (крекинг углеводородов, газификация нефтяных фракций, процессы депарафинизации, свойства и состав консистентных смазок) нефтехимическая промышленность — процессы и продукты (термическое и каталитическое гидродеалкилирование, механизмы реакций углеводородов, карбоний-ионы) применение нефтепродуктов (нитропарафины как топливо, стабильность нефтяных топлив, присадки к топливам). [c.4]

    Крекинг нефти. Первичная переработка нефти перегонкой без разложения позволяет получать разнообразные топливные продукты. Однако количество и качество получаемых продуктов связано с содержанием в данной нефти соответствующих фракций и их химическим составом. Поэтому наряду с прямой перегонкой в нефтеперерабатывающей промышленности получили очень широкое распространение процессы вторичной переработки газов, различных дистиллятов и нефтяных остатков, позволяющие увеличить выход бензинов и улучшить их качество. Среди многочисленных современных процессов нефтепереработки, главным образом каталитических, еще сохраняет свое значение и чисто термический метод деструктивной переработки — крекинг. [c.127]

    Предприятия нефтепереработки имеют еще одну отраслевую особенность большой объем выпускаемой однородной продукции и высокую специализацию используемого оборудования (технологических установок). Эти признаки позволяют отнести нефтепереработку к массовому типу производства. Технологические процессы переработки нефти очень многообразны атмосферно-вакуум-ная переработка, каталитический и термический крекинг, процессы гидрирования, газофракционирования и т.п. [c.36]

    В соответствии с намечаемым к концу 1965 г. уровнем добычи нефти в количестве примерно 235 млн. т в год общее содержание серы в добываемой нефти составит 2,82 млн. т. Для подсчета общего количества серы в газах нефтепереработки можно принять, что 25% содержащейся в нефти серы переходит в газы, образующиеся при термической переработке нефтяного сырья. Содержание сероводорода в этих газах—около 20 г нм . Таким [c.12]

    Газы нефтепереработки наряду с природными и попутными газами являются ценным источником углеводородов, образуются они в качестве побочного продукта при термической и каталитической переработке нефтяного сырья. Необходимость обеспечения привела к тому, что в настоящее время кроме физических методов переработки нефти прямой перегонкой все шире внедряется ее химическая переработка с применением различных видов термического крекинга и пиролиза. При такой переработке нефти и нефтепродуктов происходят их различные химические превращения расщепление больших молекул, взаимодействие осколков этих молекул между собой и с другими молекулами, изомеризация и полимеризация части продуктов расщепления. [c.10]

    Выделение изобутилена из газов крекинга и пиролиза нефти. С развитием процессов переработки нефтепродуктов методами термического и каталитического крекинга, а также высокотемпературным пиролизом нефтепродуктов отходящие газы нефтепереработки становятся важным источником для получения изобутилена [130, 131]. [c.638]

    Грозненское производственное объединение по нефтепереработке расположено в г. Грозном-признанном центре нефтепереработки, который, однако, за последнее время утратил свое былое могущество и значение для районов Северного Кавказа и юга России. В объединение входило 3 нефтеперерабатывающих завода, основной из которых-завод им. Ленина. Объем возможной переработки-до 19 млн т/год. На предприятии функционируют установки атмосферно-вакуумной перегонки нефти (одна из них АВТ-6), 4 установки термического крекинга, комбинированная установка Г-43-107, установка депарафинизации, 2 установки каталитического крекинга типа 43-102 демонтированы. [c.133]

    К твердым топливам относятся каменный и бурый уголь, горючие сланцы, торф, древесина. Жидкие топлива — это в первую очередь нефть и продукты ее термической или каталитической переработки бензин, лигроин, газойль, масла и получаемые на их основе товарные топливные продукты. Газообразные топлива включают природный газ, попутные газы нефтедобычи, а также образующиеся во многих процессах углехимии, нефтепереработки и нефтехимии коксовый и генераторный газ и др. [c.207]

