Атмосферно-вакуумная установка с секцией вторичной перегонки бензина. Установка атмосферно вакуумной перегонки нефти


Установка атмосферно-вакуумной перегонки нефти

Установка атмосферно-вакуумной перегонки нефти

Установка предназначена для получения из нефти дистиллятов бензина, керосина, дизельного топлива, масляных фракций и гудрона. Кроме этих продуктов на установке получаются сухой и жирный газы, сжиженный газ (рефлюкс), легкий вакуумный газойль. На перегонку обычно поступают нефти или смеси нефтей с содержанием светлых дистиллятов от 42 до 50% (масс.) [36,37].[ ...]

Нагретая до 200-250°С нефть поступает в отбензинивающую колонну 19 по двум тангенциальным вводам. Из этой колонны сверху уходят газы, пары воды и легкой бензиновой фракции (с концом кипения 120-160°С). В сепараторе 22 от сконденсированной легкой бензиновой фракции отделяются газ и вода. Газ, пройдя клапан, регулирующий давление в системе колонна 19 - сепаратор 22, направляется в секцию очистки от сероводорода, а вода с низа сепаратора 22, который снабжен регулятором межфазового уровня (вода-бензин), поступает в систему очистки сточных вод.[ ...]

Для поддержания температуры низа колонны 19 частично отбензи-ненная нефть забирается насосом 24, проходит змеевики печи 23 и, нагретая до 350-370°С, возвращается в нижнюю часть колонны.[ ...]

Балансовое количество отбензиненной нефти с помощью насоса 26 проходит через змеевики печи 27 и с температурой 370-380СС подается по двум тангенциальным вводам в атмосферную колонну 30.[ ...]

Из колонны 30 сверху отводятся пары тяжелого бензина и воды, а также газы разложения, образовавшиеся при нагреве нефти в печи 27; они проходят аппарат воздушного охлаждения 31 и водяной холодильник 32. Полученная газожидкостная смесь газ-бензин-вода разделяется в сепараторе 33, с верха которого уходит газ (в топливную систему), а с низа - водяной конденсат (отводится и дренируется в систему очистки воды). Конденсат тяжелой бензиновой фракции отводится насосом 44 и вместе с фракцией легкого бензина передается на стабилизацию. В качестве орошения атмосферной колонны 30 используется верхнее циркуляционное орошение. Циркулирующая жидкость (флегма) с третьей тарелки (сверху) колонны 30 поступает через аппарат воздушного охлаждения 34 и водяной холодильник 37 на прием насоса 43 и этим насосом закачивается на верхнюю тарелку колонны.[ ...]

Керосиновая фракция выводится с низа отпарной колонны 35 насосом 42 через теплообменник 7 и аппарат воздушного охлаждения 6 отводится с установки.[ ...]

Фракция дизельного топлива выводится из отпарной колонны 36 насосом 41. Тепло дизельного топлива используется в теплообменнике-подогревателе 78 колонны 68, затем - в теплообменнике 9. После охлаждения в аппарате воздушного охлаждения 4 фракция дизельного топлива отводится с установки. Для увеличения отбора дизельного топлива в низ колонны 30 подается перегретый (400°С) водяной пар. Пар подается и в от-парные колонны 35 и 36 для удаления легких фракций.[ ...]

С низа атмосферной колонны 30 насосом 40 откачивается мазут, который нагревается в змеевике вакуум-печи 56 и по двум тангенциальным вводам подается в вакуумную колонну 48. В сечении питания этой колонны над вводом сырья установлены отбойные тарелки для предотвращения «заноса» капель жидкого остатка. Для орошения верха колонны 48 используется верхнее циркуляционное орошение: первая масляная фракция с третьей верхней тарелки вакуумной колонны забирается насосом 51, прокачивается через теплообменник 12, аппарат воздушного охлаждения 47 и после него циркулирующая часть возвращается на верхнюю тарелку колонны 48. Балансовое количество первой масляной фракции отводится с установки.[ ...]

Неконденсирующиеся вверху вакуумной колонны компоненты, представляющие смесь легких фракций, газов разложения, паров воды и воздуха (засасываемый через неплотности), выводятся из колонны 48 и охлаждаются в аппарате воздушного охлаждения 46 (его может и не быть), затем в водяной холодильник поверхностного типа 45, после которого газожидкостная смесь поступает в систему создания вакуума.[ ...]

Вторая масляная фракция выводится с низа отпарной колонны 49 насосом 54 и после теплообменника 11, аппарата воздушного охлаждения 3 откачивается с установки. Третья масляная фракция отводится с низа отпарной колонны 50 и направляется насосом 52 через теплообменник 13 и аппарат воздушного охлаждения 2 в резервуар.[ ...]

