Некоторые ТЕПЛОВЫЕ СВОЙСТВА НЕФТЕПРОДУКТОВ. Удельная теплоемкость нефть


Некоторые ТЕПЛОВЫЕ СВОЙСТВА НЕФТЕПРОДУКТОВ.

Тепловые свойства нефти имеют важное значение в технологии ее переработки, поскольку все технологические процессы связа­ны с процессами нагревания и охлаждения, а их расчет соответ­ственно базируется на знании тепловых свойств. К ним отно­сятся все известные тепловые физические величины (теплоемкость, теплопроводность, энтальпия и др.), но применительно к нефтяным фракциям, имеющим очень сложный химический состав, определение этих величин носит специфичный характер.

Удельная теплоемкость

Удельная теплоемкость для жидких нефтепродуктов определяет­ся как количество тепла необходимого для нагревания массы или объёма газа на 1оС.

Удельная теплоемкость углеводородов и нефтяных фракций существенно зависит отих химического строения и состава.

Теплоёмкость – аддитивная физическая величина, т.е. для смесей нефтепродуктов или их паров она может быть вычислена по правилу аддитивности (смешения) по массовым долям компонентов смеси и их теплоёмкости.

Теплопроводность

Теплопроводностью характеризуют скорость распространения тепла в различных веществах.

Из этого закона следует, что коэффициент теплопроводности (часто именуемый кратко "теплопроводность") это количество тепла, которое проходит в единицу времени через единицу поверхности при разности температур в 1 градус на единицу дли­ны в направлении теплового потока.

Теплопроводность нефтепродуктов зависит от их химического состава, фазового состояния, температуры и давления. Наименьшей теплопроводностью обладают газы и пары, наибольшей – твёрдые нефтепродукты, промежуточное положение занимают жидкости. Теплопроводность углеводородных газов и нефтяных паров в противоположность жидким нефтепродуктам увеличивается с повышением температуры.

.

Теплота сгорания

Количество тепла, выделяющегося при полном сгорании единицы массы нефти или нефтяного топлива, а также при полном сгорании 1 кмоль или 1 м3 газа, называют теплотой сгорания. Эта важнейшая величина характеризует потенциальный запас энергии в топливе и определяет во многом мощность двигателей (или других устройств), в которых топливо используется.

Теплоту сгорания нефтяных и газообразных топлив подсчитывают по формулам или определяют экспериментально сжиганием топлив в калориметрах.

Высшая теплота сгорания получается расчетом на основании результатов измерений в течение опыта, учитывая при этом все тепло, выделившееся в бомбе и отданное в систему калоримет­ра, включая тепло конденсации образующихся при горении водяных паров.

МОТОРНЫЕ СВОЙСТВА.

Под моторными свойствами нефтяных топлив понимают физические величины, характеризующие особенности их горения внутри соответствующего типа двигателя внутреннего сгорания. В связи с тем, что моторные свойства неразрывно связаны с типом двигателей внутреннего сгорания, необходимо предварительно ознакомится с некоторыми принципиальными моментами их работы, определяющими характер их горения.

1. Детонационная стойкость

Под детонационной стойкостью понимают способность топлива сгорать в цилиндре двигателя с принудительным зажиганием без детонации (detono по латыни – "греметь"). Явление детонации – следствие аномального горения ТВС (топливно-воздушной смеси) в цилиндре.

Нормальным считается горение, когда от точки зажигания (свечи) фронт пламени в цилиндре распространяется по ради­усам сферы во все стороны со скоростью порядка 20 – 50 м/с.

Аномальное горение – это горение, когда одновременно с фронтом нормального горения, распространяющимся от свечи, и объеме ТВС, отдаленном от этого фронта, возникают множе­ственные очаги самовозгорания (микровзрывы), от которых ударная волна распространяется со сверхзвуковой скоростью (до 200 м/с) во все стороны по несго­ревшей части ТВС и многократно отражается от стенок цилиндра. Ударное действие этих волн прояв­ляется в виде слышимого металличе­ского стука.

