Большая Энциклопедия Нефти и Газа. Удаление металлов из нефти


Усовершенствованный способ удаления металлов и аминов из сырой нефти

Изобретение относится к способу удаления металлов и аминов из сырой нефти, включающему: добавление к указанной сырой нефти эффективного для удаления металла количества водного раствора, содержащего от 40 до 70 мас.% яблочной кислоты и/или ее соли; отдельное добавление промывочной воды к указанной сырой нефти и перемешивание указанной сырой нефти, кислоты и промывочной воды с образованием эмульсии; и разделение указанной эмульсии на водную фазу и сырую нефть с уменьшенным содержанием металлов и/или аминов, при этом яблочную кислоту и/или ее соль добавляют к сырой нефти выше по потоку по отношению к промывочной воде. Также изобретение относится к усовершенствованному способу обессоливания при нефтепереработке. Предлагаемые способы обеспечивают улучшенное удаление металлов и аминов из сырой нефти. 2 н. и 9 з.п. ф-лы, 1 табл., 1 пр.

 

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к способу удаления металлов, в частности кальция, из неочищенной нефти с недопустимо высоким уровнем содержания подобных металлов, в процессах обессоливания при переработке нефти в тех случаях, когда некоторые оксикарбоновые кислоты добавляют к нефти, а не к промывочной воде.

УРОВЕНЬ ТЕХНИКИ

Существует ряд источников сырой нефти, которые характеризуются уровнем содержания металлов, таких как железо и кальций, затрудняющим, или даже делающим невозможной их переработку с помощью традиционных технологий, при этом, хотя количество таких источников невелико, они имеют все возрастающее значение. Например, особые проблемы вызывают кальциевые загрязнения, которые могут принимать форму непорфириновых соединений с органометаллическими связями. Один из классов подобных кальцийсодержащих соединений включает нафтенаты кальция и их гомологи. Указанные кальций-органические соединения не удается выделить из сырья в стандартных процессах обессоливания, вследствие чего использование традиционных технологий переработки может вызывать загрязнение коксовой печи, нарушение спецификаций для металлов на остаточное топливо (мазут) и ускоренную деактивацию катализатора гидрообработки. Одним из примеров исходного сырья, для которого характерны неприемлемо высокие содержания соединений кальция, является нефть месторождения Доба, расположенного в Западной Африке.

В патентах США №4778589 и 4789463 соответственно описаны способы использования оксикарбоновых кислот для облегчения удаления металлов, включая кальций и железо, из сырой нефти в процессе обессоливания при нефтепереработке.

В патенте США №7497943 описан способ удаления металлов из сырой нефти в процессе обессоливания при нефтепереработке, согласно которому к промывочной воде до момента ее контакта с сырой нефтью добавляют различные кислоты, включая оксикарбоновые кислоты С2-С4.

В патенте США №5080779 описан способ удаления железа из сырой нефти, согласно которому перед добавлением промывочной воды к нефти добавляют хелатирующие агенты.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Неожиданно было обнаружено, что для традиционных технологических операций по обессоливанию сырой нефти добавление к сырой нефти оксикарбоновых кислот, включая молочную кислоту и яблочную кислоту, отдельно от промывочной воды, приводит к улучшенному удалению из сырой нефти аминов, а также связанных и несвязанных загрязнителей, содержащих металлы, в частности кальций.

Соответственно, согласно одному из вариантов реализации, настоящее изобретение представляет собой способ удаления металлов и аминов из сырой нефти, включающий добавление к указанной сырой нефти эффективного для удаления металла количества одной или нескольких оксикарбоновых кислот, выбранных из молочной кислоты и яблочной кислоты, или их солей; добавление промывочной воды к указанной сырой нефти, перемешивание указанной сырой нефти, кислоты и промывочной воды с образованием эмульсии; а также разделение указанной эмульсии на водную фазу и сырую нефть с уменьшенным содержанием металлов.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В процессах обессоливания при переработке сырой нефти намеренно получают водонефтяную эмульсию (вода в нефти, в/н) путем добавления воды, называемой также «промывочной водой», к сырой нефти, причем допустимый объем промывочной воды составляет от примерно 3 до примерно 10 объемных процентов по отношению к объему сырой нефти. Промывочную воду добавляют к нефти и тщательно перемешивают для переноса загрязнителей, таких как, содержащихся в нефти хлоридов, в водную фазу. Затем водонефтяную эмульсию закачивают в обессоливающую установку, где происходит разделение фаз за счет коалесценции мелких капель воды в более крупные и последующее гравитационное разделение нефти и нижележащей водной фазы.

Обессоливающие установки обычно снабжены электродами для создания электрического поля внутри обессоливающей установки. Это необходимо для поляризации диспергированных молекул воды. Между противоположно заряженными полюсами полученных таким образом диполей возникает сила притяжения, причем увеличенная сила притяжения вызывает рост скорости коалесценции капель воды на один-два порядка. Кроме того, в электрическом поле капли воды движутся быстро, что способствует случайным столкновениям, которые дополнительно улучшают коалесценцию.

Кроме того, как правило, обессоливающие установки оснащаются нагревательными средствами и средствами для регулирования давления, предназначенными соответственно для регулирования температуры и давления внутри резервуаров. Обычно температура в обессоливающей установке поддерживается на уровне около 90-150°С (200-300°F). Нагревание вызывает снижение вязкости непрерывной фазы (т.е. нефти), в результате чего ускоряется осаждение коалесцировавших капель воды. Также нагревание увеличивает способность объема нефти к растворению некоторых стабилизаторов органических эмульсий, которые могут добавляться к сырой нефти или встречаться естественным образом в сырой нефти.

Давление в обессоливающей установке поддерживается на достаточно высоком уровне, чтобы предотвратить испарение нефти или воды. Испарение приводит к уносу воды с сырой нефтью, выходящей из обессоливающей установки. Давление в обессоливающей установке при рабочих температурах, в целом, должно превышать давление паров сырой нефти или воды (наименьшего из указанных значений) примерно на 137,9 кПа (20 psi).

После разделения фаз водонефтяной эмульсии сырую нефть обычно извлекают через верхнюю часть обессоливающей установки, после чего направляют на фракционирующую колонну блока атмосферной перегонки или в другой процесс нефтепереработки. Водная фаза, содержащая водорастворимые соли металлов и осадок, сбрасывается как сточная вода.

Настоящее изобретение представляет собой усовершенствованный способ обессоливания при нефтепереработке, включающий: (i) обеспечение сырой нефти; (ii) добавление к указанной сырой нефти промывочной воды и их смешивание с образованием эмульсии; и (iii) разделение эмульсии на водную фазу и сырую нефть с пониженным содержанием металлов и аминов, причем усовершенствование включает добавление к указанной сырой нефти эффективного для удаления металла количества одной или нескольких оксикарбоновых кислот, выбранных из молочной кислоты или яблочной кислоты и их солей, отдельно от добавления промывочной воды. Соли оксикарбононых кислот включают, например, соли щелочных металлов, таких как соли натрия и калия, а также соли аммония. Термин «отдельно от добавления промывочной воды» означает отдельную точку добавления, которая может находиться как выше, так ниже по потоку относительно точки добавления промывочной воды.

Термин «сырая нефть» относится к любому углеводородному сырью, используемому в процессах нефтепереработки, включая сырую нефть, атмосферный или вакуумный остаток, деасфальтизированную растворителями нефть, полученную из указанной сырой нефти или остатков, нефть битуминозных сланцев, сжиженный уголь, обогащенный битуминозный песок и подобное сырье, а также их смеси. В сырую нефть также может быть обработана одной или несколькими технологическими добавками, включая растворители, деэмульгаторы, ингибиторы коррозии и т.п. Согласно варианту реализации, сырая нефть представляет собой неочищенную нефть. Согласно одному варианту реализации, неочищенная нефть представляет собой сырую нефть Доба или сланец сырой нефти, содержащий сырую нефть Доба.

Металлы, подходящие для удаления способом согласно настоящему изобретению, включают, но не ограничиваются ими, кальций, железо, цинк, кремний, никель, натрий, калий, ванадий и т.п., а также их смеси. Согласно одному варианту реализации, металл представляет собой кальций в связанной или несвязанной форме.

Амины, подходящие для удаления способом согласно настоящему изобретению, включают, но не ограничиваются ими, моноэтаноламин, диэтаноламин, триэтаноламии, N-метилэтаноламин, N,N-диметилэтаноламин, морфолин, N-метилморфолин, этилендиамип, метоксипропиламин, N-этилморфолин, N-метилэтаноламин, N-метилдиэтаноламин и т.п., а также их смеси.

Яблочную и/или молочную кислоты можно добавлять в виде водного раствора. Согласно варианту реализации, водный раствор содержит от примерно 40 до примерно 70 мас.% кислот.

Эффективное количество яблочной и/или молочной кислоты представляет собой количество кислоты, необходимое для достижения желаемой степени удаления металлов или аминов из сырой нефти, и может быть определено специалистами в данной области с учетом свойств кислот, обрабатываемой сырой нефти и любыми дополнительными параметрами процесса.

Согласно варианту реализации изобретения, количество кислоты, добавляемой к нефти, представляет собой количество, достаточное для получения рН выделенного водного раствора в интервале от примерно 3 до примерно 6.

В целом, к сырой нефти добавляют от примерно 1 до примерно 2000 ppm оксикарбоновых кислот. Согласно варианту реализации изобретения, к сырой нефти добавляют от примерно 10 до примерно 500 ppm оксикарбоновых кислот.

Согласно варианту реализации изобретения, оксикарбоновая кислота представляет собой яблочную кислоту.

Оксикарбоновые кислоты можно использовать в сочетании с одним или несколькими вспомогательными веществами, применяемыми в процессе обессоливания при переработке нефти, включая ингибиторы коррозии, деэмульгаторы, регуляторы рН, комплекссобразователи для металлов, ингибиторы солеотложения, углеводородные растворители и т.п. Вспомогательные вещества можно независимо добавлять к сырой нефти, промывочной воде или готовить с раствором кислоты. Например, нефтерастворимые вспомогательные вещества, такие как деэмульгаторы и ингибиторы коррозии, можно добавлять непосредственно к сырой нефти, в то время как водорастворимые вспомогательные вещества могут быть приготовлены вместе с кислотами или добавлены к промывочной воде.

Согласно варианту реализации изобретения, к сырой нефти или промывочной воде добавляют один или несколько деэмульгаторов.

Согласно варианту реализации изобретения, к сырой нефти или промывочной воде добавляют один или несколько ингибиторов коррозии.

Согласно варианту осуществления изобретения, к промывочной воде добавляют один или несколько ингибиторов коррозии.

Согласно варианту реализации изобретения, оксикарбоновые кислоты добавляют к сырой нефти выше по потоку по отношению к промывочной воде, содержащей ингибитор коррозии.

Согласно варианту реализации изобретения, оксикарбоновые кислоты добавляют к сырой нефти ниже по потоку по отношению к промывочной воде, содержащей ингибитор коррозии.

Согласно варианту реализации изобретения, к сырой нефти или промывочной воде добавляют один или несколько отличных от яблочной и молочной кислоты агентов, образующих с комплексы металлами.