Вернуться к оглавлению

ru-safety.info

Атмосферно-вакуумная установка с секцией вторичной перегонки бензина

 

На атмосферно-вакуумной установке с секцией вторичной перегонки бензина перегоняют нефть и мазут на фракции и получают узкие бензиновые фракции, используемые далее в качестве сырья для производства ароматических углеводородов. Сырьем установки служит обессоленная и обезвоженная нефть. Установки данного типа проектируются на разные мощности: 1, 2, 3 и 6 млн. т перерабатываемой нефти в год. Установка включает следующие секции: блок частичного отбензинивания нефти, так называе­мая предварительная эвапорация; блок атмосферной перегонки нефти; блок стабилизации бензина; блок вторичной перегонки бензина на узкие фракции; вакуумная перегонка мазута с целью получения широкой масляной фракции — вакуумного дистиллята^ Технологическая схема установки представлена на рис, 11-6.

Обессоленная и обезвоженная нефть насосом про-качивается через группу теплообменников 9, 11, 22, 23, 67, 69, 65, 74 и с температурой 2100С поступает в колонну предварительного испарения (эвапоратор) К (на схеме не показан ход нефти через теплообмен-ные аппараты в связи, со сложностью обвязки-) Фракция н. к. — 100 °С уходит с верха колонны и, пройдя через аппарат воздушного охлаждения 7 и холодильник 6, поступает в сборник 5. Часть этой фракции насосом 4 подается в качестве орошения в колонну, а избыток — в сборник 18. В низ колонны 8 подводится тепло за счет циркуляции остатка насо­сом / через секцию печи 2.

Частично отбензиненная нефть с низа колонны 8 забирается насосом 3, прокачивается через второй змеевик печи 2 и подается в основную атмосферную колонну 20. Верхний продукт этой колонны (фракция 100—180 °С) после охлаждения и конденсации посту­пает в сборник 18, где смешивается с верхним про­дуктом колонны 8. Из сборника 18 фракция н. .к. —180 °С забирается насосом 19 и подается на стабили­зацию в колонну 29.

В виде боковых погонов колонны 20 отбираются флегмы в отпарные колонны 21 и 22, в низ которых подается водяной пар. Фракция 180—240 °С с низа колонны 21 прокачивается насосом 26 через тепло­обменник 27 и аппарат воздушного охлаждения 28 и выводится с установки в резервуар. Верхнее и нижнее циркуляционные орошения осуществляются соответственно насосом 13 через теплообменник 9 и холодильник 10, насосом 14 через аппараты 11 и 12 и возвращаются на лежащие выше тарелки колонны 20. Остаток — фракция выше 350 °С (мазут) — заби­рается насосом 15 с низа колонны 20 и направляется в змеевики печи 61. В низ стабилизационной колонны 29 сообщается тепло за счет циркуляции остатка насосом 35 через змеевик печи 34. Верх колонны 29 покидают газы, конденсирующиеся и охлаждающиеся в аппаратах 30 и 31. Они поступают в сборник 32, откуда часть газов уходит в линию сухого газа.

 

 

Сжиженный газ забирается из сборника 32 насосом 83 и подается на орошение колонны 29; избыток его выводится с установки в товарный сборник. Остаток колонны 29 — стабильный продукт — с низа ко­лонны подается на блок вторичной перегонки (ко­лонны 38, 43, 52 и 64). В колонне 38 бензин разделя­ется на верхний и нижний продукты—соответ­ственно фракции н. к. — 85 °С и 85—180 °С. Фрак­ция н. к. — 85 °С забирается из сборника 41 насосом 42 и возвращается как орошение в колонну 38, а избыток этой фракции подается в колонну 43, где она разделяется на фракции н. к. — 62 °С и 62— 85 °С.

В низ колонны 38 тепло сообщается циркуляцией остатка насосом 36 через змеевик печи 34. Насосом 37 фракция 85—180 °С забирается с низа колонны 38 и подается в колонну 52, где разделяется на фракции 85—120 °С (верхний продукт), 120—140 °С (промежу­точная фракция) и 140—180 °С (нижний продукт). Боковой погон колонны 52 направляется в отпарную колонну 57, с низа которой фракция 120—140 °С забирается насосом 60, прокачивается через аппарат воздушного охлаждения 62 и выводится с установки в резервуар. Тепло в низ колонны 52 сообщается циркуляцией остатка (фракция 140—180 °С) насосом 44 через змеевик печи 34.