Воспламеняемость

Свойством воспламеняться от контакта с горячим воздухом характеризуются дизельные топлива. В момент начала распыления дозы топлива в цилиндр двига­теля протекают следующие процессы: испарения мельчайших капелек топлива в атмосфере разогретого до 500 – 600°С воздуха, образования смеси паров топлива с воздухом, интенсивное окисление углеводородов и, наконец, воспламенение смеси.

Чем короче во времени все процессы до воспламенения (задержка воспламенения, или индукционный период), тем луч­ше моторное свойство дизельного топлива – воспламеняемость.

Похожие статьи:

poznayka.org

удельная теплоёмкость нефти - это... Что такое удельная теплоёмкость нефти?

 удельная теплоёмкость нефти
  1. oil specific heat

Русско-английский словарь нормативно-технической терминологии. academic.ru. 2015.

  • удельная теплоёмкость газа
  • удельная теплоёмкость при постоянном давлении

Смотреть что такое "удельная теплоёмкость нефти" в других словарях:

  • удельная теплоёмкость нефти — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN oil specific heat …   Справочник технического переводчика

  • Удельная теплоёмкость — физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 Кельвин. Удельная теплоемкость обозначается буквой c и измеряется в Дж/кг*Кельвин. Единицей СИ… …   Википедия

  • Нефть — У этого термина существуют и другие значения, см. Нефть (значения). Нефть ? Основной состав Сn …   Википедия

  • Цена на нефть — Нефтяные вышки в Лос Анджелесе (1896) Цена на нефть, $ за баррель, 1997 2008 (NYMEX Light Sweet Crude Oil Futures Prices) Цена на нефть, $ за баррель, 1998 ноябрь 2008 …   Википедия

  • Нефть — (Oil) Нефть это горючая жидкость Добыча и переработка запасов нефти является основой экономики многих стран Содержание >>>>>>>>>>>>>>>>> …   Энциклопедия инвестора

  • Медь — (Copper) Металл медь, месторождения и добыча меди, получение и применение Информация о металле медь, свойства меди, месторождения и добыча металла, получение и применение меди Содержание — (лат. Cuprum), Cu, химический элемент I группы… …   Энциклопедия инвестора

  • Палладий (элемент) — Палладий (Pd) Атомный номер 46 Внешний вид простого вещества Свойства атома Атомная масса (молярная масса) 106.42 а. е. м. (г/мо …   Википедия

  • Палладий — У этого термина существуют и другие значения, см. Палладий (значения). 46 Родий ← Палладий → Серебро …   Википедия

  • Цезий — (лат. Caesium)         Cs, химический элемент I группы периодической системы Менделеева; атомный номер 55, атомная масса 132, 9054; серебристо белый металл, относится к щелочным металлам (См. Щелочные металлы). В природе встречается в виде… …   Большая советская энциклопедия

  • Висмут самородный — Висмут / Bismuthum (Bi) Атомный номер 83 Слиток металлического висмута. Внешний вид простого вещества Твёрдый хрупкий металл стального цвета с розоватым отливом Свойства атома …   Википедия

  • Висмутовые руды — Висмут / Bismuthum (Bi) Атомный номер 83 Слиток металлического висмута. Внешний вид простого вещества Твёрдый хрупкий металл стального цвета с розоватым отливом Свойства атома …   Википедия

normative_ru_en.academic.ru

удельная теплоёмкость нефти — с русского

См. также в других словарях:

  • удельная теплоёмкость нефти — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN oil specific heat …   Справочник технического переводчика

  • Удельная теплоёмкость — физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 Кельвин. Удельная теплоемкость обозначается буквой c и измеряется в Дж/кг*Кельвин. Единицей СИ… …   Википедия

  • Нефть — У этого термина существуют и другие значения, см. Нефть (значения). Нефть ? Основной состав Сn …   Википедия

  • Цена на нефть — Нефтяные вышки в Лос Анджелесе (1896) Цена на нефть, $ за баррель, 1997 2008 (NYMEX Light Sweet Crude Oil Futures Prices) Цена на нефть, $ за баррель, 1998 ноябрь 2008 …   Википедия

  • Нефть — (Oil) Нефть это горючая жидкость Добыча и переработка запасов нефти является основой экономики многих стран Содержание >>>>>>>>>>>>>>>>> …   Энциклопедия инвестора