Агенты, образующие с комплексы металлами, включают широкий класс химических веществ, способных координировать и связывать ионы металла. Типичные агенты, образующие комплексы с металлами, включают, но не ограничивается ими, этилендиаминтетраускусную кислоту (ЭДТА), гликолевую кислоту, глюконовую кислоту, тиогликолевую кислоту, винную кислоту, миндальную кислоту, лимонную кислоту, уксусную кислоту, щавелевую кислоту, нитрилотриуксусную кислоту (НТА), этилендиамин (ЭДА), метансульфоновую кислоту, малоновую кислоту, янтарную кислоту, малеиновую кислоту, дитиокарбаматы и полимеры дитиокарбаматов и т.п., а также их соли.

Согласно типичному примеру применения в процессах нефтепереработки, сырая нефть, содержащая примерно 70 ppm кальция, обрабатывают с помощью традиционной операции обессоливания, которая включает систему предварительного нагрева, состоящую из предварительных теплообменников, смесительного клапана и электростатической обессоливающей установки, расположенных ниже по потоку. Обрабатывают до 150000 барр./сут сырой нефти, содержащей около 20% (30000 баррелей) нефти месторождения Доба. К потоку сырой нефти добавляется промывочная вода, обработанная ингибитором коррозии, при расходе около 5% (7500 барр./сут). 50% водный раствор оксикарбоновой кислоты добавляют к нефтяному сырью при скорости дозирования приблизительно от 2000 до 3500 гал/сут выше по потоку относительно промывочной воды. Эмульсия сырой нефти, образующаяся с помощью смесительного клапана, разрушается за счет электростатической коалесценции в обессоливающей установке, причем достигается степень удаления из сырой нефти до приблизительно 95% кальция.

Лучшего понимания изложенной выше информации можно достичь при рассмотрении следующего примера, приводимого в качестве иллюстрации и не имеющего своей целью ограничение объема изобретения.

Пример 1

Нагревали 50 мас.% раствор сырой нефти в толуоле в течение примерно 20 минут при 82°С (180°F), и затем смешивали нагретый образец сырой нефти с 10 мас.% водным раствором оксикарбоновой кислоты. Смесь нагревали и перемешивали в течение примерно 30 минут. По окончании цикла экстракции образцы немедленно подвергали нагреву в рамках второго, 10-минутного цикла, после которого начинали разделение фаз с помощью делительной воронки. Содержание кальция и железа в полученных фазах определяли методом спектрометрии с индуктивно связанной плазмой (IСР). Сводные результаты приведены в Таблице.

Таблица
Агент для обработки Чистый Оксикарбоновая кислота, 1,54 мол. экв. Оксикарбоновая кислота, 2.47 мол. экв.
Удаленный кальций 8.3 ppm 94.3% 93%
Удаленное железо 35 ppm 70% 70%

Настоящее изобретение описано выше в сочетании с представительными или наглядными вариантами реализации, причем указанные варианты реализации являются исчерпывающими или ограничивающими настоящее изобретение. Напротив, подразумевается, что в рамки сущности и объема, настоящее изобретение охватывает вес альтернативы, модификации и эквиваленты, как определено в приложенной формуле изобретения.

1. Способ удаления металлов и аминов из сырой нефти, включающийдобавление к указанной сырой нефти эффективного для удаления металла количества водного раствора, содержащего от 40 до 70 мас.% яблочной кислоты и/или ее соли;отдельное добавление промывочной воды к указанной сырой нефти и перемешивание указанной сырой нефти, кислоты и промывочной воды с образованием эмульсии; иразделение указанной эмульсии на водную фазу и сырую нефть с уменьшенным содержанием металлов и/или аминов,при этом яблочную кислоту и/или ее соль добавляют к сырой нефти выше по потоку по отношению к промывочной воде.

2. Способ по п.1, отличающийся тем, что металл представляет собой кальций.

3. Способ по п.1, отличающийся тем, что эффективное для удаления металла количество яблочной кислоты и/или ее соли представляет собой количество яблочной кислоты и/или ее соли, требуемое для доведения рН отделенной водной фазы до значения в интервале от примерно 3 до примерно 6.

4. Способ по п.1 дополнительно включающий добавление к сырой нефти или промывочной воде одного или нескольких деэмульгаторов.

5. Способ по п.1 дополнительно включающий добавление к сырой нефти или промывочной воде одного или нескольких ингибиторов коррозии.

6. Способ по п.1 дополнительно включающий добавление к сырой нефти или промывочной воде одного или нескольких отличных от яблочной кислоты и/или ее соли агентов, образующих с металлами комплексные соединения.

7. Способ по п.6, отличающийся тем, что к промывочной воде добавляют один или несколько ингибиторов коррозии.

8. Способ по п.1, отличающийся тем, что указанную эмульсию разделяют с применением электростатической коалесценции.

9. Способ по п.1, отличающийся тем, что сырая нефть представляет собой неочищенную нефть.

10. Способ по п.9, отличающийся тем, что неочищенная нефть представляет собой неочищенную нефть месторождения Doba.

11. Усовершенствованный способ обессоливания при нефтепереработке для удаления металлов и аминов из сырой нефти, включающий:(i) обеспечение сырой нефти;(ii) добавление к сырой нефти промывочной воды;(iii) смешивание указанной сырой нефти и промывочной воды с получением эмульсии и(iv) разделение эмульсии с обеспечением водной фазы и сырой нефти с пониженным содержанием металлов и аминов, причемусовершенствование включает добавление к указанной сырой нефти эффективного для удаления металла количества водного раствора, содержащего от 40 до 70 мас.% яблочной кислоты и/или ее соли выше по потоку по отношению к промывочной воде.

www.findpatent.ru

УСОВЕРШЕНСТВОВАННЫЙ СПОСОБ УДАЛЕНИЯ МЕТАЛЛОВ И АМИНОВ ИЗ СЫРОЙ НЕФТИ

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к способу удаления металлов, в частности кальция, из неочищенной нефти с недопустимо высоким уровнем содержания подобных металлов, в процессах обессоливания при переработке нефти в тех случаях, когда некоторые оксикарбоновые кислоты добавляют к нефти, а не к промывочной воде.

УРОВЕНЬ ТЕХНИКИ

Существует ряд источников сырой нефти, которые характеризуются уровнем содержания металлов, таких как железо и кальций, затрудняющим, или даже делающим невозможной их переработку с помощью традиционных технологий, при этом, хотя количество таких источников невелико, они имеют все возрастающее значение. Например, особые проблемы вызывают кальциевые загрязнения, которые могут принимать форму непорфириновых соединений с органометаллическими связями. Один из классов подобных кальцийсодержащих соединений включает нафтенаты кальция и их гомологи. Указанные кальций-органические соединения не удается выделить из сырья в стандартных процессах обессоливания, вследствие чего использование традиционных технологий переработки может вызывать загрязнение коксовой печи, нарушение спецификаций для металлов на остаточное топливо (мазут) и ускоренную деактивацию катализатора гидрообработки. Одним из примеров исходного сырья, для которого характерны неприемлемо высокие содержания соединений кальция, является нефть месторождения Доба, расположенного в Западной Африке.

В патентах США №4778589 и 4789463 соответственно описаны способы использования оксикарбоновых кислот для облегчения удаления металлов, включая кальций и железо, из сырой нефти в процессе обессоливания при нефтепереработке.

В патенте США №7497943 описан способ удаления металлов из сырой нефти в процессе обессоливания при нефтепереработке, согласно которому к промывочной воде до момента ее контакта с сырой нефтью добавляют различные кислоты, включая оксикарбоновые кислоты С2-С4.

В патенте США №5080779 описан способ удаления железа из сырой нефти, согласно которому перед добавлением промывочной воды к нефти добавляют хелатирующие агенты.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Неожиданно было обнаружено, что для традиционных технологических операций по обессоливанию сырой нефти добавление к сырой нефти оксикарбоновых кислот, включая молочную кислоту и яблочную кислоту, отдельно от промывочной воды, приводит к улучшенному удалению из сырой нефти аминов, а также связанных и несвязанных загрязнителей, содержащих металлы, в частности кальций.

Соответственно, согласно одному из вариантов реализации, настоящее изобретение представляет собой способ удаления металлов и аминов из сырой нефти, включающий добавление к указанной сырой нефти эффективного для удаления металла количества одной или нескольких оксикарбоновых кислот, выбранных из молочной кислоты и яблочной кислоты, или их солей; добавление промывочной воды к указанной сырой нефти, перемешивание указанной сырой нефти, кислоты и промывочной воды с образованием эмульсии; а также разделение указанной эмульсии на водную фазу и сырую нефть с уменьшенным содержанием металлов.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В процессах обессоливания при переработке сырой нефти намеренно получают водонефтяную эмульсию (вода в нефти, в/н) путем добавления воды, называемой также «промывочной водой», к сырой нефти, причем допустимый объем промывочной воды составляет от примерно 3 до примерно 10 объемных процентов по отношению к объему сырой нефти. Промывочную воду добавляют к нефти и тщательно перемешивают для переноса загрязнителей, таких как, содержащихся в нефти хлоридов, в водную фазу. Затем водонефтяную эмульсию закачивают в обессоливающую установку, где происходит разделение фаз за счет коалесценции мелких капель воды в более крупные и последующее гравитационное разделение нефти и нижележащей водной фазы.

Обессоливающие установки обычно снабжены электродами для создания электрического поля внутри обессоливающей установки. Это необходимо для поляризации диспергированных молекул воды. Между противоположно заряженными полюсами полученных таким образом диполей возникает сила притяжения, причем увеличенная сила притяжения вызывает рост скорости коалесценции капель воды на один-два порядка. Кроме того, в электрическом поле капли воды движутся быстро, что способствует случайным столкновениям, которые дополнительно улучшают коалесценцию.

Кроме того, как правило, обессоливающие установки оснащаются нагревательными средствами и средствами для регулирования давления, предназначенными соответственно для регулирования температуры и давления внутри резервуаров. Обычно температура в обессоливающей установке поддерживается на уровне около 90-150°С (200-300°F). Нагревание вызывает снижение вязкости непрерывной фазы (т.е. нефти), в результате чего ускоряется осаждение коалесцировавших капель воды. Также нагревание увеличивает способность объема нефти к растворению некоторых стабилизаторов органических эмульсий, которые могут добавляться к сырой нефти или встречаться естественным образом в сырой нефти.

Давление в обессоливающей установке поддерживается на достаточно высоком уровне, чтобы предотвратить испарение нефти или воды. Испарение приводит к уносу воды с сырой нефтью, выходящей из обессоливающей установки. Давление в обессоливающей установке при рабочих температурах, в целом, должно превышать давление паров сырой нефти или воды (наименьшего из указанных значений) примерно на 137,9 кПа (20 psi).

После разделения фаз водонефтяной эмульсии сырую нефть обычно извлекают через верхнюю часть обессоливающей установки, после чего направляют на фракционирующую колонну блока атмосферной перегонки или в другой процесс нефтепереработки. Водная фаза, содержащая водорастворимые соли металлов и осадок, сбрасывается как сточная вода.

Настоящее изобретение представляет собой усовершенствованный способ обессоливания при нефтепереработке, включающий: (i) обеспечение сырой нефти; (ii) добавление к указанной сырой нефти промывочной воды и их смешивание с образованием эмульсии; и (iii) разделение эмульсии на водную фазу и сырую нефть с пониженным содержанием металлов и аминов, причем усовершенствование включает добавление к указанной сырой нефти эффективного для удаления металла количества одной или нескольких оксикарбоновых кислот, выбранных из молочной кислоты или яблочной кислоты и их солей, отдельно от добавления промывочной воды. Соли оксикарбононых кислот включают, например, соли щелочных металлов, таких как соли натрия и калия, а также соли аммония. Термин «отдельно от добавления промывочной воды» означает отдельную точку добавления, которая может находиться как выше, так ниже по потоку относительно точки добавления промывочной воды.