    До тех пор, пока наши представления о качестве бензина как моторного топлива принципиально ие изменятся, этот главный продукт нефтепереработки и будет определять ее направленность, так как двигатели внутреннего сгорания играют огромную роль в народном хозяйстве. Именно на базе бензинового производства появление любого каталитического процесса как еще одного источника бензина неизбежно будет сопоставляться с процессом деструктивного каталитического гидрирования, особенно если новый процесс связан с переработкой тяжелых нефтяных остатков или тяжелых нефтей либо, наконец, обогащенных углеродом продуктов той или иной формы термической переработки нефти. Процесс контактно-каталитического деструктивного гидрирования тяжелых нефтяных остатков в нефтеперерабатывающей промышленности США останется потенциальным конкурентом любому иному процессу до тех пор, пока в нефтепереработке не наступит сырьевой голод или пока в самой технологии процесса гидрирования не произойдут коренные технические изменения, сделающие этот процесс менее сложным, громоздким и энергоемким. При указанных условиях широкое внедрение гидрирования в нефтепереработку откроет следующий этап в ее развитии. Эта перспектива в конечном счете неизбежна, но широкое распространение процесса гидрирования не будет оригинально с точки зрения дальнейшего развития промышленного катализа на базе переработки нефти. Новая эра в данной области открывается в связи с пшроким внедрением контактно-каталитических нроцессов крекинга и риформинга в нефтеперерабатывающей промышленности. [c.39]

    По насыщенности НПЗ вторичными процессами, прежде всего углубляю1цими переработку нефти. Западноевропейские страны и Япония значительно уступают США. Доля углубляющих нефтепереработку процессов (термические, гидрокрекинг, каталитический крекинг и алкилирование) в США в 1985 г. составила [c.285]

    Разумеется, в справочнике приводятся н процессы производства пластичных смазок, окисленных дорожных битумов, жидкофазной очистки дистиллятов от сернистых соединений в различных технологических вариантах и другие процессы первичной, вторичной и третичной переработки нефти. Подавляющее большинство процессов имеют специфическое, фирменное наименование и представляются фирмами с обязательством в широком диапазоне услуг, начиная от продажи лицензий и кончая участием в наладке нроцессов, освоения его аппаратуры, обучения персонала, поставки оборудования и проведения строительства. В фирмах работают крупные лаборатории и институты, осуществляющие дальнейшую модернизацию процессов по всем параметрам перспективного применения, включая совершенствование катализаторов, подбор новых растворителей, повышение термического КПД, сокращение расходных показателей, создание безотходных технологических циклов, оперативных и точных систем управления, специализированных ЭВМ, многорежимных программ для ЭВМ и всего комплекса датчиков для полной обвязки технологического процесса. Таким образом, мировая нефтепереработка в на-стояя1,ее время базируется па солидных научных и технологических дости-яч"еииях, которые позволяют компоновать ИПЗ будущего с позиций реальной техники сегодняшнего дня. [c.356]

    Из развитых промышленных стран наиболее крупные мощности имеют НПЗ в Западной Европе (Италия, Франция, ФРГ, Великобритания), а также в Японии. НПЗ развитых стран Западной Европы и Японии характеризуются меньшей, чем у США, глубиной переработки нефти этот показатель наименьший у Японии и Иташи (ниже 60%) и средний для НПЗ у Франции, Англии и ФРГ. Низкая глубина переработки нефти в Японии и Италии обусловлена отсутствием у них собственных ресурсов угля и природного газа. Выход моторных топлив низок на НПЗ Японии и Италии (53,7 и 50% соответственно) и достаточно высок ( 60-6б%) на НПЗ ФРГ, Франции и Англии. Наиболее высокий показатель после США и Канады по отбору бензина - на НПЗ Англии ( 25%). Этот показатель на НПЗ остальных стран составляет 12-22%. Соотношение бензин дизельное топливо на НПЗ Западной Европы в пользу дизельного топлива, поскольку в этих странах осуществляется интенсивная дизелизация автомобильного транспорта. В структуре производства нефтепродуктов на НПЗ двух стран - Японии и Италии -первое место занимает котельное топливо (35 и 37% соответственно). На НПЗ остальных развитых стран Западной Европы его производство довольно незначительное (17-20%). По насыщенности НПЗ вторичными процессами (прежде всего углубляющими переработку нефти) западноевропейские страны и Япония существенно уступают США (см. табл. 1.9). Доля углубляющих нефтепереработку процессов (термические, гидрокрекинг, каталитический крекинг и алкилирование) в США в 1985 г. составила 60,8%. Для увеличения выхода моторных топлив в Западной Европе реализуется программа широкого наращивания мощностей процессов глубокой переработки нефти, прежде всего установок каталитического крекинга, висбрекинга, гидрокрекинга и коксования. Поскольку в США действующих мощностей каталитичес- [c.23]