  • Медь — (Copper) Металл медь, месторождения и добыча меди, получение и применение Информация о металле медь, свойства меди, месторождения и добыча металла, получение и применение меди Содержание — (лат. Cuprum), Cu, химический элемент I группы… …   Энциклопедия инвестора

  • Палладий (элемент) — Палладий (Pd) Атомный номер 46 Внешний вид простого вещества Свойства атома Атомная масса (молярная масса) 106.42 а. е. м. (г/мо …   Википедия

  • Палладий — У этого термина существуют и другие значения, см. Палладий (значения). 46 Родий ← Палладий → Серебро …   Википедия

  • Цезий — (лат. Caesium)         Cs, химический элемент I группы периодической системы Менделеева; атомный номер 55, атомная масса 132, 9054; серебристо белый металл, относится к щелочным металлам (См. Щелочные металлы). В природе встречается в виде… …   Большая советская энциклопедия

  • Висмут самородный — Висмут / Bismuthum (Bi) Атомный номер 83 Слиток металлического висмута. Внешний вид простого вещества Твёрдый хрупкий металл стального цвета с розоватым отливом Свойства атома …   Википедия

  • Висмутовые руды — Висмут / Bismuthum (Bi) Атомный номер 83 Слиток металлического висмута. Внешний вид простого вещества Твёрдый хрупкий металл стального цвета с розоватым отливом Свойства атома …   Википедия

translate.academic.ru

удельная теплоёмкость нефти — с русского на английский

См. также в других словарях:

  • удельная теплоёмкость нефти — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN oil specific heat …   Справочник технического переводчика

  • Удельная теплоёмкость — физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 Кельвин. Удельная теплоемкость обозначается буквой c и измеряется в Дж/кг*Кельвин. Единицей СИ… …   Википедия

  • Нефть — У этого термина существуют и другие значения, см. Нефть (значения). Нефть ? Основной состав Сn …   Википедия

  • Цена на нефть — Нефтяные вышки в Лос Анджелесе (1896) Цена на нефть, $ за баррель, 1997 2008 (NYMEX Light Sweet Crude Oil Futures Prices) Цена на нефть, $ за баррель, 1998 ноябрь 2008 …   Википедия

  • Нефть — (Oil) Нефть это горючая жидкость Добыча и переработка запасов нефти является основой экономики многих стран Содержание >>>>>>>>>>>>>>>>> …   Энциклопедия инвестора

  • Медь — (Copper) Металл медь, месторождения и добыча меди, получение и применение Информация о металле медь, свойства меди, месторождения и добыча металла, получение и применение меди Содержание — (лат. Cuprum), Cu, химический элемент I группы… …   Энциклопедия инвестора

  • Палладий (элемент) — Палладий (Pd) Атомный номер 46 Внешний вид простого вещества Свойства атома Атомная масса (молярная масса) 106.42 а. е. м. (г/мо …   Википедия

  • Палладий — У этого термина существуют и другие значения, см. Палладий (значения). 46 Родий ← Палладий → Серебро …   Википедия

  • Цезий — (лат. Caesium)         Cs, химический элемент I группы периодической системы Менделеева; атомный номер 55, атомная масса 132, 9054; серебристо белый металл, относится к щелочным металлам (См. Щелочные металлы). В природе встречается в виде… …   Большая советская энциклопедия

  • Висмут самородный — Висмут / Bismuthum (Bi) Атомный номер 83 Слиток металлического висмута. Внешний вид простого вещества Твёрдый хрупкий металл стального цвета с розоватым отливом Свойства атома …   Википедия

  • Висмутовые руды — Висмут / Bismuthum (Bi) Атомный номер 83 Слиток металлического висмута. Внешний вид простого вещества Твёрдый хрупкий металл стального цвета с розоватым отливом Свойства атома …   Википедия

translate.academic.ru

Высокая удельная теплоемкость - Большая Энциклопедия Нефти и Газа, статья

Большая Энциклопедия Нефти Газа

Высокая удельная теплоемкость

Эффективность применения пластмасс для этих целей обусловлена их высокой теплопогло-щагощей способностью, низкой плотностью, высокой удельной теплоемкостью. прочностью, низкой теплопроводностью, легкостью изготовления изделий заданной конфигурации, относительной дешевизной и доступ-ностью.