Термин «сырая нефть» относится к любому углеводородному сырью, используемому в процессах нефтепереработки, включая сырую нефть, атмосферный или вакуумный остаток, деасфальтизированную растворителями нефть, полученную из указанной сырой нефти или остатков, нефть битуминозных сланцев, сжиженный уголь, обогащенный битуминозный песок и подобное сырье, а также их смеси. В сырую нефть также может быть обработана одной или несколькими технологическими добавками, включая растворители, деэмульгаторы, ингибиторы коррозии и т.п. Согласно варианту реализации, сырая нефть представляет собой неочищенную нефть. Согласно одному варианту реализации, неочищенная нефть представляет собой сырую нефть Доба или сланец сырой нефти, содержащий сырую нефть Доба.

Металлы, подходящие для удаления способом согласно настоящему изобретению, включают, но не ограничиваются ими, кальций, железо, цинк, кремний, никель, натрий, калий, ванадий и т.п., а также их смеси. Согласно одному варианту реализации, металл представляет собой кальций в связанной или несвязанной форме.

Амины, подходящие для удаления способом согласно настоящему изобретению, включают, но не ограничиваются ими, моноэтаноламин, диэтаноламин, триэтаноламии, N-метилэтаноламин, N,N-диметилэтаноламин, морфолин, N-метилморфолин, этилендиамип, метоксипропиламин, N-этилморфолин, N-метилэтаноламин, N-метилдиэтаноламин и т.п., а также их смеси.

Яблочную и/или молочную кислоты можно добавлять в виде водного раствора. Согласно варианту реализации, водный раствор содержит от примерно 40 до примерно 70 мас.% кислот.

Эффективное количество яблочной и/или молочной кислоты представляет собой количество кислоты, необходимое для достижения желаемой степени удаления металлов или аминов из сырой нефти, и может быть определено специалистами в данной области с учетом свойств кислот, обрабатываемой сырой нефти и любыми дополнительными параметрами процесса.

Согласно варианту реализации изобретения, количество кислоты, добавляемой к нефти, представляет собой количество, достаточное для получения рН выделенного водного раствора в интервале от примерно 3 до примерно 6.

В целом, к сырой нефти добавляют от примерно 1 до примерно 2000 ppm оксикарбоновых кислот. Согласно варианту реализации изобретения, к сырой нефти добавляют от примерно 10 до примерно 500 ppm оксикарбоновых кислот.

Согласно варианту реализации изобретения, оксикарбоновая кислота представляет собой яблочную кислоту.

Оксикарбоновые кислоты можно использовать в сочетании с одним или несколькими вспомогательными веществами, применяемыми в процессе обессоливания при переработке нефти, включая ингибиторы коррозии, деэмульгаторы, регуляторы рН, комплекссобразователи для металлов, ингибиторы солеотложения, углеводородные растворители и т.п. Вспомогательные вещества можно независимо добавлять к сырой нефти, промывочной воде или готовить с раствором кислоты. Например, нефтерастворимые вспомогательные вещества, такие как деэмульгаторы и ингибиторы коррозии, можно добавлять непосредственно к сырой нефти, в то время как водорастворимые вспомогательные вещества могут быть приготовлены вместе с кислотами или добавлены к промывочной воде.

Согласно варианту реализации изобретения, к сырой нефти или промывочной воде добавляют один или несколько деэмульгаторов.

Согласно варианту реализации изобретения, к сырой нефти или промывочной воде добавляют один или несколько ингибиторов коррозии.

Согласно варианту осуществления изобретения, к промывочной воде добавляют один или несколько ингибиторов коррозии.

Согласно варианту реализации изобретения, оксикарбоновые кислоты добавляют к сырой нефти выше по потоку по отношению к промывочной воде, содержащей ингибитор коррозии.

Согласно варианту реализации изобретения, оксикарбоновые кислоты добавляют к сырой нефти ниже по потоку по отношению к промывочной воде, содержащей ингибитор коррозии.

Согласно варианту реализации изобретения, к сырой нефти или промывочной воде добавляют один или несколько отличных от яблочной и молочной кислоты агентов, образующих с комплексы металлами.

Агенты, образующие с комплексы металлами, включают широкий класс химических веществ, способных координировать и связывать ионы металла. Типичные агенты, образующие комплексы с металлами, включают, но не ограничивается ими, этилендиаминтетраускусную кислоту (ЭДТА), гликолевую кислоту, глюконовую кислоту, тиогликолевую кислоту, винную кислоту, миндальную кислоту, лимонную кислоту, уксусную кислоту, щавелевую кислоту, нитрилотриуксусную кислоту (НТА), этилендиамин (ЭДА), метансульфоновую кислоту, малоновую кислоту, янтарную кислоту, малеиновую кислоту, дитиокарбаматы и полимеры дитиокарбаматов и т.п., а также их соли.

Согласно типичному примеру применения в процессах нефтепереработки, сырая нефть, содержащая примерно 70 ppm кальция, обрабатывают с помощью традиционной операции обессоливания, которая включает систему предварительного нагрева, состоящую из предварительных теплообменников, смесительного клапана и электростатической обессоливающей установки, расположенных ниже по потоку. Обрабатывают до 150000 барр./сут сырой нефти, содержащей около 20% (30000 баррелей) нефти месторождения Доба. К потоку сырой нефти добавляется промывочная вода, обработанная ингибитором коррозии, при расходе около 5% (7500 барр./сут). 50% водный раствор оксикарбоновой кислоты добавляют к нефтяному сырью при скорости дозирования приблизительно от 2000 до 3500 гал/сут выше по потоку относительно промывочной воды. Эмульсия сырой нефти, образующаяся с помощью смесительного клапана, разрушается за счет электростатической коалесценции в обессоливающей установке, причем достигается степень удаления из сырой нефти до приблизительно 95% кальция.

Лучшего понимания изложенной выше информации можно достичь при рассмотрении следующего примера, приводимого в качестве иллюстрации и не имеющего своей целью ограничение объема изобретения.

Пример 1

Нагревали 50 мас.% раствор сырой нефти в толуоле в течение примерно 20 минут при 82°С (180°F), и затем смешивали нагретый образец сырой нефти с 10 мас.% водным раствором оксикарбоновой кислоты. Смесь нагревали и перемешивали в течение примерно 30 минут. По окончании цикла экстракции образцы немедленно подвергали нагреву в рамках второго, 10-минутного цикла, после которого начинали разделение фаз с помощью делительной воронки. Содержание кальция и железа в полученных фазах определяли методом спектрометрии с индуктивно связанной плазмой (IСР). Сводные результаты приведены в Таблице.

Таблица
Агент для обработки Чистый Оксикарбоновая кислота, 1,54 мол. экв. Оксикарбоновая кислота, 2.47 мол. экв.
Удаленный кальций 8.3 ppm 94.3% 93%
Удаленное железо 35 ppm 70% 70%

Настоящее изобретение описано выше в сочетании с представительными или наглядными вариантами реализации, причем указанные варианты реализации являются исчерпывающими или ограничивающими настоящее изобретение. Напротив, подразумевается, что в рамки сущности и объема, настоящее изобретение охватывает вес альтернативы, модификации и эквиваленты, как определено в приложенной формуле изобретения.

edrid.ru

Усовершенствованный способ удаления металлов и аминов из сырой нефти

Изобретение относится к способу удаления металлов и аминов из сырой нефти, включающему: добавление к указанной сырой нефти эффективного для удаления металла количества водного раствора, содержащего от 40 до 70 мас.% яблочной кислоты и/или ее соли; отдельное добавление промывочной воды к указанной сырой нефти и перемешивание указанной сырой нефти, кислоты и промывочной воды с образованием эмульсии; и разделение указанной эмульсии на водную фазу и сырую нефть с уменьшенным содержанием металлов и/или аминов, при этом яблочную кислоту и/или ее соль добавляют к сырой нефти выше по потоку по отношению к промывочной воде. Также изобретение относится к усовершенствованному способу обессоливания при нефтепереработке. Предлагаемые способы обеспечивают улучшенное удаление металлов и аминов из сырой нефти. 2 н. и 9 з.п. ф-лы, 1 табл., 1 пр.

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к способу удаления металлов, в частности кальция, из неочищенной нефти с недопустимо высоким уровнем содержания подобных металлов, в процессах обессоливания при переработке нефти в тех случаях, когда некоторые оксикарбоновые кислоты добавляют к нефти, а не к промывочной воде.

УРОВЕНЬ ТЕХНИКИ

Существует ряд источников сырой нефти, которые характеризуются уровнем содержания металлов, таких как железо и кальций, затрудняющим, или даже делающим невозможной их переработку с помощью традиционных технологий, при этом, хотя количество таких источников невелико, они имеют все возрастающее значение. Например, особые проблемы вызывают кальциевые загрязнения, которые могут принимать форму непорфириновых соединений с органометаллическими связями. Один из классов подобных кальцийсодержащих соединений включает нафтенаты кальция и их гомологи. Указанные кальций-органические соединения не удается выделить из сырья в стандартных процессах обессоливания, вследствие чего использование традиционных технологий переработки может вызывать загрязнение коксовой печи, нарушение спецификаций для металлов на остаточное топливо (мазут) и ускоренную деактивацию катализатора гидрообработки. Одним из примеров исходного сырья, для которого характерны неприемлемо высокие содержания соединений кальция, является нефть месторождения Доба, расположенного в Западной Африке.

В патентах США №4778589 и 4789463 соответственно описаны способы использования оксикарбоновых кислот для облегчения удаления металлов, включая кальций и железо, из сырой нефти в процессе обессоливания при нефтепереработке.

В патенте США №7497943 описан способ удаления металлов из сырой нефти в процессе обессоливания при нефтепереработке, согласно которому к промывочной воде до момента ее контакта с сырой нефтью добавляют различные кислоты, включая оксикарбоновые кислоты С2-С4.

В патенте США №5080779 описан способ удаления железа из сырой нефти, согласно которому перед добавлением промывочной воды к нефти добавляют хелатирующие агенты.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Неожиданно было обнаружено, что для традиционных технологических операций по обессоливанию сырой нефти добавление к сырой нефти оксикарбоновых кислот, включая молочную кислоту и яблочную кислоту, отдельно от промывочной воды, приводит к улучшенному удалению из сырой нефти аминов, а также связанных и несвязанных загрязнителей, содержащих металлы, в частности кальций.