Мазут, нагретый в змеевиках печи 61, подается в вакуумную колонну 64. Из вакуумной колонны насосом 72 отбирается широкая масляная фракция (350—460 °С), которая прокачивается через аппараты 69 и 70 и выводится с установки в резервуар. В низ колонны 64 подается водяной пар, а вакуум создается с помощью вакуум-создающего устройства 63. Оста­ток выше 460 °С (гудрон) забирается из вакуумной колонны 64 снизу насосом 73, прокачивается через аппараты 74 и 75 и выводится с установки.

 

 

Температура и давление в основных аппаратах установки:

 

Температура,°С сырья на входе в колонну 8 верха колонны 8 верха колонны 20 низа колонны 29 верха колонны 29 продукта на выходе из печи 2 продукта на выходе из печи 61 Давление избыточное, МПа в колонне 8 (наверху) в колонне 20 (наверху) в колонне 29 (наверху) остаточное в колонне 64 (наверху) *     0,15 0,08 0,8 6,67
* кПа

 

Основные продукты и их выход (% масс. на ромашкинскую нефть) приведены ниже:

Сухой газ Фракция нк-62 Фракция 62-85 Фракция 85-120 Фракция 120-140 Фракция 140-180 Фракция 180-240 Фракция 240-350 Фракция 350-460 Остаток >460 Потери 1,0 1,2 2,7 4,3 3,2 6,4 9,9 17,0 17,8 35,8 0,7

 

Побочные продукты используются следующим образом: фракция н. к. — 62 °С — компонент авто­бензина либо сырье установки изомеризации, сухой газ — в качестве топлива на установке, фракция 140—180 °С — компонент авиакеросина, остаток >460 °С — сырье для получения окисленных биту-мов, либо для установки коксования, либо для получения остаточных масел.

 

cyberpedia.su

Выход дистиллятов на двухступенчатых атмосферно-вакуумных установках перегонки нефти

 

Дистиллат   Температуры отбора, °С Выход, массовые доли в %
Туймазинская нефть Ромашкин- ская нефть Грозненская (парафини-стая) нефть
Бензин До 170 20,0 18,6 14,5
Лигроин 160—200 —, 7,5
Керосин 200—250 10,0 9,5 18,0
Дизельное топливо 240–350. 17,5 17,5 5,0
Масла 230—370 25,0 25,4 25,0
Остаток — гудрон 350—370 25,0 26,5 27—30

 

Схема атмосферно-вакуумной установки показана на рис. 3.

Мазут (~55% от массы сырья) из нижней части первой ко­лонны нагревают в трубчатой печи до 400—420°С и направляют в ректификационную колонну, работающую при остаточном давлении 0,005—0,008 МПа. Пары летучих продуктов поднимаются вверх, отбираются по высоте колонны и конденсируются в виде широких масляных фракций различной вязкости. Сверху колонны выводят на охлаждение и конденсацию пары тяжелого газойля, часть его возвращают на орошение колонны. Снизу колонны отводится жидкийостаток — гудрон. В нижнюю часть обеих ректификационных колонн подают острый пар для снижения температуры внизу ко­лонны и облегчения условий испарения легких фракций.

Нефтепродукты, получаемые на атмосферно-вакуумных уста­новках, — бензиновые, лигроиновые, керосиновые, газойлевые и масляные дистиллаты — очищают от сернистых и кислородных сое­динений и после добавления присадок, улучшающих их качество, используют как топлива и смазочные масла. Бензины прямой пе­регонки содержат главным образом парафиновые и нафтеновые углеводороды и характеризуются низкими октановыми числами в пределах 50—70; бензины с более высоким октановым числом получают путем крекинга.

Крекинг нефти и нефтепродуктов.Процессы крекинга делят на термические и термокаталитические. При термических про­цессах расщепление углеводородов (собственно крекинг) проис­ходит под действием высоких температур и давления; наряду с расщеплением происходят вторичные процессы синтеза углеводо­родов, более стабильных в этих условиях, в том числе непредель­ных углеводородов. При всем многообразии химических превра­щений при термическом крекинге можно установить закономер­ность распада и синтеза углеводородов. При высокой температуре наиболее устойчивы ароматические соединения и олефины, которые склонны к вторичным реакциям, например полимеризации. Таким образом, высокие тем­пературы ведут к накоплению ароматических углеводородов, а так­же простейших олефинов в продуктах крекинга. При высоких температурах термодинамически возможен распад углеводородов на элементы, в результате чего общее равновесие системы сдви­гается со временем в сторону во­дорода, метана и углеродистых веществ — кокса, смол.

Большинство реакций термического крекинга протекает по цепному механизму с образовани­ем более легких парафинов и олефинов.

Распад нафтеновых углеводородов происходит по молекулярному механизму с отрывом боковых цепей (деалкилирование), при более жестких условиях с разрывом кольца и образованием моноциклических нафтенов и олефиновых углеводородов. При температурах выше 600°С происходит дегидрирование моноциклов до соответствующих ароматических углеводородов.