Относительная скорость абляции фенольных пластмасс, армированных.| Абляционные характеристики армированных пластмасс на основе фенольных связующих при воздействии высокотемпературного потока воздуха.| Абляционные характеристики армированных.

Эффективность применения пластмасс для этих целей обусловлена их высокой теплопогло-щающей способностью, низкой плотностью, высокой удельной теплоемкостью. прочностью, низкой теплопроводностью, легкостью изготовления изделий заданной конфигурации, относительной дешевизной и доступностью.

Так как изо всех газов, обычно применяемых для защиты от окисления нагреваемой в печи загрузки, наиболее высокой удельной теплоемкостью обладает водород, следует иметь в виду, что наибольшее количество тепла на нагрев газа требуют защитные атмосферы из водорода и водородосодержащих газов.

Скала [36] рассмотрел роль молекулярного веса и установил, что, как и можно было ожидать, более легкие газы эффективнее препятствуют нагреву благодаря их высокой удельной теплоемкости и большей подвижности.

Аналогично экспериментально было показано [192], что уменьшение теплосодержания при растворении неполярных газов в воде гораздо больше, чем в органических растворителях, параллельно с чем наблюдаются соответствующие энтропийные эффекты и более высокая удельная теплоемкость водных растворов .

Для снижения температуры используются различные методы: охлаждение путем испарения жидких веществ, поступающих на поверхность через пористые стенки, различного рода теплоизоляция, теплопоглощение за счет создания массивных слоев с высокой удельной теплоемкостью. охлаждение в результате распада и испарения наружного слоя и др. Поэтому практически рабочие температуры клеевых соединений значительно ниже. Для работы при температурах, не превышающих 350 - 400 С, могут быть использованы полиамидные, эпоксифенольные и некоторые модифицированные фенольные клеи. Для работы при более высоких температурах должны использоваться клеи на основе элементоорганических и неорганических соединений. Керамические клеи выдерживают нагревание до 540 С; некоторые клеи на основе элементоорганических соединений могут работать при 1000 - 1200 С. Хрупкость этих систем может быть уменьшена введением окислов некоторых металлов.

К огнеупорным материалам, применяемым в качестве контакта в этом и других контактных процессах, предъявляются следующие требования: 1) высокая плотность - для большей компактности конструкции установки; 2) высокая удельная теплоемкость - для уменьшения веса циркулирующего материала; 3) высокая прочность на износ, устойчивость против растрескивания и разрыва - для увеличения срока службы контакта; 4) малое абразивное действие - для предотвращения чрезмерного износа оборудования; б) высокая температура размягчения. Контактная масса изготовляется в виде шариков диаметром 2 5 - 5 мм.

Изучение эволюции контуров растекания на участках питания подземных вод. Трудно назвать другой вопрос из гидрогеологии, который бы решался по данным изучения режима температуры подземных вод с такой же степенью наглядности, достоверности и простоты. Ввиду высокой удельной теплоемкости и подвижности подземные воды по пути своего движения формируют в породах четкие температурные аномалии. Замеряя температуру подземных вод и пород, в которых они циркулируют, можно определять границы контуров растекания вод как в пространстве, так и во времени.

Клоп-водомерка ( семейство Gerridae использует высокое поверхностное натяжение воды. Это насекомое, которое живет на поверхности прудов, имеет специальные волоски на своих первых и третьих парах ног, благодаря которым оно держится на поверхностном слое воды, не продавливая его. Средняя пара ног, проникающая через этот слой, действует как весла.

Живые организмы успешно приспособились к водной среде и даже приобрели способность использовать необычные свойства воды. Благодаря высокой удельной теплоемкости воды она действует в клетках как тепловой буфер, позволяющий поддерживать в организме относительно постоянную температуру при колебаниях температуры воздуха. Высокая теплота испарения воды используется некоторыми позвоночными для защиты организма от перегревания с помощью механизма теплоотдачи путем испарения пота. Сильно выраженное сцепление молекул в жидкой воде, обусловленное влиянием межмолекулярных водородных связей, обеспечивает эффективный перенос в растениях растворенных питательных веществ от корней к листьям в процессе транспирации. Даже то, что лед имеет более низкую плотность по сравнению с жидкой водой и поэтому всплывает в ней, приводит к важным биологическим последствиям в жизненных циклах водных организмов.