Соответственно, согласно одному из вариантов реализации, настоящее изобретение представляет собой способ удаления металлов и аминов из сырой нефти, включающий добавление к указанной сырой нефти эффективного для удаления металла количества одной или нескольких оксикарбоновых кислот, выбранных из молочной кислоты и яблочной кислоты, или их солей; добавление промывочной воды к указанной сырой нефти, перемешивание указанной сырой нефти, кислоты и промывочной воды с образованием эмульсии; а также разделение указанной эмульсии на водную фазу и сырую нефть с уменьшенным содержанием металлов.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В процессах обессоливания при переработке сырой нефти намеренно получают водонефтяную эмульсию (вода в нефти, в/н) путем добавления воды, называемой также «промывочной водой», к сырой нефти, причем допустимый объем промывочной воды составляет от примерно 3 до примерно 10 объемных процентов по отношению к объему сырой нефти. Промывочную воду добавляют к нефти и тщательно перемешивают для переноса загрязнителей, таких как, содержащихся в нефти хлоридов, в водную фазу. Затем водонефтяную эмульсию закачивают в обессоливающую установку, где происходит разделение фаз за счет коалесценции мелких капель воды в более крупные и последующее гравитационное разделение нефти и нижележащей водной фазы.

Обессоливающие установки обычно снабжены электродами для создания электрического поля внутри обессоливающей установки. Это необходимо для поляризации диспергированных молекул воды. Между противоположно заряженными полюсами полученных таким образом диполей возникает сила притяжения, причем увеличенная сила притяжения вызывает рост скорости коалесценции капель воды на один-два порядка. Кроме того, в электрическом поле капли воды движутся быстро, что способствует случайным столкновениям, которые дополнительно улучшают коалесценцию.

Кроме того, как правило, обессоливающие установки оснащаются нагревательными средствами и средствами для регулирования давления, предназначенными соответственно для регулирования температуры и давления внутри резервуаров. Обычно температура в обессоливающей установке поддерживается на уровне около 90-150°С (200-300°F). Нагревание вызывает снижение вязкости непрерывной фазы (т.е. нефти), в результате чего ускоряется осаждение коалесцировавших капель воды. Также нагревание увеличивает способность объема нефти к растворению некоторых стабилизаторов органических эмульсий, которые могут добавляться к сырой нефти или встречаться естественным образом в сырой нефти.

Давление в обессоливающей установке поддерживается на достаточно высоком уровне, чтобы предотвратить испарение нефти или воды. Испарение приводит к уносу воды с сырой нефтью, выходящей из обессоливающей установки. Давление в обессоливающей установке при рабочих температурах, в целом, должно превышать давление паров сырой нефти или воды (наименьшего из указанных значений) примерно на 137,9 кПа (20 psi).

После разделения фаз водонефтяной эмульсии сырую нефть обычно извлекают через верхнюю часть обессоливающей установки, после чего направляют на фракционирующую колонну блока атмосферной перегонки или в другой процесс нефтепереработки. Водная фаза, содержащая водорастворимые соли металлов и осадок, сбрасывается как сточная вода.

Настоящее изобретение представляет собой усовершенствованный способ обессоливания при нефтепереработке, включающий: (i) обеспечение сырой нефти; (ii) добавление к указанной сырой нефти промывочной воды и их смешивание с образованием эмульсии; и (iii) разделение эмульсии на водную фазу и сырую нефть с пониженным содержанием металлов и аминов, причем усовершенствование включает добавление к указанной сырой нефти эффективного для удаления металла количества одной или нескольких оксикарбоновых кислот, выбранных из молочной кислоты или яблочной кислоты и их солей, отдельно от добавления промывочной воды. Соли оксикарбононых кислот включают, например, соли щелочных металлов, таких как соли натрия и калия, а также соли аммония. Термин «отдельно от добавления промывочной воды» означает отдельную точку добавления, которая может находиться как выше, так ниже по потоку относительно точки добавления промывочной воды.

Термин «сырая нефть» относится к любому углеводородному сырью, используемому в процессах нефтепереработки, включая сырую нефть, атмосферный или вакуумный остаток, деасфальтизированную растворителями нефть, полученную из указанной сырой нефти или остатков, нефть битуминозных сланцев, сжиженный уголь, обогащенный битуминозный песок и подобное сырье, а также их смеси. В сырую нефть также может быть обработана одной или несколькими технологическими добавками, включая растворители, деэмульгаторы, ингибиторы коррозии и т.п. Согласно варианту реализации, сырая нефть представляет собой неочищенную нефть. Согласно одному варианту реализации, неочищенная нефть представляет собой сырую нефть Доба или сланец сырой нефти, содержащий сырую нефть Доба.

Металлы, подходящие для удаления способом согласно настоящему изобретению, включают, но не ограничиваются ими, кальций, железо, цинк, кремний, никель, натрий, калий, ванадий и т.п., а также их смеси. Согласно одному варианту реализации, металл представляет собой кальций в связанной или несвязанной форме.

Амины, подходящие для удаления способом согласно настоящему изобретению, включают, но не ограничиваются ими, моноэтаноламин, диэтаноламин, триэтаноламии, N-метилэтаноламин, N,N-диметилэтаноламин, морфолин, N-метилморфолин, этилендиамип, метоксипропиламин, N-этилморфолин, N-метилэтаноламин, N-метилдиэтаноламин и т.п., а также их смеси.

Яблочную и/или молочную кислоты можно добавлять в виде водного раствора. Согласно варианту реализации, водный раствор содержит от примерно 40 до примерно 70 мас.% кислот.

Эффективное количество яблочной и/или молочной кислоты представляет собой количество кислоты, необходимое для достижения желаемой степени удаления металлов или аминов из сырой нефти, и может быть определено специалистами в данной области с учетом свойств кислот, обрабатываемой сырой нефти и любыми дополнительными параметрами процесса.

Согласно варианту реализации изобретения, количество кислоты, добавляемой к нефти, представляет собой количество, достаточное для получения рН выделенного водного раствора в интервале от примерно 3 до примерно 6.

В целом, к сырой нефти добавляют от примерно 1 до примерно 2000 ppm оксикарбоновых кислот. Согласно варианту реализации изобретения, к сырой нефти добавляют от примерно 10 до примерно 500 ppm оксикарбоновых кислот.

Согласно варианту реализации изобретения, оксикарбоновая кислота представляет собой яблочную кислоту.

Оксикарбоновые кислоты можно использовать в сочетании с одним или несколькими вспомогательными веществами, применяемыми в процессе обессоливания при переработке нефти, включая ингибиторы коррозии, деэмульгаторы, регуляторы рН, комплекссобразователи для металлов, ингибиторы солеотложения, углеводородные растворители и т.п. Вспомогательные вещества можно независимо добавлять к сырой нефти, промывочной воде или готовить с раствором кислоты. Например, нефтерастворимые вспомогательные вещества, такие как деэмульгаторы и ингибиторы коррозии, можно добавлять непосредственно к сырой нефти, в то время как водорастворимые вспомогательные вещества могут быть приготовлены вместе с кислотами или добавлены к промывочной воде.

Согласно варианту реализации изобретения, к сырой нефти или промывочной воде добавляют один или несколько деэмульгаторов.

Согласно варианту реализации изобретения, к сырой нефти или промывочной воде добавляют один или несколько ингибиторов коррозии.

Согласно варианту осуществления изобретения, к промывочной воде добавляют один или несколько ингибиторов коррозии.

Согласно варианту реализации изобретения, оксикарбоновые кислоты добавляют к сырой нефти выше по потоку по отношению к промывочной воде, содержащей ингибитор коррозии.

Согласно варианту реализации изобретения, оксикарбоновые кислоты добавляют к сырой нефти ниже по потоку по отношению к промывочной воде, содержащей ингибитор коррозии.

Согласно варианту реализации изобретения, к сырой нефти или промывочной воде добавляют один или несколько отличных от яблочной и молочной кислоты агентов, образующих с комплексы металлами.

Агенты, образующие с комплексы металлами, включают широкий класс химических веществ, способных координировать и связывать ионы металла. Типичные агенты, образующие комплексы с металлами, включают, но не ограничивается ими, этилендиаминтетраускусную кислоту (ЭДТА), гликолевую кислоту, глюконовую кислоту, тиогликолевую кислоту, винную кислоту, миндальную кислоту, лимонную кислоту, уксусную кислоту, щавелевую кислоту, нитрилотриуксусную кислоту (НТА), этилендиамин (ЭДА), метансульфоновую кислоту, малоновую кислоту, янтарную кислоту, малеиновую кислоту, дитиокарбаматы и полимеры дитиокарбаматов и т.п., а также их соли.

Согласно типичному примеру применения в процессах нефтепереработки, сырая нефть, содержащая примерно 70 ppm кальция, обрабатывают с помощью традиционной операции обессоливания, которая включает систему предварительного нагрева, состоящую из предварительных теплообменников, смесительного клапана и электростатической обессоливающей установки, расположенных ниже по потоку. Обрабатывают до 150000 барр./сут сырой нефти, содержащей около 20% (30000 баррелей) нефти месторождения Доба. К потоку сырой нефти добавляется промывочная вода, обработанная ингибитором коррозии, при расходе около 5% (7500 барр./сут). 50% водный раствор оксикарбоновой кислоты добавляют к нефтяному сырью при скорости дозирования приблизительно от 2000 до 3500 гал/сут выше по потоку относительно промывочной воды. Эмульсия сырой нефти, образующаяся с помощью смесительного клапана, разрушается за счет электростатической коалесценции в обессоливающей установке, причем достигается степень удаления из сырой нефти до приблизительно 95% кальция.

Лучшего понимания изложенной выше информации можно достичь при рассмотрении следующего примера, приводимого в качестве иллюстрации и не имеющего своей целью ограничение объема изобретения.

Пример 1

Нагревали 50 мас.% раствор сырой нефти в толуоле в течение примерно 20 минут при 82°С (180°F), и затем смешивали нагретый образец сырой нефти с 10 мас.% водным раствором оксикарбоновой кислоты. Смесь нагревали и перемешивали в течение примерно 30 минут. По окончании цикла экстракции образцы немедленно подвергали нагреву в рамках второго, 10-минутного цикла, после которого начинали разделение фаз с помощью делительной воронки. Содержание кальция и железа в полученных фазах определяли методом спектрометрии с индуктивно связанной плазмой (IСР). Сводные результаты приведены в Таблице.