От разветвленных ароматических углеводородов, образующихся в процессе крекинга, отщепляются боковые цепи с образованием оле­финов.

Олефины, образующиеся при крекинге, подвергаются дальнейшим превращениям, зависящим от температуры и давления. При уме­ренной температуре (до 500°С) и при высоком давлении идет по­лимеризация олефинов, а также их циклизация. Высокая темпера­тура и низкое давление способствуют разложению олефинов по цепному механизму с образованием простейших олефинов, водоро­да и метана.

В зависимости от условий проведения применяемого сырья и целевых продуктов различают термический жидкофазный крекинг, высокотемпературный крекинг (пиролиз) и коксование нефтяных остатков.

Термический крекинг ведут в зависимости от вида сырья при температуре в пределах 450—540°С под давлением 2— 7 МПа. Продукты — крекинг-газ, крекинг-бензин, керосиногазойлевая фракция (термогазойль) и крекинг-остаток. Крекинг-газ со­держит этан, пропан, этилен, пропилен и служит ценным сырьем органического синтеза. Бензины термического крекинга характери­зуются сравнительно небольшим октановым числом (около 70) и низкой химической устойчивостью и не могут непосредственно ис­пользоваться в автомобильных двигателях. Для этого необходима дополнительная переработка и стабилизация крекинг-бензина. Крекинг-остаток служит высококачественным котельным топливом.

Все химико-технологические системы термического крекинга, а также пиролиза и коксования нефтяных остатков включают труб­чатые печи, служащие реактором для нагрева сырья и химических превращений. На рис. 4 представлена уп­рощенная технологическая схема термического крекинга с рецир­куляцией жидких потоков — средней и тяжелой фракций.

Пиролиз проводят в широком интервале высоких темпера­тур (600—1000°С) в зависимости от вида сырья — углеводородные газы, газовый бензин (конденсат), керосин, газойль. Давление при пиролизе применяют от атмосферного до 0,2—0,3 МПа. Целевые продукты пиролиза — этилен и другие непредельные углеводороды, а также ароматические углеводороды — бензол, толуол, ксилол.

Коксование нефтяных остатков — это термический крекинг мазута, гудрона, крекинг-остатков при 400—500°С с целью получения жидкого топлива и электродного кокса.

К термокаталитическим процессам относятся ката­литический крекинг, риформинг, гидрокрекинг и другие каталити­ческие процессы переработки нефтепродуктов.

Каталитический крекинг ведут при 450—500°С и 0,05— 3,1 МПа. С расщеплением углеводородных цепей на катализаторе идут и реакции деалкилирования, изомеризации, циклизации, гид­рогенизации, дегидрогенизации и изомеризации. Деалкилирование ароматических углеводородов ведет к образованию олефинов и простейших ароматических соединений. Нафтеновые углеводороды дегидрируются и расщепляются по С—С-связи с разрывом кольца и деалкилированием. Олефины, образовавшиеся при крекинге, рас­щепляются по С—С-связям, изомеризуются и гидрируются с обра­зованием циклических и ароматических соединений. Гидрирование олефинов идет за счет дегидрирования тяжелых продуктов уплот­нения; оно способствует повышению стабильности бензинов. Па­рафиновые углеводороды подвергаются расщеплению и изомери­зации. Таким образом, в жидких продуктах каталитического крекинга накапливаются изомерные соединения и простейшие ароматические углеводороды, повышающие октановое число крекинг-бензина. Одновременно образуются твердые продукты уплотнения. Зависимость выхода бензина от режимных условий — времени контакта реагентов с катализатором и температуры — показана на рис. 4.

Из рисунка видно, что начавшийся процесс разложения углеводородов уско­ряется с повышением температу­ры и выход бензина увеличи­вается (при постоянных давле­нии и времени пребывания в ре­акторе). Максимальный выход бензина соответствует оптималь­ной температуре, при кото­рой еще не происходит распад легких углеводородов. С увеличением времени пребывания выход бензина по­вышается до определенного максимума; затем начинают преобладать процессы газо- и коксообразования. Обычно степень превращения поддерживают в пределах 50—70% за один проход реагентов через реактор.

Сырьем каталитического крекинга служат широкие фракции прямой гонки нефти в двухступенчатых установках, в первую оче­редь газойль. Катализаторами являются аморфные и кристалличе­ские алюмосиликаты (цеолиты). Сферические зерна катализатора содержат обычно 15% цеолита, включенного в аморфную алюмосиликатную матрицу.

На промышленных установках контакт катализатора с парами сырья осуществляется: 1) в плотном слое движущегося сверху вниз катализатора; 2) во взвешенном (кипящем) слое катализатора; 3) в восходящем потоке взвеси катализатора.