Железо и никель, хотя и обладают низкой теплопроводностью, зато хорошо смачиваются и обладают наибольшим ( из всех рассмотренных металлов) сопротивлением эрозии. Это, а также высокая удельная теплоемкость по объему ( примерно такая же, как у меди), является причиной того, что данные металлы очень выгодны для наконечников. Для того чтобы повысить теплопроводность этой детали и в то же время сохранить высокое сопротивление поверхности эрозии, часто применяют медные наконечники, плакированные железом или никелем. К данному типу относится значительный процент наконечников современных электрических паяльников.

В ряде конструкций авиатормозов металлические диски изготовляют из бора или бериллия. Благодаря малому удельному весу, высокой удельной теплоемкости. хорошей теплопроводности и высокой температуре плавления при этом получается выигрыш в весе до 75 - 77 % по сравнению с медными или стальными дисками. Диски из бора должны быть армированы, так как этот металл имеет недостаточную механическую прочность. В случае применения бериллия на диск насаживается стальной бандаж, а в центр запрессовывается стальная втулка.

После завершения а - р-лревращения происходит интенсивное возрастание удельной теплоемкости вплоть до температуры плавления. При температуре превращения а-фаза обладает более высокой удельной теплоемкостью. чем 0-фаза.

Рекомендуем ознакомится: http://www.ngpedia.ru

worldunique.ru

Удельная теплоёмкость - это... Что такое Удельная теплоёмкость?

Уде́льная теплоёмкость - физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 Кельвин. Удельная теплоемкость обозначается буквой c и измеряется в Дж/кг*Кельвин.

Единицей СИ для удельной теплоёмкости является джоуль на килограмм-кельвин. Следовательно, удельную теплоёмкость можно рассматривать как теплоёмкость единицы массы вещества. На значение удельной теплоёмкости влияет температура вещества. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C.

Формула расчёта удельной теплоёмкости: c=\frac{Q}{ m\Delta t}, где ~c — удельная теплоёмкость, ~Q — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении), ~m — масса нагреваемого (охлаждающегося) вещества, ~\Delta t — разность конечной и начальной температур вещества.

Значения удельной теплоёмкости некоторых веществ

Таблица I: Стандартные значения удельной теплоёмкости Внимание: Здесь указана удельная теплоёмкость с использованием единиц измерения температуры в Кельвинах(К). Элемент Агрегатное состояние УдельнаятеплоёмкостьДж/(г·K) Значения приведены для стандартных условий, если это не оговорено особо.
воздух (сухой) газ 1,005
воздух (100 % влажность) газ 1,0301
алюминий твёрдое тело 0,930
бериллий твёрдое тело 1,8245
латунь твёрдое тело 0,377
олово твёрдое тело 0,218
медь твёрдое тело 0,385
сталь твёрдое тело 0,500
алмаз твёрдое тело 0,502
этанол жидкость 2,460
золото твёрдое тело 0,129
графит твёрдое тело 0,720
гелий газ 5,190
водород газ 14,300
железо твёрдое тело 0,444
свинец твёрдое тело 0,130
чугун твёрдое тело 0,540
вольфрам твёрдое тело 0,134
литий твёрдое тело 3,582
ртуть жидкость 0,139
азот газ 1,042
Нефтяные масла (фракция нефти) зависит от углеводородных составляющих жидкость 1,67 - 2,01
кислород газ 0,920
кварцевое стекло твёрдое тело 0,703
вода 373К (100 °C) газ 2,020
сусло пивное жидкость 3,927
вода жидкость 4,183
лёд твёрдое тело 2,060
Таблица II: Значения удельной теплоёмкости для некоторых строительных материалов Вещество Агрегатное состояние УдельнаятеплоёмкостькДж*(кг−1·K−1) ОбъёмнаятеплоёмкостькДж*(дм³−1·K−1)
асфальт твёрдое тело 0,92 1,2
полнотелый кирпич твёрдое тело 0,84 1,344
силикатный кирпич твёрдое тело 1 1,7
бетон твёрдое тело 0,88 1,7
кронглас (стекло) твёрдое тело 0,67 1,709
флинт (стекло) твёрдое тело 0,503 2,1
оконное стекло твёрдое тело 0,84 2,1
гранит твёрдое тело 0,790 2,1
гипс твёрдое тело 1,09 2,507
мрамор, слюда твёрдое тело 0,880 2,4
песок твёрдое тело 0,835 1,2
сталь твёрдое тело 0,47 3,713
почва твёрдое тело 0,80
древесина твёрдое тело 1,7 1