Таблица
Агент для обработки Чистый Оксикарбоновая кислота, 1,54 мол. экв. Оксикарбоновая кислота, 2.47 мол. экв.
Удаленный кальций 8.3 ppm 94.3% 93%
Удаленное железо 35 ppm 70% 70%

Настоящее изобретение описано выше в сочетании с представительными или наглядными вариантами реализации, причем указанные варианты реализации являются исчерпывающими или ограничивающими настоящее изобретение. Напротив, подразумевается, что в рамки сущности и объема, настоящее изобретение охватывает вес альтернативы, модификации и эквиваленты, как определено в приложенной формуле изобретения.

bankpatentov.ru

Удаление металлов - Справочник химика 21

    Сообщается [327] о целесообразности комбинирования обработки кислородом с другими методами. Так, фракцию, выкипающую выше 500 °С, обрабатывают в присутствии кислорода плавленым гидратом окиси щелочного металла при 162—370°С, промывают водой для удаления металлов. Примеси отделяют фильтрованием, центрифугированием или отстаиванием. [c.206]

    Таким образом, при гидроочистке сырья каталитического крекинга существенно улучшается материальный баланс каталитического крекинга и повышается качество получаемых продуктов. Кроме того, уменьшается отравление катализатора вследствие удаления металлов и азотистых соединений, уменьшается коррозия аппаратуры и благодаря удалению сернистых соедине ний улучшаются условия эксплуатации установки. [c.205]

    Степень удаления металлов составила 99%, а коксуемость паров после отбойника уменьшилась в 1,5 раза. Нагрузка паровой фазы на отбойник по Гс-фактору составила [c.178]

    Некоторые компоненты сырья (азотистые основания, соединения металлов, смолистые вещества и др.) отравляют алюмосиликатные катализаторы, в связи с чем значительно ухудшаются результаты каталитического крекинга [7, 8]. Резко уменьшается выход целевых продуктов каталитического крекинга и, следовательно, существенно ухудшаются экономические показатели процесса. Существуют два метода предотвращения вредного воздействия компонентов сырья на результаты крекинга а) очистка сырья крекинга с целью удаления металлов и других нежелательных компонентов б) удаление накопившихся металлов с поверхности катализатора крекинга. [c.181]

    При изучении зависимости степени удаления металлов от выхода деасфальтизата [262] оказалось, что достаточно глубокое удаление металлов при очистке достигается лишь при больших потерях продукта с тяжелым остатком. При повышении глубины отбора деасфальтизата с 40 до 60 объемн. % концентрация в нем вредных металлов возрастает на 400%. В связи с этим некоторые исследователи предприняли попытки интенсифицировать процесс деасфальтизации [196, 262] и даже комбинировать его с другими методами, например с фенольной и гидрогенизационной очисткой деасфальтизатов [263]. [c.183]

    Пропуская сырую нефть или нефтепродукты через контактный материал, состоящий из окислов титана и алюминия или окислов железа и алюминия или немагнитного гематита, при 400—427 °С и 3,5—10,5 МПа, можно очистить сырье от ванадия и натрия, которые остаются на адсорбенте. Из остаточных нефтепродуктов (например отбензиненной нефти) металлы удаляют при контакте с немагнитным гематитом, имеющим частицы с поверхностью более 20 м2, при 410—470 °С, давлении 3,5—10,5 МПа, объемной скорости подачи сырья 0,5—2 ч-> в присутствии водорода [270]. После фильтрации нефти через слой фосфорнокислого катализатора при 100 °С и объемной скорости подачи сырья 1,0 ч содержание ванадия снизилось с 0,023 до 0,013% и никеля с 0,0053 до 0,0018% [271]. Имеются данные [272] об удалении металлов из нефтяного сырья, предназначенного для крекинга в псевдоожиженном слое. Сырье каталитического крекинга (мазут или отбензиненная нефть) контактируется с тонкоразмолотым катализатором крекинга при 150—540°С. Длительность контакта зависит от температуры при 260 °С — до 10 ч, при 540 °С — менее 1 мин. В то же время превращение тяжелого сырья в низкокипящие продукты не должно превышать 20—25%- Количество контакта должно быть от 0,1 до [c.185]

    Первоначальная схема процесса изображена на рис. 95 [366, 367]. Процесс включает четыре стадии 1) ионный обмен 2) разделение катализатора и смолы 3) выделение катализатора из суспензии 4) регенерация смолы. Катализатор, загрязненный металлами, поступает самотеком в один из четырех реакторов, где он смешивается с ионообменной смолой, с которой реагируют ионы металлов. При этом температура, концентрация, pH раствора и длительность реакции тщательно поддерживаются на оптимальном уровне, необходимом для удаления металлов. Каждый реактор представляет собой котел емкостью 15 с рубашкой и механической мешалкой. Смолу подают в виде суспензии в химически очищенной воде. Когда реактор уже полностью загружен, катализатор и смолу тщательно перемешивают. Реакторы работают в следую- [c.232]

    Впервые для удаления металлов, содержащихся в сырье каталитического крекинга, была предложена промывка нефтепродуктов кислотой концентрацией 10% при расходе ее около 30 объемн. % [278]. Это позволило существенно снизить содержание металлов. Были опубликованы также работы, в которых для очистки сырья каталитического крекинга рекомендовалось применение концентрированной кислоты [183 279—284]. Одновременно появились публикации об исследованиях по применению сернокислотной очистки сырья каталитического крекинга ряда советских [285] и зарубежных [182, 286, 287] авторов. [c.186]

    Наиболее радикальный метод очистки сырья — гидроочистка — требует больших капитальных вложений и наличия дешевого водорода. Более дешевые методы обычно менее эффективны. Поэтому и по сей день изыскиваются новые методы очистки. Были сделаны попытки использовать для этой цели различные кислоты, такие, как фтористоводородная [314], иодистоводородная в смеси с гидроароматическим углеводородом, например тетралином, что позволяет в отдельных случаях достичь степени удаления металлов до 50% [315]. Предлагается [316] деметаллизировать нефть п остаточные фракции контактированием их с 1—30% жидкой, нерастворимой в нефтепродуктах ароматической сульфокислотой при 65 °С. После второй экстракции ксилолсульфокислотой содержание никеля снижается с 0,2-10 до 0,1%-10-2, ванадия — с 0,4 до 0,18% 10 . После вторичной экстракции толуолсульфокислотой количество никеля уменьшается до 0,4%-10 , ванадия — до 0,6%-10-4. [c.205]

    При сернокислотной очистке вакуумного газойля из него удаляется значительное количество металлов [288]. Характер зависимости степени удаления металлов от расхода кислоты для всех металлов одинаков (рис. 82, а). При небольших расходах кислоты [c.187]

    В периодической и патентной литературе встречается большое число работ, посвященных удалению металлов с поверхности отравленного катализатора путем обработки его кислотами минеральными (серная, соляная, азотная, фосфорная и др.) и органическими (уксусная, щавелевая, винная и др.) [340—346]. После кислотной обработки катализатор промывают водой. В случае серной и соляной кислоты требуется тщательная промывка для полного удаления анионов. Анионы органических кислот можно удалять [c.213]

    К сожалению, вместе с ванадием удаляется и часть алюминия, что в конечном счете может привести к снижению активности катализатора, Заметное увеличение удельной поверхности катализатора и потери алюминия обусловили поиски некислотных соединений, применение которых исключило бы эти недостатки. Для проверки некоторые из этих соединений сравнивали с винной кислотой, которая также оказалась пригодной для удаления металлов (табл. 57). Полученные результаты подтверждают возможность [c.216]

    Широкие исследования стадии предварительной подготовки гудронов привели к созданию ряда промышленных процессов деметаллизации и деасфальтизации [8] и разработке комплексных схем каталитического гидфооблагораживания вакуумных остатков. На стадиях адсорбцион-но-каталигической деметаллизации или сольвентной деасфальтизации наряду со значительным удалением металлов и асфальтенов обеспечивается эффективное снижение вязкости гудронов. Структурная устойчивость их повышается с удалением асфальтенов. [c.13]

    Для определения степени удаления металлов методом Мет-х был приготовлен специальный образец катализатора, содержащий 0,1 вес. % никеля. Катализатор обладал активностью 21 и фактором коксообразования 6,5. После ионообменной обработки 4 ч при 100 С и pH 2,7 активность катализатора повысилась до 35, а фактор коксообразования снизился до 1,3. Содержание никеля уменьшилось с 0,10 до 0,03%, т. е. более чем в 3 раза. [c.227]

    Опыты на пилотной установке показали, что в результате удаления металлов селективность катализатора улучшается, что выражается в уменьшении фактора коксообразования и в лучшем распределении получаемых продуктов. Изменение фактора коксообразования равновесных катализаторов при использовании процесса [c.230]

    Если учесть, что содержание металлов в остатках больишнства нефтей в виде порфириновых комплексов обычно не превышает 25% от общего содержания металлов в остатке, то можно считать, что вклад в общую глубину удаления металлов счет порфиринового металла невелик. Обычно в условиях каталитического гидрооблагораживання наблюдается высокая степень деметаллизащш - до 90%, и более. Следовательно, наибольшему удалению подвержены непорфириновые формы металлсодержащих комплексов, включенные в поликонденсированные структуры асфальтенов и высокомолекулярных смол. Объяснение механизма и высокой скорости реакций деметаллизации, очевидно, следует искать в реакциях электронного обмена металлов с активными центрами катализатора. Не исключена вероятность активного действия в этом механизме устойчивых свободных радакалов, связанных с металлами, в частности с ванадием. [c.57]

    В процессе гидроочистки в значительной степени разрушаются металлоорганические соединения, содержащиеся в высококипящих нефтяных фракциях, например в вакуумных дистиллятах, используемых в качестве сырья каталитического крекинга. В табл. 16 приведены данные об удалении металлов из вакуумного дистиллята ближневосточной нефти при гидроочистке [9]. [c.37]

    В ряде случаев удается уменьшить массу деталей в результате удаления металла из менее нагруженных зон сечения. Например, применяя полые валы. При отношении внутреннего диаметра й деталей полого профиля к диаметру наружному О, равному 0,9, моменты сопротивления и инерции полого профиля увеличиваются соответственно в 4, 5 и 10 раз по сравнению с деталью сплошного профиля той же массы при /О 0,95 моменты сопротивления и инерции увеличиваются соответственно в 6 и 20 раз (рис. 22). [c.25]

    Процесс деасфальтизации протекает в деасфальтизационной колонне при температуре 60—80°С, давлении 3,5—4,2 МПа, отношении пропана к сырью 3—5 1 (масс.). Выход деасфальтизата зависит от режима деасфальтизации и качества исходного сырья. Характерно, что чем ниже выход деасфальтизата, тем меньше его коксуемость и тем в большей степени обеспечивается полнота удаления металлов (рис. II) [13]. [c.29]

Рис. II. Зависимость полноты удаления металлов (N5, V) от выхода деасфальтизата сырье — остаток западно-техасской нефти с содержанием, % (масс.) серы —0,11 никеля — 24,7-10- ванадия — 39,9 10- коксуемость — 17,7.
    Реакторный блок установки APT состоит из лифт —реактора 1 с бункером —отстойником 2, где при температуре 480 — 590 °С и очень коротком времени контакта асфальтены и етеросоединения частично крекированного сь рья сорбируются на специальном широконо — ростом микросферическом адсорбенте (арткат) с малыми удельной поверхностью и каталитической активностью и регенератора 3, в котором выжигается кокс, отлагающийся на адсорбенте. В процессе APT удаление металлов достигает свыше 95 %, а серы и азота — 50 — 85 %, при этом реакции крекинга протекают в минимальной степени (адсорбент не обладает крекирующей активностью). Примерный выход (б % об.) продуктов APT при ТАД гудрона составляет газы С -С — 3 — 8 нафта — 13—17 легкий газойль — 13—17 тяжелый газойль — 53 — 56 и кокс — 7 — 11 % масс. Смесь легкого и тяжелого газойлей с незначительным содержанием мсырьем каталитического крекинга, где выход бензина достигает более 42 % масс, (табл.8.3). [c.108]

    Более отчетливо это можно проследить на рис. 1.18, где для того же остатка показано, как изменяется распределение никеля по группам компонентов в деасфальтизатах, полученных обработкой легким бензином и бутаном. Так, ванадий по мере удаления асфальтенов и части смол в основном сохранйется, незначительно изменяясь, в группе смол II, а никель в основном в смолах I, причем при каждой стадии обработки, т. е. бензином и затем бутаном, общий вид гистограмм распределения меняется только за счет удаления металлов из наиболее тяжелых компонентов - асфальтенов и смол II [34]. [c.44]