На рис. 5, 6 показаны схемы установки каталитического крекинга с плотным слоем движущегося катализатора и реактора с кипящим слоем катализатора. На агрегате с движущимся ката­лизатором сырье из трубчатой печи направляют в реактор, куда из бункера поступает регенерированный катализатор. Проходя через реактор, катализатор крекирует сырье и за счет теплопередачи поддерживает температуру в реакторе на уровне 450—500°С. Перед поступлением в регенератор катализатор обрабатывают паром для десорбции легких углеводородов с его поверхности. Продукты крекинга отводят из реактора в ректификационную колонну для разделения газовой, бензиновой и тяжелой фракций. В регенератор воздуходувкой непрерывно подают воздух для выжигания кокса. Образующиеся дымовые газы направляют в котел-утилизатор для выработки пара.

На рис. 6 показан один из типов реакторов с кипящим слоем катализатора, в котором зона регенерации расположена над зоной катализа. Пары сырья подают в нижнюю часть реактора под распределительную решетку. Отработанный, блокированный коксом катализатор под давлением горячего воздуха эжектируется и подается из зоны катализа в зону регенерации по катализатороводу. Туда же под распределительную решетку регенератора подают воздух, необходимый для образования взвешенного слоя и вы­жигания кокса с поверхности катализатора. Дымовые газы, прохо­дя через циклон регенератора, освобождаются от унесенных частиц катализатора, который по трубам возвращается в кипящий слой. Регенерированный катализатор опускается в зону катализа по пе­реточным трубам — катализаторопроводам. В нижней части реакто­ра (отпарная зона) отработанный катализатор обрабатывают ост­рым водяным паром для удаления паров нефтепродуктов с его по­верхности. Парогазовую смесь продуктов крекинга выводят из верх­ней части реактора (зона катализа), направляют на разделение и переработку. Время пребывания катализатора в зоне катализа со­ставляет от 1,5 до 6 мин.

При каталитическом крекинге октановое число крекинг-бензина составляет 78—85. Для получения высококачественных бензинов с высоким октановым числом, а также индивидуальных ароматиче­ских углеводородов применяют риформинг. Исходным продуктом риформинга служат низкооктановые бензины термического и ката­литического крекинга.

Каталитический риформингосуществляют в водородсодержащей среде при участии бифункциональных алюмомолибденовых (MoO+Al2О3) или платиновых катализаторов, нанесенных на активные алюмосиликатные или оксидные носители. На катализа­торах риформинга происходят одновременно реакции дегидрирования — циклогексанов в ароматические углеводороды, парафинов — в олефины; дегидроциклизации нормальных парафинов в аромати­ческие углеводороды; изомеризации нормальных парафинов в изопарафины. Воздействие водорода препятствует коксообразованию, и длительность работы катализаторов возрастает поэтому до несколь­ких месяцев. Водород насыщает непредельные углеводороды и гид­рирует сернистые соединения, что способствует стабильности и обессериванию получаемого бензина. В результате риформинга образу­ется водородсодержащий газ, циркулирующий в системе, и жидкая фракция, которая используется как высококачественное топливо для двигателей или как высокооктановая добавка (октановое число ~95) к автомобильным бензинам. Из жидкофазного продукта ри­форминга выделяют также ароматические углеводороды.

Различают несколько видов риформинга — в частности платформинг и гидроформинг. Платформингпроизводят в фильтрующем слое платинового катализатора, нанесенного на фторированный оксид алюминия, при 480—510°С и давлении водорода 2—4 МПа. Гидроформингведут в кипящем слое алюмомолибденового катализатора под давлением водородсодержащего газа 1,7—1,9 МПа.

К гидрогенизационнымкаталитическим процессам нефтепереработки относятся также гидрокрекинг и гидроочистка нефтяных фракций. Гидрокрекинг — процесс деструктивного гидрирования тяжелых нефтяных фракций с насыщением продуктов расщепления водородом. Продукты гидрокрекинга — бензин, реактивное и дизельное топлива, не содержащие сернистых и азотистых соединений, а также олефинов. Процесс ведут в две стадии: на первой гидрокрекинг происходит на катализаторах, устойчивых к действию сернистых соединений, — алюмокобальтмолибденовых ка­тализаторах, на которых происходит гидрооблагораживание сырья (гидрирование сернистых и азотистых соединений) и его частичный крекинг. На второй стадии — на катализаторах, содержащих ме­таллы VI и VIII групп (Со, Ni, W, Pt), нанесенных на алюмоси­ликатные носители, происходят глубокие превращения углеводо­родов и их насыщение водородом. Гидроочистка служит основным, наиболее эффективным способом очистки нефтепродуктов.