    Для увеличения выхода т. наз. светлых нефтепродуктов (фракций, выкипающих до 350 °С,-бензинов, керосинов, газотурбинных, дизельных и реактивных топлив) и улучшения качества фракций и продуктов, полученных при перегонке, широко используется вторичная переработка нефти. Последняя включает процессы деструктивной переработки тяжелого и остаточного сырья (см., напр., Висбрекинг, Гидрокрекинг, Деасфалътизация, Деметаллизация, каталитический крекинг. Коксование, Термический крекинг), процессы, обеспечивающие повышение качества осн. типов нефтепродуктов-топлив и масел (см. Гидроочистка, Гидрообессеривание, Каталитический риформинг и др.) процессы переработки нефтяных газов Газы нефтяные попутные. Газы нефтепереработки), произ-в масел, парафинов, присадок, битумов и иных спец. типов нефтепродуктов, а также нефтехим. и хим. сырья (см., напр.. Ароматизация, Газификация нефтяных остатков, Гидродеалкилирование, Депарафинизация, Пиролиз). [c.225]

    Решающая роль в становлении и развитии отечественной нефтепереработки, кроме отмеченных выше, принадлежит таким ученым, как Л.Г. Гурвич [4], издавший фундаментальный труд Научные основы переработки нефти , А.А. Летний, разработавший процесс пиролиза нефтяного сырья и выпустивший первый учебник по переработке нефти, К.В. Харичков, разработавший способ холодного фракционирования нефтяных дистиллятов, а также А.Н. Саханову, М.Д. Тиличееву, С.Н. Обрядчи-кову, A.B. Фросту и Л.Д. Нерсесову, внесшим большой вклад в развитие теоретических основ и технологии термического крекинга. [c.17]

    Формирование новых, ненативных ВМС химико-технологической переработкой нефти,природных асфальтов и углеводородных газов,их фракций или индивидуальных компонентов с последующим концентрированием, фракционированием и компаундированием ненативных или новых ВМС. К этой же группе следует отнести способы получения пеков из остаточных цродуктов термических, термокаталитических, гидрогенизационных, термоокислительных и других химико-технологических цроцессов нефтепереработки и нефтехимии, содержащих достаточно большие количества ВМС с требуемыми составом и свойствами. [c.67]

    Книга охватывает актуальные вопросы и важнейшие достижения в области химии и переработки нефти, объединенные в четыре раздела I) экономика и дальнейшие направления развитая нефтепереработки и нефтехимии (применение цифровых вычислительных машин в нефтепереработке, лабораторное определение октановых чисел и дорожные характеристики бензинов ) 2) процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности (разделение жидких смесей на непористых мембранах клатратообразование как метод разделения смесей) 3) процессы нефтепереработки (вторичные реакции при каталитическом крекинге термический крекинг, легкий крекинг, термический риформинг химия и технология нефтяных битумов производство консистентных смазок) 4) нефтехимическая промышленность (реакции олефиновых углеводородов высокотемпературные процессы для переработки легких углеводородов производство элементарной серы из сернистых природных и нефтезаводских газов производство азотных удобрений из нефтяного сырья кремннйорганиче-ские соединения). [c.4]

    По разработкам ЦИАТИМ-ВНИИНП были внедрены базовые процессы, такие как мощные установки термического крекинга маз>Т Ов и термического риформинга лигроинов, гидроочистки и эффективных катализаторов для очистки моторных топлив, сырья для каталитического риформинга, легких и тяжелых газойлей для каталитического крекинга, гидроочистки масел. Особое место в развитии отечественной нефтепереработки занимает процесс каталитического крекинга, позволяющий осуществить значительное углубление переработки нефти и обеспечить массовое производство основного компонента товарных автомобильных и авиационных бензинов. [c.152]

    В первой части книги кратко излагаются сведения по углеводородному составу газов, образующихся при термических и термокаталитических процессах переработки нефти и нефтепродуктов в зависимости от исход-ното сьфья и тежяологического режима. Во второй части подробйо -описываются приборы и аппараты для отбора проб и анализа газов, методы исследования и принципиальная схема анализа образца газов нефтепереработки, а также другие практические сведения, необходимые при анализе газов нефтеперерабатывающих заводов. [c.2]