    Происходящее в результате разложения металлсодержащих комплексов удаление металлов сопровождается их накоплением в порах катализатора. В литературе отсутствует информация о материалах изучения механизма реакций деметаллизации. Предположительно, катализатор адсорбирует, например, ванадилпорфирин в неизменном виде, затем кольцо порфирина раскрывается и образуется неванадильное соединение. В результате протекающих превращений на поверхности катализатора металл связывается с активной поверхностью пор. [c.56]

    В последние годы был разработан ряд процессов адсорбционной деас-фальтизации. В 1983 г. в США пущена установка адсорбционной деасфальтизации (процесс ART) мощностью примерно 2,5 млн. т/год (капиталовложения — около 50 млн. долл.). Процесс A1RT предназначен для адсорбционной деметаллизации (а также частичной декарбонизации, обессеривании и деазотирования) нефтяных остатков, которые затем используют в качестве сырья каталитического крекинга. Процесс осуществляют на установке, аналогичной обычной установке каталитического крекинга и состоящей нз реактора (лифт-реактора), где при температуре 480—590 °С и очень коротком времени контакта сырья и адсорбента асфальтены и другие металлы, серу и азотсодержащие соединения с низким содержанием водорода сорбируют на специальном мпкросферическом адсорбенте ( арткат ), и регенератора, в котором выжигают кокс, отлагающийся на адсорбенте. В процессе ART удаление металлов достигает свыше 95%, а серы и азота — 35—50%. Реакции крекинга и дегидрирования протекают лишь в минимальной степени. [c.130]

    Снижение прочности оборудования мол ет также происходить при удалении металлов в результате образования их карбонилов, как это описано выше. Удаление железа или никеля из сплавов, даже из нержавеющей стали, может быть таким сильным, что сиилпрочности стенок труб из-за их утончения может, например, привести к разрыву стенок. В таких случаях в стенках часто делают углубления минимальной толщины, так чтобы там, где существует вероятность потенциального разрыва, образовывалась легко обнаруживаемая течь. [c.144]

    В процессе гидроочистки в значительной степени разрушаются металлорганичеокие соединения и выделяющиеся металлы отлагаются на катализаторе. Данные о степени удаления металлов при гидроочистке вакуумного газойля приведены ниже (в %)  [c.266]

    В дальнейшем в связи с широким применением в качестве сырья крекинга тяжелых газойлей нефтепереработчики вплотную столкнулись с проблемой отравления катализатора и необходимостью удаления металлов из сырья или с катализатора. При попытках определить допустимую норму металлов в сырье крекинга и на катализаторе оказалось, что эти нормы зависят от типа установки. Так, было найдено, что в псевдоожиженном слое пылевидного катализатора происходит более существенное отравление, чем в движущемся слое шарикового катализатора. Металлы обычно концентрируются на внешней поверхности шарика [101, 102, 207]. При изучении распределения никеля и ванадия, отложившихся из сырья по сечению шариков катализатора, оказалось, что около 44% всего количества никеля и 48% всего содержащегося ванадия располагается в слое внешней поверхности гранул катализатора глубиной 35 мк, что составляет 57о от массы гранулы. При работе установки с циркулирующим слоем шарикового катализатора поверхность шариков истирается, и таким образом основная масса металлов, содержащаяся на катализаторе, выводится из системы вместе с катализаторной пылью. Это подтверждается следующими данными, которые были получены при истирании в лабораторных условиях катализатора, отравленного 0,01057о никеля  [c.149]

    В промышленных условиях вывод металлов из систем с шариковым и пылевидным катализатором в результате его истирания неодинаков. При истирании поверхности шарикового катализатора значительная часть накопившихся металлов выводится из системы, и таким образом содержание металлов в катализаторе существенно снижается. В пылевидном катализаторе металлы практически равноверно отлагаются по всему объему частиц поэтому при истирании их поверхности избирательного удаления металлов не наблюдается и содержание их выше, чем в шариковом катализаторе. [c.149]

    Удаление вредных примесей в виде шлама путем обработки сырья фтористым бором описано в патенте [320]. Шлам отделяют при О—60 °С в электрическом поле с разностью потенциалов не менее 5000 В/см. Коксообразующие и металлсодержащие компоненты хорошо удаляются также при обработке нефтепродуктов эфиратом фтористого бора [321]. Высокая степень удаления металлов отмечается при контактировании сырья каталитического крекинга с ЫаОС1 или Ы-бромсукцинимидом при 15—150 °С, 0,1 — [c.206]

    В связи с существенным улучшением показателей каталитического крекинга при удалении металлов с поверхности алюмосиликатного катализатора ряд методов реактивации был исследован весьма подробно. В Советском Союзе разработан процесс сухой деметаллизации катализатора. Два метода реактивации катализаторов нашли применение в США в промышленном масштабе. Фирма Атлантик Рифайнер (США) разработала метод очистки катализатора крекинга, обеспечивающий достаточно полное удаление вредных металлических примесей. Этот процесс носит название Мет-х. Он внедрен на нефтеперерабатывающем заводе в Филадельфии в октябре 1961 г. Другой процесс очистки катализатора — Демет — разработан фирмой Синклер Рифайнер и внедрен на заводе в Вудривере (штат Иллинойс) в декабре 1961 г. [c.225]

    Для удаления металлов с поверхности катализатора предложен процесс сухой деметаллизации [384]. Он отличается от известных процессов Мет-х и Демет, внедренных в промышленности США, тем, что металлы удаляются с поверхности катализатора путем перевода их в легколетучие карбонилы. Известно, что карбонилы никеля и железа образуются при контакте окиси углерода со свободными металлами. Металлы на равновесном катализаторе после регенерации находятся в виде окислов поэтому перед обработкой окисью углерода для перевода металла в свободное состояние необходимо его восстановить. Алюминий и ванадий в этих условиях [c.243]

    При такой комбинации возможен выбор оптимального сочетания глубины удаления металлов в каждом цроцессе, обеспечиващем ьшни-иальные затраты, и максимального выхода целевого продукта. [c.75]

    БашНШШ разработал комплекс процессов переработки гудронов путем их деасфальтизации-лёгким бензином с последующим гидрообес-сериванием деасфальтизата [6,7]. Разработанный для гидрообессеривания остаточного сырья шщрокопористый катализатор [8Лобеспе-чивает стабильно глубокую гидроочистку деасфальтированных гудронов непрерывно, в течение 5-8 тыс.ч в зависшлости от характеристики исходного сырья и требований к качеству продуктов [9Д. Анализ катализатора по окончании пробега показал,что, обеспечивая 90-95/ -ное удаление металлов, катализатор способен накапливать до 120  [c.75]

    Исследования по гидрообессериванию деасфальтированного гудрона проведены на катализаторе, характеризующемся ш1Ч)окопористой структурой и обладающем значительной металлоемкостью (КГДО) С8 . В качестве контакта для предварительного удаления металлов изучались системы, состоящие из железа,кобальта, никеля или молибдена, нанееенных методом пропитки соответствующими солями на носитель -окись алюминия - также характеризующийся пшрокопористой структурой. Характеристика испытуемых образцов цредставлена в табл.1, характеристика сырья для испытаний - в табл.2. [c.75]

chem21.info

Водород удаление из металла - Справочник химика 21

    Наиболее радикальный метод очистки сырья — гидроочистка — требует больших капитальных вложений и наличия дешевого водорода. Более дешевые методы обычно менее эффективны. Поэтому и по сей день изыскиваются новые методы очистки. Были сделаны попытки использовать для этой цели различные кислоты, такие, как фтористоводородная [314], иодистоводородная в смеси с гидроароматическим углеводородом, например тетралином, что позволяет в отдельных случаях достичь степени удаления металлов до 50% [315]. Предлагается [316] деметаллизировать нефть п остаточные фракции контактированием их с 1—30% жидкой, нерастворимой в нефтепродуктах ароматической сульфокислотой при 65 °С. После второй экстракции ксилолсульфокислотой содержание никеля снижается с 0,2-10 до 0,1%-10-2, ванадия — с 0,4 до 0,18% 10 . После вторичной экстракции толуолсульфокислотой количество никеля уменьшается до 0,4%-10 , ванадия — до 0,6%-10-4. [c.205]     Если использовать экспериментальные данные о степени заполнения поверхности адсорбированными атомами водорода, то можно сделать достаточно вероятные предположения о том, каким путем преимущественно соверщается отвод адсорбированных водородных атомов. Скорость разряда на адатомах водорода (электрохимическая адсорбция) зависит от поверхностной концентрации водородных атомов в первой степени, а скорость рекомбинации — во второй. Поэтому на металлах, слабо адсорбирующих водород, удаление его с поверхности должно осуществляться главным образом за счет электрохимической десорбции. Наоборот, с поверхности металлов, обладающих высокой адсорбционной способностью по отношению к атомам водорода, наиболее эффективным будет их отвод путем каталитической рекомбинации (Фрумкин). [c.413]

    Пропуская сырую нефть или нефтепродукты через контактный материал, состоящий из окислов титана и алюминия или окислов железа и алюминия или немагнитного гематита, при 400—427 °С и 3,5—10,5 МПа, можно очистить сырье от ванадия и натрия, которые остаются на адсорбенте. Из остаточных нефтепродуктов (например отбензиненной нефти) металлы удаляют при контакте с немагнитным гематитом, имеющим частицы с поверхностью более 20 м2, при 410—470 °С, давлении 3,5—10,5 МПа, объемной скорости подачи сырья 0,5—2 ч-> в присутствии водорода [270]. После фильтрации нефти через слой фосфорнокислого катализатора при 100 °С и объемной скорости подачи сырья 1,0 ч содержание ванадия снизилось с 0,023 до 0,013% и никеля с 0,0053 до 0,0018% [271]. Имеются данные [272] об удалении металлов из нефтяного сырья, предназначенного для крекинга в псевдоожиженном слое. Сырье каталитического крекинга (мазут или отбензиненная нефть) контактируется с тонкоразмолотым катализатором крекинга при 150—540°С. Длительность контакта зависит от температуры при 260 °С — до 10 ч, при 540 °С — менее 1 мин. В то же время превращение тяжелого сырья в низкокипящие продукты не должно превышать 20—25%- Количество контакта должно быть от 0,1 до [c.185]

    С другой стороны, возможность медленной рекомбинации атомов водорода необходимо учитывать для объяснения перенапряжения водорода на металлах, хорошо адсорбирующих его, например, на металлах группы платины и группы железа. Зависимость т)—lg I на платине при небольших поляризациях имеет тангенс угла наклона 0,03 В, что в согласии с уравнением (58.9) свидетельствует в пользу рекомбинационного механизма удаления атомов водорода. На первый взгляд, наблюдаемый наклон находится в противоречии с представ- [c.302]

    Для выяснения механизма выделения водорода используется и ряд других методов. Так, например, определенные выводы о механизме выделения водорода можно сделать, изучая проникновение водорода в решетку металла. Такие опыты проводятся в ячейках, которые разделены на две части фольгой — мембраной из исследуемого металла. Одну сторону (поляризационную) мембраны подвергают катодной поляризации и следят за изменением потенциала противоположной стороны (диффузионной). При катодной поляризации одной стороны мембраны потенциал диффузионной стороны также смещается в отрицательную сторону, что свидетельствует об избыточной поверхностной концентрации водорода на поляризационной стороне, вызванной замедленностью стадий удаления водорода, и диффузии водорода через металл. [c.347]