Очистка нефтепродуктов.Нефтепродукты, полученные прямой гонкой и крекингом, содержат примеси, недопустимые в условиях эксплуатации моторных топлив и смазочных масел: олефины, сернистые, кислородные и азотистые соединения. Эти примеси — при­чина нестабильности свойств нефтепродуктов, полимеризации и окисления углеводородов с образование осадков, нагара в цилиндрах двигателей, коррозии их металлических частей. Очистка неф­тепродуктов — необходимая, завершающая стадия их производст­ва. Применяют химические и химико-физические методы очистки — обработка щелочами и серной кислотой, гидроочистка, абсорбция, адсорбция.

Очистка щелочами (NaOH) применяется для удаления

кислых и сернистых соединений — нафтеновых и жирных кислот, сероводорода.

Сернокислотную очистку нефтепродуктов производят концентрированной (90—93%-ной) серной кислотой с целью удаления олефинов, смолистых, азотистых и сернистых соединений. В результате очистки образуются большие количества отходов — «кислого гудрона», который трудно утилизировать. Аппаратура громоздкая, требуются большие количества реагента — серной кислоты.

Наибольшее распространение получила гидроочистка, ос­нованная на гидрировании нефтепродуктов при участии селективных катализаторов (алюмокобалымолибденовых или алюмоникельмолибденовых) при температуре 350—400°С и давлении 3— 4 МПа. В этих условиях происходит гидрирование соединений серы, азота и кислорода с образованием очищенных углеводородов и продуктов гидрирования, легко удаляемых в газовую фазу — серо­водорода, аммиака, паров воды. Одновременно гидрируются нена­сыщенные углеводороды — олефины и диены с образованием ста­бильных предельных соединений. Применение гидроочистки позво­ляет использовать для переработки высокосернистые нефти.

Абсорбционные методы основаны на избирательном растворении вредных примесей с помощью селективных раствори­телей— нитробензола, дихлорэтилового эфира, фурфурола и др. Ре­генерация растворителей производится их перегонкой. Очистка с по­мощью избирательных растворителей наиболее широко применяет­ся для смазочных масел.

Адсорбционные методы заключаются в смешении нефте­продуктов с адсорбентами, состоящими из оксидов кремния, алю­миния и других металлов, «отбеливающими» глинами, бокситами, силикагелем, синтетическими цеолитами; на поверхности адсорбен­тов сорбируются примеси — соединения серы, азота, полицикличе­ские соединения, смолы, диолефины, а также остаточные компо­ненты предыдущих ступеней очистки — растворители, кислый гуд­рон и др. Очистку производят в адсорберах колонного типа при противоточном движении адсорбента и нагретой очищаемой фрак­ции. Этот метод применяется в основном как завершающая стадия очистки нефтепродуктов, в частности масел, так как адсорбция обеспечивает высокую ступень очистки.

 

 

Похожие статьи:

poznayka.org

Установка атмосферно-вакуумные перегонки - Справочник химика 21

Рис. 2.2. Схема установки атмосферно-вакуумной перегонки нефти 1, 2, 13, 6, 22-теплообменники 3-отбензинивающая колонна 4, 7, 16, 23-холодильники-конденсаторы 5, 15, 21-воздушные холодильники 6, 8, 17, 24-рефлюксные емкости 9, 19-печи нагрева сырья 10-атмосферная колонна 11, 12-отпарные колонны 14-стабилизатор 20-вакуумная колонна 25-пароэжекторный насос 26-29-холодильники-рекуператорь 1-нефть П-гудрон III- сброс воды в канализацию IV- газ на ГФУ V-пар водяной VI- газы эжекции на утилизацию VII- головная фракция стабилизации на ГФУ VIII-дизельная фракция 1Х-бензин Х-керосин Х1-вакуум-дистиллят
Рис. 3.2. Схема установки атмосферно-вакуумной перегонки нефти
    Установка атмосферно-вакуумной перегонки нефти (С. Г. Рогачев) [c.3]

    Комбинированная установка атмосферно-вакуумной перегонки [c.227]

    Установка атмосферно-вакуумной перегонки нефти [c.14]

    На установке атмосферно-вакуумной перегонки нефти с ограниченной пропускной способностью промышленной канализации проводили дренирование газового конденсата из емкости сбора его с факельных трубопроводов. Под напором паров бензина была сброшена крышка с канализационного колодца, из которого произошел выброс воды с нефтепродуктами. После прекращения дренирования конденсата в канализацию и уменьшения сброса в нее воды из дегидраторов установки электрообессоливания удалось снизить уровень стоков в канализацию, но последняя оставалась переполнен- ой. Однако оператору было приказано восстановить сброс воды из дегидраторов. При возобновлении этой операции произошел второй выброс воды с продуктом уже из двух канализационных колодцев. Пары нефтепродуктов достигли горящих форсунок трубчатой печи установки и воспламенились. [c.67]