    Газы нефтепереработки получаются при пиролизе, термическом и каталитическом крекинге и других процессах переработки нефти. Газообразные продукты содержат различные углеводороды, главным образом непредельного ряда. Наибольшее содержание непредельных углеводородов в газах, получающихся при каталитическом крекинге, их меньше в газах термического крекинга и пиролиза и практически нет в газах гидроформинга . Газы гидроформинга содержат до 90 объем. % водорода. Теплотворная способность газов нефтепереработки 10 000 —20 000 ккал1м . Газы нефтепереработки в ряде случаев [c.51]

    Заслуживает серьезного внимания изучение зависимости элементного состава, химического строения и канцерогенности различных нефтепродуктов. Весьма существенным является вопрос о существовании зависимости между степенью ароматичности и кон-денспрованностп полициклических углеводородов, смол и асфальтенов, присутствующих в нефти, продуктов ее переработки и канцерогенностью. До сих пор нет достаточной ясности в характере количественной зависимости канцерогенности продуктов нефтепереработки от технологических процессов и температурно-временных режимов осуществления их. Известно, что нефтяные остатки, получаемые в высокотемпературных процессах пиролиза, коксования и крекинга (термического и каталитического), отличаются более высокой канцерогенностью, чем нрямогонные тяжелые нефтяные остатки. В продуктах же, получаемых в процессах каталитического гидрирования, наоборот, канцерогепность резко снижается или совсем исчезает. [c.109]

    Контрольными цифрами развития народного хозяйства СССР на 1950—1965 гг. предусматривается ускоренное развнтие химической промышленности, прежде всего производства синтетических полимерных материалов. Производство синтетических материалов должно расширяться на новой сырьевой базе главным образом за счет использования попутных газов нефтедобычи, природных газов и газообразных продуктов нефтепереработки. На нефтеперерабатывающих заводах найдут распространение процессы получения втилена, пропилена, ароматических углеводородов и других полупродуктов и углеводородного сырья для производств нефтехимического синтеза. Ресурсы природных газов и газов, являющихся продуктами переработки нефти, могут быть увеличены за счет газов, получаемых в результате освоения новых технологических процессов, разработанных советскими учеными. К таким процессам относятся высокотемпературный распад газового и дистиллятного сырья, пиролиз остаточных нефтепродуктов в кипящем слое теплоносителя, контактное коксование гудрона, пиролиз тяжелых нефтяных остатков в присутствии водяного пара, термическое и каталитическое иревращение газообразных углеводородов и др. [c.3]

    Отмеченное повышение цен на нефть и нефтепродукты обусловлено также удорожанием добычи нефти и увеличением затрат на нефтепереработку, вызванным, главным образом, увеличением ее глубины и использованием при производстве моторных топлив продуктов вторичных (деструктивных) процессов переработки конечных фракций и мазута (термического и каталитического крекинга) (рис. 1.8) [1.2]. В США глубина переработки нефти составляет около 90 %, а на лучших американских нефтеперерабатываюших заводах доходит до 98 %. В России в настояшее время она достигла уровня 70 % [ 1.15-1.16]. В соответствии с энергетической программой, реализуемой в России, планируется к 2020 г. увели- [c.11]

    Продукты термической и термокаталитической переработки нефтяного сйрья могут содержать АС всех тппов, распространенные в сырых нефтях и прямогонных дистиллятах. Известно, что состав продуктов вторичных процессов нефтепереработки меняется в очень широких пределах в зависимости от многих факторов (природы сырья, технологии и режимных параметров процесса, природы и активности катализатора и т. д.). [c.136]

    Интерес к микроэлементам нефтей и соединениям, содержащим эти элементы, обусловлен их заметной ролью в технологических процессах переработки и использования нефтепродуктов и их онре- деленной геолого-геохимической информативностью. Микроэлементы в сырье для нефтепереработки снижают технологические показатели процессов, вызывают отравление катализаторов и ухудшают селективность их действия. Природа металла и форма соединения, в которой он находится, существенно влйяют на степень отравления катализатора [858—861]. Содержащиеся в газотурбинных, реактивных и котельных топливах примеси переходных металлов, в особенности ванадия, приводят к интенсивной газовой коррозии находящихся в активной зоне элементов двигателей и энергоустановок [862—865]. Галоидные нефтяные соединения, разлагаясь при термических воздействиях, значительно ускоряют коррозию аппаратуры [866]. [c.159]

    Процесс термического крекинга, помимо углубления переработки, т.е. увеличения общего выхода моторных топлив на переработанную нефть, - один из основных процессов нефтепереработки, обеспечивавшим сырьем ногтехйкическую npo iЫшлeiu o ть. [c.31]

chem21.info