См. также

Примечания

Литература

Ссылки

Есть более полная статья
Question book-4.svg В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 19 ноября 2011.

dal.academic.ru

Удельная теплоёмкость - это... Что такое Удельная теплоёмкость?

Уде́льная теплоёмкость - физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 Кельвин. Удельная теплоемкость обозначается буквой c и измеряется в Дж/кг*Кельвин.

Единицей СИ для удельной теплоёмкости является джоуль на килограмм-кельвин. Следовательно, удельную теплоёмкость можно рассматривать как теплоёмкость единицы массы вещества. На значение удельной теплоёмкости влияет температура вещества. К примеру, измерение удельной теплоёмкости воды даст разные результаты при 20 °C и 60 °C.

Формула расчёта удельной теплоёмкости: c=\frac{Q}{ m\Delta t}, где ~c — удельная теплоёмкость, ~Q — количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении), ~m — масса нагреваемого (охлаждающегося) вещества, ~\Delta t — разность конечной и начальной температур вещества.

Значения удельной теплоёмкости некоторых веществ

Таблица I: Стандартные значения удельной теплоёмкости Внимание: Здесь указана удельная теплоёмкость с использованием единиц измерения температуры в Кельвинах(К). Элемент Агрегатное состояние УдельнаятеплоёмкостьДж/(г·K) Значения приведены для стандартных условий, если это не оговорено особо.
воздух (сухой) газ 1,005
воздух (100 % влажность) газ 1,0301
алюминий твёрдое тело 0,930
бериллий твёрдое тело 1,8245
латунь твёрдое тело 0,377
олово твёрдое тело 0,218
медь твёрдое тело 0,385
сталь твёрдое тело 0,500
алмаз твёрдое тело 0,502
этанол жидкость 2,460
золото твёрдое тело 0,129
графит твёрдое тело 0,720
гелий газ 5,190
водород газ 14,300
железо твёрдое тело 0,444
свинец твёрдое тело 0,130
чугун твёрдое тело 0,540
вольфрам твёрдое тело 0,134
литий твёрдое тело 3,582
ртуть жидкость 0,139
азот газ 1,042
Нефтяные масла (фракция нефти) зависит от углеводородных составляющих жидкость 1,67 - 2,01
кислород газ 0,920
кварцевое стекло твёрдое тело 0,703
вода 373К (100 °C) газ 2,020
сусло пивное жидкость 3,927
вода жидкость 4,183
лёд твёрдое тело 2,060
Таблица II: Значения удельной теплоёмкости для некоторых строительных материалов Вещество Агрегатное состояние УдельнаятеплоёмкостькДж*(кг−1·K−1) ОбъёмнаятеплоёмкостькДж*(дм³−1·K−1)
асфальт твёрдое тело 0,92 1,2
полнотелый кирпич твёрдое тело 0,84 1,344
силикатный кирпич твёрдое тело 1 1,7
бетон твёрдое тело 0,88 1,7
кронглас (стекло) твёрдое тело 0,67 1,709
флинт (стекло) твёрдое тело 0,503 2,1
оконное стекло твёрдое тело 0,84 2,1
гранит твёрдое тело 0,790 2,1
гипс твёрдое тело 1,09 2,507
мрамор, слюда твёрдое тело 0,880 2,4
песок твёрдое тело 0,835 1,2
сталь твёрдое тело 0,47 3,713
почва твёрдое тело 0,80
древесина твёрдое тело 1,7 1

См. также

Примечания

Литература

Ссылки

Есть более полная статья
Question book-4.svg В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 19 ноября 2011.

veter.academic.ru


Смотрите также