    Получение масляных фракций осуществляется разгонкой нефти на установках атмосферно-вакуумной перегонки (АВТ) или мазута на установках вакуумной перегонки (ВТ). При этом получаются несколько вакуумных масляных дистиллятов различной вязкости и остаток вакуумной перегонки — гудрон. [c.195]

    Близкую к описанной выще схему имеют многие отечественные установки атмосферно-вакуумной перегонки. Схема установки атмосферной перегонки нефти мощностью 6 млн. т/год (ЭЛОУ-АТ-6) и общий вид этой установки приводятся на рис. 18 и 19. [c.134]

    На одном из нефтеперерабатывающих заводов во время эксплуатации установки атмосферно-вакуумной перегонки нефти (АВТ) вышел из строя регулирующий клапан сброса воды из конденсатора смешения (абсорбера),, и в коллектор сточных вод проник бензин. В тот же коллектор поступала охлаждающая вода с температурой 80 °С из холодильника, предназначенного для охлаждения гудрона. При смешивании с горячей водой началось испарение бензина, и пары бензина из коллектора проникли на территорик> установки (аппаратного двора). Достигнув горящих форсунок трубчатой печи, пары бензина воспламенились. Как оказалось, на заводе было неудовлетворительно организовано обслуживание и ремонт средств КИПиА, на узле сброса воды из абсорбера не был установлен прибор, отключающий сброс ее при понижении уровня ниже допустимого, отсутствовала сигнализация на щите управления в операторной. [c.157]

    Ниже приводятся примерные показатели технологического режима установки атмосферно-вакуумной перегонки, работающей на сернистой восточной нефти  [c.134]

    Современные установки атмосферно-вакуумной перегонки нефти (АВТ) достигли мощности 6—8 млн. т/год. Доля перерабатываемой нефти на них составляет уже сейчас около 10% и к концу текущей пятилетки повысится до 30—35%- Однако технологические схемы этих установок практически не претерпели изменений по сравнению даже с довоенными установками мощностью 0,5—0,6 млн. т/год. Сохранилась схема двукратного испарения с отбензинивающей колонной и в основном одноколонная вакуумная ступень перегонки мазута. [c.34]

    В состав первичных установок входят установки атмосферно-вакуумной перегонки нефти. За 100% взята производительность атмосферных установок, она равна мощности заводов (см. табл. 47). [c.93]

    Грозненское производственное объединение по нефтепереработке расположено в г. Грозном-признанном центре нефтепереработки, который, однако, за последнее время утратил свое былое могущество и значение для районов Северного Кавказа и юга России. В объединение входило 3 нефтеперерабатывающих завода, основной из которых-завод им. Ленина. Объем возможной переработки-до 19 млн т/год. На предприятии функционируют установки атмосферно-вакуумной перегонки нефти (одна из них АВТ-6), 4 установки термического крекинга, комбинированная установка Г-43-107, установка депарафинизации, 2 установки каталитического крекинга типа 43-102 демонтированы. [c.133]

    Установки атмосферно-вакуумной перегонки нефти [107] [c.171]

    РИС. 28. Принципиальная схема установки атмосферно-вакуумной перегонки нефти с блоком обезвоживания и обессоливания по технологии фирмы Фостер [c.172]

    Пример оптимизации факельной системы завода, перерабатывающего 1,2 млн. т нефти в год и имеющего в своем составе установки атмосферно-вакуумной перегонки, гидрокрекинга, каталитического крекинга, каталитического риформинга, гидроочистки бензина и средних дистиллятов и газофракционирования, приведен в табл. 17 [51]. [c.108]

    Значительное улучшение технико-экономических показателей нефтеперерабатывающих заводов неразрывно связано с сооружением укрупненных и комбинированных установок мощностью 3—6 млн. т, а в ближайшем будущем до 12 млн. т нефти в год. При переработке нефти на различных установках (атмосферно-вакуумная перегонка, каталитический крекинг и риформинг, коксование, гидроочистка и пр.) образуется значительное количество газа (до 10% от сырья), состав которого может меняться в широких пределах. [c.103]

    Близкую с описанной выше схему имеют и более крупные отечественные установки атмосферно-вакуумной перегонки. [c.138]

    АВТ-6, В 1962 г. Институт Гипронефтезаводы закончил разработку рабочих чертежей установки атмосферной перегонки нефти мощностью 6 млн. т год (АТ-6). Сейчас этот проект реализуется на трех заводах — в Полоцке, Кириши и Рязани. В 1960 г. был выпущен технический проект установки атмосферно-вакуумной перегонки мощностью также 6 млн. т)год (АВТ-6). [c.216]