    На рис. 30 показана зависимость растворимости водорода в железе от температуры. Изломы на кривой соответствуют полиморфным превращениям железа и температуре его плавления. Характерно, что при температурах, приближающихся к температуре кипения железа, растворимость водорода в нем снова уменьшается (удаление водорода испаряющимся металлом). [c.128]

    Известны случаи, когда ингибиторы не только тормозят процесс наводороживания, но даже уменьшают содержание водорода по сравнению с исходным, т. е. по сравнению с количеством технологического водорода в стали. Из табл. 6 следует, что травление в чистой серной кислоте привело к увеличению содержания водорода в образцах Армко-железа в два раза и в образцах сталь 10 более чем в три раза. Травление в том же растворе, но в присутствии ингибиторов КПИ-1 и КПИ-3, напротив, уменьшило содержание водорода в металле против исходного почти в два раза [23]. Подобный, кажущийся парадоксальным, результат связан, по-видимому, с тем, что большая часть водорода (80—90%) находится в приповерхностном слое металла [149] и сконцентрирована в дислокациях, вакансиях и других дефектах структуры. В ходе травления верхний слой металла снимается, что обеспечивает удаление технологического или про- [c.44]

    На катодной старой поверхности берегов трещины устанавливается равновесная поверхностная концентрация атомов водорода hi характеризующаяся определенной адсорбционной степенью заполнения. Удаление атомов водорода с данной поверхности пойдет тремя путями десорбцией в атмосферу (преимущественно рекомбинацией), абсорбцией водорода в металл и поверхностной диффузией в сторону СОП. Первый процесс характеризуется константой скорости К, второй и третий - константами скорости /С" и А" " Соответственно. Это равновесие носит динамический характер и определяется равенством скоростей адсорбции водорода и его удаления с поверхности. Тогда константа динамического равновесия Кр определится уравнением  [c.84]

    Применение комбинированного электрохимического обезжиривания (на катоде, затем на аноде) позволяет достигнуть за короткое время почти полного удаления водорода из металла и восстановления упругих свойств. [c.125]

    Удаление нитрогруппы из молекулы органического соединении с замещением на атом водорода или металла  [c.175]

    С водородом Ре, Со и N1 не образуют соединений, но активно его растворяют. Особенно это относится к высокодисперсному никелю. Растворение водорода в металлах (наводороживание) приводит к потере их прочности (водородная хрупкость), поэтому удаление водорода, попадающего в металлы при катодном осаждении, является важной технической задачей. [c.187]

    В случае металлов часто после нагревания их в вакууме предпринимают восстановление адсорбированного кислорода или азота водородом. Этот метод более эффективен, так как водород, хемосорбированный металлом, частично может быть удален путем последующего нагревания в вакууме. [c.159]

    Экспериментальным путем установлено, что мишметалл с повышенным содержанием лантана, облегчает обрабатываемость сталей, к которым он добавляется, что связывается с более эффективным процессом удаления водорода из металла за счет лантана. [c.756]

    Г. Давление разложения и удаление водорода из металла..........227 [c.201]

    Удаление окалины гидридом натрия имеет ряд преимуществ по сравнению с кислотным травлением. В гидридном методе обработки исключаются потери металла за счет перетрава, отсутствует выделение водорода, и металл не поглощает водорода [c.93]

    Скорость разряда зависит от поверхностной концентрации водородных атомов в первой степени, а скорость рекомбинации — во второй. Поэтому на металлах, слабо адсорбирующих водород, удаление его с поверхности должно осуществляться преимущественно за счет электрохимической десорбции. Напротив, с поверхности металлов, обладающих высокой адсорбционной способностью по отношению к атомам водорода, наиболее эффективным будет их отвод путем каталитической рекомбинации (Фрумкин). [c.370]

    По схеме процесса деметаллизации при каталитическом крекинге остатка нефти использован реактор с неподвижным слоем катализатора при I = 380 20 С и под давлением водорода. Оказалось, что в данном процессе глубина очистки от ванадия выше, чем от никеля, причем при очистке от ванадия она находится в линейной зависимости от степени удаления асфальтенов. Увеличение содержания никеля в высокомолекулярных соединениях нефти связано с накоплением в этой фракции никельсодержаш,их соединений (образующихся при превращении асфальтенов), а скорость удаления металлов из различных фракций тяжелых остатков неодинакова. Эффект отложения металлов на кобальтомолибденовом катализаторе при гидрообработке металлсодержащих нефтепродуктов предложен и для анализа следов ванадия в нефтях. [c.86]

    К счастью, коэффициенты селективности почти всех металлов по отношению к иону водорода несколько больше. К тому же, когда раствор стекает вниз по колонке, верхние слои смолы сорбируют больше металла, чем нижние. Поэтому в колоночном методе необходимая для количественного удаления металлов навеска смолы значительно меньше, чем в статическом методе. Необходимая навеска смолы зависит от ряда условий природы и количества металлов в образце, объема раствора и концентрации в нем водородных ионов, типа смолы, отношения высоты колонки к площади поперечного сечения, температуры и ско- [c.93]

    Однако для изучения природы систем водород — металл термодинамические и кинетические характеристики оказываются недостаточными. Это, очевидно, связано с особым состоянием водорода в металлах. Здесь нет необходимости останавливаться на возможности образования экзотермических и эндотермических растворов водорода в разных металлах. Более тонкие эффекты, заключающиеся в видимом многообразии форм нахождения водорода в одном и том же металле (удаление водорода из металла по частям при комнатной температуре, при нагреве в вакууме и при плавлении в вакууме), электроперенос водорода как к аноду, так и к катоду в сплавах железа [1] ставят нас перед необходимостью изыскания, наряду с тривиальным определением термодинамических и кинетических характеристик систем водород — металл, новых методов исследования этих систем. Естественным этапом в изыскании таких методов является исследование влияния внешнего воздействия на систему, и в качестве способа внешнего воздействия, очевидно, можно избрать наложение электрического поля. [c.49]

    О высоковакуумном экстракционном анализаторе для определения водорода в металлах сообщают Кондон и сотр. (1971). Остаточное давление 10 мм рт. ст. было получено при использовании выпускаемого промышленностью вакуумного агрегата. Детектором служил квадрупольный масс-спектрометр с выходом на аналоговое устройство, которое выдает общее содержание водорода (млн ) как функцию времени (канал 1) или фиксирует скорость удаления водорода из образца (канал 2). [c.375]

    Действие сурьмы, селена и теллура аналогично действию мышьяка. По мнению М. Смяловского [76], наличие этих добавок в электролите вызывает отравление поверхности железа, в результате чего затрудняется рекомбинация атомов водоро- да в молекулы и, следовательно, удаление водорода, что способствует проникновению водорода в металл. [c.318]

    Этот способ основан на использовании химических волокон часто сочетаются принципы формования химических волокон и техника спекания, широко применяемая в порошковой металлургии. Описан ряд конкретных приемов получения волокон этим методом. Согласно патенту [37], химические волокна пропитывают водными растворами солей или смесями солей элементов первой, шестой, восьмой группы до достижения сорбции 0,1 — 1 г металла иа 1 моль полимера. Избыток раствора удаляют, а волокно подвергают термической обработке, при которой происходят разложение и удаление полимера. Термическую обработку проводят в условиях, исключающих воспламенение полимера. На этой стадии образуются окислы металлов, которые затем восстанавливают в среде водорода до металла и спекают его. Исходным материалом служит вискозное волокно оно разлагается при температуре 350—500 °С на воздухе при скорости нагревания 100°С/ч. Этим способом получены волокна из Ш, Ад, N1, М1 + Ее. [c.328]

    Помимо вакуумных печей и генератора колебаний высокой частоты, для тред-варительного обезгаживания металлов применяются также печи, в которых детали или заготовки прокаливаются в токе водорода или смеси водорода с аао-том. Это менее эффектив-. ный способ обезгаживания по сравнению с вакуумными печами, однако водородные печи (рис. 5-87) значительно проще и дешевле и в то же время дают определенный эффект, облегчающий окончательное прокаливание многих деталей в процессе откачки прибора. При прокаливании в атмосфере водорода имеющиеся в металле газы выделяются в атмосферу водорода, а на их место в металл, и то лишь частично, проникает водород таким образом, окончательное обезгаживание прокаленной в водороде детали в процессе откачки прибора сводится к удалению некоторого количества водорода, который к тому же диффундирует из металла очень легко. Из-за взаимодействия между различными металлами и водородом некоторые металлы, например Та, 2г, Си, при прокаливании в водороде резко меняют свои свойства, почему предвари-. тельно обезгаживать такие металлы в водородных печах нельзя. [c.196]

    В последние годы был разработан ряд процессов адсорбционной деас-фальтизации. В 1983 г. в США пущена установка адсорбционной деасфальтизации (процесс ART) мощностью примерно 2,5 млн. т/год (капиталовложения — около 50 млн. долл.). Процесс A1RT предназначен для адсорбционной деметаллизации (а также частичной декарбонизации, обессеривании и деазотирования) нефтяных остатков, которые затем используют в качестве сырья каталитического крекинга. Процесс осуществляют на установке, аналогичной обычной установке каталитического крекинга и состоящей нз реактора (лифт-реактора), где при температуре 480—590 °С и очень коротком времени контакта сырья и адсорбента асфальтены и другие металлы, серу и азотсодержащие соединения с низким содержанием водорода сорбируют на специальном мпкросферическом адсорбенте ( арткат ), и регенератора, в котором выжигают кокс, отлагающийся на адсорбенте. В процессе ART удаление металлов достигает свыше 95%, а серы и азота — 35—50%. Реакции крекинга и дегидрирования протекают лишь в минимальной степени. [c.130]

    Водород, восстановленный в ходе катодного процесса на поверхности стенох трещины, поглощается металлом не полностью, некоторая часть его десорбируется и уходит в атмосферу. Обозначим через А н, долю водорода, абсорбируемого металлом от общего количества, восстановленного на поверхности. В данном случае на металле протекает параллельная реакция, продукт которой - водород, удаленный с его поверхности. Так как удаление водорода происходит по двум направлениям — десорбция в атмосферу и абсорбция его металлом, учитывая теорию параллельных реакций, кн можно назвать константой водородного адсорбционно-абсорбционного равновесия, равную отношению константы скорости абсорбции водорода к сумме данной константы и константы скорости десорбции водорода с данной поверхности, Принимая во внимание, что катодный ток равен анодному и учитывая уравнения (2, 6 и 12), легко показать, что количество водорода поступившее в металл вследствие единичного акта электрохимических сопряженных процессов окисления и восстановления при работе гальванопары СОП - старая поверхность, определяется уравнением [c.82]

    Ашальм предполагал, что при действии перекиси водорода на металлы прсис-ходит удаление электронов  [c.66]

    Объемная скорость подачи сырья (ОСПС) определяет, длительность контакта между сырьем, водородом и катализатором, ОСПС зависит от характеристики исходного оырья и заданной глубины удаления серы. На величину объемной скорости подачи сырья оказывает влияние используемый при гидрообессеривании катализатор. Объемная скорость подачи сырья влияет как на удаление металлов -ванадия и никеля (рис.4), так и на удаление серы. С шшопенивм объемной скорости подачи сырья константа обессеривания снижается (рис.5), а с увеличением длительности контакта в остатке снижается не только общая сера, но и сера в его аофальтеновой и не-асфальтеновой частях. [c.23]