    Рассмотрим технологическую схему установки атмосферно-вакуумной перегонки нефти с секцией вторичной перегонки бензиновых дистиллятов (рис. 1). [c.3]

    Выход масляных дистиллятов и гудрона зависит от их потенциального содержания в перерабатываемой нефти, а также от четкости погоноразделения. Вакуумную перегонку мазута обычно совмещают с атмосферной перегонкой нефти на установках атмосферно-вакуумной перегонки (АВТ). В схемы производства масляных дистиллятов, как правило, включают две вакуумные колонны. Во второй из них перегоняется широкая фракция 350—500 °С или полугудрон с началом кипения 400 или 450 °С. Число тарелок в вакуумной колонне ограничено, так как с их увеличением повышается давление в зоне испарения при равном вакууме наверху ко- [c.50]

    На рис. 123 показан общий иид американской трехступен-чатой установки атмосферно-вакуумной перегонки нефти. [c.245]

    Тяжелые остаточные нефтяные фракции по технологии, запатентованной учеными Амоко, подвергают гидроочистке с последующим крекингом легкого гидрогенизата и коксованием тяжелого гидрогенизата с получением кокса. На заводе функционируют 24 установки 2 установки атмосферно-вакуумной перегонки нефти, 3 установки каталитического крекинга (одна установка производительностью 8500, другая-5000 и самая большая-типа Ортофлоу-17 500 т/день), комплекс коксования, установки гидроочистки средних, светлых и вакуумных дистиллятов, нефтяных остатков, 3 установки риформинга бензинов с частичным извлечением ароматических углеводородов, 2 установки производства водорода, комплекс извлечения серы по Клауссу, установки гидрокрекинга, изомеризации, очистки отработанной воды. [c.104]

    Нефтяные битумы имеют весьма сложный химичесЕий состав, которй обусловлен природой нефтяного сырья, технологией переработки нефти и производства битумов. Необходимое качество сырья для провзводства битумов обычно достигается в результате углубления переработки нефти на установках атмосферно-вакуумной перегонки. [c.51]

    Поступающую нефть сортируют таким образом, чтобы после ее переработки обеспечить отбор продуктов в следуюпщх количествах (в объемн. % на нефть) бензина — 44 керосина и дизельного топлива — 31 котельного топлива и битума — 10 смазочных масел — 3 прочих продуктов — 12. Завод условно делится на две части одна из них включает установки, выпускающие топливную продукцию, другая — установки, вырабатывающие химические продукты. К первой относятся установки атмосферно-вакуумной перегонки, каталитического риформинга, каталитического крекинга, газофракционирования, полимеризации непредельных углеводородов и алкилирования. Из дпстиллятных остаточных масляных фракций при помощи селективной очистки, деасфальтизации, депарафинизации, контактной очистки, перко-ляционной очистки и компаундирования на заводе получают широкий ассортимент товарных масел. [c.219]

    Большинство печей имеет две радиантные (являющиеся также топочными) камеры, однако распространены и однокамерные ра-диантно-конвекционные печи. Многокамерные печи, снабженные несколькими топочными камерами, наряду с двухкамерными чаще применяют на тех установках, где осуществляются комбинированные процессы (например, нагрев нефти и мазута на установках атмосферно-вакуумной перегонки) или где по условиям технологии необходимо обеспечить различные теплонапряженности на отдельных участках трубного змеевика (например, установки термического крекинга). [c.86]

    Однако то, что было сделано по проекту Рязанского завода 8— 10 лет назад, далеко не предел наших возможностей. Теперь, когда техника нефтепереработки значительно обогатилась новыми достижениями, мы можем добиться значительно более высоких технико-экономических показателей при проектировании перспективных нефтеперерабатывающих заводов. Как я уже говорил, на итальянском заводе в Сан-Назаре для переработки 5 1МЛН. т нефти в год занято всего 410 чел., в том числе на установках атмосферно-вакуумной перегонки, каталитического крекинга и каталитического риформинга — 80 чел. (по 20 чел. в каждую из четырех смен). В производстве пара и электроэнергии, водоснабжении, реагентном хозяйстве и в других вспомогательных хозяйствах занято 44 чел., или по М чел., в смену, на операциях по приготовлению и отгрузке сыр5>я и товарной продукции — 94 чел., на работах по ремонту оборудования—-106 чел. управленческий аппарат завода — 30 чел., лабораторный персонал — всего 24 чел., в противопожарной службе занято 20 чел., охрана и медперсонал составляют 12 чел. [c.14]

chem21.info