    При парциальном давлении водорода до 10-14 МПа определяющим фактором дезактивизапии катализатора станош тся помимо коксе отложение тяжелых металлов [эб]. Влияние парциального давле-вия водорода на удаление металлов из мазута кувейтской нефти и гудрою западносибирской нефти приведено на рис.6 [з 3 и 7 соответственно. [c.25]

    Удаления масла, жира, пота рук и т. п. с поверхности металла можно достигнуть, как правило, промыванием чистым бензином, трихлорэтиленом, эфиром или четыреххлористым углеродом, причем для этой цели металлические части подвешивают на тонкой проволоке и опускают в жидкость промывные сосуды целесообразно применять один после другого или обрабатывать отдельные детали по типу экстракционного аппарата. В щелочные, мыльные или водные растворы, удаляющие жир, часто добавляют подходящие для этой цели моющие средства (РЗ, Fewa и т. п.). Остатки жира можно удалить также электролитически, для этого при высокой плотности тока ( 0,5 aj M -) металл, служащий катодом, помещают на 1—2 мин в теплый раствор, содержащий примерно 18% NaOH и 2% K N. Продолжительная обработка не рекомендуется, так как при этом металл сильно насыщается водородом. Удаление последних следов масла или жира можно осуществить прокаливанием в высоком вакууме, если незначительное образование углерода не помешает в дальнейшем. [c.50]

    При элементарном анализе таких веществ кислород, связанный с металлом, останется в виде окисла металла и не войдет в состав органической массы. При удалении металла соляной тспслотой кислород войдет в состав органической массы, тем самым понизится содержание и З глерода, к водорода. [c.11]

    Уменьшение степени чистоты механической обработки по-вер.хности входной стороны мембраны при насыщении ее электролитическим водородом приводит к уменьшению диффузии водорода в металл, а уменьшение степени чистоты обработки выходной (диффузионной) стороны вызывает увеличение диффузии водорода через мембрану. Первоначально это было установлено для газообразного атомарного водорода [233], но, по мнению Дж. Фаста, вывод применим и к случаю электродиффузии водорода, поскольку все факторы, повышающие активность входной поверхности металла в катализировании процесса 2Н- Нг, уменьшают концентрацию водородных атомов на поверхности и тем самым уменьшают диффузию водорода в металл. Повышение активности выходной поверхности мембраны должно способствовать удалению продиффундировавшего через ее толщу водорода. Действительно, X. Баукло и Г. Циммерман [177] установили, что при электролитическом выделении водорода на полированной поверхности в глубь металла проникает большее количество водорода, чем при выделении [c.74]

    Таким образом, графитообразующие элементы (А1 и Si) и из карбидообразующих ванадий и ниобий обусловливают в случае применения вакуум-нагрева полное удаление водорода из металла. Остальные карбидообразующие элементы обусловливают [c.176]

    Не существует никаких общих правил, которые можно было бы рекомендовать для окончательной подготовки поверхности с гарантией, что будет обеспечена ее химическая чистота и достаточная гладкость. Каждую систему следует рассматривать отдельно и заботиться об удалении посторонних веществ, которые могут влиять на перестройку или активность поверхности, причем проводить очистку следует так, чтобы структура поверхности не изменялась. Вследствие перестройки поверхности многие каталитические реакции фактически сами создают для себя поверхность катализатора, и поэтому начальная гладкость поверхности не имеет такого существенного значения, как в случае окисления. Как показали ранее электронные микрофотографии [24] при увеличении 84 000 X, поверхность электрополиро-ванного кристалла меди получается на вид гладкой. Конечно, такие фотографии не могут служить доказательством отсутствия волнообразности поверхности или доказательством ее гладкости в атомном масштабе. Но, поскольку большинство каталитических реакций вызывает перестройку, такие поверхности достаточно гладки для целей подобных исследований, В результате перестройки поверхности с нее удаляются некоторые загрязнения путем простого покрытия их металлом. В некоторых реакциях, таких, как реакция водорода и этилена на никеле, поверхность катализатора не претерпевает заметной перестройки, и в этом случае требуется весьма тщательно удалять загрязнения с поверхности. Как указывалось выше, это осуществляется путем удаления металла бомбардировкой ионами водорода с последующим отжигом. [c.87]

chem21.info

Усовершенствованный способ удаления металлов и аминов из сырой нефти

1. Способ удаления металлов и аминов из сырой нефти, включающий добавление к указанной сырой нефти эффективного для удаления металла количества, одной или нескольких оксикарбоновых кислот, выбранных из молочной кислоты и яблочной кислоты, или их солей,; отдельное добавление промывочной воды к указанной сырой нефти и перемешивание указанной сырой нефти, кислоты и промывочной воды с образованием эмульсии; и разделение указанной эмульсии на водную фазу и сырую нефть с уменьшенным содержанием металлов и/или аминов.

2. Способ по п.1, отличающийся тем, что оксикарбоновая кислота представляет собой яблочную кислоту или ее соль.

3. Способ по п.1, отличающийся тем, что металл представляет собой кальций.

4. Способ по п.1, отличающийся тем, что эффективное для удаления металла количество оксикарбоновой кислоты представляет собой количество оксикарбоновой кислоты, требуемое для доведения рН отделенной водной фазы до значения в интервале от примерно 3 до примерно 6.

5. Способ по п.1, дополнительно включающий добавление к сырой нефти или промывочной воде одного или нескольких деэмульгаторов.

7. Способ по п.1, дополнительно включающий добавление к сырой нефти или промывочной воде одного или нескольких ингибиторов коррозии.

8. Способ по п.1, дополнительно включающий добавление к сырой нефти или промывочной воде одного или нескольких отличных от яблочной и молочной кислоты агентов, образующих с металлами комплексные соединения.

9. Способ по п.8, отличающийся тем, что к промывочной воде добавляют один или несколько ингибиторов коррозии.

10. Способ по п.9, отличающийся тем, что оксикарбоновые кислоты добавляют к сырой нефти выше по потоку по отношению к промывочной воде.

11. Способ по п.9, отличающийся тем, что окискарбоновые кислоты добавляют к сырой нефти ниже по потоку по отношению к промывочной воде.

12. Способ по п.1, отличающийся тем, что указанную эмульсию разделяют с применением электростатической коалесценции.

13. Способ по п.1, отличающийся тем, что сырая нефть представляет собой неочищенную нефть.

14. Способ по п.13, отличающийся тем, что неочищенная нефть представляет собой неочищенную нефть месторождения Doba.

15. Усовершенствованный способ обессоливания при нефтепереработке для удаления металлов и аминов из сырой нефти, включающий:

(i) обеспечение сырой нефти;

(ii) добавление к сырой нефти промывочной воды;

(iii) смешивание указанной сырой нефти и промывочной воды с получением эмульсии, и

(iv) разделение эмульсии с обеспечением водной фазы и сырой нефти с пониженным содержанием металлов и аминов, причем усовершенствование включает добавление к указанной сырой нефти эффективного для удаления металла количества одной или нескольких оксикарбоновых кислот, выбранных из молочной кислоты и яблочной кислоты, отдельно от добавления промывочной воды.

bankpatentov.ru

Удаление - ванадий - Большая Энциклопедия Нефти и Газа, статья, страница 1

Удаление - ванадий

Cтраница 1

Удаление ванадия является еще более сложной операцией. Поэтому для уменьшения его разрушительного действия в топливо вносят присадки ( MgO, CaO, А12О3), которые при сгорании образуют с ванадием высокоплавкие соединения.  [2]

Удаление ванадия путем деасфальтизации мазута пропаном или другими легкими углеводородами в промышленных масштабах не проверено и рентабельность такой очистки котельных и печных топлив сомнительна.  [3]

В течение всего опита глубина удаления ванадия и никеля составляет SO и Щ ч соответственно. Причем, как видно из данных табл. 1, эти величины изменяются незначительно в изученных пределах времени ра-боти катализатора. Эти данные указывают на достаточно высокую селективность гидрообессериванил в первый период опыта, выход фракций, выкипающих ни & е 350 С, составляет 5 - 9, до 5Ш С - 32 - 40 по сравнению с содержанием фракций в исходном сырье 3 5 и 18 соответственно.  [4]

Разработан-ная методика обессеривания нефтяных остатков и удаления ванадия представляет исключительно большой интерес. Поэтому важно знать последние результаты работ в отношении условий процесса и продолжительности пробега между регенерациями, а также сколько раз можно регенерировать катализатор до того, как сравнительно большое количество ванадия, содержащегося в нефтяных остатках, заполнит поры катализатора.  [5]

Важным результатом гидрообессеривания асфальтеновых компонентов является сравнительно легкое удаление ванадия; никель, наоборот, удаляется значительно труднее. В результате этого отношение никель: ванадий возрастает с повышением жесткости процесса.  [6]

На рис. б сравниваются константы скорости удаления ванадия и никеля ( второго порядка) в зависимости от давления водорода. При давлении водорода 14 МПа константа скорости удаления для адв-мокобальтмолибденового катализатора в 3 раза выше, чем для мартан-пй рй ипннрягши, при более, низком давлении эта разница меньше. Это различие авторы объясняют тем, что более широкопористый алю-мокобалътмолибдеиовый катализатор ( средний диаметр пор 330 I) дает значительные преимущества при увеличении давления по сравнению с марганцевыми конкрециями ( средний диаметр пор 89 А), так как лимитирующей является скорость поверхностной реакции, а не скорость диффузии.  [8]

При гидроочистке и гидрокрекинге вакуумного газойля полнота удаления ванадия превышает 9Ъ %, полнота удаления натрия в два раза ниже. С этой точки зрения очень большое значение приобретает обессоливание нефти, от которого зависит содержание в ней натрия.  [9]

Вслед за этим применяется более энергичная деметаллизация для удаления ванадия и растворения в кислоте порфиринов, первоначально соединенных с ванадием. Этот двухступенчатый метод пока еще но был использован, и поэтому возможные ограничения его эффективности пока не выяснены. Одним из возможных недостатков метода является то, что в его принятой форме на первой ступени нельзя отделить никель от других металлов ( например, меди), которые могут также присутствовать в нефти и легко удаляться из нее. Точно так же на второй ступени метода нельзя было бы отделить ванадий от других металлов, с трудом поддающихся удалению.  [10]

Самуэльсон с сотрудниками [65 ] использовали анионит в нитратной форме для удаления ванадия [ IV ], железа [ III ], алюминия, меди ( II), никеля и кобальта перед определением щелочноземельных металлов. Определение осуществляют в слабокислой среде на ани-оните, переведенном в цитратную форму обработкой избытком лимонной кислоты с последующей промывкой умеренным количеством воды. Важно, чтобы анионит не содержал слабоосновных групп. При высоком значении рН в колонке могут поглощаться щелочноземельные металлы.  [12]

Метилоранжевый можно добавить и к анализируемому раствору, если после удаления ванадия раствор кипятят с персульфатом аммония и нитратом серебра; при этом индикатор разрушается.  [13]

Использование этих нефтей для получения ГТТ требует применения специальных методов для удаления ванадия, серы и других нежелательных компонентов, а также разработки и применения специальных присадок, понижающих ванадиевую коррозию. В отличие от сернистых нефтей малосернистые нефти Украины - долинская, борис-лавская, битковская и др. содержат в несколько раз меньше агрессивных элементов.  [14]

Страницы:      1    2

www.ngpedia.ru